1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 lockdep_assert_held(&vsock_register_mutex); 411 412 if (!transport_local) 413 return false; 414 415 if (remote_cid == VMADDR_CID_LOCAL) 416 return true; 417 418 if (transport_g2h) { 419 return remote_cid == transport_g2h->get_local_cid(); 420 } else { 421 return remote_cid == VMADDR_CID_HOST; 422 } 423 } 424 425 static void vsock_deassign_transport(struct vsock_sock *vsk) 426 { 427 if (!vsk->transport) 428 return; 429 430 vsk->transport->destruct(vsk); 431 module_put(vsk->transport->module); 432 vsk->transport = NULL; 433 } 434 435 /* Assign a transport to a socket and call the .init transport callback. 436 * 437 * Note: for connection oriented socket this must be called when vsk->remote_addr 438 * is set (e.g. during the connect() or when a connection request on a listener 439 * socket is received). 440 * The vsk->remote_addr is used to decide which transport to use: 441 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 442 * g2h is not loaded, will use local transport; 443 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 444 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 445 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 446 */ 447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 448 { 449 const struct vsock_transport *new_transport; 450 struct sock *sk = sk_vsock(vsk); 451 unsigned int remote_cid = vsk->remote_addr.svm_cid; 452 __u8 remote_flags; 453 int ret; 454 455 /* If the packet is coming with the source and destination CIDs higher 456 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 457 * forwarded to the host should be established. Then the host will 458 * need to forward the packets to the guest. 459 * 460 * The flag is set on the (listen) receive path (psk is not NULL). On 461 * the connect path the flag can be set by the user space application. 462 */ 463 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 464 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 465 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 466 467 remote_flags = vsk->remote_addr.svm_flags; 468 469 mutex_lock(&vsock_register_mutex); 470 471 switch (sk->sk_type) { 472 case SOCK_DGRAM: 473 new_transport = transport_dgram; 474 break; 475 case SOCK_STREAM: 476 case SOCK_SEQPACKET: 477 if (vsock_use_local_transport(remote_cid)) 478 new_transport = transport_local; 479 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 480 (remote_flags & VMADDR_FLAG_TO_HOST)) 481 new_transport = transport_g2h; 482 else 483 new_transport = transport_h2g; 484 break; 485 default: 486 ret = -ESOCKTNOSUPPORT; 487 goto err; 488 } 489 490 if (vsk->transport) { 491 if (vsk->transport == new_transport) { 492 ret = 0; 493 goto err; 494 } 495 496 /* transport->release() must be called with sock lock acquired. 497 * This path can only be taken during vsock_connect(), where we 498 * have already held the sock lock. In the other cases, this 499 * function is called on a new socket which is not assigned to 500 * any transport. 501 */ 502 vsk->transport->release(vsk); 503 vsock_deassign_transport(vsk); 504 505 /* transport's release() and destruct() can touch some socket 506 * state, since we are reassigning the socket to a new transport 507 * during vsock_connect(), let's reset these fields to have a 508 * clean state. 509 */ 510 sock_reset_flag(sk, SOCK_DONE); 511 sk->sk_state = TCP_CLOSE; 512 vsk->peer_shutdown = 0; 513 } 514 515 /* We increase the module refcnt to prevent the transport unloading 516 * while there are open sockets assigned to it. 517 */ 518 if (!new_transport || !try_module_get(new_transport->module)) { 519 ret = -ENODEV; 520 goto err; 521 } 522 523 /* It's safe to release the mutex after a successful try_module_get(). 524 * Whichever transport `new_transport` points at, it won't go away until 525 * the last module_put() below or in vsock_deassign_transport(). 526 */ 527 mutex_unlock(&vsock_register_mutex); 528 529 if (sk->sk_type == SOCK_SEQPACKET) { 530 if (!new_transport->seqpacket_allow || 531 !new_transport->seqpacket_allow(remote_cid)) { 532 module_put(new_transport->module); 533 return -ESOCKTNOSUPPORT; 534 } 535 } 536 537 ret = new_transport->init(vsk, psk); 538 if (ret) { 539 module_put(new_transport->module); 540 return ret; 541 } 542 543 vsk->transport = new_transport; 544 545 return 0; 546 err: 547 mutex_unlock(&vsock_register_mutex); 548 return ret; 549 } 550 EXPORT_SYMBOL_GPL(vsock_assign_transport); 551 552 /* 553 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks. 554 * Otherwise we may race with module removal. Do not use on `vsk->transport`. 555 */ 556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport) 557 { 558 u32 cid = VMADDR_CID_ANY; 559 560 mutex_lock(&vsock_register_mutex); 561 if (*transport) 562 cid = (*transport)->get_local_cid(); 563 mutex_unlock(&vsock_register_mutex); 564 565 return cid; 566 } 567 568 bool vsock_find_cid(unsigned int cid) 569 { 570 if (cid == vsock_registered_transport_cid(&transport_g2h)) 571 return true; 572 573 if (transport_h2g && cid == VMADDR_CID_HOST) 574 return true; 575 576 if (transport_local && cid == VMADDR_CID_LOCAL) 577 return true; 578 579 return false; 580 } 581 EXPORT_SYMBOL_GPL(vsock_find_cid); 582 583 static struct sock *vsock_dequeue_accept(struct sock *listener) 584 { 585 struct vsock_sock *vlistener; 586 struct vsock_sock *vconnected; 587 588 vlistener = vsock_sk(listener); 589 590 if (list_empty(&vlistener->accept_queue)) 591 return NULL; 592 593 vconnected = list_entry(vlistener->accept_queue.next, 594 struct vsock_sock, accept_queue); 595 596 list_del_init(&vconnected->accept_queue); 597 sock_put(listener); 598 /* The caller will need a reference on the connected socket so we let 599 * it call sock_put(). 600 */ 601 602 return sk_vsock(vconnected); 603 } 604 605 static bool vsock_is_accept_queue_empty(struct sock *sk) 606 { 607 struct vsock_sock *vsk = vsock_sk(sk); 608 return list_empty(&vsk->accept_queue); 609 } 610 611 static bool vsock_is_pending(struct sock *sk) 612 { 613 struct vsock_sock *vsk = vsock_sk(sk); 614 return !list_empty(&vsk->pending_links); 615 } 616 617 static int vsock_send_shutdown(struct sock *sk, int mode) 618 { 619 struct vsock_sock *vsk = vsock_sk(sk); 620 621 if (!vsk->transport) 622 return -ENODEV; 623 624 return vsk->transport->shutdown(vsk, mode); 625 } 626 627 static void vsock_pending_work(struct work_struct *work) 628 { 629 struct sock *sk; 630 struct sock *listener; 631 struct vsock_sock *vsk; 632 bool cleanup; 633 634 vsk = container_of(work, struct vsock_sock, pending_work.work); 635 sk = sk_vsock(vsk); 636 listener = vsk->listener; 637 cleanup = true; 638 639 lock_sock(listener); 640 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 641 642 if (vsock_is_pending(sk)) { 643 vsock_remove_pending(listener, sk); 644 645 sk_acceptq_removed(listener); 646 } else if (!vsk->rejected) { 647 /* We are not on the pending list and accept() did not reject 648 * us, so we must have been accepted by our user process. We 649 * just need to drop our references to the sockets and be on 650 * our way. 651 */ 652 cleanup = false; 653 goto out; 654 } 655 656 /* We need to remove ourself from the global connected sockets list so 657 * incoming packets can't find this socket, and to reduce the reference 658 * count. 659 */ 660 vsock_remove_connected(vsk); 661 662 sk->sk_state = TCP_CLOSE; 663 664 out: 665 release_sock(sk); 666 release_sock(listener); 667 if (cleanup) 668 sock_put(sk); 669 670 sock_put(sk); 671 sock_put(listener); 672 } 673 674 /**** SOCKET OPERATIONS ****/ 675 676 static int __vsock_bind_connectible(struct vsock_sock *vsk, 677 struct sockaddr_vm *addr) 678 { 679 static u32 port; 680 struct sockaddr_vm new_addr; 681 682 if (!port) 683 port = get_random_u32_above(LAST_RESERVED_PORT); 684 685 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 686 687 if (addr->svm_port == VMADDR_PORT_ANY) { 688 bool found = false; 689 unsigned int i; 690 691 for (i = 0; i < MAX_PORT_RETRIES; i++) { 692 if (port <= LAST_RESERVED_PORT) 693 port = LAST_RESERVED_PORT + 1; 694 695 new_addr.svm_port = port++; 696 697 if (!__vsock_find_bound_socket(&new_addr)) { 698 found = true; 699 break; 700 } 701 } 702 703 if (!found) 704 return -EADDRNOTAVAIL; 705 } else { 706 /* If port is in reserved range, ensure caller 707 * has necessary privileges. 708 */ 709 if (addr->svm_port <= LAST_RESERVED_PORT && 710 !capable(CAP_NET_BIND_SERVICE)) { 711 return -EACCES; 712 } 713 714 if (__vsock_find_bound_socket(&new_addr)) 715 return -EADDRINUSE; 716 } 717 718 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 719 720 /* Remove connection oriented sockets from the unbound list and add them 721 * to the hash table for easy lookup by its address. The unbound list 722 * is simply an extra entry at the end of the hash table, a trick used 723 * by AF_UNIX. 724 */ 725 __vsock_remove_bound(vsk); 726 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 727 728 return 0; 729 } 730 731 static int __vsock_bind_dgram(struct vsock_sock *vsk, 732 struct sockaddr_vm *addr) 733 { 734 return vsk->transport->dgram_bind(vsk, addr); 735 } 736 737 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 738 { 739 struct vsock_sock *vsk = vsock_sk(sk); 740 int retval; 741 742 /* First ensure this socket isn't already bound. */ 743 if (vsock_addr_bound(&vsk->local_addr)) 744 return -EINVAL; 745 746 /* Now bind to the provided address or select appropriate values if 747 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 748 * like AF_INET prevents binding to a non-local IP address (in most 749 * cases), we only allow binding to a local CID. 750 */ 751 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 752 return -EADDRNOTAVAIL; 753 754 switch (sk->sk_socket->type) { 755 case SOCK_STREAM: 756 case SOCK_SEQPACKET: 757 spin_lock_bh(&vsock_table_lock); 758 retval = __vsock_bind_connectible(vsk, addr); 759 spin_unlock_bh(&vsock_table_lock); 760 break; 761 762 case SOCK_DGRAM: 763 retval = __vsock_bind_dgram(vsk, addr); 764 break; 765 766 default: 767 retval = -EINVAL; 768 break; 769 } 770 771 return retval; 772 } 773 774 static void vsock_connect_timeout(struct work_struct *work); 775 776 static struct sock *__vsock_create(struct net *net, 777 struct socket *sock, 778 struct sock *parent, 779 gfp_t priority, 780 unsigned short type, 781 int kern) 782 { 783 struct sock *sk; 784 struct vsock_sock *psk; 785 struct vsock_sock *vsk; 786 787 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 788 if (!sk) 789 return NULL; 790 791 sock_init_data(sock, sk); 792 793 /* sk->sk_type is normally set in sock_init_data, but only if sock is 794 * non-NULL. We make sure that our sockets always have a type by 795 * setting it here if needed. 796 */ 797 if (!sock) 798 sk->sk_type = type; 799 800 vsk = vsock_sk(sk); 801 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 802 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 803 804 sk->sk_destruct = vsock_sk_destruct; 805 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 806 sock_reset_flag(sk, SOCK_DONE); 807 808 INIT_LIST_HEAD(&vsk->bound_table); 809 INIT_LIST_HEAD(&vsk->connected_table); 810 vsk->listener = NULL; 811 INIT_LIST_HEAD(&vsk->pending_links); 812 INIT_LIST_HEAD(&vsk->accept_queue); 813 vsk->rejected = false; 814 vsk->sent_request = false; 815 vsk->ignore_connecting_rst = false; 816 vsk->peer_shutdown = 0; 817 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 818 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 819 820 psk = parent ? vsock_sk(parent) : NULL; 821 if (parent) { 822 vsk->trusted = psk->trusted; 823 vsk->owner = get_cred(psk->owner); 824 vsk->connect_timeout = psk->connect_timeout; 825 vsk->buffer_size = psk->buffer_size; 826 vsk->buffer_min_size = psk->buffer_min_size; 827 vsk->buffer_max_size = psk->buffer_max_size; 828 security_sk_clone(parent, sk); 829 } else { 830 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 831 vsk->owner = get_current_cred(); 832 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 833 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 834 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 835 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 836 } 837 838 return sk; 839 } 840 841 static bool sock_type_connectible(u16 type) 842 { 843 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 844 } 845 846 static void __vsock_release(struct sock *sk, int level) 847 { 848 struct vsock_sock *vsk; 849 struct sock *pending; 850 851 vsk = vsock_sk(sk); 852 pending = NULL; /* Compiler warning. */ 853 854 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 855 * version to avoid the warning "possible recursive locking 856 * detected". When "level" is 0, lock_sock_nested(sk, level) 857 * is the same as lock_sock(sk). 858 */ 859 lock_sock_nested(sk, level); 860 861 /* Indicate to vsock_remove_sock() that the socket is being released and 862 * can be removed from the bound_table. Unlike transport reassignment 863 * case, where the socket must remain bound despite vsock_remove_sock() 864 * being called from the transport release() callback. 865 */ 866 sock_set_flag(sk, SOCK_DEAD); 867 868 if (vsk->transport) 869 vsk->transport->release(vsk); 870 else if (sock_type_connectible(sk->sk_type)) 871 vsock_remove_sock(vsk); 872 873 sock_orphan(sk); 874 sk->sk_shutdown = SHUTDOWN_MASK; 875 876 skb_queue_purge(&sk->sk_receive_queue); 877 878 /* Clean up any sockets that never were accepted. */ 879 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 880 __vsock_release(pending, SINGLE_DEPTH_NESTING); 881 sock_put(pending); 882 } 883 884 release_sock(sk); 885 sock_put(sk); 886 } 887 888 static void vsock_sk_destruct(struct sock *sk) 889 { 890 struct vsock_sock *vsk = vsock_sk(sk); 891 892 /* Flush MSG_ZEROCOPY leftovers. */ 893 __skb_queue_purge(&sk->sk_error_queue); 894 895 vsock_deassign_transport(vsk); 896 897 /* When clearing these addresses, there's no need to set the family and 898 * possibly register the address family with the kernel. 899 */ 900 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 901 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 902 903 put_cred(vsk->owner); 904 } 905 906 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 907 { 908 int err; 909 910 err = sock_queue_rcv_skb(sk, skb); 911 if (err) 912 kfree_skb(skb); 913 914 return err; 915 } 916 917 struct sock *vsock_create_connected(struct sock *parent) 918 { 919 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 920 parent->sk_type, 0); 921 } 922 EXPORT_SYMBOL_GPL(vsock_create_connected); 923 924 s64 vsock_stream_has_data(struct vsock_sock *vsk) 925 { 926 if (WARN_ON(!vsk->transport)) 927 return 0; 928 929 return vsk->transport->stream_has_data(vsk); 930 } 931 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 932 933 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 934 { 935 struct sock *sk = sk_vsock(vsk); 936 937 if (WARN_ON(!vsk->transport)) 938 return 0; 939 940 if (sk->sk_type == SOCK_SEQPACKET) 941 return vsk->transport->seqpacket_has_data(vsk); 942 else 943 return vsock_stream_has_data(vsk); 944 } 945 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 946 947 s64 vsock_stream_has_space(struct vsock_sock *vsk) 948 { 949 if (WARN_ON(!vsk->transport)) 950 return 0; 951 952 return vsk->transport->stream_has_space(vsk); 953 } 954 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 955 956 void vsock_data_ready(struct sock *sk) 957 { 958 struct vsock_sock *vsk = vsock_sk(sk); 959 960 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 961 sock_flag(sk, SOCK_DONE)) 962 sk->sk_data_ready(sk); 963 } 964 EXPORT_SYMBOL_GPL(vsock_data_ready); 965 966 /* Dummy callback required by sockmap. 967 * See unconditional call of saved_close() in sock_map_close(). 968 */ 969 static void vsock_close(struct sock *sk, long timeout) 970 { 971 } 972 973 static int vsock_release(struct socket *sock) 974 { 975 struct sock *sk = sock->sk; 976 977 if (!sk) 978 return 0; 979 980 sk->sk_prot->close(sk, 0); 981 __vsock_release(sk, 0); 982 sock->sk = NULL; 983 sock->state = SS_FREE; 984 985 return 0; 986 } 987 988 static int 989 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 990 { 991 int err; 992 struct sock *sk; 993 struct sockaddr_vm *vm_addr; 994 995 sk = sock->sk; 996 997 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 998 return -EINVAL; 999 1000 lock_sock(sk); 1001 err = __vsock_bind(sk, vm_addr); 1002 release_sock(sk); 1003 1004 return err; 1005 } 1006 1007 static int vsock_getname(struct socket *sock, 1008 struct sockaddr *addr, int peer) 1009 { 1010 int err; 1011 struct sock *sk; 1012 struct vsock_sock *vsk; 1013 struct sockaddr_vm *vm_addr; 1014 1015 sk = sock->sk; 1016 vsk = vsock_sk(sk); 1017 err = 0; 1018 1019 lock_sock(sk); 1020 1021 if (peer) { 1022 if (sock->state != SS_CONNECTED) { 1023 err = -ENOTCONN; 1024 goto out; 1025 } 1026 vm_addr = &vsk->remote_addr; 1027 } else { 1028 vm_addr = &vsk->local_addr; 1029 } 1030 1031 if (!vm_addr) { 1032 err = -EINVAL; 1033 goto out; 1034 } 1035 1036 /* sys_getsockname() and sys_getpeername() pass us a 1037 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 1038 * that macro is defined in socket.c instead of .h, so we hardcode its 1039 * value here. 1040 */ 1041 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 1042 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1043 err = sizeof(*vm_addr); 1044 1045 out: 1046 release_sock(sk); 1047 return err; 1048 } 1049 1050 void vsock_linger(struct sock *sk) 1051 { 1052 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1053 ssize_t (*unsent)(struct vsock_sock *vsk); 1054 struct vsock_sock *vsk = vsock_sk(sk); 1055 long timeout; 1056 1057 if (!sock_flag(sk, SOCK_LINGER)) 1058 return; 1059 1060 timeout = sk->sk_lingertime; 1061 if (!timeout) 1062 return; 1063 1064 /* Transports must implement `unsent_bytes` if they want to support 1065 * SOCK_LINGER through `vsock_linger()` since we use it to check when 1066 * the socket can be closed. 1067 */ 1068 unsent = vsk->transport->unsent_bytes; 1069 if (!unsent) 1070 return; 1071 1072 add_wait_queue(sk_sleep(sk), &wait); 1073 1074 do { 1075 if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait)) 1076 break; 1077 } while (!signal_pending(current) && timeout); 1078 1079 remove_wait_queue(sk_sleep(sk), &wait); 1080 } 1081 EXPORT_SYMBOL_GPL(vsock_linger); 1082 1083 static int vsock_shutdown(struct socket *sock, int mode) 1084 { 1085 int err; 1086 struct sock *sk; 1087 1088 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1089 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1090 * here like the other address families do. Note also that the 1091 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1092 * which is what we want. 1093 */ 1094 mode++; 1095 1096 if ((mode & ~SHUTDOWN_MASK) || !mode) 1097 return -EINVAL; 1098 1099 /* If this is a connection oriented socket and it is not connected then 1100 * bail out immediately. If it is a DGRAM socket then we must first 1101 * kick the socket so that it wakes up from any sleeping calls, for 1102 * example recv(), and then afterwards return the error. 1103 */ 1104 1105 sk = sock->sk; 1106 1107 lock_sock(sk); 1108 if (sock->state == SS_UNCONNECTED) { 1109 err = -ENOTCONN; 1110 if (sock_type_connectible(sk->sk_type)) 1111 goto out; 1112 } else { 1113 sock->state = SS_DISCONNECTING; 1114 err = 0; 1115 } 1116 1117 /* Receive and send shutdowns are treated alike. */ 1118 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1119 if (mode) { 1120 sk->sk_shutdown |= mode; 1121 sk->sk_state_change(sk); 1122 1123 if (sock_type_connectible(sk->sk_type)) { 1124 sock_reset_flag(sk, SOCK_DONE); 1125 vsock_send_shutdown(sk, mode); 1126 } 1127 } 1128 1129 out: 1130 release_sock(sk); 1131 return err; 1132 } 1133 1134 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1135 poll_table *wait) 1136 { 1137 struct sock *sk; 1138 __poll_t mask; 1139 struct vsock_sock *vsk; 1140 1141 sk = sock->sk; 1142 vsk = vsock_sk(sk); 1143 1144 poll_wait(file, sk_sleep(sk), wait); 1145 mask = 0; 1146 1147 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1148 /* Signify that there has been an error on this socket. */ 1149 mask |= EPOLLERR; 1150 1151 /* INET sockets treat local write shutdown and peer write shutdown as a 1152 * case of EPOLLHUP set. 1153 */ 1154 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1155 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1156 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1157 mask |= EPOLLHUP; 1158 } 1159 1160 if (sk->sk_shutdown & RCV_SHUTDOWN || 1161 vsk->peer_shutdown & SEND_SHUTDOWN) { 1162 mask |= EPOLLRDHUP; 1163 } 1164 1165 if (sk_is_readable(sk)) 1166 mask |= EPOLLIN | EPOLLRDNORM; 1167 1168 if (sock->type == SOCK_DGRAM) { 1169 /* For datagram sockets we can read if there is something in 1170 * the queue and write as long as the socket isn't shutdown for 1171 * sending. 1172 */ 1173 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1174 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1175 mask |= EPOLLIN | EPOLLRDNORM; 1176 } 1177 1178 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1179 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1180 1181 } else if (sock_type_connectible(sk->sk_type)) { 1182 const struct vsock_transport *transport; 1183 1184 lock_sock(sk); 1185 1186 transport = vsk->transport; 1187 1188 /* Listening sockets that have connections in their accept 1189 * queue can be read. 1190 */ 1191 if (sk->sk_state == TCP_LISTEN 1192 && !vsock_is_accept_queue_empty(sk)) 1193 mask |= EPOLLIN | EPOLLRDNORM; 1194 1195 /* If there is something in the queue then we can read. */ 1196 if (transport && transport->stream_is_active(vsk) && 1197 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1198 bool data_ready_now = false; 1199 int target = sock_rcvlowat(sk, 0, INT_MAX); 1200 int ret = transport->notify_poll_in( 1201 vsk, target, &data_ready_now); 1202 if (ret < 0) { 1203 mask |= EPOLLERR; 1204 } else { 1205 if (data_ready_now) 1206 mask |= EPOLLIN | EPOLLRDNORM; 1207 1208 } 1209 } 1210 1211 /* Sockets whose connections have been closed, reset, or 1212 * terminated should also be considered read, and we check the 1213 * shutdown flag for that. 1214 */ 1215 if (sk->sk_shutdown & RCV_SHUTDOWN || 1216 vsk->peer_shutdown & SEND_SHUTDOWN) { 1217 mask |= EPOLLIN | EPOLLRDNORM; 1218 } 1219 1220 /* Connected sockets that can produce data can be written. */ 1221 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1222 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1223 bool space_avail_now = false; 1224 int ret = transport->notify_poll_out( 1225 vsk, 1, &space_avail_now); 1226 if (ret < 0) { 1227 mask |= EPOLLERR; 1228 } else { 1229 if (space_avail_now) 1230 /* Remove EPOLLWRBAND since INET 1231 * sockets are not setting it. 1232 */ 1233 mask |= EPOLLOUT | EPOLLWRNORM; 1234 1235 } 1236 } 1237 } 1238 1239 /* Simulate INET socket poll behaviors, which sets 1240 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1241 * but local send is not shutdown. 1242 */ 1243 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1244 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1245 mask |= EPOLLOUT | EPOLLWRNORM; 1246 1247 } 1248 1249 release_sock(sk); 1250 } 1251 1252 return mask; 1253 } 1254 1255 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1256 { 1257 struct vsock_sock *vsk = vsock_sk(sk); 1258 1259 if (WARN_ON_ONCE(!vsk->transport)) 1260 return -ENODEV; 1261 1262 return vsk->transport->read_skb(vsk, read_actor); 1263 } 1264 1265 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1266 size_t len) 1267 { 1268 int err; 1269 struct sock *sk; 1270 struct vsock_sock *vsk; 1271 struct sockaddr_vm *remote_addr; 1272 const struct vsock_transport *transport; 1273 1274 if (msg->msg_flags & MSG_OOB) 1275 return -EOPNOTSUPP; 1276 1277 /* For now, MSG_DONTWAIT is always assumed... */ 1278 err = 0; 1279 sk = sock->sk; 1280 vsk = vsock_sk(sk); 1281 1282 lock_sock(sk); 1283 1284 transport = vsk->transport; 1285 1286 err = vsock_auto_bind(vsk); 1287 if (err) 1288 goto out; 1289 1290 1291 /* If the provided message contains an address, use that. Otherwise 1292 * fall back on the socket's remote handle (if it has been connected). 1293 */ 1294 if (msg->msg_name && 1295 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1296 &remote_addr) == 0) { 1297 /* Ensure this address is of the right type and is a valid 1298 * destination. 1299 */ 1300 1301 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1302 remote_addr->svm_cid = transport->get_local_cid(); 1303 1304 if (!vsock_addr_bound(remote_addr)) { 1305 err = -EINVAL; 1306 goto out; 1307 } 1308 } else if (sock->state == SS_CONNECTED) { 1309 remote_addr = &vsk->remote_addr; 1310 1311 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1312 remote_addr->svm_cid = transport->get_local_cid(); 1313 1314 /* XXX Should connect() or this function ensure remote_addr is 1315 * bound? 1316 */ 1317 if (!vsock_addr_bound(&vsk->remote_addr)) { 1318 err = -EINVAL; 1319 goto out; 1320 } 1321 } else { 1322 err = -EINVAL; 1323 goto out; 1324 } 1325 1326 if (!transport->dgram_allow(remote_addr->svm_cid, 1327 remote_addr->svm_port)) { 1328 err = -EINVAL; 1329 goto out; 1330 } 1331 1332 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1333 1334 out: 1335 release_sock(sk); 1336 return err; 1337 } 1338 1339 static int vsock_dgram_connect(struct socket *sock, 1340 struct sockaddr *addr, int addr_len, int flags) 1341 { 1342 int err; 1343 struct sock *sk; 1344 struct vsock_sock *vsk; 1345 struct sockaddr_vm *remote_addr; 1346 1347 sk = sock->sk; 1348 vsk = vsock_sk(sk); 1349 1350 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1351 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1352 lock_sock(sk); 1353 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1354 VMADDR_PORT_ANY); 1355 sock->state = SS_UNCONNECTED; 1356 release_sock(sk); 1357 return 0; 1358 } else if (err != 0) 1359 return -EINVAL; 1360 1361 lock_sock(sk); 1362 1363 err = vsock_auto_bind(vsk); 1364 if (err) 1365 goto out; 1366 1367 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1368 remote_addr->svm_port)) { 1369 err = -EINVAL; 1370 goto out; 1371 } 1372 1373 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1374 sock->state = SS_CONNECTED; 1375 1376 /* sock map disallows redirection of non-TCP sockets with sk_state != 1377 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1378 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1379 * 1380 * This doesn't seem to be abnormal state for datagram sockets, as the 1381 * same approach can be see in other datagram socket types as well 1382 * (such as unix sockets). 1383 */ 1384 sk->sk_state = TCP_ESTABLISHED; 1385 1386 out: 1387 release_sock(sk); 1388 return err; 1389 } 1390 1391 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1392 size_t len, int flags) 1393 { 1394 struct sock *sk = sock->sk; 1395 struct vsock_sock *vsk = vsock_sk(sk); 1396 1397 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1398 } 1399 1400 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1401 size_t len, int flags) 1402 { 1403 #ifdef CONFIG_BPF_SYSCALL 1404 struct sock *sk = sock->sk; 1405 const struct proto *prot; 1406 1407 prot = READ_ONCE(sk->sk_prot); 1408 if (prot != &vsock_proto) 1409 return prot->recvmsg(sk, msg, len, flags, NULL); 1410 #endif 1411 1412 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1413 } 1414 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1415 1416 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1417 int __user *arg) 1418 { 1419 struct sock *sk = sock->sk; 1420 struct vsock_sock *vsk; 1421 int ret; 1422 1423 vsk = vsock_sk(sk); 1424 1425 switch (cmd) { 1426 case SIOCINQ: { 1427 ssize_t n_bytes; 1428 1429 if (!vsk->transport) { 1430 ret = -EOPNOTSUPP; 1431 break; 1432 } 1433 1434 if (sock_type_connectible(sk->sk_type) && 1435 sk->sk_state == TCP_LISTEN) { 1436 ret = -EINVAL; 1437 break; 1438 } 1439 1440 n_bytes = vsock_stream_has_data(vsk); 1441 if (n_bytes < 0) { 1442 ret = n_bytes; 1443 break; 1444 } 1445 ret = put_user(n_bytes, arg); 1446 break; 1447 } 1448 case SIOCOUTQ: { 1449 ssize_t n_bytes; 1450 1451 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1452 ret = -EOPNOTSUPP; 1453 break; 1454 } 1455 1456 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1457 ret = -EINVAL; 1458 break; 1459 } 1460 1461 n_bytes = vsk->transport->unsent_bytes(vsk); 1462 if (n_bytes < 0) { 1463 ret = n_bytes; 1464 break; 1465 } 1466 1467 ret = put_user(n_bytes, arg); 1468 break; 1469 } 1470 default: 1471 ret = -ENOIOCTLCMD; 1472 } 1473 1474 return ret; 1475 } 1476 1477 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1478 unsigned long arg) 1479 { 1480 int ret; 1481 1482 lock_sock(sock->sk); 1483 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1484 release_sock(sock->sk); 1485 1486 return ret; 1487 } 1488 1489 static const struct proto_ops vsock_dgram_ops = { 1490 .family = PF_VSOCK, 1491 .owner = THIS_MODULE, 1492 .release = vsock_release, 1493 .bind = vsock_bind, 1494 .connect = vsock_dgram_connect, 1495 .socketpair = sock_no_socketpair, 1496 .accept = sock_no_accept, 1497 .getname = vsock_getname, 1498 .poll = vsock_poll, 1499 .ioctl = vsock_ioctl, 1500 .listen = sock_no_listen, 1501 .shutdown = vsock_shutdown, 1502 .sendmsg = vsock_dgram_sendmsg, 1503 .recvmsg = vsock_dgram_recvmsg, 1504 .mmap = sock_no_mmap, 1505 .read_skb = vsock_read_skb, 1506 }; 1507 1508 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1509 { 1510 const struct vsock_transport *transport = vsk->transport; 1511 1512 if (!transport || !transport->cancel_pkt) 1513 return -EOPNOTSUPP; 1514 1515 return transport->cancel_pkt(vsk); 1516 } 1517 1518 static void vsock_connect_timeout(struct work_struct *work) 1519 { 1520 struct sock *sk; 1521 struct vsock_sock *vsk; 1522 1523 vsk = container_of(work, struct vsock_sock, connect_work.work); 1524 sk = sk_vsock(vsk); 1525 1526 lock_sock(sk); 1527 if (sk->sk_state == TCP_SYN_SENT && 1528 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1529 sk->sk_state = TCP_CLOSE; 1530 sk->sk_socket->state = SS_UNCONNECTED; 1531 sk->sk_err = ETIMEDOUT; 1532 sk_error_report(sk); 1533 vsock_transport_cancel_pkt(vsk); 1534 } 1535 release_sock(sk); 1536 1537 sock_put(sk); 1538 } 1539 1540 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1541 int addr_len, int flags) 1542 { 1543 int err; 1544 struct sock *sk; 1545 struct vsock_sock *vsk; 1546 const struct vsock_transport *transport; 1547 struct sockaddr_vm *remote_addr; 1548 long timeout; 1549 DEFINE_WAIT(wait); 1550 1551 err = 0; 1552 sk = sock->sk; 1553 vsk = vsock_sk(sk); 1554 1555 lock_sock(sk); 1556 1557 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1558 switch (sock->state) { 1559 case SS_CONNECTED: 1560 err = -EISCONN; 1561 goto out; 1562 case SS_DISCONNECTING: 1563 err = -EINVAL; 1564 goto out; 1565 case SS_CONNECTING: 1566 /* This continues on so we can move sock into the SS_CONNECTED 1567 * state once the connection has completed (at which point err 1568 * will be set to zero also). Otherwise, we will either wait 1569 * for the connection or return -EALREADY should this be a 1570 * non-blocking call. 1571 */ 1572 err = -EALREADY; 1573 if (flags & O_NONBLOCK) 1574 goto out; 1575 break; 1576 default: 1577 if ((sk->sk_state == TCP_LISTEN) || 1578 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1579 err = -EINVAL; 1580 goto out; 1581 } 1582 1583 /* Set the remote address that we are connecting to. */ 1584 memcpy(&vsk->remote_addr, remote_addr, 1585 sizeof(vsk->remote_addr)); 1586 1587 err = vsock_assign_transport(vsk, NULL); 1588 if (err) 1589 goto out; 1590 1591 transport = vsk->transport; 1592 1593 /* The hypervisor and well-known contexts do not have socket 1594 * endpoints. 1595 */ 1596 if (!transport || 1597 !transport->stream_allow(remote_addr->svm_cid, 1598 remote_addr->svm_port)) { 1599 err = -ENETUNREACH; 1600 goto out; 1601 } 1602 1603 if (vsock_msgzerocopy_allow(transport)) { 1604 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1605 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1606 /* If this option was set before 'connect()', 1607 * when transport was unknown, check that this 1608 * feature is supported here. 1609 */ 1610 err = -EOPNOTSUPP; 1611 goto out; 1612 } 1613 1614 err = vsock_auto_bind(vsk); 1615 if (err) 1616 goto out; 1617 1618 sk->sk_state = TCP_SYN_SENT; 1619 1620 err = transport->connect(vsk); 1621 if (err < 0) 1622 goto out; 1623 1624 /* sk_err might have been set as a result of an earlier 1625 * (failed) connect attempt. 1626 */ 1627 sk->sk_err = 0; 1628 1629 /* Mark sock as connecting and set the error code to in 1630 * progress in case this is a non-blocking connect. 1631 */ 1632 sock->state = SS_CONNECTING; 1633 err = -EINPROGRESS; 1634 } 1635 1636 /* The receive path will handle all communication until we are able to 1637 * enter the connected state. Here we wait for the connection to be 1638 * completed or a notification of an error. 1639 */ 1640 timeout = vsk->connect_timeout; 1641 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1642 1643 /* If the socket is already closing or it is in an error state, there 1644 * is no point in waiting. 1645 */ 1646 while (sk->sk_state != TCP_ESTABLISHED && 1647 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) { 1648 if (flags & O_NONBLOCK) { 1649 /* If we're not going to block, we schedule a timeout 1650 * function to generate a timeout on the connection 1651 * attempt, in case the peer doesn't respond in a 1652 * timely manner. We hold on to the socket until the 1653 * timeout fires. 1654 */ 1655 sock_hold(sk); 1656 1657 /* If the timeout function is already scheduled, 1658 * reschedule it, then ungrab the socket refcount to 1659 * keep it balanced. 1660 */ 1661 if (mod_delayed_work(system_wq, &vsk->connect_work, 1662 timeout)) 1663 sock_put(sk); 1664 1665 /* Skip ahead to preserve error code set above. */ 1666 goto out_wait; 1667 } 1668 1669 release_sock(sk); 1670 timeout = schedule_timeout(timeout); 1671 lock_sock(sk); 1672 1673 if (signal_pending(current)) { 1674 err = sock_intr_errno(timeout); 1675 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1676 sock->state = SS_UNCONNECTED; 1677 vsock_transport_cancel_pkt(vsk); 1678 vsock_remove_connected(vsk); 1679 goto out_wait; 1680 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1681 err = -ETIMEDOUT; 1682 sk->sk_state = TCP_CLOSE; 1683 sock->state = SS_UNCONNECTED; 1684 vsock_transport_cancel_pkt(vsk); 1685 goto out_wait; 1686 } 1687 1688 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1689 } 1690 1691 if (sk->sk_err) { 1692 err = -sk->sk_err; 1693 sk->sk_state = TCP_CLOSE; 1694 sock->state = SS_UNCONNECTED; 1695 } else { 1696 err = 0; 1697 } 1698 1699 out_wait: 1700 finish_wait(sk_sleep(sk), &wait); 1701 out: 1702 release_sock(sk); 1703 return err; 1704 } 1705 1706 static int vsock_accept(struct socket *sock, struct socket *newsock, 1707 struct proto_accept_arg *arg) 1708 { 1709 struct sock *listener; 1710 int err; 1711 struct sock *connected; 1712 struct vsock_sock *vconnected; 1713 long timeout; 1714 DEFINE_WAIT(wait); 1715 1716 err = 0; 1717 listener = sock->sk; 1718 1719 lock_sock(listener); 1720 1721 if (!sock_type_connectible(sock->type)) { 1722 err = -EOPNOTSUPP; 1723 goto out; 1724 } 1725 1726 if (listener->sk_state != TCP_LISTEN) { 1727 err = -EINVAL; 1728 goto out; 1729 } 1730 1731 /* Wait for children sockets to appear; these are the new sockets 1732 * created upon connection establishment. 1733 */ 1734 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1735 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1736 1737 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1738 listener->sk_err == 0) { 1739 release_sock(listener); 1740 timeout = schedule_timeout(timeout); 1741 finish_wait(sk_sleep(listener), &wait); 1742 lock_sock(listener); 1743 1744 if (signal_pending(current)) { 1745 err = sock_intr_errno(timeout); 1746 goto out; 1747 } else if (timeout == 0) { 1748 err = -EAGAIN; 1749 goto out; 1750 } 1751 1752 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1753 } 1754 finish_wait(sk_sleep(listener), &wait); 1755 1756 if (listener->sk_err) 1757 err = -listener->sk_err; 1758 1759 if (connected) { 1760 sk_acceptq_removed(listener); 1761 1762 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1763 vconnected = vsock_sk(connected); 1764 1765 /* If the listener socket has received an error, then we should 1766 * reject this socket and return. Note that we simply mark the 1767 * socket rejected, drop our reference, and let the cleanup 1768 * function handle the cleanup; the fact that we found it in 1769 * the listener's accept queue guarantees that the cleanup 1770 * function hasn't run yet. 1771 */ 1772 if (err) { 1773 vconnected->rejected = true; 1774 } else { 1775 newsock->state = SS_CONNECTED; 1776 sock_graft(connected, newsock); 1777 if (vsock_msgzerocopy_allow(vconnected->transport)) 1778 set_bit(SOCK_SUPPORT_ZC, 1779 &connected->sk_socket->flags); 1780 } 1781 1782 release_sock(connected); 1783 sock_put(connected); 1784 } 1785 1786 out: 1787 release_sock(listener); 1788 return err; 1789 } 1790 1791 static int vsock_listen(struct socket *sock, int backlog) 1792 { 1793 int err; 1794 struct sock *sk; 1795 struct vsock_sock *vsk; 1796 1797 sk = sock->sk; 1798 1799 lock_sock(sk); 1800 1801 if (!sock_type_connectible(sk->sk_type)) { 1802 err = -EOPNOTSUPP; 1803 goto out; 1804 } 1805 1806 if (sock->state != SS_UNCONNECTED) { 1807 err = -EINVAL; 1808 goto out; 1809 } 1810 1811 vsk = vsock_sk(sk); 1812 1813 if (!vsock_addr_bound(&vsk->local_addr)) { 1814 err = -EINVAL; 1815 goto out; 1816 } 1817 1818 sk->sk_max_ack_backlog = backlog; 1819 sk->sk_state = TCP_LISTEN; 1820 1821 err = 0; 1822 1823 out: 1824 release_sock(sk); 1825 return err; 1826 } 1827 1828 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1829 const struct vsock_transport *transport, 1830 u64 val) 1831 { 1832 if (val > vsk->buffer_max_size) 1833 val = vsk->buffer_max_size; 1834 1835 if (val < vsk->buffer_min_size) 1836 val = vsk->buffer_min_size; 1837 1838 if (val != vsk->buffer_size && 1839 transport && transport->notify_buffer_size) 1840 transport->notify_buffer_size(vsk, &val); 1841 1842 vsk->buffer_size = val; 1843 } 1844 1845 static int vsock_connectible_setsockopt(struct socket *sock, 1846 int level, 1847 int optname, 1848 sockptr_t optval, 1849 unsigned int optlen) 1850 { 1851 int err; 1852 struct sock *sk; 1853 struct vsock_sock *vsk; 1854 const struct vsock_transport *transport; 1855 u64 val; 1856 1857 if (level != AF_VSOCK && level != SOL_SOCKET) 1858 return -ENOPROTOOPT; 1859 1860 #define COPY_IN(_v) \ 1861 do { \ 1862 if (optlen < sizeof(_v)) { \ 1863 err = -EINVAL; \ 1864 goto exit; \ 1865 } \ 1866 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1867 err = -EFAULT; \ 1868 goto exit; \ 1869 } \ 1870 } while (0) 1871 1872 err = 0; 1873 sk = sock->sk; 1874 vsk = vsock_sk(sk); 1875 1876 lock_sock(sk); 1877 1878 transport = vsk->transport; 1879 1880 if (level == SOL_SOCKET) { 1881 int zerocopy; 1882 1883 if (optname != SO_ZEROCOPY) { 1884 release_sock(sk); 1885 return sock_setsockopt(sock, level, optname, optval, optlen); 1886 } 1887 1888 /* Use 'int' type here, because variable to 1889 * set this option usually has this type. 1890 */ 1891 COPY_IN(zerocopy); 1892 1893 if (zerocopy < 0 || zerocopy > 1) { 1894 err = -EINVAL; 1895 goto exit; 1896 } 1897 1898 if (transport && !vsock_msgzerocopy_allow(transport)) { 1899 err = -EOPNOTSUPP; 1900 goto exit; 1901 } 1902 1903 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1904 goto exit; 1905 } 1906 1907 switch (optname) { 1908 case SO_VM_SOCKETS_BUFFER_SIZE: 1909 COPY_IN(val); 1910 vsock_update_buffer_size(vsk, transport, val); 1911 break; 1912 1913 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1914 COPY_IN(val); 1915 vsk->buffer_max_size = val; 1916 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1917 break; 1918 1919 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1920 COPY_IN(val); 1921 vsk->buffer_min_size = val; 1922 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1923 break; 1924 1925 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1926 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1927 struct __kernel_sock_timeval tv; 1928 1929 err = sock_copy_user_timeval(&tv, optval, optlen, 1930 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1931 if (err) 1932 break; 1933 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1934 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1935 vsk->connect_timeout = tv.tv_sec * HZ + 1936 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1937 if (vsk->connect_timeout == 0) 1938 vsk->connect_timeout = 1939 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1940 1941 } else { 1942 err = -ERANGE; 1943 } 1944 break; 1945 } 1946 1947 default: 1948 err = -ENOPROTOOPT; 1949 break; 1950 } 1951 1952 #undef COPY_IN 1953 1954 exit: 1955 release_sock(sk); 1956 return err; 1957 } 1958 1959 static int vsock_connectible_getsockopt(struct socket *sock, 1960 int level, int optname, 1961 char __user *optval, 1962 int __user *optlen) 1963 { 1964 struct sock *sk = sock->sk; 1965 struct vsock_sock *vsk = vsock_sk(sk); 1966 1967 union { 1968 u64 val64; 1969 struct old_timeval32 tm32; 1970 struct __kernel_old_timeval tm; 1971 struct __kernel_sock_timeval stm; 1972 } v; 1973 1974 int lv = sizeof(v.val64); 1975 int len; 1976 1977 if (level != AF_VSOCK) 1978 return -ENOPROTOOPT; 1979 1980 if (get_user(len, optlen)) 1981 return -EFAULT; 1982 1983 memset(&v, 0, sizeof(v)); 1984 1985 switch (optname) { 1986 case SO_VM_SOCKETS_BUFFER_SIZE: 1987 v.val64 = vsk->buffer_size; 1988 break; 1989 1990 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1991 v.val64 = vsk->buffer_max_size; 1992 break; 1993 1994 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1995 v.val64 = vsk->buffer_min_size; 1996 break; 1997 1998 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1999 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 2000 lv = sock_get_timeout(vsk->connect_timeout, &v, 2001 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 2002 break; 2003 2004 default: 2005 return -ENOPROTOOPT; 2006 } 2007 2008 if (len < lv) 2009 return -EINVAL; 2010 if (len > lv) 2011 len = lv; 2012 if (copy_to_user(optval, &v, len)) 2013 return -EFAULT; 2014 2015 if (put_user(len, optlen)) 2016 return -EFAULT; 2017 2018 return 0; 2019 } 2020 2021 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 2022 size_t len) 2023 { 2024 struct sock *sk; 2025 struct vsock_sock *vsk; 2026 const struct vsock_transport *transport; 2027 ssize_t total_written; 2028 long timeout; 2029 int err; 2030 struct vsock_transport_send_notify_data send_data; 2031 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2032 2033 sk = sock->sk; 2034 vsk = vsock_sk(sk); 2035 total_written = 0; 2036 err = 0; 2037 2038 if (msg->msg_flags & MSG_OOB) 2039 return -EOPNOTSUPP; 2040 2041 lock_sock(sk); 2042 2043 transport = vsk->transport; 2044 2045 /* Callers should not provide a destination with connection oriented 2046 * sockets. 2047 */ 2048 if (msg->msg_namelen) { 2049 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2050 goto out; 2051 } 2052 2053 /* Send data only if both sides are not shutdown in the direction. */ 2054 if (sk->sk_shutdown & SEND_SHUTDOWN || 2055 vsk->peer_shutdown & RCV_SHUTDOWN) { 2056 err = -EPIPE; 2057 goto out; 2058 } 2059 2060 if (!transport || sk->sk_state != TCP_ESTABLISHED || 2061 !vsock_addr_bound(&vsk->local_addr)) { 2062 err = -ENOTCONN; 2063 goto out; 2064 } 2065 2066 if (!vsock_addr_bound(&vsk->remote_addr)) { 2067 err = -EDESTADDRREQ; 2068 goto out; 2069 } 2070 2071 if (msg->msg_flags & MSG_ZEROCOPY && 2072 !vsock_msgzerocopy_allow(transport)) { 2073 err = -EOPNOTSUPP; 2074 goto out; 2075 } 2076 2077 /* Wait for room in the produce queue to enqueue our user's data. */ 2078 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 2079 2080 err = transport->notify_send_init(vsk, &send_data); 2081 if (err < 0) 2082 goto out; 2083 2084 while (total_written < len) { 2085 ssize_t written; 2086 2087 add_wait_queue(sk_sleep(sk), &wait); 2088 while (vsock_stream_has_space(vsk) == 0 && 2089 sk->sk_err == 0 && 2090 !(sk->sk_shutdown & SEND_SHUTDOWN) && 2091 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 2092 2093 /* Don't wait for non-blocking sockets. */ 2094 if (timeout == 0) { 2095 err = -EAGAIN; 2096 remove_wait_queue(sk_sleep(sk), &wait); 2097 goto out_err; 2098 } 2099 2100 err = transport->notify_send_pre_block(vsk, &send_data); 2101 if (err < 0) { 2102 remove_wait_queue(sk_sleep(sk), &wait); 2103 goto out_err; 2104 } 2105 2106 release_sock(sk); 2107 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2108 lock_sock(sk); 2109 if (signal_pending(current)) { 2110 err = sock_intr_errno(timeout); 2111 remove_wait_queue(sk_sleep(sk), &wait); 2112 goto out_err; 2113 } else if (timeout == 0) { 2114 err = -EAGAIN; 2115 remove_wait_queue(sk_sleep(sk), &wait); 2116 goto out_err; 2117 } 2118 } 2119 remove_wait_queue(sk_sleep(sk), &wait); 2120 2121 /* These checks occur both as part of and after the loop 2122 * conditional since we need to check before and after 2123 * sleeping. 2124 */ 2125 if (sk->sk_err) { 2126 err = -sk->sk_err; 2127 goto out_err; 2128 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2129 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2130 err = -EPIPE; 2131 goto out_err; 2132 } 2133 2134 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2135 if (err < 0) 2136 goto out_err; 2137 2138 /* Note that enqueue will only write as many bytes as are free 2139 * in the produce queue, so we don't need to ensure len is 2140 * smaller than the queue size. It is the caller's 2141 * responsibility to check how many bytes we were able to send. 2142 */ 2143 2144 if (sk->sk_type == SOCK_SEQPACKET) { 2145 written = transport->seqpacket_enqueue(vsk, 2146 msg, len - total_written); 2147 } else { 2148 written = transport->stream_enqueue(vsk, 2149 msg, len - total_written); 2150 } 2151 2152 if (written < 0) { 2153 err = written; 2154 goto out_err; 2155 } 2156 2157 total_written += written; 2158 2159 err = transport->notify_send_post_enqueue( 2160 vsk, written, &send_data); 2161 if (err < 0) 2162 goto out_err; 2163 2164 } 2165 2166 out_err: 2167 if (total_written > 0) { 2168 /* Return number of written bytes only if: 2169 * 1) SOCK_STREAM socket. 2170 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2171 */ 2172 if (sk->sk_type == SOCK_STREAM || total_written == len) 2173 err = total_written; 2174 } 2175 out: 2176 if (sk->sk_type == SOCK_STREAM) 2177 err = sk_stream_error(sk, msg->msg_flags, err); 2178 2179 release_sock(sk); 2180 return err; 2181 } 2182 2183 static int vsock_connectible_wait_data(struct sock *sk, 2184 struct wait_queue_entry *wait, 2185 long timeout, 2186 struct vsock_transport_recv_notify_data *recv_data, 2187 size_t target) 2188 { 2189 const struct vsock_transport *transport; 2190 struct vsock_sock *vsk; 2191 s64 data; 2192 int err; 2193 2194 vsk = vsock_sk(sk); 2195 err = 0; 2196 transport = vsk->transport; 2197 2198 while (1) { 2199 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2200 data = vsock_connectible_has_data(vsk); 2201 if (data != 0) 2202 break; 2203 2204 if (sk->sk_err != 0 || 2205 (sk->sk_shutdown & RCV_SHUTDOWN) || 2206 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2207 break; 2208 } 2209 2210 /* Don't wait for non-blocking sockets. */ 2211 if (timeout == 0) { 2212 err = -EAGAIN; 2213 break; 2214 } 2215 2216 if (recv_data) { 2217 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2218 if (err < 0) 2219 break; 2220 } 2221 2222 release_sock(sk); 2223 timeout = schedule_timeout(timeout); 2224 lock_sock(sk); 2225 2226 if (signal_pending(current)) { 2227 err = sock_intr_errno(timeout); 2228 break; 2229 } else if (timeout == 0) { 2230 err = -EAGAIN; 2231 break; 2232 } 2233 } 2234 2235 finish_wait(sk_sleep(sk), wait); 2236 2237 if (err) 2238 return err; 2239 2240 /* Internal transport error when checking for available 2241 * data. XXX This should be changed to a connection 2242 * reset in a later change. 2243 */ 2244 if (data < 0) 2245 return -ENOMEM; 2246 2247 return data; 2248 } 2249 2250 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2251 size_t len, int flags) 2252 { 2253 struct vsock_transport_recv_notify_data recv_data; 2254 const struct vsock_transport *transport; 2255 struct vsock_sock *vsk; 2256 ssize_t copied; 2257 size_t target; 2258 long timeout; 2259 int err; 2260 2261 DEFINE_WAIT(wait); 2262 2263 vsk = vsock_sk(sk); 2264 transport = vsk->transport; 2265 2266 /* We must not copy less than target bytes into the user's buffer 2267 * before returning successfully, so we wait for the consume queue to 2268 * have that much data to consume before dequeueing. Note that this 2269 * makes it impossible to handle cases where target is greater than the 2270 * queue size. 2271 */ 2272 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2273 if (target >= transport->stream_rcvhiwat(vsk)) { 2274 err = -ENOMEM; 2275 goto out; 2276 } 2277 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2278 copied = 0; 2279 2280 err = transport->notify_recv_init(vsk, target, &recv_data); 2281 if (err < 0) 2282 goto out; 2283 2284 2285 while (1) { 2286 ssize_t read; 2287 2288 err = vsock_connectible_wait_data(sk, &wait, timeout, 2289 &recv_data, target); 2290 if (err <= 0) 2291 break; 2292 2293 err = transport->notify_recv_pre_dequeue(vsk, target, 2294 &recv_data); 2295 if (err < 0) 2296 break; 2297 2298 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2299 if (read < 0) { 2300 err = read; 2301 break; 2302 } 2303 2304 copied += read; 2305 2306 err = transport->notify_recv_post_dequeue(vsk, target, read, 2307 !(flags & MSG_PEEK), &recv_data); 2308 if (err < 0) 2309 goto out; 2310 2311 if (read >= target || flags & MSG_PEEK) 2312 break; 2313 2314 target -= read; 2315 } 2316 2317 if (sk->sk_err) 2318 err = -sk->sk_err; 2319 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2320 err = 0; 2321 2322 if (copied > 0) 2323 err = copied; 2324 2325 out: 2326 return err; 2327 } 2328 2329 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2330 size_t len, int flags) 2331 { 2332 const struct vsock_transport *transport; 2333 struct vsock_sock *vsk; 2334 ssize_t msg_len; 2335 long timeout; 2336 int err = 0; 2337 DEFINE_WAIT(wait); 2338 2339 vsk = vsock_sk(sk); 2340 transport = vsk->transport; 2341 2342 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2343 2344 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2345 if (err <= 0) 2346 goto out; 2347 2348 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2349 2350 if (msg_len < 0) { 2351 err = msg_len; 2352 goto out; 2353 } 2354 2355 if (sk->sk_err) { 2356 err = -sk->sk_err; 2357 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2358 err = 0; 2359 } else { 2360 /* User sets MSG_TRUNC, so return real length of 2361 * packet. 2362 */ 2363 if (flags & MSG_TRUNC) 2364 err = msg_len; 2365 else 2366 err = len - msg_data_left(msg); 2367 2368 /* Always set MSG_TRUNC if real length of packet is 2369 * bigger than user's buffer. 2370 */ 2371 if (msg_len > len) 2372 msg->msg_flags |= MSG_TRUNC; 2373 } 2374 2375 out: 2376 return err; 2377 } 2378 2379 int 2380 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2381 int flags) 2382 { 2383 struct sock *sk; 2384 struct vsock_sock *vsk; 2385 const struct vsock_transport *transport; 2386 int err; 2387 2388 sk = sock->sk; 2389 2390 if (unlikely(flags & MSG_ERRQUEUE)) 2391 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2392 2393 vsk = vsock_sk(sk); 2394 err = 0; 2395 2396 lock_sock(sk); 2397 2398 transport = vsk->transport; 2399 2400 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2401 /* Recvmsg is supposed to return 0 if a peer performs an 2402 * orderly shutdown. Differentiate between that case and when a 2403 * peer has not connected or a local shutdown occurred with the 2404 * SOCK_DONE flag. 2405 */ 2406 if (sock_flag(sk, SOCK_DONE)) 2407 err = 0; 2408 else 2409 err = -ENOTCONN; 2410 2411 goto out; 2412 } 2413 2414 if (flags & MSG_OOB) { 2415 err = -EOPNOTSUPP; 2416 goto out; 2417 } 2418 2419 /* We don't check peer_shutdown flag here since peer may actually shut 2420 * down, but there can be data in the queue that a local socket can 2421 * receive. 2422 */ 2423 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2424 err = 0; 2425 goto out; 2426 } 2427 2428 /* It is valid on Linux to pass in a zero-length receive buffer. This 2429 * is not an error. We may as well bail out now. 2430 */ 2431 if (!len) { 2432 err = 0; 2433 goto out; 2434 } 2435 2436 if (sk->sk_type == SOCK_STREAM) 2437 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2438 else 2439 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2440 2441 out: 2442 release_sock(sk); 2443 return err; 2444 } 2445 2446 int 2447 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2448 int flags) 2449 { 2450 #ifdef CONFIG_BPF_SYSCALL 2451 struct sock *sk = sock->sk; 2452 const struct proto *prot; 2453 2454 prot = READ_ONCE(sk->sk_prot); 2455 if (prot != &vsock_proto) 2456 return prot->recvmsg(sk, msg, len, flags, NULL); 2457 #endif 2458 2459 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2460 } 2461 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2462 2463 static int vsock_set_rcvlowat(struct sock *sk, int val) 2464 { 2465 const struct vsock_transport *transport; 2466 struct vsock_sock *vsk; 2467 2468 vsk = vsock_sk(sk); 2469 2470 if (val > vsk->buffer_size) 2471 return -EINVAL; 2472 2473 transport = vsk->transport; 2474 2475 if (transport && transport->notify_set_rcvlowat) { 2476 int err; 2477 2478 err = transport->notify_set_rcvlowat(vsk, val); 2479 if (err) 2480 return err; 2481 } 2482 2483 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2484 return 0; 2485 } 2486 2487 static const struct proto_ops vsock_stream_ops = { 2488 .family = PF_VSOCK, 2489 .owner = THIS_MODULE, 2490 .release = vsock_release, 2491 .bind = vsock_bind, 2492 .connect = vsock_connect, 2493 .socketpair = sock_no_socketpair, 2494 .accept = vsock_accept, 2495 .getname = vsock_getname, 2496 .poll = vsock_poll, 2497 .ioctl = vsock_ioctl, 2498 .listen = vsock_listen, 2499 .shutdown = vsock_shutdown, 2500 .setsockopt = vsock_connectible_setsockopt, 2501 .getsockopt = vsock_connectible_getsockopt, 2502 .sendmsg = vsock_connectible_sendmsg, 2503 .recvmsg = vsock_connectible_recvmsg, 2504 .mmap = sock_no_mmap, 2505 .set_rcvlowat = vsock_set_rcvlowat, 2506 .read_skb = vsock_read_skb, 2507 }; 2508 2509 static const struct proto_ops vsock_seqpacket_ops = { 2510 .family = PF_VSOCK, 2511 .owner = THIS_MODULE, 2512 .release = vsock_release, 2513 .bind = vsock_bind, 2514 .connect = vsock_connect, 2515 .socketpair = sock_no_socketpair, 2516 .accept = vsock_accept, 2517 .getname = vsock_getname, 2518 .poll = vsock_poll, 2519 .ioctl = vsock_ioctl, 2520 .listen = vsock_listen, 2521 .shutdown = vsock_shutdown, 2522 .setsockopt = vsock_connectible_setsockopt, 2523 .getsockopt = vsock_connectible_getsockopt, 2524 .sendmsg = vsock_connectible_sendmsg, 2525 .recvmsg = vsock_connectible_recvmsg, 2526 .mmap = sock_no_mmap, 2527 .read_skb = vsock_read_skb, 2528 }; 2529 2530 static int vsock_create(struct net *net, struct socket *sock, 2531 int protocol, int kern) 2532 { 2533 struct vsock_sock *vsk; 2534 struct sock *sk; 2535 int ret; 2536 2537 if (!sock) 2538 return -EINVAL; 2539 2540 if (protocol && protocol != PF_VSOCK) 2541 return -EPROTONOSUPPORT; 2542 2543 switch (sock->type) { 2544 case SOCK_DGRAM: 2545 sock->ops = &vsock_dgram_ops; 2546 break; 2547 case SOCK_STREAM: 2548 sock->ops = &vsock_stream_ops; 2549 break; 2550 case SOCK_SEQPACKET: 2551 sock->ops = &vsock_seqpacket_ops; 2552 break; 2553 default: 2554 return -ESOCKTNOSUPPORT; 2555 } 2556 2557 sock->state = SS_UNCONNECTED; 2558 2559 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2560 if (!sk) 2561 return -ENOMEM; 2562 2563 vsk = vsock_sk(sk); 2564 2565 if (sock->type == SOCK_DGRAM) { 2566 ret = vsock_assign_transport(vsk, NULL); 2567 if (ret < 0) { 2568 sock->sk = NULL; 2569 sock_put(sk); 2570 return ret; 2571 } 2572 } 2573 2574 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2575 * proto_ops, so there is no handler for custom logic. 2576 */ 2577 if (sock_type_connectible(sock->type)) 2578 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2579 2580 vsock_insert_unbound(vsk); 2581 2582 return 0; 2583 } 2584 2585 static const struct net_proto_family vsock_family_ops = { 2586 .family = AF_VSOCK, 2587 .create = vsock_create, 2588 .owner = THIS_MODULE, 2589 }; 2590 2591 static long vsock_dev_do_ioctl(struct file *filp, 2592 unsigned int cmd, void __user *ptr) 2593 { 2594 u32 __user *p = ptr; 2595 int retval = 0; 2596 u32 cid; 2597 2598 switch (cmd) { 2599 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2600 /* To be compatible with the VMCI behavior, we prioritize the 2601 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2602 */ 2603 cid = vsock_registered_transport_cid(&transport_g2h); 2604 if (cid == VMADDR_CID_ANY) 2605 cid = vsock_registered_transport_cid(&transport_h2g); 2606 if (cid == VMADDR_CID_ANY) 2607 cid = vsock_registered_transport_cid(&transport_local); 2608 2609 if (put_user(cid, p) != 0) 2610 retval = -EFAULT; 2611 break; 2612 2613 default: 2614 retval = -ENOIOCTLCMD; 2615 } 2616 2617 return retval; 2618 } 2619 2620 static long vsock_dev_ioctl(struct file *filp, 2621 unsigned int cmd, unsigned long arg) 2622 { 2623 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2624 } 2625 2626 #ifdef CONFIG_COMPAT 2627 static long vsock_dev_compat_ioctl(struct file *filp, 2628 unsigned int cmd, unsigned long arg) 2629 { 2630 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2631 } 2632 #endif 2633 2634 static const struct file_operations vsock_device_ops = { 2635 .owner = THIS_MODULE, 2636 .unlocked_ioctl = vsock_dev_ioctl, 2637 #ifdef CONFIG_COMPAT 2638 .compat_ioctl = vsock_dev_compat_ioctl, 2639 #endif 2640 .open = nonseekable_open, 2641 }; 2642 2643 static struct miscdevice vsock_device = { 2644 .name = "vsock", 2645 .fops = &vsock_device_ops, 2646 }; 2647 2648 static int __init vsock_init(void) 2649 { 2650 int err = 0; 2651 2652 vsock_init_tables(); 2653 2654 vsock_proto.owner = THIS_MODULE; 2655 vsock_device.minor = MISC_DYNAMIC_MINOR; 2656 err = misc_register(&vsock_device); 2657 if (err) { 2658 pr_err("Failed to register misc device\n"); 2659 goto err_reset_transport; 2660 } 2661 2662 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2663 if (err) { 2664 pr_err("Cannot register vsock protocol\n"); 2665 goto err_deregister_misc; 2666 } 2667 2668 err = sock_register(&vsock_family_ops); 2669 if (err) { 2670 pr_err("could not register af_vsock (%d) address family: %d\n", 2671 AF_VSOCK, err); 2672 goto err_unregister_proto; 2673 } 2674 2675 vsock_bpf_build_proto(); 2676 2677 return 0; 2678 2679 err_unregister_proto: 2680 proto_unregister(&vsock_proto); 2681 err_deregister_misc: 2682 misc_deregister(&vsock_device); 2683 err_reset_transport: 2684 return err; 2685 } 2686 2687 static void __exit vsock_exit(void) 2688 { 2689 misc_deregister(&vsock_device); 2690 sock_unregister(AF_VSOCK); 2691 proto_unregister(&vsock_proto); 2692 } 2693 2694 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2695 { 2696 return vsk->transport; 2697 } 2698 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2699 2700 int vsock_core_register(const struct vsock_transport *t, int features) 2701 { 2702 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2703 int err = mutex_lock_interruptible(&vsock_register_mutex); 2704 2705 if (err) 2706 return err; 2707 2708 t_h2g = transport_h2g; 2709 t_g2h = transport_g2h; 2710 t_dgram = transport_dgram; 2711 t_local = transport_local; 2712 2713 if (features & VSOCK_TRANSPORT_F_H2G) { 2714 if (t_h2g) { 2715 err = -EBUSY; 2716 goto err_busy; 2717 } 2718 t_h2g = t; 2719 } 2720 2721 if (features & VSOCK_TRANSPORT_F_G2H) { 2722 if (t_g2h) { 2723 err = -EBUSY; 2724 goto err_busy; 2725 } 2726 t_g2h = t; 2727 } 2728 2729 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2730 if (t_dgram) { 2731 err = -EBUSY; 2732 goto err_busy; 2733 } 2734 t_dgram = t; 2735 } 2736 2737 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2738 if (t_local) { 2739 err = -EBUSY; 2740 goto err_busy; 2741 } 2742 t_local = t; 2743 } 2744 2745 transport_h2g = t_h2g; 2746 transport_g2h = t_g2h; 2747 transport_dgram = t_dgram; 2748 transport_local = t_local; 2749 2750 err_busy: 2751 mutex_unlock(&vsock_register_mutex); 2752 return err; 2753 } 2754 EXPORT_SYMBOL_GPL(vsock_core_register); 2755 2756 void vsock_core_unregister(const struct vsock_transport *t) 2757 { 2758 mutex_lock(&vsock_register_mutex); 2759 2760 if (transport_h2g == t) 2761 transport_h2g = NULL; 2762 2763 if (transport_g2h == t) 2764 transport_g2h = NULL; 2765 2766 if (transport_dgram == t) 2767 transport_dgram = NULL; 2768 2769 if (transport_local == t) 2770 transport_local = NULL; 2771 2772 mutex_unlock(&vsock_register_mutex); 2773 } 2774 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2775 2776 module_init(vsock_init); 2777 module_exit(vsock_exit); 2778 2779 MODULE_AUTHOR("VMware, Inc."); 2780 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2781 MODULE_VERSION("1.0.2.0-k"); 2782 MODULE_LICENSE("GPL v2"); 2783