xref: /linux/net/vmw_vsock/af_vsock.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142 
143 /**** UTILS ****/
144 
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160 
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164 
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)				\
167 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)		\
169 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)				\
171 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 	struct sock *sk = sk_vsock(vsk);
184 	struct sockaddr_vm local_addr;
185 
186 	if (vsock_addr_bound(&vsk->local_addr))
187 		return 0;
188 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 	return __vsock_bind(sk, &local_addr);
190 }
191 
192 static void vsock_init_tables(void)
193 {
194 	int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 		INIT_LIST_HEAD(&vsock_bind_table[i]);
198 
199 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 		INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202 
203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 			return sk_vsock(vsk);
236 
237 		if (addr->svm_port == vsk->local_addr.svm_port &&
238 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 		     addr->svm_cid == VMADDR_CID_ANY))
240 			return sk_vsock(vsk);
241 	}
242 
243 	return NULL;
244 }
245 
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 						  struct sockaddr_vm *dst)
248 {
249 	struct vsock_sock *vsk;
250 
251 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 			    connected_table) {
253 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 		    dst->svm_port == vsk->local_addr.svm_port) {
255 			return sk_vsock(vsk);
256 		}
257 	}
258 
259 	return NULL;
260 }
261 
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 	spin_lock_bh(&vsock_table_lock);
265 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266 	spin_unlock_bh(&vsock_table_lock);
267 }
268 
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 	struct list_head *list = vsock_connected_sockets(
272 		&vsk->remote_addr, &vsk->local_addr);
273 
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_insert_connected(list, vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279 
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	if (__vsock_in_bound_table(vsk))
284 		__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_connected_table(vsk))
293 		__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 	vsock_remove_bound(vsk);
332 	vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335 
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 	int i;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 
342 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 		struct vsock_sock *vsk;
344 		list_for_each_entry(vsk, &vsock_connected_table[i],
345 				    connected_table)
346 			fn(sk_vsock(vsk));
347 	}
348 
349 	spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352 
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 	struct vsock_sock *vlistener;
356 	struct vsock_sock *vpending;
357 
358 	vlistener = vsock_sk(listener);
359 	vpending = vsock_sk(pending);
360 
361 	sock_hold(pending);
362 	sock_hold(listener);
363 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366 
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 	struct vsock_sock *vpending = vsock_sk(pending);
370 
371 	list_del_init(&vpending->pending_links);
372 	sock_put(listener);
373 	sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376 
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 	struct vsock_sock *vlistener;
380 	struct vsock_sock *vconnected;
381 
382 	vlistener = vsock_sk(listener);
383 	vconnected = vsock_sk(connected);
384 
385 	sock_hold(connected);
386 	sock_hold(listener);
387 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390 
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 	if (!transport_local)
394 		return false;
395 
396 	if (remote_cid == VMADDR_CID_LOCAL)
397 		return true;
398 
399 	if (transport_g2h) {
400 		return remote_cid == transport_g2h->get_local_cid();
401 	} else {
402 		return remote_cid == VMADDR_CID_HOST;
403 	}
404 }
405 
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 	if (!vsk->transport)
409 		return;
410 
411 	vsk->transport->destruct(vsk);
412 	module_put(vsk->transport->module);
413 	vsk->transport = NULL;
414 }
415 
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
427  */
428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 {
430 	const struct vsock_transport *new_transport;
431 	struct sock *sk = sk_vsock(vsk);
432 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
433 	__u8 remote_flags;
434 	int ret;
435 
436 	/* If the packet is coming with the source and destination CIDs higher
437 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438 	 * forwarded to the host should be established. Then the host will
439 	 * need to forward the packets to the guest.
440 	 *
441 	 * The flag is set on the (listen) receive path (psk is not NULL). On
442 	 * the connect path the flag can be set by the user space application.
443 	 */
444 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
445 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
446 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
447 
448 	remote_flags = vsk->remote_addr.svm_flags;
449 
450 	switch (sk->sk_type) {
451 	case SOCK_DGRAM:
452 		new_transport = transport_dgram;
453 		break;
454 	case SOCK_STREAM:
455 		if (vsock_use_local_transport(remote_cid))
456 			new_transport = transport_local;
457 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
458 			 (remote_flags & VMADDR_FLAG_TO_HOST))
459 			new_transport = transport_g2h;
460 		else
461 			new_transport = transport_h2g;
462 		break;
463 	default:
464 		return -ESOCKTNOSUPPORT;
465 	}
466 
467 	if (vsk->transport) {
468 		if (vsk->transport == new_transport)
469 			return 0;
470 
471 		/* transport->release() must be called with sock lock acquired.
472 		 * This path can only be taken during vsock_stream_connect(),
473 		 * where we have already held the sock lock.
474 		 * In the other cases, this function is called on a new socket
475 		 * which is not assigned to any transport.
476 		 */
477 		vsk->transport->release(vsk);
478 		vsock_deassign_transport(vsk);
479 	}
480 
481 	/* We increase the module refcnt to prevent the transport unloading
482 	 * while there are open sockets assigned to it.
483 	 */
484 	if (!new_transport || !try_module_get(new_transport->module))
485 		return -ENODEV;
486 
487 	ret = new_transport->init(vsk, psk);
488 	if (ret) {
489 		module_put(new_transport->module);
490 		return ret;
491 	}
492 
493 	vsk->transport = new_transport;
494 
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(vsock_assign_transport);
498 
499 bool vsock_find_cid(unsigned int cid)
500 {
501 	if (transport_g2h && cid == transport_g2h->get_local_cid())
502 		return true;
503 
504 	if (transport_h2g && cid == VMADDR_CID_HOST)
505 		return true;
506 
507 	if (transport_local && cid == VMADDR_CID_LOCAL)
508 		return true;
509 
510 	return false;
511 }
512 EXPORT_SYMBOL_GPL(vsock_find_cid);
513 
514 static struct sock *vsock_dequeue_accept(struct sock *listener)
515 {
516 	struct vsock_sock *vlistener;
517 	struct vsock_sock *vconnected;
518 
519 	vlistener = vsock_sk(listener);
520 
521 	if (list_empty(&vlistener->accept_queue))
522 		return NULL;
523 
524 	vconnected = list_entry(vlistener->accept_queue.next,
525 				struct vsock_sock, accept_queue);
526 
527 	list_del_init(&vconnected->accept_queue);
528 	sock_put(listener);
529 	/* The caller will need a reference on the connected socket so we let
530 	 * it call sock_put().
531 	 */
532 
533 	return sk_vsock(vconnected);
534 }
535 
536 static bool vsock_is_accept_queue_empty(struct sock *sk)
537 {
538 	struct vsock_sock *vsk = vsock_sk(sk);
539 	return list_empty(&vsk->accept_queue);
540 }
541 
542 static bool vsock_is_pending(struct sock *sk)
543 {
544 	struct vsock_sock *vsk = vsock_sk(sk);
545 	return !list_empty(&vsk->pending_links);
546 }
547 
548 static int vsock_send_shutdown(struct sock *sk, int mode)
549 {
550 	struct vsock_sock *vsk = vsock_sk(sk);
551 
552 	if (!vsk->transport)
553 		return -ENODEV;
554 
555 	return vsk->transport->shutdown(vsk, mode);
556 }
557 
558 static void vsock_pending_work(struct work_struct *work)
559 {
560 	struct sock *sk;
561 	struct sock *listener;
562 	struct vsock_sock *vsk;
563 	bool cleanup;
564 
565 	vsk = container_of(work, struct vsock_sock, pending_work.work);
566 	sk = sk_vsock(vsk);
567 	listener = vsk->listener;
568 	cleanup = true;
569 
570 	lock_sock(listener);
571 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
572 
573 	if (vsock_is_pending(sk)) {
574 		vsock_remove_pending(listener, sk);
575 
576 		sk_acceptq_removed(listener);
577 	} else if (!vsk->rejected) {
578 		/* We are not on the pending list and accept() did not reject
579 		 * us, so we must have been accepted by our user process.  We
580 		 * just need to drop our references to the sockets and be on
581 		 * our way.
582 		 */
583 		cleanup = false;
584 		goto out;
585 	}
586 
587 	/* We need to remove ourself from the global connected sockets list so
588 	 * incoming packets can't find this socket, and to reduce the reference
589 	 * count.
590 	 */
591 	vsock_remove_connected(vsk);
592 
593 	sk->sk_state = TCP_CLOSE;
594 
595 out:
596 	release_sock(sk);
597 	release_sock(listener);
598 	if (cleanup)
599 		sock_put(sk);
600 
601 	sock_put(sk);
602 	sock_put(listener);
603 }
604 
605 /**** SOCKET OPERATIONS ****/
606 
607 static int __vsock_bind_stream(struct vsock_sock *vsk,
608 			       struct sockaddr_vm *addr)
609 {
610 	static u32 port;
611 	struct sockaddr_vm new_addr;
612 
613 	if (!port)
614 		port = LAST_RESERVED_PORT + 1 +
615 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
616 
617 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
618 
619 	if (addr->svm_port == VMADDR_PORT_ANY) {
620 		bool found = false;
621 		unsigned int i;
622 
623 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
624 			if (port <= LAST_RESERVED_PORT)
625 				port = LAST_RESERVED_PORT + 1;
626 
627 			new_addr.svm_port = port++;
628 
629 			if (!__vsock_find_bound_socket(&new_addr)) {
630 				found = true;
631 				break;
632 			}
633 		}
634 
635 		if (!found)
636 			return -EADDRNOTAVAIL;
637 	} else {
638 		/* If port is in reserved range, ensure caller
639 		 * has necessary privileges.
640 		 */
641 		if (addr->svm_port <= LAST_RESERVED_PORT &&
642 		    !capable(CAP_NET_BIND_SERVICE)) {
643 			return -EACCES;
644 		}
645 
646 		if (__vsock_find_bound_socket(&new_addr))
647 			return -EADDRINUSE;
648 	}
649 
650 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
651 
652 	/* Remove stream sockets from the unbound list and add them to the hash
653 	 * table for easy lookup by its address.  The unbound list is simply an
654 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
655 	 */
656 	__vsock_remove_bound(vsk);
657 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
658 
659 	return 0;
660 }
661 
662 static int __vsock_bind_dgram(struct vsock_sock *vsk,
663 			      struct sockaddr_vm *addr)
664 {
665 	return vsk->transport->dgram_bind(vsk, addr);
666 }
667 
668 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
669 {
670 	struct vsock_sock *vsk = vsock_sk(sk);
671 	int retval;
672 
673 	/* First ensure this socket isn't already bound. */
674 	if (vsock_addr_bound(&vsk->local_addr))
675 		return -EINVAL;
676 
677 	/* Now bind to the provided address or select appropriate values if
678 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
679 	 * like AF_INET prevents binding to a non-local IP address (in most
680 	 * cases), we only allow binding to a local CID.
681 	 */
682 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
683 		return -EADDRNOTAVAIL;
684 
685 	switch (sk->sk_socket->type) {
686 	case SOCK_STREAM:
687 		spin_lock_bh(&vsock_table_lock);
688 		retval = __vsock_bind_stream(vsk, addr);
689 		spin_unlock_bh(&vsock_table_lock);
690 		break;
691 
692 	case SOCK_DGRAM:
693 		retval = __vsock_bind_dgram(vsk, addr);
694 		break;
695 
696 	default:
697 		retval = -EINVAL;
698 		break;
699 	}
700 
701 	return retval;
702 }
703 
704 static void vsock_connect_timeout(struct work_struct *work);
705 
706 static struct sock *__vsock_create(struct net *net,
707 				   struct socket *sock,
708 				   struct sock *parent,
709 				   gfp_t priority,
710 				   unsigned short type,
711 				   int kern)
712 {
713 	struct sock *sk;
714 	struct vsock_sock *psk;
715 	struct vsock_sock *vsk;
716 
717 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
718 	if (!sk)
719 		return NULL;
720 
721 	sock_init_data(sock, sk);
722 
723 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
724 	 * non-NULL. We make sure that our sockets always have a type by
725 	 * setting it here if needed.
726 	 */
727 	if (!sock)
728 		sk->sk_type = type;
729 
730 	vsk = vsock_sk(sk);
731 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
732 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
733 
734 	sk->sk_destruct = vsock_sk_destruct;
735 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
736 	sock_reset_flag(sk, SOCK_DONE);
737 
738 	INIT_LIST_HEAD(&vsk->bound_table);
739 	INIT_LIST_HEAD(&vsk->connected_table);
740 	vsk->listener = NULL;
741 	INIT_LIST_HEAD(&vsk->pending_links);
742 	INIT_LIST_HEAD(&vsk->accept_queue);
743 	vsk->rejected = false;
744 	vsk->sent_request = false;
745 	vsk->ignore_connecting_rst = false;
746 	vsk->peer_shutdown = 0;
747 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
748 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
749 
750 	psk = parent ? vsock_sk(parent) : NULL;
751 	if (parent) {
752 		vsk->trusted = psk->trusted;
753 		vsk->owner = get_cred(psk->owner);
754 		vsk->connect_timeout = psk->connect_timeout;
755 		vsk->buffer_size = psk->buffer_size;
756 		vsk->buffer_min_size = psk->buffer_min_size;
757 		vsk->buffer_max_size = psk->buffer_max_size;
758 	} else {
759 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
760 		vsk->owner = get_current_cred();
761 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
762 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
763 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
764 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
765 	}
766 
767 	return sk;
768 }
769 
770 static void __vsock_release(struct sock *sk, int level)
771 {
772 	if (sk) {
773 		struct sock *pending;
774 		struct vsock_sock *vsk;
775 
776 		vsk = vsock_sk(sk);
777 		pending = NULL;	/* Compiler warning. */
778 
779 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
780 		 * version to avoid the warning "possible recursive locking
781 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
782 		 * is the same as lock_sock(sk).
783 		 */
784 		lock_sock_nested(sk, level);
785 
786 		if (vsk->transport)
787 			vsk->transport->release(vsk);
788 		else if (sk->sk_type == SOCK_STREAM)
789 			vsock_remove_sock(vsk);
790 
791 		sock_orphan(sk);
792 		sk->sk_shutdown = SHUTDOWN_MASK;
793 
794 		skb_queue_purge(&sk->sk_receive_queue);
795 
796 		/* Clean up any sockets that never were accepted. */
797 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
798 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
799 			sock_put(pending);
800 		}
801 
802 		release_sock(sk);
803 		sock_put(sk);
804 	}
805 }
806 
807 static void vsock_sk_destruct(struct sock *sk)
808 {
809 	struct vsock_sock *vsk = vsock_sk(sk);
810 
811 	vsock_deassign_transport(vsk);
812 
813 	/* When clearing these addresses, there's no need to set the family and
814 	 * possibly register the address family with the kernel.
815 	 */
816 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
817 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
818 
819 	put_cred(vsk->owner);
820 }
821 
822 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
823 {
824 	int err;
825 
826 	err = sock_queue_rcv_skb(sk, skb);
827 	if (err)
828 		kfree_skb(skb);
829 
830 	return err;
831 }
832 
833 struct sock *vsock_create_connected(struct sock *parent)
834 {
835 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
836 			      parent->sk_type, 0);
837 }
838 EXPORT_SYMBOL_GPL(vsock_create_connected);
839 
840 s64 vsock_stream_has_data(struct vsock_sock *vsk)
841 {
842 	return vsk->transport->stream_has_data(vsk);
843 }
844 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
845 
846 s64 vsock_stream_has_space(struct vsock_sock *vsk)
847 {
848 	return vsk->transport->stream_has_space(vsk);
849 }
850 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
851 
852 static int vsock_release(struct socket *sock)
853 {
854 	__vsock_release(sock->sk, 0);
855 	sock->sk = NULL;
856 	sock->state = SS_FREE;
857 
858 	return 0;
859 }
860 
861 static int
862 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
863 {
864 	int err;
865 	struct sock *sk;
866 	struct sockaddr_vm *vm_addr;
867 
868 	sk = sock->sk;
869 
870 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
871 		return -EINVAL;
872 
873 	lock_sock(sk);
874 	err = __vsock_bind(sk, vm_addr);
875 	release_sock(sk);
876 
877 	return err;
878 }
879 
880 static int vsock_getname(struct socket *sock,
881 			 struct sockaddr *addr, int peer)
882 {
883 	int err;
884 	struct sock *sk;
885 	struct vsock_sock *vsk;
886 	struct sockaddr_vm *vm_addr;
887 
888 	sk = sock->sk;
889 	vsk = vsock_sk(sk);
890 	err = 0;
891 
892 	lock_sock(sk);
893 
894 	if (peer) {
895 		if (sock->state != SS_CONNECTED) {
896 			err = -ENOTCONN;
897 			goto out;
898 		}
899 		vm_addr = &vsk->remote_addr;
900 	} else {
901 		vm_addr = &vsk->local_addr;
902 	}
903 
904 	if (!vm_addr) {
905 		err = -EINVAL;
906 		goto out;
907 	}
908 
909 	/* sys_getsockname() and sys_getpeername() pass us a
910 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
911 	 * that macro is defined in socket.c instead of .h, so we hardcode its
912 	 * value here.
913 	 */
914 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
915 	memcpy(addr, vm_addr, sizeof(*vm_addr));
916 	err = sizeof(*vm_addr);
917 
918 out:
919 	release_sock(sk);
920 	return err;
921 }
922 
923 static int vsock_shutdown(struct socket *sock, int mode)
924 {
925 	int err;
926 	struct sock *sk;
927 
928 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
929 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
930 	 * here like the other address families do.  Note also that the
931 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
932 	 * which is what we want.
933 	 */
934 	mode++;
935 
936 	if ((mode & ~SHUTDOWN_MASK) || !mode)
937 		return -EINVAL;
938 
939 	/* If this is a STREAM socket and it is not connected then bail out
940 	 * immediately.  If it is a DGRAM socket then we must first kick the
941 	 * socket so that it wakes up from any sleeping calls, for example
942 	 * recv(), and then afterwards return the error.
943 	 */
944 
945 	sk = sock->sk;
946 
947 	lock_sock(sk);
948 	if (sock->state == SS_UNCONNECTED) {
949 		err = -ENOTCONN;
950 		if (sk->sk_type == SOCK_STREAM)
951 			goto out;
952 	} else {
953 		sock->state = SS_DISCONNECTING;
954 		err = 0;
955 	}
956 
957 	/* Receive and send shutdowns are treated alike. */
958 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
959 	if (mode) {
960 		sk->sk_shutdown |= mode;
961 		sk->sk_state_change(sk);
962 
963 		if (sk->sk_type == SOCK_STREAM) {
964 			sock_reset_flag(sk, SOCK_DONE);
965 			vsock_send_shutdown(sk, mode);
966 		}
967 	}
968 
969 out:
970 	release_sock(sk);
971 	return err;
972 }
973 
974 static __poll_t vsock_poll(struct file *file, struct socket *sock,
975 			       poll_table *wait)
976 {
977 	struct sock *sk;
978 	__poll_t mask;
979 	struct vsock_sock *vsk;
980 
981 	sk = sock->sk;
982 	vsk = vsock_sk(sk);
983 
984 	poll_wait(file, sk_sleep(sk), wait);
985 	mask = 0;
986 
987 	if (sk->sk_err)
988 		/* Signify that there has been an error on this socket. */
989 		mask |= EPOLLERR;
990 
991 	/* INET sockets treat local write shutdown and peer write shutdown as a
992 	 * case of EPOLLHUP set.
993 	 */
994 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
995 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
996 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
997 		mask |= EPOLLHUP;
998 	}
999 
1000 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1001 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1002 		mask |= EPOLLRDHUP;
1003 	}
1004 
1005 	if (sock->type == SOCK_DGRAM) {
1006 		/* For datagram sockets we can read if there is something in
1007 		 * the queue and write as long as the socket isn't shutdown for
1008 		 * sending.
1009 		 */
1010 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1011 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1012 			mask |= EPOLLIN | EPOLLRDNORM;
1013 		}
1014 
1015 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1016 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1017 
1018 	} else if (sock->type == SOCK_STREAM) {
1019 		const struct vsock_transport *transport;
1020 
1021 		lock_sock(sk);
1022 
1023 		transport = vsk->transport;
1024 
1025 		/* Listening sockets that have connections in their accept
1026 		 * queue can be read.
1027 		 */
1028 		if (sk->sk_state == TCP_LISTEN
1029 		    && !vsock_is_accept_queue_empty(sk))
1030 			mask |= EPOLLIN | EPOLLRDNORM;
1031 
1032 		/* If there is something in the queue then we can read. */
1033 		if (transport && transport->stream_is_active(vsk) &&
1034 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1035 			bool data_ready_now = false;
1036 			int ret = transport->notify_poll_in(
1037 					vsk, 1, &data_ready_now);
1038 			if (ret < 0) {
1039 				mask |= EPOLLERR;
1040 			} else {
1041 				if (data_ready_now)
1042 					mask |= EPOLLIN | EPOLLRDNORM;
1043 
1044 			}
1045 		}
1046 
1047 		/* Sockets whose connections have been closed, reset, or
1048 		 * terminated should also be considered read, and we check the
1049 		 * shutdown flag for that.
1050 		 */
1051 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1052 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1053 			mask |= EPOLLIN | EPOLLRDNORM;
1054 		}
1055 
1056 		/* Connected sockets that can produce data can be written. */
1057 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1058 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1059 				bool space_avail_now = false;
1060 				int ret = transport->notify_poll_out(
1061 						vsk, 1, &space_avail_now);
1062 				if (ret < 0) {
1063 					mask |= EPOLLERR;
1064 				} else {
1065 					if (space_avail_now)
1066 						/* Remove EPOLLWRBAND since INET
1067 						 * sockets are not setting it.
1068 						 */
1069 						mask |= EPOLLOUT | EPOLLWRNORM;
1070 
1071 				}
1072 			}
1073 		}
1074 
1075 		/* Simulate INET socket poll behaviors, which sets
1076 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1077 		 * but local send is not shutdown.
1078 		 */
1079 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1080 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1081 				mask |= EPOLLOUT | EPOLLWRNORM;
1082 
1083 		}
1084 
1085 		release_sock(sk);
1086 	}
1087 
1088 	return mask;
1089 }
1090 
1091 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1092 			       size_t len)
1093 {
1094 	int err;
1095 	struct sock *sk;
1096 	struct vsock_sock *vsk;
1097 	struct sockaddr_vm *remote_addr;
1098 	const struct vsock_transport *transport;
1099 
1100 	if (msg->msg_flags & MSG_OOB)
1101 		return -EOPNOTSUPP;
1102 
1103 	/* For now, MSG_DONTWAIT is always assumed... */
1104 	err = 0;
1105 	sk = sock->sk;
1106 	vsk = vsock_sk(sk);
1107 
1108 	lock_sock(sk);
1109 
1110 	transport = vsk->transport;
1111 
1112 	err = vsock_auto_bind(vsk);
1113 	if (err)
1114 		goto out;
1115 
1116 
1117 	/* If the provided message contains an address, use that.  Otherwise
1118 	 * fall back on the socket's remote handle (if it has been connected).
1119 	 */
1120 	if (msg->msg_name &&
1121 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1122 			    &remote_addr) == 0) {
1123 		/* Ensure this address is of the right type and is a valid
1124 		 * destination.
1125 		 */
1126 
1127 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1128 			remote_addr->svm_cid = transport->get_local_cid();
1129 
1130 		if (!vsock_addr_bound(remote_addr)) {
1131 			err = -EINVAL;
1132 			goto out;
1133 		}
1134 	} else if (sock->state == SS_CONNECTED) {
1135 		remote_addr = &vsk->remote_addr;
1136 
1137 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1138 			remote_addr->svm_cid = transport->get_local_cid();
1139 
1140 		/* XXX Should connect() or this function ensure remote_addr is
1141 		 * bound?
1142 		 */
1143 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1144 			err = -EINVAL;
1145 			goto out;
1146 		}
1147 	} else {
1148 		err = -EINVAL;
1149 		goto out;
1150 	}
1151 
1152 	if (!transport->dgram_allow(remote_addr->svm_cid,
1153 				    remote_addr->svm_port)) {
1154 		err = -EINVAL;
1155 		goto out;
1156 	}
1157 
1158 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1159 
1160 out:
1161 	release_sock(sk);
1162 	return err;
1163 }
1164 
1165 static int vsock_dgram_connect(struct socket *sock,
1166 			       struct sockaddr *addr, int addr_len, int flags)
1167 {
1168 	int err;
1169 	struct sock *sk;
1170 	struct vsock_sock *vsk;
1171 	struct sockaddr_vm *remote_addr;
1172 
1173 	sk = sock->sk;
1174 	vsk = vsock_sk(sk);
1175 
1176 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1177 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1178 		lock_sock(sk);
1179 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1180 				VMADDR_PORT_ANY);
1181 		sock->state = SS_UNCONNECTED;
1182 		release_sock(sk);
1183 		return 0;
1184 	} else if (err != 0)
1185 		return -EINVAL;
1186 
1187 	lock_sock(sk);
1188 
1189 	err = vsock_auto_bind(vsk);
1190 	if (err)
1191 		goto out;
1192 
1193 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1194 					 remote_addr->svm_port)) {
1195 		err = -EINVAL;
1196 		goto out;
1197 	}
1198 
1199 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1200 	sock->state = SS_CONNECTED;
1201 
1202 out:
1203 	release_sock(sk);
1204 	return err;
1205 }
1206 
1207 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1208 			       size_t len, int flags)
1209 {
1210 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1211 
1212 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1213 }
1214 
1215 static const struct proto_ops vsock_dgram_ops = {
1216 	.family = PF_VSOCK,
1217 	.owner = THIS_MODULE,
1218 	.release = vsock_release,
1219 	.bind = vsock_bind,
1220 	.connect = vsock_dgram_connect,
1221 	.socketpair = sock_no_socketpair,
1222 	.accept = sock_no_accept,
1223 	.getname = vsock_getname,
1224 	.poll = vsock_poll,
1225 	.ioctl = sock_no_ioctl,
1226 	.listen = sock_no_listen,
1227 	.shutdown = vsock_shutdown,
1228 	.sendmsg = vsock_dgram_sendmsg,
1229 	.recvmsg = vsock_dgram_recvmsg,
1230 	.mmap = sock_no_mmap,
1231 	.sendpage = sock_no_sendpage,
1232 };
1233 
1234 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1235 {
1236 	const struct vsock_transport *transport = vsk->transport;
1237 
1238 	if (!transport || !transport->cancel_pkt)
1239 		return -EOPNOTSUPP;
1240 
1241 	return transport->cancel_pkt(vsk);
1242 }
1243 
1244 static void vsock_connect_timeout(struct work_struct *work)
1245 {
1246 	struct sock *sk;
1247 	struct vsock_sock *vsk;
1248 
1249 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1250 	sk = sk_vsock(vsk);
1251 
1252 	lock_sock(sk);
1253 	if (sk->sk_state == TCP_SYN_SENT &&
1254 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1255 		sk->sk_state = TCP_CLOSE;
1256 		sk->sk_err = ETIMEDOUT;
1257 		sk->sk_error_report(sk);
1258 		vsock_transport_cancel_pkt(vsk);
1259 	}
1260 	release_sock(sk);
1261 
1262 	sock_put(sk);
1263 }
1264 
1265 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1266 				int addr_len, int flags)
1267 {
1268 	int err;
1269 	struct sock *sk;
1270 	struct vsock_sock *vsk;
1271 	const struct vsock_transport *transport;
1272 	struct sockaddr_vm *remote_addr;
1273 	long timeout;
1274 	DEFINE_WAIT(wait);
1275 
1276 	err = 0;
1277 	sk = sock->sk;
1278 	vsk = vsock_sk(sk);
1279 
1280 	lock_sock(sk);
1281 
1282 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1283 	switch (sock->state) {
1284 	case SS_CONNECTED:
1285 		err = -EISCONN;
1286 		goto out;
1287 	case SS_DISCONNECTING:
1288 		err = -EINVAL;
1289 		goto out;
1290 	case SS_CONNECTING:
1291 		/* This continues on so we can move sock into the SS_CONNECTED
1292 		 * state once the connection has completed (at which point err
1293 		 * will be set to zero also).  Otherwise, we will either wait
1294 		 * for the connection or return -EALREADY should this be a
1295 		 * non-blocking call.
1296 		 */
1297 		err = -EALREADY;
1298 		break;
1299 	default:
1300 		if ((sk->sk_state == TCP_LISTEN) ||
1301 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1302 			err = -EINVAL;
1303 			goto out;
1304 		}
1305 
1306 		/* Set the remote address that we are connecting to. */
1307 		memcpy(&vsk->remote_addr, remote_addr,
1308 		       sizeof(vsk->remote_addr));
1309 
1310 		err = vsock_assign_transport(vsk, NULL);
1311 		if (err)
1312 			goto out;
1313 
1314 		transport = vsk->transport;
1315 
1316 		/* The hypervisor and well-known contexts do not have socket
1317 		 * endpoints.
1318 		 */
1319 		if (!transport ||
1320 		    !transport->stream_allow(remote_addr->svm_cid,
1321 					     remote_addr->svm_port)) {
1322 			err = -ENETUNREACH;
1323 			goto out;
1324 		}
1325 
1326 		err = vsock_auto_bind(vsk);
1327 		if (err)
1328 			goto out;
1329 
1330 		sk->sk_state = TCP_SYN_SENT;
1331 
1332 		err = transport->connect(vsk);
1333 		if (err < 0)
1334 			goto out;
1335 
1336 		/* Mark sock as connecting and set the error code to in
1337 		 * progress in case this is a non-blocking connect.
1338 		 */
1339 		sock->state = SS_CONNECTING;
1340 		err = -EINPROGRESS;
1341 	}
1342 
1343 	/* The receive path will handle all communication until we are able to
1344 	 * enter the connected state.  Here we wait for the connection to be
1345 	 * completed or a notification of an error.
1346 	 */
1347 	timeout = vsk->connect_timeout;
1348 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1349 
1350 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1351 		if (flags & O_NONBLOCK) {
1352 			/* If we're not going to block, we schedule a timeout
1353 			 * function to generate a timeout on the connection
1354 			 * attempt, in case the peer doesn't respond in a
1355 			 * timely manner. We hold on to the socket until the
1356 			 * timeout fires.
1357 			 */
1358 			sock_hold(sk);
1359 			schedule_delayed_work(&vsk->connect_work, timeout);
1360 
1361 			/* Skip ahead to preserve error code set above. */
1362 			goto out_wait;
1363 		}
1364 
1365 		release_sock(sk);
1366 		timeout = schedule_timeout(timeout);
1367 		lock_sock(sk);
1368 
1369 		if (signal_pending(current)) {
1370 			err = sock_intr_errno(timeout);
1371 			sk->sk_state = TCP_CLOSE;
1372 			sock->state = SS_UNCONNECTED;
1373 			vsock_transport_cancel_pkt(vsk);
1374 			goto out_wait;
1375 		} else if (timeout == 0) {
1376 			err = -ETIMEDOUT;
1377 			sk->sk_state = TCP_CLOSE;
1378 			sock->state = SS_UNCONNECTED;
1379 			vsock_transport_cancel_pkt(vsk);
1380 			goto out_wait;
1381 		}
1382 
1383 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1384 	}
1385 
1386 	if (sk->sk_err) {
1387 		err = -sk->sk_err;
1388 		sk->sk_state = TCP_CLOSE;
1389 		sock->state = SS_UNCONNECTED;
1390 	} else {
1391 		err = 0;
1392 	}
1393 
1394 out_wait:
1395 	finish_wait(sk_sleep(sk), &wait);
1396 out:
1397 	release_sock(sk);
1398 	return err;
1399 }
1400 
1401 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1402 			bool kern)
1403 {
1404 	struct sock *listener;
1405 	int err;
1406 	struct sock *connected;
1407 	struct vsock_sock *vconnected;
1408 	long timeout;
1409 	DEFINE_WAIT(wait);
1410 
1411 	err = 0;
1412 	listener = sock->sk;
1413 
1414 	lock_sock(listener);
1415 
1416 	if (sock->type != SOCK_STREAM) {
1417 		err = -EOPNOTSUPP;
1418 		goto out;
1419 	}
1420 
1421 	if (listener->sk_state != TCP_LISTEN) {
1422 		err = -EINVAL;
1423 		goto out;
1424 	}
1425 
1426 	/* Wait for children sockets to appear; these are the new sockets
1427 	 * created upon connection establishment.
1428 	 */
1429 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1430 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1431 
1432 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1433 	       listener->sk_err == 0) {
1434 		release_sock(listener);
1435 		timeout = schedule_timeout(timeout);
1436 		finish_wait(sk_sleep(listener), &wait);
1437 		lock_sock(listener);
1438 
1439 		if (signal_pending(current)) {
1440 			err = sock_intr_errno(timeout);
1441 			goto out;
1442 		} else if (timeout == 0) {
1443 			err = -EAGAIN;
1444 			goto out;
1445 		}
1446 
1447 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1448 	}
1449 	finish_wait(sk_sleep(listener), &wait);
1450 
1451 	if (listener->sk_err)
1452 		err = -listener->sk_err;
1453 
1454 	if (connected) {
1455 		sk_acceptq_removed(listener);
1456 
1457 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1458 		vconnected = vsock_sk(connected);
1459 
1460 		/* If the listener socket has received an error, then we should
1461 		 * reject this socket and return.  Note that we simply mark the
1462 		 * socket rejected, drop our reference, and let the cleanup
1463 		 * function handle the cleanup; the fact that we found it in
1464 		 * the listener's accept queue guarantees that the cleanup
1465 		 * function hasn't run yet.
1466 		 */
1467 		if (err) {
1468 			vconnected->rejected = true;
1469 		} else {
1470 			newsock->state = SS_CONNECTED;
1471 			sock_graft(connected, newsock);
1472 		}
1473 
1474 		release_sock(connected);
1475 		sock_put(connected);
1476 	}
1477 
1478 out:
1479 	release_sock(listener);
1480 	return err;
1481 }
1482 
1483 static int vsock_listen(struct socket *sock, int backlog)
1484 {
1485 	int err;
1486 	struct sock *sk;
1487 	struct vsock_sock *vsk;
1488 
1489 	sk = sock->sk;
1490 
1491 	lock_sock(sk);
1492 
1493 	if (sock->type != SOCK_STREAM) {
1494 		err = -EOPNOTSUPP;
1495 		goto out;
1496 	}
1497 
1498 	if (sock->state != SS_UNCONNECTED) {
1499 		err = -EINVAL;
1500 		goto out;
1501 	}
1502 
1503 	vsk = vsock_sk(sk);
1504 
1505 	if (!vsock_addr_bound(&vsk->local_addr)) {
1506 		err = -EINVAL;
1507 		goto out;
1508 	}
1509 
1510 	sk->sk_max_ack_backlog = backlog;
1511 	sk->sk_state = TCP_LISTEN;
1512 
1513 	err = 0;
1514 
1515 out:
1516 	release_sock(sk);
1517 	return err;
1518 }
1519 
1520 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1521 				     const struct vsock_transport *transport,
1522 				     u64 val)
1523 {
1524 	if (val > vsk->buffer_max_size)
1525 		val = vsk->buffer_max_size;
1526 
1527 	if (val < vsk->buffer_min_size)
1528 		val = vsk->buffer_min_size;
1529 
1530 	if (val != vsk->buffer_size &&
1531 	    transport && transport->notify_buffer_size)
1532 		transport->notify_buffer_size(vsk, &val);
1533 
1534 	vsk->buffer_size = val;
1535 }
1536 
1537 static int vsock_stream_setsockopt(struct socket *sock,
1538 				   int level,
1539 				   int optname,
1540 				   sockptr_t optval,
1541 				   unsigned int optlen)
1542 {
1543 	int err;
1544 	struct sock *sk;
1545 	struct vsock_sock *vsk;
1546 	const struct vsock_transport *transport;
1547 	u64 val;
1548 
1549 	if (level != AF_VSOCK)
1550 		return -ENOPROTOOPT;
1551 
1552 #define COPY_IN(_v)                                       \
1553 	do {						  \
1554 		if (optlen < sizeof(_v)) {		  \
1555 			err = -EINVAL;			  \
1556 			goto exit;			  \
1557 		}					  \
1558 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1559 			err = -EFAULT;					\
1560 			goto exit;					\
1561 		}							\
1562 	} while (0)
1563 
1564 	err = 0;
1565 	sk = sock->sk;
1566 	vsk = vsock_sk(sk);
1567 
1568 	lock_sock(sk);
1569 
1570 	transport = vsk->transport;
1571 
1572 	switch (optname) {
1573 	case SO_VM_SOCKETS_BUFFER_SIZE:
1574 		COPY_IN(val);
1575 		vsock_update_buffer_size(vsk, transport, val);
1576 		break;
1577 
1578 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1579 		COPY_IN(val);
1580 		vsk->buffer_max_size = val;
1581 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1582 		break;
1583 
1584 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1585 		COPY_IN(val);
1586 		vsk->buffer_min_size = val;
1587 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1588 		break;
1589 
1590 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1591 		struct __kernel_old_timeval tv;
1592 		COPY_IN(tv);
1593 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1594 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1595 			vsk->connect_timeout = tv.tv_sec * HZ +
1596 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1597 			if (vsk->connect_timeout == 0)
1598 				vsk->connect_timeout =
1599 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1600 
1601 		} else {
1602 			err = -ERANGE;
1603 		}
1604 		break;
1605 	}
1606 
1607 	default:
1608 		err = -ENOPROTOOPT;
1609 		break;
1610 	}
1611 
1612 #undef COPY_IN
1613 
1614 exit:
1615 	release_sock(sk);
1616 	return err;
1617 }
1618 
1619 static int vsock_stream_getsockopt(struct socket *sock,
1620 				   int level, int optname,
1621 				   char __user *optval,
1622 				   int __user *optlen)
1623 {
1624 	int err;
1625 	int len;
1626 	struct sock *sk;
1627 	struct vsock_sock *vsk;
1628 	u64 val;
1629 
1630 	if (level != AF_VSOCK)
1631 		return -ENOPROTOOPT;
1632 
1633 	err = get_user(len, optlen);
1634 	if (err != 0)
1635 		return err;
1636 
1637 #define COPY_OUT(_v)                            \
1638 	do {					\
1639 		if (len < sizeof(_v))		\
1640 			return -EINVAL;		\
1641 						\
1642 		len = sizeof(_v);		\
1643 		if (copy_to_user(optval, &_v, len) != 0)	\
1644 			return -EFAULT;				\
1645 								\
1646 	} while (0)
1647 
1648 	err = 0;
1649 	sk = sock->sk;
1650 	vsk = vsock_sk(sk);
1651 
1652 	switch (optname) {
1653 	case SO_VM_SOCKETS_BUFFER_SIZE:
1654 		val = vsk->buffer_size;
1655 		COPY_OUT(val);
1656 		break;
1657 
1658 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1659 		val = vsk->buffer_max_size;
1660 		COPY_OUT(val);
1661 		break;
1662 
1663 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1664 		val = vsk->buffer_min_size;
1665 		COPY_OUT(val);
1666 		break;
1667 
1668 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1669 		struct __kernel_old_timeval tv;
1670 		tv.tv_sec = vsk->connect_timeout / HZ;
1671 		tv.tv_usec =
1672 		    (vsk->connect_timeout -
1673 		     tv.tv_sec * HZ) * (1000000 / HZ);
1674 		COPY_OUT(tv);
1675 		break;
1676 	}
1677 	default:
1678 		return -ENOPROTOOPT;
1679 	}
1680 
1681 	err = put_user(len, optlen);
1682 	if (err != 0)
1683 		return -EFAULT;
1684 
1685 #undef COPY_OUT
1686 
1687 	return 0;
1688 }
1689 
1690 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1691 				size_t len)
1692 {
1693 	struct sock *sk;
1694 	struct vsock_sock *vsk;
1695 	const struct vsock_transport *transport;
1696 	ssize_t total_written;
1697 	long timeout;
1698 	int err;
1699 	struct vsock_transport_send_notify_data send_data;
1700 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1701 
1702 	sk = sock->sk;
1703 	vsk = vsock_sk(sk);
1704 	total_written = 0;
1705 	err = 0;
1706 
1707 	if (msg->msg_flags & MSG_OOB)
1708 		return -EOPNOTSUPP;
1709 
1710 	lock_sock(sk);
1711 
1712 	transport = vsk->transport;
1713 
1714 	/* Callers should not provide a destination with stream sockets. */
1715 	if (msg->msg_namelen) {
1716 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1717 		goto out;
1718 	}
1719 
1720 	/* Send data only if both sides are not shutdown in the direction. */
1721 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1722 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1723 		err = -EPIPE;
1724 		goto out;
1725 	}
1726 
1727 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1728 	    !vsock_addr_bound(&vsk->local_addr)) {
1729 		err = -ENOTCONN;
1730 		goto out;
1731 	}
1732 
1733 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1734 		err = -EDESTADDRREQ;
1735 		goto out;
1736 	}
1737 
1738 	/* Wait for room in the produce queue to enqueue our user's data. */
1739 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1740 
1741 	err = transport->notify_send_init(vsk, &send_data);
1742 	if (err < 0)
1743 		goto out;
1744 
1745 	while (total_written < len) {
1746 		ssize_t written;
1747 
1748 		add_wait_queue(sk_sleep(sk), &wait);
1749 		while (vsock_stream_has_space(vsk) == 0 &&
1750 		       sk->sk_err == 0 &&
1751 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1752 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1753 
1754 			/* Don't wait for non-blocking sockets. */
1755 			if (timeout == 0) {
1756 				err = -EAGAIN;
1757 				remove_wait_queue(sk_sleep(sk), &wait);
1758 				goto out_err;
1759 			}
1760 
1761 			err = transport->notify_send_pre_block(vsk, &send_data);
1762 			if (err < 0) {
1763 				remove_wait_queue(sk_sleep(sk), &wait);
1764 				goto out_err;
1765 			}
1766 
1767 			release_sock(sk);
1768 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1769 			lock_sock(sk);
1770 			if (signal_pending(current)) {
1771 				err = sock_intr_errno(timeout);
1772 				remove_wait_queue(sk_sleep(sk), &wait);
1773 				goto out_err;
1774 			} else if (timeout == 0) {
1775 				err = -EAGAIN;
1776 				remove_wait_queue(sk_sleep(sk), &wait);
1777 				goto out_err;
1778 			}
1779 		}
1780 		remove_wait_queue(sk_sleep(sk), &wait);
1781 
1782 		/* These checks occur both as part of and after the loop
1783 		 * conditional since we need to check before and after
1784 		 * sleeping.
1785 		 */
1786 		if (sk->sk_err) {
1787 			err = -sk->sk_err;
1788 			goto out_err;
1789 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1790 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1791 			err = -EPIPE;
1792 			goto out_err;
1793 		}
1794 
1795 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1796 		if (err < 0)
1797 			goto out_err;
1798 
1799 		/* Note that enqueue will only write as many bytes as are free
1800 		 * in the produce queue, so we don't need to ensure len is
1801 		 * smaller than the queue size.  It is the caller's
1802 		 * responsibility to check how many bytes we were able to send.
1803 		 */
1804 
1805 		written = transport->stream_enqueue(
1806 				vsk, msg,
1807 				len - total_written);
1808 		if (written < 0) {
1809 			err = -ENOMEM;
1810 			goto out_err;
1811 		}
1812 
1813 		total_written += written;
1814 
1815 		err = transport->notify_send_post_enqueue(
1816 				vsk, written, &send_data);
1817 		if (err < 0)
1818 			goto out_err;
1819 
1820 	}
1821 
1822 out_err:
1823 	if (total_written > 0)
1824 		err = total_written;
1825 out:
1826 	release_sock(sk);
1827 	return err;
1828 }
1829 
1830 
1831 static int
1832 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1833 		     int flags)
1834 {
1835 	struct sock *sk;
1836 	struct vsock_sock *vsk;
1837 	const struct vsock_transport *transport;
1838 	int err;
1839 	size_t target;
1840 	ssize_t copied;
1841 	long timeout;
1842 	struct vsock_transport_recv_notify_data recv_data;
1843 
1844 	DEFINE_WAIT(wait);
1845 
1846 	sk = sock->sk;
1847 	vsk = vsock_sk(sk);
1848 	err = 0;
1849 
1850 	lock_sock(sk);
1851 
1852 	transport = vsk->transport;
1853 
1854 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1855 		/* Recvmsg is supposed to return 0 if a peer performs an
1856 		 * orderly shutdown. Differentiate between that case and when a
1857 		 * peer has not connected or a local shutdown occured with the
1858 		 * SOCK_DONE flag.
1859 		 */
1860 		if (sock_flag(sk, SOCK_DONE))
1861 			err = 0;
1862 		else
1863 			err = -ENOTCONN;
1864 
1865 		goto out;
1866 	}
1867 
1868 	if (flags & MSG_OOB) {
1869 		err = -EOPNOTSUPP;
1870 		goto out;
1871 	}
1872 
1873 	/* We don't check peer_shutdown flag here since peer may actually shut
1874 	 * down, but there can be data in the queue that a local socket can
1875 	 * receive.
1876 	 */
1877 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1878 		err = 0;
1879 		goto out;
1880 	}
1881 
1882 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1883 	 * is not an error.  We may as well bail out now.
1884 	 */
1885 	if (!len) {
1886 		err = 0;
1887 		goto out;
1888 	}
1889 
1890 	/* We must not copy less than target bytes into the user's buffer
1891 	 * before returning successfully, so we wait for the consume queue to
1892 	 * have that much data to consume before dequeueing.  Note that this
1893 	 * makes it impossible to handle cases where target is greater than the
1894 	 * queue size.
1895 	 */
1896 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1897 	if (target >= transport->stream_rcvhiwat(vsk)) {
1898 		err = -ENOMEM;
1899 		goto out;
1900 	}
1901 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1902 	copied = 0;
1903 
1904 	err = transport->notify_recv_init(vsk, target, &recv_data);
1905 	if (err < 0)
1906 		goto out;
1907 
1908 
1909 	while (1) {
1910 		s64 ready;
1911 
1912 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1913 		ready = vsock_stream_has_data(vsk);
1914 
1915 		if (ready == 0) {
1916 			if (sk->sk_err != 0 ||
1917 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1918 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1919 				finish_wait(sk_sleep(sk), &wait);
1920 				break;
1921 			}
1922 			/* Don't wait for non-blocking sockets. */
1923 			if (timeout == 0) {
1924 				err = -EAGAIN;
1925 				finish_wait(sk_sleep(sk), &wait);
1926 				break;
1927 			}
1928 
1929 			err = transport->notify_recv_pre_block(
1930 					vsk, target, &recv_data);
1931 			if (err < 0) {
1932 				finish_wait(sk_sleep(sk), &wait);
1933 				break;
1934 			}
1935 			release_sock(sk);
1936 			timeout = schedule_timeout(timeout);
1937 			lock_sock(sk);
1938 
1939 			if (signal_pending(current)) {
1940 				err = sock_intr_errno(timeout);
1941 				finish_wait(sk_sleep(sk), &wait);
1942 				break;
1943 			} else if (timeout == 0) {
1944 				err = -EAGAIN;
1945 				finish_wait(sk_sleep(sk), &wait);
1946 				break;
1947 			}
1948 		} else {
1949 			ssize_t read;
1950 
1951 			finish_wait(sk_sleep(sk), &wait);
1952 
1953 			if (ready < 0) {
1954 				/* Invalid queue pair content. XXX This should
1955 				* be changed to a connection reset in a later
1956 				* change.
1957 				*/
1958 
1959 				err = -ENOMEM;
1960 				goto out;
1961 			}
1962 
1963 			err = transport->notify_recv_pre_dequeue(
1964 					vsk, target, &recv_data);
1965 			if (err < 0)
1966 				break;
1967 
1968 			read = transport->stream_dequeue(
1969 					vsk, msg,
1970 					len - copied, flags);
1971 			if (read < 0) {
1972 				err = -ENOMEM;
1973 				break;
1974 			}
1975 
1976 			copied += read;
1977 
1978 			err = transport->notify_recv_post_dequeue(
1979 					vsk, target, read,
1980 					!(flags & MSG_PEEK), &recv_data);
1981 			if (err < 0)
1982 				goto out;
1983 
1984 			if (read >= target || flags & MSG_PEEK)
1985 				break;
1986 
1987 			target -= read;
1988 		}
1989 	}
1990 
1991 	if (sk->sk_err)
1992 		err = -sk->sk_err;
1993 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1994 		err = 0;
1995 
1996 	if (copied > 0)
1997 		err = copied;
1998 
1999 out:
2000 	release_sock(sk);
2001 	return err;
2002 }
2003 
2004 static const struct proto_ops vsock_stream_ops = {
2005 	.family = PF_VSOCK,
2006 	.owner = THIS_MODULE,
2007 	.release = vsock_release,
2008 	.bind = vsock_bind,
2009 	.connect = vsock_stream_connect,
2010 	.socketpair = sock_no_socketpair,
2011 	.accept = vsock_accept,
2012 	.getname = vsock_getname,
2013 	.poll = vsock_poll,
2014 	.ioctl = sock_no_ioctl,
2015 	.listen = vsock_listen,
2016 	.shutdown = vsock_shutdown,
2017 	.setsockopt = vsock_stream_setsockopt,
2018 	.getsockopt = vsock_stream_getsockopt,
2019 	.sendmsg = vsock_stream_sendmsg,
2020 	.recvmsg = vsock_stream_recvmsg,
2021 	.mmap = sock_no_mmap,
2022 	.sendpage = sock_no_sendpage,
2023 };
2024 
2025 static int vsock_create(struct net *net, struct socket *sock,
2026 			int protocol, int kern)
2027 {
2028 	struct vsock_sock *vsk;
2029 	struct sock *sk;
2030 	int ret;
2031 
2032 	if (!sock)
2033 		return -EINVAL;
2034 
2035 	if (protocol && protocol != PF_VSOCK)
2036 		return -EPROTONOSUPPORT;
2037 
2038 	switch (sock->type) {
2039 	case SOCK_DGRAM:
2040 		sock->ops = &vsock_dgram_ops;
2041 		break;
2042 	case SOCK_STREAM:
2043 		sock->ops = &vsock_stream_ops;
2044 		break;
2045 	default:
2046 		return -ESOCKTNOSUPPORT;
2047 	}
2048 
2049 	sock->state = SS_UNCONNECTED;
2050 
2051 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2052 	if (!sk)
2053 		return -ENOMEM;
2054 
2055 	vsk = vsock_sk(sk);
2056 
2057 	if (sock->type == SOCK_DGRAM) {
2058 		ret = vsock_assign_transport(vsk, NULL);
2059 		if (ret < 0) {
2060 			sock_put(sk);
2061 			return ret;
2062 		}
2063 	}
2064 
2065 	vsock_insert_unbound(vsk);
2066 
2067 	return 0;
2068 }
2069 
2070 static const struct net_proto_family vsock_family_ops = {
2071 	.family = AF_VSOCK,
2072 	.create = vsock_create,
2073 	.owner = THIS_MODULE,
2074 };
2075 
2076 static long vsock_dev_do_ioctl(struct file *filp,
2077 			       unsigned int cmd, void __user *ptr)
2078 {
2079 	u32 __user *p = ptr;
2080 	u32 cid = VMADDR_CID_ANY;
2081 	int retval = 0;
2082 
2083 	switch (cmd) {
2084 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2085 		/* To be compatible with the VMCI behavior, we prioritize the
2086 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2087 		 */
2088 		if (transport_g2h)
2089 			cid = transport_g2h->get_local_cid();
2090 		else if (transport_h2g)
2091 			cid = transport_h2g->get_local_cid();
2092 
2093 		if (put_user(cid, p) != 0)
2094 			retval = -EFAULT;
2095 		break;
2096 
2097 	default:
2098 		retval = -ENOIOCTLCMD;
2099 	}
2100 
2101 	return retval;
2102 }
2103 
2104 static long vsock_dev_ioctl(struct file *filp,
2105 			    unsigned int cmd, unsigned long arg)
2106 {
2107 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2108 }
2109 
2110 #ifdef CONFIG_COMPAT
2111 static long vsock_dev_compat_ioctl(struct file *filp,
2112 				   unsigned int cmd, unsigned long arg)
2113 {
2114 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2115 }
2116 #endif
2117 
2118 static const struct file_operations vsock_device_ops = {
2119 	.owner		= THIS_MODULE,
2120 	.unlocked_ioctl	= vsock_dev_ioctl,
2121 #ifdef CONFIG_COMPAT
2122 	.compat_ioctl	= vsock_dev_compat_ioctl,
2123 #endif
2124 	.open		= nonseekable_open,
2125 };
2126 
2127 static struct miscdevice vsock_device = {
2128 	.name		= "vsock",
2129 	.fops		= &vsock_device_ops,
2130 };
2131 
2132 static int __init vsock_init(void)
2133 {
2134 	int err = 0;
2135 
2136 	vsock_init_tables();
2137 
2138 	vsock_proto.owner = THIS_MODULE;
2139 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2140 	err = misc_register(&vsock_device);
2141 	if (err) {
2142 		pr_err("Failed to register misc device\n");
2143 		goto err_reset_transport;
2144 	}
2145 
2146 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2147 	if (err) {
2148 		pr_err("Cannot register vsock protocol\n");
2149 		goto err_deregister_misc;
2150 	}
2151 
2152 	err = sock_register(&vsock_family_ops);
2153 	if (err) {
2154 		pr_err("could not register af_vsock (%d) address family: %d\n",
2155 		       AF_VSOCK, err);
2156 		goto err_unregister_proto;
2157 	}
2158 
2159 	return 0;
2160 
2161 err_unregister_proto:
2162 	proto_unregister(&vsock_proto);
2163 err_deregister_misc:
2164 	misc_deregister(&vsock_device);
2165 err_reset_transport:
2166 	return err;
2167 }
2168 
2169 static void __exit vsock_exit(void)
2170 {
2171 	misc_deregister(&vsock_device);
2172 	sock_unregister(AF_VSOCK);
2173 	proto_unregister(&vsock_proto);
2174 }
2175 
2176 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2177 {
2178 	return vsk->transport;
2179 }
2180 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2181 
2182 int vsock_core_register(const struct vsock_transport *t, int features)
2183 {
2184 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2185 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2186 
2187 	if (err)
2188 		return err;
2189 
2190 	t_h2g = transport_h2g;
2191 	t_g2h = transport_g2h;
2192 	t_dgram = transport_dgram;
2193 	t_local = transport_local;
2194 
2195 	if (features & VSOCK_TRANSPORT_F_H2G) {
2196 		if (t_h2g) {
2197 			err = -EBUSY;
2198 			goto err_busy;
2199 		}
2200 		t_h2g = t;
2201 	}
2202 
2203 	if (features & VSOCK_TRANSPORT_F_G2H) {
2204 		if (t_g2h) {
2205 			err = -EBUSY;
2206 			goto err_busy;
2207 		}
2208 		t_g2h = t;
2209 	}
2210 
2211 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2212 		if (t_dgram) {
2213 			err = -EBUSY;
2214 			goto err_busy;
2215 		}
2216 		t_dgram = t;
2217 	}
2218 
2219 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2220 		if (t_local) {
2221 			err = -EBUSY;
2222 			goto err_busy;
2223 		}
2224 		t_local = t;
2225 	}
2226 
2227 	transport_h2g = t_h2g;
2228 	transport_g2h = t_g2h;
2229 	transport_dgram = t_dgram;
2230 	transport_local = t_local;
2231 
2232 err_busy:
2233 	mutex_unlock(&vsock_register_mutex);
2234 	return err;
2235 }
2236 EXPORT_SYMBOL_GPL(vsock_core_register);
2237 
2238 void vsock_core_unregister(const struct vsock_transport *t)
2239 {
2240 	mutex_lock(&vsock_register_mutex);
2241 
2242 	if (transport_h2g == t)
2243 		transport_h2g = NULL;
2244 
2245 	if (transport_g2h == t)
2246 		transport_g2h = NULL;
2247 
2248 	if (transport_dgram == t)
2249 		transport_dgram = NULL;
2250 
2251 	if (transport_local == t)
2252 		transport_local = NULL;
2253 
2254 	mutex_unlock(&vsock_register_mutex);
2255 }
2256 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2257 
2258 module_init(vsock_init);
2259 module_exit(vsock_exit);
2260 
2261 MODULE_AUTHOR("VMware, Inc.");
2262 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2263 MODULE_VERSION("1.0.2.0-k");
2264 MODULE_LICENSE("GPL v2");
2265