1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/types.h> 89 #include <linux/bitops.h> 90 #include <linux/cred.h> 91 #include <linux/init.h> 92 #include <linux/io.h> 93 #include <linux/kernel.h> 94 #include <linux/sched/signal.h> 95 #include <linux/kmod.h> 96 #include <linux/list.h> 97 #include <linux/miscdevice.h> 98 #include <linux/module.h> 99 #include <linux/mutex.h> 100 #include <linux/net.h> 101 #include <linux/poll.h> 102 #include <linux/random.h> 103 #include <linux/skbuff.h> 104 #include <linux/smp.h> 105 #include <linux/socket.h> 106 #include <linux/stddef.h> 107 #include <linux/unistd.h> 108 #include <linux/wait.h> 109 #include <linux/workqueue.h> 110 #include <net/sock.h> 111 #include <net/af_vsock.h> 112 113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 114 static void vsock_sk_destruct(struct sock *sk); 115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 116 117 /* Protocol family. */ 118 static struct proto vsock_proto = { 119 .name = "AF_VSOCK", 120 .owner = THIS_MODULE, 121 .obj_size = sizeof(struct vsock_sock), 122 }; 123 124 /* The default peer timeout indicates how long we will wait for a peer response 125 * to a control message. 126 */ 127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 128 129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 132 133 /* Transport used for host->guest communication */ 134 static const struct vsock_transport *transport_h2g; 135 /* Transport used for guest->host communication */ 136 static const struct vsock_transport *transport_g2h; 137 /* Transport used for DGRAM communication */ 138 static const struct vsock_transport *transport_dgram; 139 /* Transport used for local communication */ 140 static const struct vsock_transport *transport_local; 141 static DEFINE_MUTEX(vsock_register_mutex); 142 143 /**** UTILS ****/ 144 145 /* Each bound VSocket is stored in the bind hash table and each connected 146 * VSocket is stored in the connected hash table. 147 * 148 * Unbound sockets are all put on the same list attached to the end of the hash 149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 150 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 151 * represents the list that addr hashes to). 152 * 153 * Specifically, we initialize the vsock_bind_table array to a size of 154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 157 * mods with VSOCK_HASH_SIZE to ensure this. 158 */ 159 #define MAX_PORT_RETRIES 24 160 161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 164 165 /* XXX This can probably be implemented in a better way. */ 166 #define VSOCK_CONN_HASH(src, dst) \ 167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 168 #define vsock_connected_sockets(src, dst) \ 169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 170 #define vsock_connected_sockets_vsk(vsk) \ 171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 172 173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 174 EXPORT_SYMBOL_GPL(vsock_bind_table); 175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 176 EXPORT_SYMBOL_GPL(vsock_connected_table); 177 DEFINE_SPINLOCK(vsock_table_lock); 178 EXPORT_SYMBOL_GPL(vsock_table_lock); 179 180 /* Autobind this socket to the local address if necessary. */ 181 static int vsock_auto_bind(struct vsock_sock *vsk) 182 { 183 struct sock *sk = sk_vsock(vsk); 184 struct sockaddr_vm local_addr; 185 186 if (vsock_addr_bound(&vsk->local_addr)) 187 return 0; 188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 189 return __vsock_bind(sk, &local_addr); 190 } 191 192 static void vsock_init_tables(void) 193 { 194 int i; 195 196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 197 INIT_LIST_HEAD(&vsock_bind_table[i]); 198 199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 200 INIT_LIST_HEAD(&vsock_connected_table[i]); 201 } 202 203 static void __vsock_insert_bound(struct list_head *list, 204 struct vsock_sock *vsk) 205 { 206 sock_hold(&vsk->sk); 207 list_add(&vsk->bound_table, list); 208 } 209 210 static void __vsock_insert_connected(struct list_head *list, 211 struct vsock_sock *vsk) 212 { 213 sock_hold(&vsk->sk); 214 list_add(&vsk->connected_table, list); 215 } 216 217 static void __vsock_remove_bound(struct vsock_sock *vsk) 218 { 219 list_del_init(&vsk->bound_table); 220 sock_put(&vsk->sk); 221 } 222 223 static void __vsock_remove_connected(struct vsock_sock *vsk) 224 { 225 list_del_init(&vsk->connected_table); 226 sock_put(&vsk->sk); 227 } 228 229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 230 { 231 struct vsock_sock *vsk; 232 233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 234 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 235 return sk_vsock(vsk); 236 237 if (addr->svm_port == vsk->local_addr.svm_port && 238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 239 addr->svm_cid == VMADDR_CID_ANY)) 240 return sk_vsock(vsk); 241 } 242 243 return NULL; 244 } 245 246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 247 struct sockaddr_vm *dst) 248 { 249 struct vsock_sock *vsk; 250 251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 252 connected_table) { 253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 254 dst->svm_port == vsk->local_addr.svm_port) { 255 return sk_vsock(vsk); 256 } 257 } 258 259 return NULL; 260 } 261 262 static void vsock_insert_unbound(struct vsock_sock *vsk) 263 { 264 spin_lock_bh(&vsock_table_lock); 265 __vsock_insert_bound(vsock_unbound_sockets, vsk); 266 spin_unlock_bh(&vsock_table_lock); 267 } 268 269 void vsock_insert_connected(struct vsock_sock *vsk) 270 { 271 struct list_head *list = vsock_connected_sockets( 272 &vsk->remote_addr, &vsk->local_addr); 273 274 spin_lock_bh(&vsock_table_lock); 275 __vsock_insert_connected(list, vsk); 276 spin_unlock_bh(&vsock_table_lock); 277 } 278 EXPORT_SYMBOL_GPL(vsock_insert_connected); 279 280 void vsock_remove_bound(struct vsock_sock *vsk) 281 { 282 spin_lock_bh(&vsock_table_lock); 283 if (__vsock_in_bound_table(vsk)) 284 __vsock_remove_bound(vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_remove_bound); 288 289 void vsock_remove_connected(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_connected_table(vsk)) 293 __vsock_remove_connected(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_connected); 297 298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 299 { 300 struct sock *sk; 301 302 spin_lock_bh(&vsock_table_lock); 303 sk = __vsock_find_bound_socket(addr); 304 if (sk) 305 sock_hold(sk); 306 307 spin_unlock_bh(&vsock_table_lock); 308 309 return sk; 310 } 311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 312 313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 314 struct sockaddr_vm *dst) 315 { 316 struct sock *sk; 317 318 spin_lock_bh(&vsock_table_lock); 319 sk = __vsock_find_connected_socket(src, dst); 320 if (sk) 321 sock_hold(sk); 322 323 spin_unlock_bh(&vsock_table_lock); 324 325 return sk; 326 } 327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 328 329 void vsock_remove_sock(struct vsock_sock *vsk) 330 { 331 vsock_remove_bound(vsk); 332 vsock_remove_connected(vsk); 333 } 334 EXPORT_SYMBOL_GPL(vsock_remove_sock); 335 336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 337 { 338 int i; 339 340 spin_lock_bh(&vsock_table_lock); 341 342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 343 struct vsock_sock *vsk; 344 list_for_each_entry(vsk, &vsock_connected_table[i], 345 connected_table) 346 fn(sk_vsock(vsk)); 347 } 348 349 spin_unlock_bh(&vsock_table_lock); 350 } 351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 352 353 void vsock_add_pending(struct sock *listener, struct sock *pending) 354 { 355 struct vsock_sock *vlistener; 356 struct vsock_sock *vpending; 357 358 vlistener = vsock_sk(listener); 359 vpending = vsock_sk(pending); 360 361 sock_hold(pending); 362 sock_hold(listener); 363 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 364 } 365 EXPORT_SYMBOL_GPL(vsock_add_pending); 366 367 void vsock_remove_pending(struct sock *listener, struct sock *pending) 368 { 369 struct vsock_sock *vpending = vsock_sk(pending); 370 371 list_del_init(&vpending->pending_links); 372 sock_put(listener); 373 sock_put(pending); 374 } 375 EXPORT_SYMBOL_GPL(vsock_remove_pending); 376 377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 378 { 379 struct vsock_sock *vlistener; 380 struct vsock_sock *vconnected; 381 382 vlistener = vsock_sk(listener); 383 vconnected = vsock_sk(connected); 384 385 sock_hold(connected); 386 sock_hold(listener); 387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 388 } 389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 390 391 static bool vsock_use_local_transport(unsigned int remote_cid) 392 { 393 if (!transport_local) 394 return false; 395 396 if (remote_cid == VMADDR_CID_LOCAL) 397 return true; 398 399 if (transport_g2h) { 400 return remote_cid == transport_g2h->get_local_cid(); 401 } else { 402 return remote_cid == VMADDR_CID_HOST; 403 } 404 } 405 406 static void vsock_deassign_transport(struct vsock_sock *vsk) 407 { 408 if (!vsk->transport) 409 return; 410 411 vsk->transport->destruct(vsk); 412 module_put(vsk->transport->module); 413 vsk->transport = NULL; 414 } 415 416 /* Assign a transport to a socket and call the .init transport callback. 417 * 418 * Note: for connection oriented socket this must be called when vsk->remote_addr 419 * is set (e.g. during the connect() or when a connection request on a listener 420 * socket is received). 421 * The vsk->remote_addr is used to decide which transport to use: 422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 423 * g2h is not loaded, will use local transport; 424 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 425 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 426 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 427 */ 428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 429 { 430 const struct vsock_transport *new_transport; 431 struct sock *sk = sk_vsock(vsk); 432 unsigned int remote_cid = vsk->remote_addr.svm_cid; 433 __u8 remote_flags; 434 int ret; 435 436 /* If the packet is coming with the source and destination CIDs higher 437 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 438 * forwarded to the host should be established. Then the host will 439 * need to forward the packets to the guest. 440 * 441 * The flag is set on the (listen) receive path (psk is not NULL). On 442 * the connect path the flag can be set by the user space application. 443 */ 444 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 445 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 446 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 447 448 remote_flags = vsk->remote_addr.svm_flags; 449 450 switch (sk->sk_type) { 451 case SOCK_DGRAM: 452 new_transport = transport_dgram; 453 break; 454 case SOCK_STREAM: 455 case SOCK_SEQPACKET: 456 if (vsock_use_local_transport(remote_cid)) 457 new_transport = transport_local; 458 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 459 (remote_flags & VMADDR_FLAG_TO_HOST)) 460 new_transport = transport_g2h; 461 else 462 new_transport = transport_h2g; 463 break; 464 default: 465 return -ESOCKTNOSUPPORT; 466 } 467 468 if (vsk->transport) { 469 if (vsk->transport == new_transport) 470 return 0; 471 472 /* transport->release() must be called with sock lock acquired. 473 * This path can only be taken during vsock_connect(), where we 474 * have already held the sock lock. In the other cases, this 475 * function is called on a new socket which is not assigned to 476 * any transport. 477 */ 478 vsk->transport->release(vsk); 479 vsock_deassign_transport(vsk); 480 } 481 482 /* We increase the module refcnt to prevent the transport unloading 483 * while there are open sockets assigned to it. 484 */ 485 if (!new_transport || !try_module_get(new_transport->module)) 486 return -ENODEV; 487 488 if (sk->sk_type == SOCK_SEQPACKET) { 489 if (!new_transport->seqpacket_allow || 490 !new_transport->seqpacket_allow(remote_cid)) { 491 module_put(new_transport->module); 492 return -ESOCKTNOSUPPORT; 493 } 494 } 495 496 ret = new_transport->init(vsk, psk); 497 if (ret) { 498 module_put(new_transport->module); 499 return ret; 500 } 501 502 vsk->transport = new_transport; 503 504 return 0; 505 } 506 EXPORT_SYMBOL_GPL(vsock_assign_transport); 507 508 bool vsock_find_cid(unsigned int cid) 509 { 510 if (transport_g2h && cid == transport_g2h->get_local_cid()) 511 return true; 512 513 if (transport_h2g && cid == VMADDR_CID_HOST) 514 return true; 515 516 if (transport_local && cid == VMADDR_CID_LOCAL) 517 return true; 518 519 return false; 520 } 521 EXPORT_SYMBOL_GPL(vsock_find_cid); 522 523 static struct sock *vsock_dequeue_accept(struct sock *listener) 524 { 525 struct vsock_sock *vlistener; 526 struct vsock_sock *vconnected; 527 528 vlistener = vsock_sk(listener); 529 530 if (list_empty(&vlistener->accept_queue)) 531 return NULL; 532 533 vconnected = list_entry(vlistener->accept_queue.next, 534 struct vsock_sock, accept_queue); 535 536 list_del_init(&vconnected->accept_queue); 537 sock_put(listener); 538 /* The caller will need a reference on the connected socket so we let 539 * it call sock_put(). 540 */ 541 542 return sk_vsock(vconnected); 543 } 544 545 static bool vsock_is_accept_queue_empty(struct sock *sk) 546 { 547 struct vsock_sock *vsk = vsock_sk(sk); 548 return list_empty(&vsk->accept_queue); 549 } 550 551 static bool vsock_is_pending(struct sock *sk) 552 { 553 struct vsock_sock *vsk = vsock_sk(sk); 554 return !list_empty(&vsk->pending_links); 555 } 556 557 static int vsock_send_shutdown(struct sock *sk, int mode) 558 { 559 struct vsock_sock *vsk = vsock_sk(sk); 560 561 if (!vsk->transport) 562 return -ENODEV; 563 564 return vsk->transport->shutdown(vsk, mode); 565 } 566 567 static void vsock_pending_work(struct work_struct *work) 568 { 569 struct sock *sk; 570 struct sock *listener; 571 struct vsock_sock *vsk; 572 bool cleanup; 573 574 vsk = container_of(work, struct vsock_sock, pending_work.work); 575 sk = sk_vsock(vsk); 576 listener = vsk->listener; 577 cleanup = true; 578 579 lock_sock(listener); 580 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 581 582 if (vsock_is_pending(sk)) { 583 vsock_remove_pending(listener, sk); 584 585 sk_acceptq_removed(listener); 586 } else if (!vsk->rejected) { 587 /* We are not on the pending list and accept() did not reject 588 * us, so we must have been accepted by our user process. We 589 * just need to drop our references to the sockets and be on 590 * our way. 591 */ 592 cleanup = false; 593 goto out; 594 } 595 596 /* We need to remove ourself from the global connected sockets list so 597 * incoming packets can't find this socket, and to reduce the reference 598 * count. 599 */ 600 vsock_remove_connected(vsk); 601 602 sk->sk_state = TCP_CLOSE; 603 604 out: 605 release_sock(sk); 606 release_sock(listener); 607 if (cleanup) 608 sock_put(sk); 609 610 sock_put(sk); 611 sock_put(listener); 612 } 613 614 /**** SOCKET OPERATIONS ****/ 615 616 static int __vsock_bind_connectible(struct vsock_sock *vsk, 617 struct sockaddr_vm *addr) 618 { 619 static u32 port; 620 struct sockaddr_vm new_addr; 621 622 if (!port) 623 port = LAST_RESERVED_PORT + 1 + 624 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT); 625 626 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 627 628 if (addr->svm_port == VMADDR_PORT_ANY) { 629 bool found = false; 630 unsigned int i; 631 632 for (i = 0; i < MAX_PORT_RETRIES; i++) { 633 if (port <= LAST_RESERVED_PORT) 634 port = LAST_RESERVED_PORT + 1; 635 636 new_addr.svm_port = port++; 637 638 if (!__vsock_find_bound_socket(&new_addr)) { 639 found = true; 640 break; 641 } 642 } 643 644 if (!found) 645 return -EADDRNOTAVAIL; 646 } else { 647 /* If port is in reserved range, ensure caller 648 * has necessary privileges. 649 */ 650 if (addr->svm_port <= LAST_RESERVED_PORT && 651 !capable(CAP_NET_BIND_SERVICE)) { 652 return -EACCES; 653 } 654 655 if (__vsock_find_bound_socket(&new_addr)) 656 return -EADDRINUSE; 657 } 658 659 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 660 661 /* Remove connection oriented sockets from the unbound list and add them 662 * to the hash table for easy lookup by its address. The unbound list 663 * is simply an extra entry at the end of the hash table, a trick used 664 * by AF_UNIX. 665 */ 666 __vsock_remove_bound(vsk); 667 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 668 669 return 0; 670 } 671 672 static int __vsock_bind_dgram(struct vsock_sock *vsk, 673 struct sockaddr_vm *addr) 674 { 675 return vsk->transport->dgram_bind(vsk, addr); 676 } 677 678 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 679 { 680 struct vsock_sock *vsk = vsock_sk(sk); 681 int retval; 682 683 /* First ensure this socket isn't already bound. */ 684 if (vsock_addr_bound(&vsk->local_addr)) 685 return -EINVAL; 686 687 /* Now bind to the provided address or select appropriate values if 688 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 689 * like AF_INET prevents binding to a non-local IP address (in most 690 * cases), we only allow binding to a local CID. 691 */ 692 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 693 return -EADDRNOTAVAIL; 694 695 switch (sk->sk_socket->type) { 696 case SOCK_STREAM: 697 case SOCK_SEQPACKET: 698 spin_lock_bh(&vsock_table_lock); 699 retval = __vsock_bind_connectible(vsk, addr); 700 spin_unlock_bh(&vsock_table_lock); 701 break; 702 703 case SOCK_DGRAM: 704 retval = __vsock_bind_dgram(vsk, addr); 705 break; 706 707 default: 708 retval = -EINVAL; 709 break; 710 } 711 712 return retval; 713 } 714 715 static void vsock_connect_timeout(struct work_struct *work); 716 717 static struct sock *__vsock_create(struct net *net, 718 struct socket *sock, 719 struct sock *parent, 720 gfp_t priority, 721 unsigned short type, 722 int kern) 723 { 724 struct sock *sk; 725 struct vsock_sock *psk; 726 struct vsock_sock *vsk; 727 728 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 729 if (!sk) 730 return NULL; 731 732 sock_init_data(sock, sk); 733 734 /* sk->sk_type is normally set in sock_init_data, but only if sock is 735 * non-NULL. We make sure that our sockets always have a type by 736 * setting it here if needed. 737 */ 738 if (!sock) 739 sk->sk_type = type; 740 741 vsk = vsock_sk(sk); 742 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 743 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 744 745 sk->sk_destruct = vsock_sk_destruct; 746 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 747 sock_reset_flag(sk, SOCK_DONE); 748 749 INIT_LIST_HEAD(&vsk->bound_table); 750 INIT_LIST_HEAD(&vsk->connected_table); 751 vsk->listener = NULL; 752 INIT_LIST_HEAD(&vsk->pending_links); 753 INIT_LIST_HEAD(&vsk->accept_queue); 754 vsk->rejected = false; 755 vsk->sent_request = false; 756 vsk->ignore_connecting_rst = false; 757 vsk->peer_shutdown = 0; 758 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 759 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 760 761 psk = parent ? vsock_sk(parent) : NULL; 762 if (parent) { 763 vsk->trusted = psk->trusted; 764 vsk->owner = get_cred(psk->owner); 765 vsk->connect_timeout = psk->connect_timeout; 766 vsk->buffer_size = psk->buffer_size; 767 vsk->buffer_min_size = psk->buffer_min_size; 768 vsk->buffer_max_size = psk->buffer_max_size; 769 security_sk_clone(parent, sk); 770 } else { 771 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 772 vsk->owner = get_current_cred(); 773 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 774 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 775 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 776 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 777 } 778 779 return sk; 780 } 781 782 static bool sock_type_connectible(u16 type) 783 { 784 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 785 } 786 787 static void __vsock_release(struct sock *sk, int level) 788 { 789 if (sk) { 790 struct sock *pending; 791 struct vsock_sock *vsk; 792 793 vsk = vsock_sk(sk); 794 pending = NULL; /* Compiler warning. */ 795 796 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 797 * version to avoid the warning "possible recursive locking 798 * detected". When "level" is 0, lock_sock_nested(sk, level) 799 * is the same as lock_sock(sk). 800 */ 801 lock_sock_nested(sk, level); 802 803 if (vsk->transport) 804 vsk->transport->release(vsk); 805 else if (sock_type_connectible(sk->sk_type)) 806 vsock_remove_sock(vsk); 807 808 sock_orphan(sk); 809 sk->sk_shutdown = SHUTDOWN_MASK; 810 811 skb_queue_purge(&sk->sk_receive_queue); 812 813 /* Clean up any sockets that never were accepted. */ 814 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 815 __vsock_release(pending, SINGLE_DEPTH_NESTING); 816 sock_put(pending); 817 } 818 819 release_sock(sk); 820 sock_put(sk); 821 } 822 } 823 824 static void vsock_sk_destruct(struct sock *sk) 825 { 826 struct vsock_sock *vsk = vsock_sk(sk); 827 828 vsock_deassign_transport(vsk); 829 830 /* When clearing these addresses, there's no need to set the family and 831 * possibly register the address family with the kernel. 832 */ 833 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 834 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 835 836 put_cred(vsk->owner); 837 } 838 839 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 840 { 841 int err; 842 843 err = sock_queue_rcv_skb(sk, skb); 844 if (err) 845 kfree_skb(skb); 846 847 return err; 848 } 849 850 struct sock *vsock_create_connected(struct sock *parent) 851 { 852 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 853 parent->sk_type, 0); 854 } 855 EXPORT_SYMBOL_GPL(vsock_create_connected); 856 857 s64 vsock_stream_has_data(struct vsock_sock *vsk) 858 { 859 return vsk->transport->stream_has_data(vsk); 860 } 861 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 862 863 static s64 vsock_connectible_has_data(struct vsock_sock *vsk) 864 { 865 struct sock *sk = sk_vsock(vsk); 866 867 if (sk->sk_type == SOCK_SEQPACKET) 868 return vsk->transport->seqpacket_has_data(vsk); 869 else 870 return vsock_stream_has_data(vsk); 871 } 872 873 s64 vsock_stream_has_space(struct vsock_sock *vsk) 874 { 875 return vsk->transport->stream_has_space(vsk); 876 } 877 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 878 879 static int vsock_release(struct socket *sock) 880 { 881 __vsock_release(sock->sk, 0); 882 sock->sk = NULL; 883 sock->state = SS_FREE; 884 885 return 0; 886 } 887 888 static int 889 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 890 { 891 int err; 892 struct sock *sk; 893 struct sockaddr_vm *vm_addr; 894 895 sk = sock->sk; 896 897 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 898 return -EINVAL; 899 900 lock_sock(sk); 901 err = __vsock_bind(sk, vm_addr); 902 release_sock(sk); 903 904 return err; 905 } 906 907 static int vsock_getname(struct socket *sock, 908 struct sockaddr *addr, int peer) 909 { 910 int err; 911 struct sock *sk; 912 struct vsock_sock *vsk; 913 struct sockaddr_vm *vm_addr; 914 915 sk = sock->sk; 916 vsk = vsock_sk(sk); 917 err = 0; 918 919 lock_sock(sk); 920 921 if (peer) { 922 if (sock->state != SS_CONNECTED) { 923 err = -ENOTCONN; 924 goto out; 925 } 926 vm_addr = &vsk->remote_addr; 927 } else { 928 vm_addr = &vsk->local_addr; 929 } 930 931 if (!vm_addr) { 932 err = -EINVAL; 933 goto out; 934 } 935 936 /* sys_getsockname() and sys_getpeername() pass us a 937 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 938 * that macro is defined in socket.c instead of .h, so we hardcode its 939 * value here. 940 */ 941 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 942 memcpy(addr, vm_addr, sizeof(*vm_addr)); 943 err = sizeof(*vm_addr); 944 945 out: 946 release_sock(sk); 947 return err; 948 } 949 950 static int vsock_shutdown(struct socket *sock, int mode) 951 { 952 int err; 953 struct sock *sk; 954 955 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 956 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 957 * here like the other address families do. Note also that the 958 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 959 * which is what we want. 960 */ 961 mode++; 962 963 if ((mode & ~SHUTDOWN_MASK) || !mode) 964 return -EINVAL; 965 966 /* If this is a connection oriented socket and it is not connected then 967 * bail out immediately. If it is a DGRAM socket then we must first 968 * kick the socket so that it wakes up from any sleeping calls, for 969 * example recv(), and then afterwards return the error. 970 */ 971 972 sk = sock->sk; 973 974 lock_sock(sk); 975 if (sock->state == SS_UNCONNECTED) { 976 err = -ENOTCONN; 977 if (sock_type_connectible(sk->sk_type)) 978 goto out; 979 } else { 980 sock->state = SS_DISCONNECTING; 981 err = 0; 982 } 983 984 /* Receive and send shutdowns are treated alike. */ 985 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 986 if (mode) { 987 sk->sk_shutdown |= mode; 988 sk->sk_state_change(sk); 989 990 if (sock_type_connectible(sk->sk_type)) { 991 sock_reset_flag(sk, SOCK_DONE); 992 vsock_send_shutdown(sk, mode); 993 } 994 } 995 996 out: 997 release_sock(sk); 998 return err; 999 } 1000 1001 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1002 poll_table *wait) 1003 { 1004 struct sock *sk; 1005 __poll_t mask; 1006 struct vsock_sock *vsk; 1007 1008 sk = sock->sk; 1009 vsk = vsock_sk(sk); 1010 1011 poll_wait(file, sk_sleep(sk), wait); 1012 mask = 0; 1013 1014 if (sk->sk_err) 1015 /* Signify that there has been an error on this socket. */ 1016 mask |= EPOLLERR; 1017 1018 /* INET sockets treat local write shutdown and peer write shutdown as a 1019 * case of EPOLLHUP set. 1020 */ 1021 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1022 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1023 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1024 mask |= EPOLLHUP; 1025 } 1026 1027 if (sk->sk_shutdown & RCV_SHUTDOWN || 1028 vsk->peer_shutdown & SEND_SHUTDOWN) { 1029 mask |= EPOLLRDHUP; 1030 } 1031 1032 if (sock->type == SOCK_DGRAM) { 1033 /* For datagram sockets we can read if there is something in 1034 * the queue and write as long as the socket isn't shutdown for 1035 * sending. 1036 */ 1037 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1038 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1039 mask |= EPOLLIN | EPOLLRDNORM; 1040 } 1041 1042 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1043 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1044 1045 } else if (sock_type_connectible(sk->sk_type)) { 1046 const struct vsock_transport *transport; 1047 1048 lock_sock(sk); 1049 1050 transport = vsk->transport; 1051 1052 /* Listening sockets that have connections in their accept 1053 * queue can be read. 1054 */ 1055 if (sk->sk_state == TCP_LISTEN 1056 && !vsock_is_accept_queue_empty(sk)) 1057 mask |= EPOLLIN | EPOLLRDNORM; 1058 1059 /* If there is something in the queue then we can read. */ 1060 if (transport && transport->stream_is_active(vsk) && 1061 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1062 bool data_ready_now = false; 1063 int ret = transport->notify_poll_in( 1064 vsk, 1, &data_ready_now); 1065 if (ret < 0) { 1066 mask |= EPOLLERR; 1067 } else { 1068 if (data_ready_now) 1069 mask |= EPOLLIN | EPOLLRDNORM; 1070 1071 } 1072 } 1073 1074 /* Sockets whose connections have been closed, reset, or 1075 * terminated should also be considered read, and we check the 1076 * shutdown flag for that. 1077 */ 1078 if (sk->sk_shutdown & RCV_SHUTDOWN || 1079 vsk->peer_shutdown & SEND_SHUTDOWN) { 1080 mask |= EPOLLIN | EPOLLRDNORM; 1081 } 1082 1083 /* Connected sockets that can produce data can be written. */ 1084 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1085 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1086 bool space_avail_now = false; 1087 int ret = transport->notify_poll_out( 1088 vsk, 1, &space_avail_now); 1089 if (ret < 0) { 1090 mask |= EPOLLERR; 1091 } else { 1092 if (space_avail_now) 1093 /* Remove EPOLLWRBAND since INET 1094 * sockets are not setting it. 1095 */ 1096 mask |= EPOLLOUT | EPOLLWRNORM; 1097 1098 } 1099 } 1100 } 1101 1102 /* Simulate INET socket poll behaviors, which sets 1103 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1104 * but local send is not shutdown. 1105 */ 1106 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1108 mask |= EPOLLOUT | EPOLLWRNORM; 1109 1110 } 1111 1112 release_sock(sk); 1113 } 1114 1115 return mask; 1116 } 1117 1118 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1119 size_t len) 1120 { 1121 int err; 1122 struct sock *sk; 1123 struct vsock_sock *vsk; 1124 struct sockaddr_vm *remote_addr; 1125 const struct vsock_transport *transport; 1126 1127 if (msg->msg_flags & MSG_OOB) 1128 return -EOPNOTSUPP; 1129 1130 /* For now, MSG_DONTWAIT is always assumed... */ 1131 err = 0; 1132 sk = sock->sk; 1133 vsk = vsock_sk(sk); 1134 1135 lock_sock(sk); 1136 1137 transport = vsk->transport; 1138 1139 err = vsock_auto_bind(vsk); 1140 if (err) 1141 goto out; 1142 1143 1144 /* If the provided message contains an address, use that. Otherwise 1145 * fall back on the socket's remote handle (if it has been connected). 1146 */ 1147 if (msg->msg_name && 1148 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1149 &remote_addr) == 0) { 1150 /* Ensure this address is of the right type and is a valid 1151 * destination. 1152 */ 1153 1154 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1155 remote_addr->svm_cid = transport->get_local_cid(); 1156 1157 if (!vsock_addr_bound(remote_addr)) { 1158 err = -EINVAL; 1159 goto out; 1160 } 1161 } else if (sock->state == SS_CONNECTED) { 1162 remote_addr = &vsk->remote_addr; 1163 1164 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1165 remote_addr->svm_cid = transport->get_local_cid(); 1166 1167 /* XXX Should connect() or this function ensure remote_addr is 1168 * bound? 1169 */ 1170 if (!vsock_addr_bound(&vsk->remote_addr)) { 1171 err = -EINVAL; 1172 goto out; 1173 } 1174 } else { 1175 err = -EINVAL; 1176 goto out; 1177 } 1178 1179 if (!transport->dgram_allow(remote_addr->svm_cid, 1180 remote_addr->svm_port)) { 1181 err = -EINVAL; 1182 goto out; 1183 } 1184 1185 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1186 1187 out: 1188 release_sock(sk); 1189 return err; 1190 } 1191 1192 static int vsock_dgram_connect(struct socket *sock, 1193 struct sockaddr *addr, int addr_len, int flags) 1194 { 1195 int err; 1196 struct sock *sk; 1197 struct vsock_sock *vsk; 1198 struct sockaddr_vm *remote_addr; 1199 1200 sk = sock->sk; 1201 vsk = vsock_sk(sk); 1202 1203 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1204 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1205 lock_sock(sk); 1206 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1207 VMADDR_PORT_ANY); 1208 sock->state = SS_UNCONNECTED; 1209 release_sock(sk); 1210 return 0; 1211 } else if (err != 0) 1212 return -EINVAL; 1213 1214 lock_sock(sk); 1215 1216 err = vsock_auto_bind(vsk); 1217 if (err) 1218 goto out; 1219 1220 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1221 remote_addr->svm_port)) { 1222 err = -EINVAL; 1223 goto out; 1224 } 1225 1226 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1227 sock->state = SS_CONNECTED; 1228 1229 out: 1230 release_sock(sk); 1231 return err; 1232 } 1233 1234 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1235 size_t len, int flags) 1236 { 1237 struct vsock_sock *vsk = vsock_sk(sock->sk); 1238 1239 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1240 } 1241 1242 static const struct proto_ops vsock_dgram_ops = { 1243 .family = PF_VSOCK, 1244 .owner = THIS_MODULE, 1245 .release = vsock_release, 1246 .bind = vsock_bind, 1247 .connect = vsock_dgram_connect, 1248 .socketpair = sock_no_socketpair, 1249 .accept = sock_no_accept, 1250 .getname = vsock_getname, 1251 .poll = vsock_poll, 1252 .ioctl = sock_no_ioctl, 1253 .listen = sock_no_listen, 1254 .shutdown = vsock_shutdown, 1255 .sendmsg = vsock_dgram_sendmsg, 1256 .recvmsg = vsock_dgram_recvmsg, 1257 .mmap = sock_no_mmap, 1258 .sendpage = sock_no_sendpage, 1259 }; 1260 1261 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1262 { 1263 const struct vsock_transport *transport = vsk->transport; 1264 1265 if (!transport || !transport->cancel_pkt) 1266 return -EOPNOTSUPP; 1267 1268 return transport->cancel_pkt(vsk); 1269 } 1270 1271 static void vsock_connect_timeout(struct work_struct *work) 1272 { 1273 struct sock *sk; 1274 struct vsock_sock *vsk; 1275 1276 vsk = container_of(work, struct vsock_sock, connect_work.work); 1277 sk = sk_vsock(vsk); 1278 1279 lock_sock(sk); 1280 if (sk->sk_state == TCP_SYN_SENT && 1281 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1282 sk->sk_state = TCP_CLOSE; 1283 sk->sk_err = ETIMEDOUT; 1284 sk_error_report(sk); 1285 vsock_transport_cancel_pkt(vsk); 1286 } 1287 release_sock(sk); 1288 1289 sock_put(sk); 1290 } 1291 1292 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1293 int addr_len, int flags) 1294 { 1295 int err; 1296 struct sock *sk; 1297 struct vsock_sock *vsk; 1298 const struct vsock_transport *transport; 1299 struct sockaddr_vm *remote_addr; 1300 long timeout; 1301 DEFINE_WAIT(wait); 1302 1303 err = 0; 1304 sk = sock->sk; 1305 vsk = vsock_sk(sk); 1306 1307 lock_sock(sk); 1308 1309 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1310 switch (sock->state) { 1311 case SS_CONNECTED: 1312 err = -EISCONN; 1313 goto out; 1314 case SS_DISCONNECTING: 1315 err = -EINVAL; 1316 goto out; 1317 case SS_CONNECTING: 1318 /* This continues on so we can move sock into the SS_CONNECTED 1319 * state once the connection has completed (at which point err 1320 * will be set to zero also). Otherwise, we will either wait 1321 * for the connection or return -EALREADY should this be a 1322 * non-blocking call. 1323 */ 1324 err = -EALREADY; 1325 break; 1326 default: 1327 if ((sk->sk_state == TCP_LISTEN) || 1328 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1329 err = -EINVAL; 1330 goto out; 1331 } 1332 1333 /* Set the remote address that we are connecting to. */ 1334 memcpy(&vsk->remote_addr, remote_addr, 1335 sizeof(vsk->remote_addr)); 1336 1337 err = vsock_assign_transport(vsk, NULL); 1338 if (err) 1339 goto out; 1340 1341 transport = vsk->transport; 1342 1343 /* The hypervisor and well-known contexts do not have socket 1344 * endpoints. 1345 */ 1346 if (!transport || 1347 !transport->stream_allow(remote_addr->svm_cid, 1348 remote_addr->svm_port)) { 1349 err = -ENETUNREACH; 1350 goto out; 1351 } 1352 1353 err = vsock_auto_bind(vsk); 1354 if (err) 1355 goto out; 1356 1357 sk->sk_state = TCP_SYN_SENT; 1358 1359 err = transport->connect(vsk); 1360 if (err < 0) 1361 goto out; 1362 1363 /* Mark sock as connecting and set the error code to in 1364 * progress in case this is a non-blocking connect. 1365 */ 1366 sock->state = SS_CONNECTING; 1367 err = -EINPROGRESS; 1368 } 1369 1370 /* The receive path will handle all communication until we are able to 1371 * enter the connected state. Here we wait for the connection to be 1372 * completed or a notification of an error. 1373 */ 1374 timeout = vsk->connect_timeout; 1375 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1376 1377 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1378 if (flags & O_NONBLOCK) { 1379 /* If we're not going to block, we schedule a timeout 1380 * function to generate a timeout on the connection 1381 * attempt, in case the peer doesn't respond in a 1382 * timely manner. We hold on to the socket until the 1383 * timeout fires. 1384 */ 1385 sock_hold(sk); 1386 schedule_delayed_work(&vsk->connect_work, timeout); 1387 1388 /* Skip ahead to preserve error code set above. */ 1389 goto out_wait; 1390 } 1391 1392 release_sock(sk); 1393 timeout = schedule_timeout(timeout); 1394 lock_sock(sk); 1395 1396 if (signal_pending(current)) { 1397 err = sock_intr_errno(timeout); 1398 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1399 sock->state = SS_UNCONNECTED; 1400 vsock_transport_cancel_pkt(vsk); 1401 goto out_wait; 1402 } else if (timeout == 0) { 1403 err = -ETIMEDOUT; 1404 sk->sk_state = TCP_CLOSE; 1405 sock->state = SS_UNCONNECTED; 1406 vsock_transport_cancel_pkt(vsk); 1407 goto out_wait; 1408 } 1409 1410 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1411 } 1412 1413 if (sk->sk_err) { 1414 err = -sk->sk_err; 1415 sk->sk_state = TCP_CLOSE; 1416 sock->state = SS_UNCONNECTED; 1417 } else { 1418 err = 0; 1419 } 1420 1421 out_wait: 1422 finish_wait(sk_sleep(sk), &wait); 1423 out: 1424 release_sock(sk); 1425 return err; 1426 } 1427 1428 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, 1429 bool kern) 1430 { 1431 struct sock *listener; 1432 int err; 1433 struct sock *connected; 1434 struct vsock_sock *vconnected; 1435 long timeout; 1436 DEFINE_WAIT(wait); 1437 1438 err = 0; 1439 listener = sock->sk; 1440 1441 lock_sock(listener); 1442 1443 if (!sock_type_connectible(sock->type)) { 1444 err = -EOPNOTSUPP; 1445 goto out; 1446 } 1447 1448 if (listener->sk_state != TCP_LISTEN) { 1449 err = -EINVAL; 1450 goto out; 1451 } 1452 1453 /* Wait for children sockets to appear; these are the new sockets 1454 * created upon connection establishment. 1455 */ 1456 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK); 1457 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1458 1459 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1460 listener->sk_err == 0) { 1461 release_sock(listener); 1462 timeout = schedule_timeout(timeout); 1463 finish_wait(sk_sleep(listener), &wait); 1464 lock_sock(listener); 1465 1466 if (signal_pending(current)) { 1467 err = sock_intr_errno(timeout); 1468 goto out; 1469 } else if (timeout == 0) { 1470 err = -EAGAIN; 1471 goto out; 1472 } 1473 1474 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1475 } 1476 finish_wait(sk_sleep(listener), &wait); 1477 1478 if (listener->sk_err) 1479 err = -listener->sk_err; 1480 1481 if (connected) { 1482 sk_acceptq_removed(listener); 1483 1484 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1485 vconnected = vsock_sk(connected); 1486 1487 /* If the listener socket has received an error, then we should 1488 * reject this socket and return. Note that we simply mark the 1489 * socket rejected, drop our reference, and let the cleanup 1490 * function handle the cleanup; the fact that we found it in 1491 * the listener's accept queue guarantees that the cleanup 1492 * function hasn't run yet. 1493 */ 1494 if (err) { 1495 vconnected->rejected = true; 1496 } else { 1497 newsock->state = SS_CONNECTED; 1498 sock_graft(connected, newsock); 1499 } 1500 1501 release_sock(connected); 1502 sock_put(connected); 1503 } 1504 1505 out: 1506 release_sock(listener); 1507 return err; 1508 } 1509 1510 static int vsock_listen(struct socket *sock, int backlog) 1511 { 1512 int err; 1513 struct sock *sk; 1514 struct vsock_sock *vsk; 1515 1516 sk = sock->sk; 1517 1518 lock_sock(sk); 1519 1520 if (!sock_type_connectible(sk->sk_type)) { 1521 err = -EOPNOTSUPP; 1522 goto out; 1523 } 1524 1525 if (sock->state != SS_UNCONNECTED) { 1526 err = -EINVAL; 1527 goto out; 1528 } 1529 1530 vsk = vsock_sk(sk); 1531 1532 if (!vsock_addr_bound(&vsk->local_addr)) { 1533 err = -EINVAL; 1534 goto out; 1535 } 1536 1537 sk->sk_max_ack_backlog = backlog; 1538 sk->sk_state = TCP_LISTEN; 1539 1540 err = 0; 1541 1542 out: 1543 release_sock(sk); 1544 return err; 1545 } 1546 1547 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1548 const struct vsock_transport *transport, 1549 u64 val) 1550 { 1551 if (val > vsk->buffer_max_size) 1552 val = vsk->buffer_max_size; 1553 1554 if (val < vsk->buffer_min_size) 1555 val = vsk->buffer_min_size; 1556 1557 if (val != vsk->buffer_size && 1558 transport && transport->notify_buffer_size) 1559 transport->notify_buffer_size(vsk, &val); 1560 1561 vsk->buffer_size = val; 1562 } 1563 1564 static int vsock_connectible_setsockopt(struct socket *sock, 1565 int level, 1566 int optname, 1567 sockptr_t optval, 1568 unsigned int optlen) 1569 { 1570 int err; 1571 struct sock *sk; 1572 struct vsock_sock *vsk; 1573 const struct vsock_transport *transport; 1574 u64 val; 1575 1576 if (level != AF_VSOCK) 1577 return -ENOPROTOOPT; 1578 1579 #define COPY_IN(_v) \ 1580 do { \ 1581 if (optlen < sizeof(_v)) { \ 1582 err = -EINVAL; \ 1583 goto exit; \ 1584 } \ 1585 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1586 err = -EFAULT; \ 1587 goto exit; \ 1588 } \ 1589 } while (0) 1590 1591 err = 0; 1592 sk = sock->sk; 1593 vsk = vsock_sk(sk); 1594 1595 lock_sock(sk); 1596 1597 transport = vsk->transport; 1598 1599 switch (optname) { 1600 case SO_VM_SOCKETS_BUFFER_SIZE: 1601 COPY_IN(val); 1602 vsock_update_buffer_size(vsk, transport, val); 1603 break; 1604 1605 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1606 COPY_IN(val); 1607 vsk->buffer_max_size = val; 1608 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1609 break; 1610 1611 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1612 COPY_IN(val); 1613 vsk->buffer_min_size = val; 1614 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1615 break; 1616 1617 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1618 struct __kernel_old_timeval tv; 1619 COPY_IN(tv); 1620 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1621 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1622 vsk->connect_timeout = tv.tv_sec * HZ + 1623 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1624 if (vsk->connect_timeout == 0) 1625 vsk->connect_timeout = 1626 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1627 1628 } else { 1629 err = -ERANGE; 1630 } 1631 break; 1632 } 1633 1634 default: 1635 err = -ENOPROTOOPT; 1636 break; 1637 } 1638 1639 #undef COPY_IN 1640 1641 exit: 1642 release_sock(sk); 1643 return err; 1644 } 1645 1646 static int vsock_connectible_getsockopt(struct socket *sock, 1647 int level, int optname, 1648 char __user *optval, 1649 int __user *optlen) 1650 { 1651 int err; 1652 int len; 1653 struct sock *sk; 1654 struct vsock_sock *vsk; 1655 u64 val; 1656 1657 if (level != AF_VSOCK) 1658 return -ENOPROTOOPT; 1659 1660 err = get_user(len, optlen); 1661 if (err != 0) 1662 return err; 1663 1664 #define COPY_OUT(_v) \ 1665 do { \ 1666 if (len < sizeof(_v)) \ 1667 return -EINVAL; \ 1668 \ 1669 len = sizeof(_v); \ 1670 if (copy_to_user(optval, &_v, len) != 0) \ 1671 return -EFAULT; \ 1672 \ 1673 } while (0) 1674 1675 err = 0; 1676 sk = sock->sk; 1677 vsk = vsock_sk(sk); 1678 1679 switch (optname) { 1680 case SO_VM_SOCKETS_BUFFER_SIZE: 1681 val = vsk->buffer_size; 1682 COPY_OUT(val); 1683 break; 1684 1685 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1686 val = vsk->buffer_max_size; 1687 COPY_OUT(val); 1688 break; 1689 1690 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1691 val = vsk->buffer_min_size; 1692 COPY_OUT(val); 1693 break; 1694 1695 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1696 struct __kernel_old_timeval tv; 1697 tv.tv_sec = vsk->connect_timeout / HZ; 1698 tv.tv_usec = 1699 (vsk->connect_timeout - 1700 tv.tv_sec * HZ) * (1000000 / HZ); 1701 COPY_OUT(tv); 1702 break; 1703 } 1704 default: 1705 return -ENOPROTOOPT; 1706 } 1707 1708 err = put_user(len, optlen); 1709 if (err != 0) 1710 return -EFAULT; 1711 1712 #undef COPY_OUT 1713 1714 return 0; 1715 } 1716 1717 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1718 size_t len) 1719 { 1720 struct sock *sk; 1721 struct vsock_sock *vsk; 1722 const struct vsock_transport *transport; 1723 ssize_t total_written; 1724 long timeout; 1725 int err; 1726 struct vsock_transport_send_notify_data send_data; 1727 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1728 1729 sk = sock->sk; 1730 vsk = vsock_sk(sk); 1731 total_written = 0; 1732 err = 0; 1733 1734 if (msg->msg_flags & MSG_OOB) 1735 return -EOPNOTSUPP; 1736 1737 lock_sock(sk); 1738 1739 transport = vsk->transport; 1740 1741 /* Callers should not provide a destination with connection oriented 1742 * sockets. 1743 */ 1744 if (msg->msg_namelen) { 1745 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1746 goto out; 1747 } 1748 1749 /* Send data only if both sides are not shutdown in the direction. */ 1750 if (sk->sk_shutdown & SEND_SHUTDOWN || 1751 vsk->peer_shutdown & RCV_SHUTDOWN) { 1752 err = -EPIPE; 1753 goto out; 1754 } 1755 1756 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1757 !vsock_addr_bound(&vsk->local_addr)) { 1758 err = -ENOTCONN; 1759 goto out; 1760 } 1761 1762 if (!vsock_addr_bound(&vsk->remote_addr)) { 1763 err = -EDESTADDRREQ; 1764 goto out; 1765 } 1766 1767 /* Wait for room in the produce queue to enqueue our user's data. */ 1768 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1769 1770 err = transport->notify_send_init(vsk, &send_data); 1771 if (err < 0) 1772 goto out; 1773 1774 while (total_written < len) { 1775 ssize_t written; 1776 1777 add_wait_queue(sk_sleep(sk), &wait); 1778 while (vsock_stream_has_space(vsk) == 0 && 1779 sk->sk_err == 0 && 1780 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1781 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1782 1783 /* Don't wait for non-blocking sockets. */ 1784 if (timeout == 0) { 1785 err = -EAGAIN; 1786 remove_wait_queue(sk_sleep(sk), &wait); 1787 goto out_err; 1788 } 1789 1790 err = transport->notify_send_pre_block(vsk, &send_data); 1791 if (err < 0) { 1792 remove_wait_queue(sk_sleep(sk), &wait); 1793 goto out_err; 1794 } 1795 1796 release_sock(sk); 1797 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 1798 lock_sock(sk); 1799 if (signal_pending(current)) { 1800 err = sock_intr_errno(timeout); 1801 remove_wait_queue(sk_sleep(sk), &wait); 1802 goto out_err; 1803 } else if (timeout == 0) { 1804 err = -EAGAIN; 1805 remove_wait_queue(sk_sleep(sk), &wait); 1806 goto out_err; 1807 } 1808 } 1809 remove_wait_queue(sk_sleep(sk), &wait); 1810 1811 /* These checks occur both as part of and after the loop 1812 * conditional since we need to check before and after 1813 * sleeping. 1814 */ 1815 if (sk->sk_err) { 1816 err = -sk->sk_err; 1817 goto out_err; 1818 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1819 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1820 err = -EPIPE; 1821 goto out_err; 1822 } 1823 1824 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1825 if (err < 0) 1826 goto out_err; 1827 1828 /* Note that enqueue will only write as many bytes as are free 1829 * in the produce queue, so we don't need to ensure len is 1830 * smaller than the queue size. It is the caller's 1831 * responsibility to check how many bytes we were able to send. 1832 */ 1833 1834 if (sk->sk_type == SOCK_SEQPACKET) { 1835 written = transport->seqpacket_enqueue(vsk, 1836 msg, len - total_written); 1837 } else { 1838 written = transport->stream_enqueue(vsk, 1839 msg, len - total_written); 1840 } 1841 if (written < 0) { 1842 err = -ENOMEM; 1843 goto out_err; 1844 } 1845 1846 total_written += written; 1847 1848 err = transport->notify_send_post_enqueue( 1849 vsk, written, &send_data); 1850 if (err < 0) 1851 goto out_err; 1852 1853 } 1854 1855 out_err: 1856 if (total_written > 0) { 1857 /* Return number of written bytes only if: 1858 * 1) SOCK_STREAM socket. 1859 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 1860 */ 1861 if (sk->sk_type == SOCK_STREAM || total_written == len) 1862 err = total_written; 1863 } 1864 out: 1865 release_sock(sk); 1866 return err; 1867 } 1868 1869 static int vsock_connectible_wait_data(struct sock *sk, 1870 struct wait_queue_entry *wait, 1871 long timeout, 1872 struct vsock_transport_recv_notify_data *recv_data, 1873 size_t target) 1874 { 1875 const struct vsock_transport *transport; 1876 struct vsock_sock *vsk; 1877 s64 data; 1878 int err; 1879 1880 vsk = vsock_sk(sk); 1881 err = 0; 1882 transport = vsk->transport; 1883 1884 while ((data = vsock_connectible_has_data(vsk)) == 0) { 1885 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 1886 1887 if (sk->sk_err != 0 || 1888 (sk->sk_shutdown & RCV_SHUTDOWN) || 1889 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1890 break; 1891 } 1892 1893 /* Don't wait for non-blocking sockets. */ 1894 if (timeout == 0) { 1895 err = -EAGAIN; 1896 break; 1897 } 1898 1899 if (recv_data) { 1900 err = transport->notify_recv_pre_block(vsk, target, recv_data); 1901 if (err < 0) 1902 break; 1903 } 1904 1905 release_sock(sk); 1906 timeout = schedule_timeout(timeout); 1907 lock_sock(sk); 1908 1909 if (signal_pending(current)) { 1910 err = sock_intr_errno(timeout); 1911 break; 1912 } else if (timeout == 0) { 1913 err = -EAGAIN; 1914 break; 1915 } 1916 } 1917 1918 finish_wait(sk_sleep(sk), wait); 1919 1920 if (err) 1921 return err; 1922 1923 /* Internal transport error when checking for available 1924 * data. XXX This should be changed to a connection 1925 * reset in a later change. 1926 */ 1927 if (data < 0) 1928 return -ENOMEM; 1929 1930 return data; 1931 } 1932 1933 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 1934 size_t len, int flags) 1935 { 1936 struct vsock_transport_recv_notify_data recv_data; 1937 const struct vsock_transport *transport; 1938 struct vsock_sock *vsk; 1939 ssize_t copied; 1940 size_t target; 1941 long timeout; 1942 int err; 1943 1944 DEFINE_WAIT(wait); 1945 1946 vsk = vsock_sk(sk); 1947 transport = vsk->transport; 1948 1949 /* We must not copy less than target bytes into the user's buffer 1950 * before returning successfully, so we wait for the consume queue to 1951 * have that much data to consume before dequeueing. Note that this 1952 * makes it impossible to handle cases where target is greater than the 1953 * queue size. 1954 */ 1955 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1956 if (target >= transport->stream_rcvhiwat(vsk)) { 1957 err = -ENOMEM; 1958 goto out; 1959 } 1960 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1961 copied = 0; 1962 1963 err = transport->notify_recv_init(vsk, target, &recv_data); 1964 if (err < 0) 1965 goto out; 1966 1967 1968 while (1) { 1969 ssize_t read; 1970 1971 err = vsock_connectible_wait_data(sk, &wait, timeout, 1972 &recv_data, target); 1973 if (err <= 0) 1974 break; 1975 1976 err = transport->notify_recv_pre_dequeue(vsk, target, 1977 &recv_data); 1978 if (err < 0) 1979 break; 1980 1981 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 1982 if (read < 0) { 1983 err = -ENOMEM; 1984 break; 1985 } 1986 1987 copied += read; 1988 1989 err = transport->notify_recv_post_dequeue(vsk, target, read, 1990 !(flags & MSG_PEEK), &recv_data); 1991 if (err < 0) 1992 goto out; 1993 1994 if (read >= target || flags & MSG_PEEK) 1995 break; 1996 1997 target -= read; 1998 } 1999 2000 if (sk->sk_err) 2001 err = -sk->sk_err; 2002 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2003 err = 0; 2004 2005 if (copied > 0) 2006 err = copied; 2007 2008 out: 2009 return err; 2010 } 2011 2012 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2013 size_t len, int flags) 2014 { 2015 const struct vsock_transport *transport; 2016 struct vsock_sock *vsk; 2017 ssize_t record_len; 2018 long timeout; 2019 int err = 0; 2020 DEFINE_WAIT(wait); 2021 2022 vsk = vsock_sk(sk); 2023 transport = vsk->transport; 2024 2025 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2026 2027 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2028 if (err <= 0) 2029 goto out; 2030 2031 record_len = transport->seqpacket_dequeue(vsk, msg, flags); 2032 2033 if (record_len < 0) { 2034 err = -ENOMEM; 2035 goto out; 2036 } 2037 2038 if (sk->sk_err) { 2039 err = -sk->sk_err; 2040 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2041 err = 0; 2042 } else { 2043 /* User sets MSG_TRUNC, so return real length of 2044 * packet. 2045 */ 2046 if (flags & MSG_TRUNC) 2047 err = record_len; 2048 else 2049 err = len - msg_data_left(msg); 2050 2051 /* Always set MSG_TRUNC if real length of packet is 2052 * bigger than user's buffer. 2053 */ 2054 if (record_len > len) 2055 msg->msg_flags |= MSG_TRUNC; 2056 } 2057 2058 out: 2059 return err; 2060 } 2061 2062 static int 2063 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2064 int flags) 2065 { 2066 struct sock *sk; 2067 struct vsock_sock *vsk; 2068 const struct vsock_transport *transport; 2069 int err; 2070 2071 DEFINE_WAIT(wait); 2072 2073 sk = sock->sk; 2074 vsk = vsock_sk(sk); 2075 err = 0; 2076 2077 lock_sock(sk); 2078 2079 transport = vsk->transport; 2080 2081 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2082 /* Recvmsg is supposed to return 0 if a peer performs an 2083 * orderly shutdown. Differentiate between that case and when a 2084 * peer has not connected or a local shutdown occurred with the 2085 * SOCK_DONE flag. 2086 */ 2087 if (sock_flag(sk, SOCK_DONE)) 2088 err = 0; 2089 else 2090 err = -ENOTCONN; 2091 2092 goto out; 2093 } 2094 2095 if (flags & MSG_OOB) { 2096 err = -EOPNOTSUPP; 2097 goto out; 2098 } 2099 2100 /* We don't check peer_shutdown flag here since peer may actually shut 2101 * down, but there can be data in the queue that a local socket can 2102 * receive. 2103 */ 2104 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2105 err = 0; 2106 goto out; 2107 } 2108 2109 /* It is valid on Linux to pass in a zero-length receive buffer. This 2110 * is not an error. We may as well bail out now. 2111 */ 2112 if (!len) { 2113 err = 0; 2114 goto out; 2115 } 2116 2117 if (sk->sk_type == SOCK_STREAM) 2118 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2119 else 2120 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2121 2122 out: 2123 release_sock(sk); 2124 return err; 2125 } 2126 2127 static const struct proto_ops vsock_stream_ops = { 2128 .family = PF_VSOCK, 2129 .owner = THIS_MODULE, 2130 .release = vsock_release, 2131 .bind = vsock_bind, 2132 .connect = vsock_connect, 2133 .socketpair = sock_no_socketpair, 2134 .accept = vsock_accept, 2135 .getname = vsock_getname, 2136 .poll = vsock_poll, 2137 .ioctl = sock_no_ioctl, 2138 .listen = vsock_listen, 2139 .shutdown = vsock_shutdown, 2140 .setsockopt = vsock_connectible_setsockopt, 2141 .getsockopt = vsock_connectible_getsockopt, 2142 .sendmsg = vsock_connectible_sendmsg, 2143 .recvmsg = vsock_connectible_recvmsg, 2144 .mmap = sock_no_mmap, 2145 .sendpage = sock_no_sendpage, 2146 }; 2147 2148 static const struct proto_ops vsock_seqpacket_ops = { 2149 .family = PF_VSOCK, 2150 .owner = THIS_MODULE, 2151 .release = vsock_release, 2152 .bind = vsock_bind, 2153 .connect = vsock_connect, 2154 .socketpair = sock_no_socketpair, 2155 .accept = vsock_accept, 2156 .getname = vsock_getname, 2157 .poll = vsock_poll, 2158 .ioctl = sock_no_ioctl, 2159 .listen = vsock_listen, 2160 .shutdown = vsock_shutdown, 2161 .setsockopt = vsock_connectible_setsockopt, 2162 .getsockopt = vsock_connectible_getsockopt, 2163 .sendmsg = vsock_connectible_sendmsg, 2164 .recvmsg = vsock_connectible_recvmsg, 2165 .mmap = sock_no_mmap, 2166 .sendpage = sock_no_sendpage, 2167 }; 2168 2169 static int vsock_create(struct net *net, struct socket *sock, 2170 int protocol, int kern) 2171 { 2172 struct vsock_sock *vsk; 2173 struct sock *sk; 2174 int ret; 2175 2176 if (!sock) 2177 return -EINVAL; 2178 2179 if (protocol && protocol != PF_VSOCK) 2180 return -EPROTONOSUPPORT; 2181 2182 switch (sock->type) { 2183 case SOCK_DGRAM: 2184 sock->ops = &vsock_dgram_ops; 2185 break; 2186 case SOCK_STREAM: 2187 sock->ops = &vsock_stream_ops; 2188 break; 2189 case SOCK_SEQPACKET: 2190 sock->ops = &vsock_seqpacket_ops; 2191 break; 2192 default: 2193 return -ESOCKTNOSUPPORT; 2194 } 2195 2196 sock->state = SS_UNCONNECTED; 2197 2198 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2199 if (!sk) 2200 return -ENOMEM; 2201 2202 vsk = vsock_sk(sk); 2203 2204 if (sock->type == SOCK_DGRAM) { 2205 ret = vsock_assign_transport(vsk, NULL); 2206 if (ret < 0) { 2207 sock_put(sk); 2208 return ret; 2209 } 2210 } 2211 2212 vsock_insert_unbound(vsk); 2213 2214 return 0; 2215 } 2216 2217 static const struct net_proto_family vsock_family_ops = { 2218 .family = AF_VSOCK, 2219 .create = vsock_create, 2220 .owner = THIS_MODULE, 2221 }; 2222 2223 static long vsock_dev_do_ioctl(struct file *filp, 2224 unsigned int cmd, void __user *ptr) 2225 { 2226 u32 __user *p = ptr; 2227 u32 cid = VMADDR_CID_ANY; 2228 int retval = 0; 2229 2230 switch (cmd) { 2231 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2232 /* To be compatible with the VMCI behavior, we prioritize the 2233 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2234 */ 2235 if (transport_g2h) 2236 cid = transport_g2h->get_local_cid(); 2237 else if (transport_h2g) 2238 cid = transport_h2g->get_local_cid(); 2239 2240 if (put_user(cid, p) != 0) 2241 retval = -EFAULT; 2242 break; 2243 2244 default: 2245 retval = -ENOIOCTLCMD; 2246 } 2247 2248 return retval; 2249 } 2250 2251 static long vsock_dev_ioctl(struct file *filp, 2252 unsigned int cmd, unsigned long arg) 2253 { 2254 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2255 } 2256 2257 #ifdef CONFIG_COMPAT 2258 static long vsock_dev_compat_ioctl(struct file *filp, 2259 unsigned int cmd, unsigned long arg) 2260 { 2261 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2262 } 2263 #endif 2264 2265 static const struct file_operations vsock_device_ops = { 2266 .owner = THIS_MODULE, 2267 .unlocked_ioctl = vsock_dev_ioctl, 2268 #ifdef CONFIG_COMPAT 2269 .compat_ioctl = vsock_dev_compat_ioctl, 2270 #endif 2271 .open = nonseekable_open, 2272 }; 2273 2274 static struct miscdevice vsock_device = { 2275 .name = "vsock", 2276 .fops = &vsock_device_ops, 2277 }; 2278 2279 static int __init vsock_init(void) 2280 { 2281 int err = 0; 2282 2283 vsock_init_tables(); 2284 2285 vsock_proto.owner = THIS_MODULE; 2286 vsock_device.minor = MISC_DYNAMIC_MINOR; 2287 err = misc_register(&vsock_device); 2288 if (err) { 2289 pr_err("Failed to register misc device\n"); 2290 goto err_reset_transport; 2291 } 2292 2293 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2294 if (err) { 2295 pr_err("Cannot register vsock protocol\n"); 2296 goto err_deregister_misc; 2297 } 2298 2299 err = sock_register(&vsock_family_ops); 2300 if (err) { 2301 pr_err("could not register af_vsock (%d) address family: %d\n", 2302 AF_VSOCK, err); 2303 goto err_unregister_proto; 2304 } 2305 2306 return 0; 2307 2308 err_unregister_proto: 2309 proto_unregister(&vsock_proto); 2310 err_deregister_misc: 2311 misc_deregister(&vsock_device); 2312 err_reset_transport: 2313 return err; 2314 } 2315 2316 static void __exit vsock_exit(void) 2317 { 2318 misc_deregister(&vsock_device); 2319 sock_unregister(AF_VSOCK); 2320 proto_unregister(&vsock_proto); 2321 } 2322 2323 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2324 { 2325 return vsk->transport; 2326 } 2327 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2328 2329 int vsock_core_register(const struct vsock_transport *t, int features) 2330 { 2331 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2332 int err = mutex_lock_interruptible(&vsock_register_mutex); 2333 2334 if (err) 2335 return err; 2336 2337 t_h2g = transport_h2g; 2338 t_g2h = transport_g2h; 2339 t_dgram = transport_dgram; 2340 t_local = transport_local; 2341 2342 if (features & VSOCK_TRANSPORT_F_H2G) { 2343 if (t_h2g) { 2344 err = -EBUSY; 2345 goto err_busy; 2346 } 2347 t_h2g = t; 2348 } 2349 2350 if (features & VSOCK_TRANSPORT_F_G2H) { 2351 if (t_g2h) { 2352 err = -EBUSY; 2353 goto err_busy; 2354 } 2355 t_g2h = t; 2356 } 2357 2358 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2359 if (t_dgram) { 2360 err = -EBUSY; 2361 goto err_busy; 2362 } 2363 t_dgram = t; 2364 } 2365 2366 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2367 if (t_local) { 2368 err = -EBUSY; 2369 goto err_busy; 2370 } 2371 t_local = t; 2372 } 2373 2374 transport_h2g = t_h2g; 2375 transport_g2h = t_g2h; 2376 transport_dgram = t_dgram; 2377 transport_local = t_local; 2378 2379 err_busy: 2380 mutex_unlock(&vsock_register_mutex); 2381 return err; 2382 } 2383 EXPORT_SYMBOL_GPL(vsock_core_register); 2384 2385 void vsock_core_unregister(const struct vsock_transport *t) 2386 { 2387 mutex_lock(&vsock_register_mutex); 2388 2389 if (transport_h2g == t) 2390 transport_h2g = NULL; 2391 2392 if (transport_g2h == t) 2393 transport_g2h = NULL; 2394 2395 if (transport_dgram == t) 2396 transport_dgram = NULL; 2397 2398 if (transport_local == t) 2399 transport_local = NULL; 2400 2401 mutex_unlock(&vsock_register_mutex); 2402 } 2403 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2404 2405 module_init(vsock_init); 2406 module_exit(vsock_exit); 2407 2408 MODULE_AUTHOR("VMware, Inc."); 2409 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2410 MODULE_VERSION("1.0.2.0-k"); 2411 MODULE_LICENSE("GPL v2"); 2412