1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 lockdep_assert_held(&vsock_register_mutex); 411 412 if (!transport_local) 413 return false; 414 415 if (remote_cid == VMADDR_CID_LOCAL) 416 return true; 417 418 if (transport_g2h) { 419 return remote_cid == transport_g2h->get_local_cid(); 420 } else { 421 return remote_cid == VMADDR_CID_HOST; 422 } 423 } 424 425 static void vsock_deassign_transport(struct vsock_sock *vsk) 426 { 427 if (!vsk->transport) 428 return; 429 430 vsk->transport->destruct(vsk); 431 module_put(vsk->transport->module); 432 vsk->transport = NULL; 433 } 434 435 /* Assign a transport to a socket and call the .init transport callback. 436 * 437 * Note: for connection oriented socket this must be called when vsk->remote_addr 438 * is set (e.g. during the connect() or when a connection request on a listener 439 * socket is received). 440 * The vsk->remote_addr is used to decide which transport to use: 441 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 442 * g2h is not loaded, will use local transport; 443 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 444 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 445 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 446 */ 447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 448 { 449 const struct vsock_transport *new_transport; 450 struct sock *sk = sk_vsock(vsk); 451 unsigned int remote_cid = vsk->remote_addr.svm_cid; 452 __u8 remote_flags; 453 int ret; 454 455 /* If the packet is coming with the source and destination CIDs higher 456 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 457 * forwarded to the host should be established. Then the host will 458 * need to forward the packets to the guest. 459 * 460 * The flag is set on the (listen) receive path (psk is not NULL). On 461 * the connect path the flag can be set by the user space application. 462 */ 463 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 464 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 465 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 466 467 remote_flags = vsk->remote_addr.svm_flags; 468 469 mutex_lock(&vsock_register_mutex); 470 471 switch (sk->sk_type) { 472 case SOCK_DGRAM: 473 new_transport = transport_dgram; 474 break; 475 case SOCK_STREAM: 476 case SOCK_SEQPACKET: 477 if (vsock_use_local_transport(remote_cid)) 478 new_transport = transport_local; 479 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 480 (remote_flags & VMADDR_FLAG_TO_HOST)) 481 new_transport = transport_g2h; 482 else 483 new_transport = transport_h2g; 484 break; 485 default: 486 ret = -ESOCKTNOSUPPORT; 487 goto err; 488 } 489 490 if (vsk->transport) { 491 if (vsk->transport == new_transport) { 492 ret = 0; 493 goto err; 494 } 495 496 /* transport->release() must be called with sock lock acquired. 497 * This path can only be taken during vsock_connect(), where we 498 * have already held the sock lock. In the other cases, this 499 * function is called on a new socket which is not assigned to 500 * any transport. 501 */ 502 vsk->transport->release(vsk); 503 vsock_deassign_transport(vsk); 504 505 /* transport's release() and destruct() can touch some socket 506 * state, since we are reassigning the socket to a new transport 507 * during vsock_connect(), let's reset these fields to have a 508 * clean state. 509 */ 510 sock_reset_flag(sk, SOCK_DONE); 511 sk->sk_state = TCP_CLOSE; 512 vsk->peer_shutdown = 0; 513 } 514 515 /* We increase the module refcnt to prevent the transport unloading 516 * while there are open sockets assigned to it. 517 */ 518 if (!new_transport || !try_module_get(new_transport->module)) { 519 ret = -ENODEV; 520 goto err; 521 } 522 523 /* It's safe to release the mutex after a successful try_module_get(). 524 * Whichever transport `new_transport` points at, it won't go away until 525 * the last module_put() below or in vsock_deassign_transport(). 526 */ 527 mutex_unlock(&vsock_register_mutex); 528 529 if (sk->sk_type == SOCK_SEQPACKET) { 530 if (!new_transport->seqpacket_allow || 531 !new_transport->seqpacket_allow(remote_cid)) { 532 module_put(new_transport->module); 533 return -ESOCKTNOSUPPORT; 534 } 535 } 536 537 ret = new_transport->init(vsk, psk); 538 if (ret) { 539 module_put(new_transport->module); 540 return ret; 541 } 542 543 vsk->transport = new_transport; 544 545 return 0; 546 err: 547 mutex_unlock(&vsock_register_mutex); 548 return ret; 549 } 550 EXPORT_SYMBOL_GPL(vsock_assign_transport); 551 552 /* 553 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks. 554 * Otherwise we may race with module removal. Do not use on `vsk->transport`. 555 */ 556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport) 557 { 558 u32 cid = VMADDR_CID_ANY; 559 560 mutex_lock(&vsock_register_mutex); 561 if (*transport) 562 cid = (*transport)->get_local_cid(); 563 mutex_unlock(&vsock_register_mutex); 564 565 return cid; 566 } 567 568 bool vsock_find_cid(unsigned int cid) 569 { 570 if (cid == vsock_registered_transport_cid(&transport_g2h)) 571 return true; 572 573 if (transport_h2g && cid == VMADDR_CID_HOST) 574 return true; 575 576 if (transport_local && cid == VMADDR_CID_LOCAL) 577 return true; 578 579 return false; 580 } 581 EXPORT_SYMBOL_GPL(vsock_find_cid); 582 583 static struct sock *vsock_dequeue_accept(struct sock *listener) 584 { 585 struct vsock_sock *vlistener; 586 struct vsock_sock *vconnected; 587 588 vlistener = vsock_sk(listener); 589 590 if (list_empty(&vlistener->accept_queue)) 591 return NULL; 592 593 vconnected = list_entry(vlistener->accept_queue.next, 594 struct vsock_sock, accept_queue); 595 596 list_del_init(&vconnected->accept_queue); 597 sock_put(listener); 598 /* The caller will need a reference on the connected socket so we let 599 * it call sock_put(). 600 */ 601 602 return sk_vsock(vconnected); 603 } 604 605 static bool vsock_is_accept_queue_empty(struct sock *sk) 606 { 607 struct vsock_sock *vsk = vsock_sk(sk); 608 return list_empty(&vsk->accept_queue); 609 } 610 611 static bool vsock_is_pending(struct sock *sk) 612 { 613 struct vsock_sock *vsk = vsock_sk(sk); 614 return !list_empty(&vsk->pending_links); 615 } 616 617 static int vsock_send_shutdown(struct sock *sk, int mode) 618 { 619 struct vsock_sock *vsk = vsock_sk(sk); 620 621 if (!vsk->transport) 622 return -ENODEV; 623 624 return vsk->transport->shutdown(vsk, mode); 625 } 626 627 static void vsock_pending_work(struct work_struct *work) 628 { 629 struct sock *sk; 630 struct sock *listener; 631 struct vsock_sock *vsk; 632 bool cleanup; 633 634 vsk = container_of(work, struct vsock_sock, pending_work.work); 635 sk = sk_vsock(vsk); 636 listener = vsk->listener; 637 cleanup = true; 638 639 lock_sock(listener); 640 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 641 642 if (vsock_is_pending(sk)) { 643 vsock_remove_pending(listener, sk); 644 645 sk_acceptq_removed(listener); 646 } else if (!vsk->rejected) { 647 /* We are not on the pending list and accept() did not reject 648 * us, so we must have been accepted by our user process. We 649 * just need to drop our references to the sockets and be on 650 * our way. 651 */ 652 cleanup = false; 653 goto out; 654 } 655 656 /* We need to remove ourself from the global connected sockets list so 657 * incoming packets can't find this socket, and to reduce the reference 658 * count. 659 */ 660 vsock_remove_connected(vsk); 661 662 sk->sk_state = TCP_CLOSE; 663 664 out: 665 release_sock(sk); 666 release_sock(listener); 667 if (cleanup) 668 sock_put(sk); 669 670 sock_put(sk); 671 sock_put(listener); 672 } 673 674 /**** SOCKET OPERATIONS ****/ 675 676 static int __vsock_bind_connectible(struct vsock_sock *vsk, 677 struct sockaddr_vm *addr) 678 { 679 static u32 port; 680 struct sockaddr_vm new_addr; 681 682 if (!port) 683 port = get_random_u32_above(LAST_RESERVED_PORT); 684 685 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 686 687 if (addr->svm_port == VMADDR_PORT_ANY) { 688 bool found = false; 689 unsigned int i; 690 691 for (i = 0; i < MAX_PORT_RETRIES; i++) { 692 if (port <= LAST_RESERVED_PORT) 693 port = LAST_RESERVED_PORT + 1; 694 695 new_addr.svm_port = port++; 696 697 if (!__vsock_find_bound_socket(&new_addr)) { 698 found = true; 699 break; 700 } 701 } 702 703 if (!found) 704 return -EADDRNOTAVAIL; 705 } else { 706 /* If port is in reserved range, ensure caller 707 * has necessary privileges. 708 */ 709 if (addr->svm_port <= LAST_RESERVED_PORT && 710 !capable(CAP_NET_BIND_SERVICE)) { 711 return -EACCES; 712 } 713 714 if (__vsock_find_bound_socket(&new_addr)) 715 return -EADDRINUSE; 716 } 717 718 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 719 720 /* Remove connection oriented sockets from the unbound list and add them 721 * to the hash table for easy lookup by its address. The unbound list 722 * is simply an extra entry at the end of the hash table, a trick used 723 * by AF_UNIX. 724 */ 725 __vsock_remove_bound(vsk); 726 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 727 728 return 0; 729 } 730 731 static int __vsock_bind_dgram(struct vsock_sock *vsk, 732 struct sockaddr_vm *addr) 733 { 734 return vsk->transport->dgram_bind(vsk, addr); 735 } 736 737 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 738 { 739 struct vsock_sock *vsk = vsock_sk(sk); 740 int retval; 741 742 /* First ensure this socket isn't already bound. */ 743 if (vsock_addr_bound(&vsk->local_addr)) 744 return -EINVAL; 745 746 /* Now bind to the provided address or select appropriate values if 747 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 748 * like AF_INET prevents binding to a non-local IP address (in most 749 * cases), we only allow binding to a local CID. 750 */ 751 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 752 return -EADDRNOTAVAIL; 753 754 switch (sk->sk_socket->type) { 755 case SOCK_STREAM: 756 case SOCK_SEQPACKET: 757 spin_lock_bh(&vsock_table_lock); 758 retval = __vsock_bind_connectible(vsk, addr); 759 spin_unlock_bh(&vsock_table_lock); 760 break; 761 762 case SOCK_DGRAM: 763 retval = __vsock_bind_dgram(vsk, addr); 764 break; 765 766 default: 767 retval = -EINVAL; 768 break; 769 } 770 771 return retval; 772 } 773 774 static void vsock_connect_timeout(struct work_struct *work); 775 776 static struct sock *__vsock_create(struct net *net, 777 struct socket *sock, 778 struct sock *parent, 779 gfp_t priority, 780 unsigned short type, 781 int kern) 782 { 783 struct sock *sk; 784 struct vsock_sock *psk; 785 struct vsock_sock *vsk; 786 787 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 788 if (!sk) 789 return NULL; 790 791 sock_init_data(sock, sk); 792 793 /* sk->sk_type is normally set in sock_init_data, but only if sock is 794 * non-NULL. We make sure that our sockets always have a type by 795 * setting it here if needed. 796 */ 797 if (!sock) 798 sk->sk_type = type; 799 800 vsk = vsock_sk(sk); 801 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 802 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 803 804 sk->sk_destruct = vsock_sk_destruct; 805 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 806 sock_reset_flag(sk, SOCK_DONE); 807 808 INIT_LIST_HEAD(&vsk->bound_table); 809 INIT_LIST_HEAD(&vsk->connected_table); 810 vsk->listener = NULL; 811 INIT_LIST_HEAD(&vsk->pending_links); 812 INIT_LIST_HEAD(&vsk->accept_queue); 813 vsk->rejected = false; 814 vsk->sent_request = false; 815 vsk->ignore_connecting_rst = false; 816 vsk->peer_shutdown = 0; 817 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 818 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 819 820 psk = parent ? vsock_sk(parent) : NULL; 821 if (parent) { 822 vsk->trusted = psk->trusted; 823 vsk->owner = get_cred(psk->owner); 824 vsk->connect_timeout = psk->connect_timeout; 825 vsk->buffer_size = psk->buffer_size; 826 vsk->buffer_min_size = psk->buffer_min_size; 827 vsk->buffer_max_size = psk->buffer_max_size; 828 security_sk_clone(parent, sk); 829 } else { 830 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 831 vsk->owner = get_current_cred(); 832 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 833 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 834 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 835 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 836 } 837 838 return sk; 839 } 840 841 static bool sock_type_connectible(u16 type) 842 { 843 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 844 } 845 846 static void __vsock_release(struct sock *sk, int level) 847 { 848 struct vsock_sock *vsk; 849 struct sock *pending; 850 851 vsk = vsock_sk(sk); 852 pending = NULL; /* Compiler warning. */ 853 854 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 855 * version to avoid the warning "possible recursive locking 856 * detected". When "level" is 0, lock_sock_nested(sk, level) 857 * is the same as lock_sock(sk). 858 */ 859 lock_sock_nested(sk, level); 860 861 /* Indicate to vsock_remove_sock() that the socket is being released and 862 * can be removed from the bound_table. Unlike transport reassignment 863 * case, where the socket must remain bound despite vsock_remove_sock() 864 * being called from the transport release() callback. 865 */ 866 sock_set_flag(sk, SOCK_DEAD); 867 868 if (vsk->transport) 869 vsk->transport->release(vsk); 870 else if (sock_type_connectible(sk->sk_type)) 871 vsock_remove_sock(vsk); 872 873 sock_orphan(sk); 874 sk->sk_shutdown = SHUTDOWN_MASK; 875 876 skb_queue_purge(&sk->sk_receive_queue); 877 878 /* Clean up any sockets that never were accepted. */ 879 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 880 __vsock_release(pending, SINGLE_DEPTH_NESTING); 881 sock_put(pending); 882 } 883 884 release_sock(sk); 885 sock_put(sk); 886 } 887 888 static void vsock_sk_destruct(struct sock *sk) 889 { 890 struct vsock_sock *vsk = vsock_sk(sk); 891 892 /* Flush MSG_ZEROCOPY leftovers. */ 893 __skb_queue_purge(&sk->sk_error_queue); 894 895 vsock_deassign_transport(vsk); 896 897 /* When clearing these addresses, there's no need to set the family and 898 * possibly register the address family with the kernel. 899 */ 900 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 901 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 902 903 put_cred(vsk->owner); 904 } 905 906 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 907 { 908 int err; 909 910 err = sock_queue_rcv_skb(sk, skb); 911 if (err) 912 kfree_skb(skb); 913 914 return err; 915 } 916 917 struct sock *vsock_create_connected(struct sock *parent) 918 { 919 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 920 parent->sk_type, 0); 921 } 922 EXPORT_SYMBOL_GPL(vsock_create_connected); 923 924 s64 vsock_stream_has_data(struct vsock_sock *vsk) 925 { 926 if (WARN_ON(!vsk->transport)) 927 return 0; 928 929 return vsk->transport->stream_has_data(vsk); 930 } 931 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 932 933 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 934 { 935 struct sock *sk = sk_vsock(vsk); 936 937 if (WARN_ON(!vsk->transport)) 938 return 0; 939 940 if (sk->sk_type == SOCK_SEQPACKET) 941 return vsk->transport->seqpacket_has_data(vsk); 942 else 943 return vsock_stream_has_data(vsk); 944 } 945 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 946 947 s64 vsock_stream_has_space(struct vsock_sock *vsk) 948 { 949 if (WARN_ON(!vsk->transport)) 950 return 0; 951 952 return vsk->transport->stream_has_space(vsk); 953 } 954 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 955 956 void vsock_data_ready(struct sock *sk) 957 { 958 struct vsock_sock *vsk = vsock_sk(sk); 959 960 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 961 sock_flag(sk, SOCK_DONE)) 962 sk->sk_data_ready(sk); 963 } 964 EXPORT_SYMBOL_GPL(vsock_data_ready); 965 966 /* Dummy callback required by sockmap. 967 * See unconditional call of saved_close() in sock_map_close(). 968 */ 969 static void vsock_close(struct sock *sk, long timeout) 970 { 971 } 972 973 static int vsock_release(struct socket *sock) 974 { 975 struct sock *sk = sock->sk; 976 977 if (!sk) 978 return 0; 979 980 sk->sk_prot->close(sk, 0); 981 __vsock_release(sk, 0); 982 sock->sk = NULL; 983 sock->state = SS_FREE; 984 985 return 0; 986 } 987 988 static int 989 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 990 { 991 int err; 992 struct sock *sk; 993 struct sockaddr_vm *vm_addr; 994 995 sk = sock->sk; 996 997 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 998 return -EINVAL; 999 1000 lock_sock(sk); 1001 err = __vsock_bind(sk, vm_addr); 1002 release_sock(sk); 1003 1004 return err; 1005 } 1006 1007 static int vsock_getname(struct socket *sock, 1008 struct sockaddr *addr, int peer) 1009 { 1010 int err; 1011 struct sock *sk; 1012 struct vsock_sock *vsk; 1013 struct sockaddr_vm *vm_addr; 1014 1015 sk = sock->sk; 1016 vsk = vsock_sk(sk); 1017 err = 0; 1018 1019 lock_sock(sk); 1020 1021 if (peer) { 1022 if (sock->state != SS_CONNECTED) { 1023 err = -ENOTCONN; 1024 goto out; 1025 } 1026 vm_addr = &vsk->remote_addr; 1027 } else { 1028 vm_addr = &vsk->local_addr; 1029 } 1030 1031 /* sys_getsockname() and sys_getpeername() pass us a 1032 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 1033 * that macro is defined in socket.c instead of .h, so we hardcode its 1034 * value here. 1035 */ 1036 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 1037 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1038 err = sizeof(*vm_addr); 1039 1040 out: 1041 release_sock(sk); 1042 return err; 1043 } 1044 1045 void vsock_linger(struct sock *sk) 1046 { 1047 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1048 ssize_t (*unsent)(struct vsock_sock *vsk); 1049 struct vsock_sock *vsk = vsock_sk(sk); 1050 long timeout; 1051 1052 if (!sock_flag(sk, SOCK_LINGER)) 1053 return; 1054 1055 timeout = sk->sk_lingertime; 1056 if (!timeout) 1057 return; 1058 1059 /* Transports must implement `unsent_bytes` if they want to support 1060 * SOCK_LINGER through `vsock_linger()` since we use it to check when 1061 * the socket can be closed. 1062 */ 1063 unsent = vsk->transport->unsent_bytes; 1064 if (!unsent) 1065 return; 1066 1067 add_wait_queue(sk_sleep(sk), &wait); 1068 1069 do { 1070 if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait)) 1071 break; 1072 } while (!signal_pending(current) && timeout); 1073 1074 remove_wait_queue(sk_sleep(sk), &wait); 1075 } 1076 EXPORT_SYMBOL_GPL(vsock_linger); 1077 1078 static int vsock_shutdown(struct socket *sock, int mode) 1079 { 1080 int err; 1081 struct sock *sk; 1082 1083 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1084 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1085 * here like the other address families do. Note also that the 1086 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1087 * which is what we want. 1088 */ 1089 mode++; 1090 1091 if ((mode & ~SHUTDOWN_MASK) || !mode) 1092 return -EINVAL; 1093 1094 /* If this is a connection oriented socket and it is not connected then 1095 * bail out immediately. If it is a DGRAM socket then we must first 1096 * kick the socket so that it wakes up from any sleeping calls, for 1097 * example recv(), and then afterwards return the error. 1098 */ 1099 1100 sk = sock->sk; 1101 1102 lock_sock(sk); 1103 if (sock->state == SS_UNCONNECTED) { 1104 err = -ENOTCONN; 1105 if (sock_type_connectible(sk->sk_type)) 1106 goto out; 1107 } else { 1108 sock->state = SS_DISCONNECTING; 1109 err = 0; 1110 } 1111 1112 /* Receive and send shutdowns are treated alike. */ 1113 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1114 if (mode) { 1115 sk->sk_shutdown |= mode; 1116 sk->sk_state_change(sk); 1117 1118 if (sock_type_connectible(sk->sk_type)) { 1119 sock_reset_flag(sk, SOCK_DONE); 1120 vsock_send_shutdown(sk, mode); 1121 } 1122 } 1123 1124 out: 1125 release_sock(sk); 1126 return err; 1127 } 1128 1129 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1130 poll_table *wait) 1131 { 1132 struct sock *sk; 1133 __poll_t mask; 1134 struct vsock_sock *vsk; 1135 1136 sk = sock->sk; 1137 vsk = vsock_sk(sk); 1138 1139 poll_wait(file, sk_sleep(sk), wait); 1140 mask = 0; 1141 1142 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1143 /* Signify that there has been an error on this socket. */ 1144 mask |= EPOLLERR; 1145 1146 /* INET sockets treat local write shutdown and peer write shutdown as a 1147 * case of EPOLLHUP set. 1148 */ 1149 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1150 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1151 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1152 mask |= EPOLLHUP; 1153 } 1154 1155 if (sk->sk_shutdown & RCV_SHUTDOWN || 1156 vsk->peer_shutdown & SEND_SHUTDOWN) { 1157 mask |= EPOLLRDHUP; 1158 } 1159 1160 if (sk_is_readable(sk)) 1161 mask |= EPOLLIN | EPOLLRDNORM; 1162 1163 if (sock->type == SOCK_DGRAM) { 1164 /* For datagram sockets we can read if there is something in 1165 * the queue and write as long as the socket isn't shutdown for 1166 * sending. 1167 */ 1168 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1169 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1170 mask |= EPOLLIN | EPOLLRDNORM; 1171 } 1172 1173 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1174 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1175 1176 } else if (sock_type_connectible(sk->sk_type)) { 1177 const struct vsock_transport *transport; 1178 1179 lock_sock(sk); 1180 1181 transport = vsk->transport; 1182 1183 /* Listening sockets that have connections in their accept 1184 * queue can be read. 1185 */ 1186 if (sk->sk_state == TCP_LISTEN 1187 && !vsock_is_accept_queue_empty(sk)) 1188 mask |= EPOLLIN | EPOLLRDNORM; 1189 1190 /* If there is something in the queue then we can read. */ 1191 if (transport && transport->stream_is_active(vsk) && 1192 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1193 bool data_ready_now = false; 1194 int target = sock_rcvlowat(sk, 0, INT_MAX); 1195 int ret = transport->notify_poll_in( 1196 vsk, target, &data_ready_now); 1197 if (ret < 0) { 1198 mask |= EPOLLERR; 1199 } else { 1200 if (data_ready_now) 1201 mask |= EPOLLIN | EPOLLRDNORM; 1202 1203 } 1204 } 1205 1206 /* Sockets whose connections have been closed, reset, or 1207 * terminated should also be considered read, and we check the 1208 * shutdown flag for that. 1209 */ 1210 if (sk->sk_shutdown & RCV_SHUTDOWN || 1211 vsk->peer_shutdown & SEND_SHUTDOWN) { 1212 mask |= EPOLLIN | EPOLLRDNORM; 1213 } 1214 1215 /* Connected sockets that can produce data can be written. */ 1216 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1217 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1218 bool space_avail_now = false; 1219 int ret = transport->notify_poll_out( 1220 vsk, 1, &space_avail_now); 1221 if (ret < 0) { 1222 mask |= EPOLLERR; 1223 } else { 1224 if (space_avail_now) 1225 /* Remove EPOLLWRBAND since INET 1226 * sockets are not setting it. 1227 */ 1228 mask |= EPOLLOUT | EPOLLWRNORM; 1229 1230 } 1231 } 1232 } 1233 1234 /* Simulate INET socket poll behaviors, which sets 1235 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1236 * but local send is not shutdown. 1237 */ 1238 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1239 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1240 mask |= EPOLLOUT | EPOLLWRNORM; 1241 1242 } 1243 1244 release_sock(sk); 1245 } 1246 1247 return mask; 1248 } 1249 1250 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1251 { 1252 struct vsock_sock *vsk = vsock_sk(sk); 1253 1254 if (WARN_ON_ONCE(!vsk->transport)) 1255 return -ENODEV; 1256 1257 return vsk->transport->read_skb(vsk, read_actor); 1258 } 1259 1260 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1261 size_t len) 1262 { 1263 int err; 1264 struct sock *sk; 1265 struct vsock_sock *vsk; 1266 struct sockaddr_vm *remote_addr; 1267 const struct vsock_transport *transport; 1268 1269 if (msg->msg_flags & MSG_OOB) 1270 return -EOPNOTSUPP; 1271 1272 /* For now, MSG_DONTWAIT is always assumed... */ 1273 err = 0; 1274 sk = sock->sk; 1275 vsk = vsock_sk(sk); 1276 1277 lock_sock(sk); 1278 1279 transport = vsk->transport; 1280 1281 err = vsock_auto_bind(vsk); 1282 if (err) 1283 goto out; 1284 1285 1286 /* If the provided message contains an address, use that. Otherwise 1287 * fall back on the socket's remote handle (if it has been connected). 1288 */ 1289 if (msg->msg_name && 1290 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1291 &remote_addr) == 0) { 1292 /* Ensure this address is of the right type and is a valid 1293 * destination. 1294 */ 1295 1296 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1297 remote_addr->svm_cid = transport->get_local_cid(); 1298 1299 if (!vsock_addr_bound(remote_addr)) { 1300 err = -EINVAL; 1301 goto out; 1302 } 1303 } else if (sock->state == SS_CONNECTED) { 1304 remote_addr = &vsk->remote_addr; 1305 1306 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1307 remote_addr->svm_cid = transport->get_local_cid(); 1308 1309 /* XXX Should connect() or this function ensure remote_addr is 1310 * bound? 1311 */ 1312 if (!vsock_addr_bound(&vsk->remote_addr)) { 1313 err = -EINVAL; 1314 goto out; 1315 } 1316 } else { 1317 err = -EINVAL; 1318 goto out; 1319 } 1320 1321 if (!transport->dgram_allow(remote_addr->svm_cid, 1322 remote_addr->svm_port)) { 1323 err = -EINVAL; 1324 goto out; 1325 } 1326 1327 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1328 1329 out: 1330 release_sock(sk); 1331 return err; 1332 } 1333 1334 static int vsock_dgram_connect(struct socket *sock, 1335 struct sockaddr *addr, int addr_len, int flags) 1336 { 1337 int err; 1338 struct sock *sk; 1339 struct vsock_sock *vsk; 1340 struct sockaddr_vm *remote_addr; 1341 1342 sk = sock->sk; 1343 vsk = vsock_sk(sk); 1344 1345 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1346 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1347 lock_sock(sk); 1348 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1349 VMADDR_PORT_ANY); 1350 sock->state = SS_UNCONNECTED; 1351 release_sock(sk); 1352 return 0; 1353 } else if (err != 0) 1354 return -EINVAL; 1355 1356 lock_sock(sk); 1357 1358 err = vsock_auto_bind(vsk); 1359 if (err) 1360 goto out; 1361 1362 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1363 remote_addr->svm_port)) { 1364 err = -EINVAL; 1365 goto out; 1366 } 1367 1368 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1369 sock->state = SS_CONNECTED; 1370 1371 /* sock map disallows redirection of non-TCP sockets with sk_state != 1372 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1373 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1374 * 1375 * This doesn't seem to be abnormal state for datagram sockets, as the 1376 * same approach can be see in other datagram socket types as well 1377 * (such as unix sockets). 1378 */ 1379 sk->sk_state = TCP_ESTABLISHED; 1380 1381 out: 1382 release_sock(sk); 1383 return err; 1384 } 1385 1386 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1387 size_t len, int flags) 1388 { 1389 struct sock *sk = sock->sk; 1390 struct vsock_sock *vsk = vsock_sk(sk); 1391 1392 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1393 } 1394 1395 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1396 size_t len, int flags) 1397 { 1398 #ifdef CONFIG_BPF_SYSCALL 1399 struct sock *sk = sock->sk; 1400 const struct proto *prot; 1401 1402 prot = READ_ONCE(sk->sk_prot); 1403 if (prot != &vsock_proto) 1404 return prot->recvmsg(sk, msg, len, flags, NULL); 1405 #endif 1406 1407 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1408 } 1409 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1410 1411 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1412 int __user *arg) 1413 { 1414 struct sock *sk = sock->sk; 1415 struct vsock_sock *vsk; 1416 int ret; 1417 1418 vsk = vsock_sk(sk); 1419 1420 switch (cmd) { 1421 case SIOCINQ: { 1422 ssize_t n_bytes; 1423 1424 if (!vsk->transport) { 1425 ret = -EOPNOTSUPP; 1426 break; 1427 } 1428 1429 if (sock_type_connectible(sk->sk_type) && 1430 sk->sk_state == TCP_LISTEN) { 1431 ret = -EINVAL; 1432 break; 1433 } 1434 1435 n_bytes = vsock_stream_has_data(vsk); 1436 if (n_bytes < 0) { 1437 ret = n_bytes; 1438 break; 1439 } 1440 ret = put_user(n_bytes, arg); 1441 break; 1442 } 1443 case SIOCOUTQ: { 1444 ssize_t n_bytes; 1445 1446 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1447 ret = -EOPNOTSUPP; 1448 break; 1449 } 1450 1451 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1452 ret = -EINVAL; 1453 break; 1454 } 1455 1456 n_bytes = vsk->transport->unsent_bytes(vsk); 1457 if (n_bytes < 0) { 1458 ret = n_bytes; 1459 break; 1460 } 1461 1462 ret = put_user(n_bytes, arg); 1463 break; 1464 } 1465 default: 1466 ret = -ENOIOCTLCMD; 1467 } 1468 1469 return ret; 1470 } 1471 1472 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1473 unsigned long arg) 1474 { 1475 int ret; 1476 1477 lock_sock(sock->sk); 1478 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1479 release_sock(sock->sk); 1480 1481 return ret; 1482 } 1483 1484 static const struct proto_ops vsock_dgram_ops = { 1485 .family = PF_VSOCK, 1486 .owner = THIS_MODULE, 1487 .release = vsock_release, 1488 .bind = vsock_bind, 1489 .connect = vsock_dgram_connect, 1490 .socketpair = sock_no_socketpair, 1491 .accept = sock_no_accept, 1492 .getname = vsock_getname, 1493 .poll = vsock_poll, 1494 .ioctl = vsock_ioctl, 1495 .listen = sock_no_listen, 1496 .shutdown = vsock_shutdown, 1497 .sendmsg = vsock_dgram_sendmsg, 1498 .recvmsg = vsock_dgram_recvmsg, 1499 .mmap = sock_no_mmap, 1500 .read_skb = vsock_read_skb, 1501 }; 1502 1503 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1504 { 1505 const struct vsock_transport *transport = vsk->transport; 1506 1507 if (!transport || !transport->cancel_pkt) 1508 return -EOPNOTSUPP; 1509 1510 return transport->cancel_pkt(vsk); 1511 } 1512 1513 static void vsock_connect_timeout(struct work_struct *work) 1514 { 1515 struct sock *sk; 1516 struct vsock_sock *vsk; 1517 1518 vsk = container_of(work, struct vsock_sock, connect_work.work); 1519 sk = sk_vsock(vsk); 1520 1521 lock_sock(sk); 1522 if (sk->sk_state == TCP_SYN_SENT && 1523 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1524 sk->sk_state = TCP_CLOSE; 1525 sk->sk_socket->state = SS_UNCONNECTED; 1526 sk->sk_err = ETIMEDOUT; 1527 sk_error_report(sk); 1528 vsock_transport_cancel_pkt(vsk); 1529 } 1530 release_sock(sk); 1531 1532 sock_put(sk); 1533 } 1534 1535 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1536 int addr_len, int flags) 1537 { 1538 int err; 1539 struct sock *sk; 1540 struct vsock_sock *vsk; 1541 const struct vsock_transport *transport; 1542 struct sockaddr_vm *remote_addr; 1543 long timeout; 1544 DEFINE_WAIT(wait); 1545 1546 err = 0; 1547 sk = sock->sk; 1548 vsk = vsock_sk(sk); 1549 1550 lock_sock(sk); 1551 1552 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1553 switch (sock->state) { 1554 case SS_CONNECTED: 1555 err = -EISCONN; 1556 goto out; 1557 case SS_DISCONNECTING: 1558 err = -EINVAL; 1559 goto out; 1560 case SS_CONNECTING: 1561 /* This continues on so we can move sock into the SS_CONNECTED 1562 * state once the connection has completed (at which point err 1563 * will be set to zero also). Otherwise, we will either wait 1564 * for the connection or return -EALREADY should this be a 1565 * non-blocking call. 1566 */ 1567 err = -EALREADY; 1568 if (flags & O_NONBLOCK) 1569 goto out; 1570 break; 1571 default: 1572 if ((sk->sk_state == TCP_LISTEN) || 1573 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1574 err = -EINVAL; 1575 goto out; 1576 } 1577 1578 /* Set the remote address that we are connecting to. */ 1579 memcpy(&vsk->remote_addr, remote_addr, 1580 sizeof(vsk->remote_addr)); 1581 1582 err = vsock_assign_transport(vsk, NULL); 1583 if (err) 1584 goto out; 1585 1586 transport = vsk->transport; 1587 1588 /* The hypervisor and well-known contexts do not have socket 1589 * endpoints. 1590 */ 1591 if (!transport || 1592 !transport->stream_allow(remote_addr->svm_cid, 1593 remote_addr->svm_port)) { 1594 err = -ENETUNREACH; 1595 goto out; 1596 } 1597 1598 if (vsock_msgzerocopy_allow(transport)) { 1599 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1600 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1601 /* If this option was set before 'connect()', 1602 * when transport was unknown, check that this 1603 * feature is supported here. 1604 */ 1605 err = -EOPNOTSUPP; 1606 goto out; 1607 } 1608 1609 err = vsock_auto_bind(vsk); 1610 if (err) 1611 goto out; 1612 1613 sk->sk_state = TCP_SYN_SENT; 1614 1615 err = transport->connect(vsk); 1616 if (err < 0) 1617 goto out; 1618 1619 /* sk_err might have been set as a result of an earlier 1620 * (failed) connect attempt. 1621 */ 1622 sk->sk_err = 0; 1623 1624 /* Mark sock as connecting and set the error code to in 1625 * progress in case this is a non-blocking connect. 1626 */ 1627 sock->state = SS_CONNECTING; 1628 err = -EINPROGRESS; 1629 } 1630 1631 /* The receive path will handle all communication until we are able to 1632 * enter the connected state. Here we wait for the connection to be 1633 * completed or a notification of an error. 1634 */ 1635 timeout = vsk->connect_timeout; 1636 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1637 1638 /* If the socket is already closing or it is in an error state, there 1639 * is no point in waiting. 1640 */ 1641 while (sk->sk_state != TCP_ESTABLISHED && 1642 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) { 1643 if (flags & O_NONBLOCK) { 1644 /* If we're not going to block, we schedule a timeout 1645 * function to generate a timeout on the connection 1646 * attempt, in case the peer doesn't respond in a 1647 * timely manner. We hold on to the socket until the 1648 * timeout fires. 1649 */ 1650 sock_hold(sk); 1651 1652 /* If the timeout function is already scheduled, 1653 * reschedule it, then ungrab the socket refcount to 1654 * keep it balanced. 1655 */ 1656 if (mod_delayed_work(system_wq, &vsk->connect_work, 1657 timeout)) 1658 sock_put(sk); 1659 1660 /* Skip ahead to preserve error code set above. */ 1661 goto out_wait; 1662 } 1663 1664 release_sock(sk); 1665 timeout = schedule_timeout(timeout); 1666 lock_sock(sk); 1667 1668 if (signal_pending(current)) { 1669 err = sock_intr_errno(timeout); 1670 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1671 sock->state = SS_UNCONNECTED; 1672 vsock_transport_cancel_pkt(vsk); 1673 vsock_remove_connected(vsk); 1674 goto out_wait; 1675 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1676 err = -ETIMEDOUT; 1677 sk->sk_state = TCP_CLOSE; 1678 sock->state = SS_UNCONNECTED; 1679 vsock_transport_cancel_pkt(vsk); 1680 goto out_wait; 1681 } 1682 1683 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1684 } 1685 1686 if (sk->sk_err) { 1687 err = -sk->sk_err; 1688 sk->sk_state = TCP_CLOSE; 1689 sock->state = SS_UNCONNECTED; 1690 } else { 1691 err = 0; 1692 } 1693 1694 out_wait: 1695 finish_wait(sk_sleep(sk), &wait); 1696 out: 1697 release_sock(sk); 1698 return err; 1699 } 1700 1701 static int vsock_accept(struct socket *sock, struct socket *newsock, 1702 struct proto_accept_arg *arg) 1703 { 1704 struct sock *listener; 1705 int err; 1706 struct sock *connected; 1707 struct vsock_sock *vconnected; 1708 long timeout; 1709 DEFINE_WAIT(wait); 1710 1711 err = 0; 1712 listener = sock->sk; 1713 1714 lock_sock(listener); 1715 1716 if (!sock_type_connectible(sock->type)) { 1717 err = -EOPNOTSUPP; 1718 goto out; 1719 } 1720 1721 if (listener->sk_state != TCP_LISTEN) { 1722 err = -EINVAL; 1723 goto out; 1724 } 1725 1726 /* Wait for children sockets to appear; these are the new sockets 1727 * created upon connection establishment. 1728 */ 1729 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1730 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1731 1732 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1733 listener->sk_err == 0) { 1734 release_sock(listener); 1735 timeout = schedule_timeout(timeout); 1736 finish_wait(sk_sleep(listener), &wait); 1737 lock_sock(listener); 1738 1739 if (signal_pending(current)) { 1740 err = sock_intr_errno(timeout); 1741 goto out; 1742 } else if (timeout == 0) { 1743 err = -EAGAIN; 1744 goto out; 1745 } 1746 1747 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1748 } 1749 finish_wait(sk_sleep(listener), &wait); 1750 1751 if (listener->sk_err) 1752 err = -listener->sk_err; 1753 1754 if (connected) { 1755 sk_acceptq_removed(listener); 1756 1757 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1758 vconnected = vsock_sk(connected); 1759 1760 /* If the listener socket has received an error, then we should 1761 * reject this socket and return. Note that we simply mark the 1762 * socket rejected, drop our reference, and let the cleanup 1763 * function handle the cleanup; the fact that we found it in 1764 * the listener's accept queue guarantees that the cleanup 1765 * function hasn't run yet. 1766 */ 1767 if (err) { 1768 vconnected->rejected = true; 1769 } else { 1770 newsock->state = SS_CONNECTED; 1771 sock_graft(connected, newsock); 1772 if (vsock_msgzerocopy_allow(vconnected->transport)) 1773 set_bit(SOCK_SUPPORT_ZC, 1774 &connected->sk_socket->flags); 1775 } 1776 1777 release_sock(connected); 1778 sock_put(connected); 1779 } 1780 1781 out: 1782 release_sock(listener); 1783 return err; 1784 } 1785 1786 static int vsock_listen(struct socket *sock, int backlog) 1787 { 1788 int err; 1789 struct sock *sk; 1790 struct vsock_sock *vsk; 1791 1792 sk = sock->sk; 1793 1794 lock_sock(sk); 1795 1796 if (!sock_type_connectible(sk->sk_type)) { 1797 err = -EOPNOTSUPP; 1798 goto out; 1799 } 1800 1801 if (sock->state != SS_UNCONNECTED) { 1802 err = -EINVAL; 1803 goto out; 1804 } 1805 1806 vsk = vsock_sk(sk); 1807 1808 if (!vsock_addr_bound(&vsk->local_addr)) { 1809 err = -EINVAL; 1810 goto out; 1811 } 1812 1813 sk->sk_max_ack_backlog = backlog; 1814 sk->sk_state = TCP_LISTEN; 1815 1816 err = 0; 1817 1818 out: 1819 release_sock(sk); 1820 return err; 1821 } 1822 1823 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1824 const struct vsock_transport *transport, 1825 u64 val) 1826 { 1827 if (val > vsk->buffer_max_size) 1828 val = vsk->buffer_max_size; 1829 1830 if (val < vsk->buffer_min_size) 1831 val = vsk->buffer_min_size; 1832 1833 if (val != vsk->buffer_size && 1834 transport && transport->notify_buffer_size) 1835 transport->notify_buffer_size(vsk, &val); 1836 1837 vsk->buffer_size = val; 1838 } 1839 1840 static int vsock_connectible_setsockopt(struct socket *sock, 1841 int level, 1842 int optname, 1843 sockptr_t optval, 1844 unsigned int optlen) 1845 { 1846 int err; 1847 struct sock *sk; 1848 struct vsock_sock *vsk; 1849 const struct vsock_transport *transport; 1850 u64 val; 1851 1852 if (level != AF_VSOCK && level != SOL_SOCKET) 1853 return -ENOPROTOOPT; 1854 1855 #define COPY_IN(_v) \ 1856 do { \ 1857 if (optlen < sizeof(_v)) { \ 1858 err = -EINVAL; \ 1859 goto exit; \ 1860 } \ 1861 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1862 err = -EFAULT; \ 1863 goto exit; \ 1864 } \ 1865 } while (0) 1866 1867 err = 0; 1868 sk = sock->sk; 1869 vsk = vsock_sk(sk); 1870 1871 lock_sock(sk); 1872 1873 transport = vsk->transport; 1874 1875 if (level == SOL_SOCKET) { 1876 int zerocopy; 1877 1878 if (optname != SO_ZEROCOPY) { 1879 release_sock(sk); 1880 return sock_setsockopt(sock, level, optname, optval, optlen); 1881 } 1882 1883 /* Use 'int' type here, because variable to 1884 * set this option usually has this type. 1885 */ 1886 COPY_IN(zerocopy); 1887 1888 if (zerocopy < 0 || zerocopy > 1) { 1889 err = -EINVAL; 1890 goto exit; 1891 } 1892 1893 if (transport && !vsock_msgzerocopy_allow(transport)) { 1894 err = -EOPNOTSUPP; 1895 goto exit; 1896 } 1897 1898 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1899 goto exit; 1900 } 1901 1902 switch (optname) { 1903 case SO_VM_SOCKETS_BUFFER_SIZE: 1904 COPY_IN(val); 1905 vsock_update_buffer_size(vsk, transport, val); 1906 break; 1907 1908 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1909 COPY_IN(val); 1910 vsk->buffer_max_size = val; 1911 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1912 break; 1913 1914 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1915 COPY_IN(val); 1916 vsk->buffer_min_size = val; 1917 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1918 break; 1919 1920 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1921 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1922 struct __kernel_sock_timeval tv; 1923 1924 err = sock_copy_user_timeval(&tv, optval, optlen, 1925 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1926 if (err) 1927 break; 1928 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1929 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1930 vsk->connect_timeout = tv.tv_sec * HZ + 1931 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1932 if (vsk->connect_timeout == 0) 1933 vsk->connect_timeout = 1934 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1935 1936 } else { 1937 err = -ERANGE; 1938 } 1939 break; 1940 } 1941 1942 default: 1943 err = -ENOPROTOOPT; 1944 break; 1945 } 1946 1947 #undef COPY_IN 1948 1949 exit: 1950 release_sock(sk); 1951 return err; 1952 } 1953 1954 static int vsock_connectible_getsockopt(struct socket *sock, 1955 int level, int optname, 1956 char __user *optval, 1957 int __user *optlen) 1958 { 1959 struct sock *sk = sock->sk; 1960 struct vsock_sock *vsk = vsock_sk(sk); 1961 1962 union { 1963 u64 val64; 1964 struct old_timeval32 tm32; 1965 struct __kernel_old_timeval tm; 1966 struct __kernel_sock_timeval stm; 1967 } v; 1968 1969 int lv = sizeof(v.val64); 1970 int len; 1971 1972 if (level != AF_VSOCK) 1973 return -ENOPROTOOPT; 1974 1975 if (get_user(len, optlen)) 1976 return -EFAULT; 1977 1978 memset(&v, 0, sizeof(v)); 1979 1980 switch (optname) { 1981 case SO_VM_SOCKETS_BUFFER_SIZE: 1982 v.val64 = vsk->buffer_size; 1983 break; 1984 1985 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1986 v.val64 = vsk->buffer_max_size; 1987 break; 1988 1989 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1990 v.val64 = vsk->buffer_min_size; 1991 break; 1992 1993 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1994 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1995 lv = sock_get_timeout(vsk->connect_timeout, &v, 1996 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1997 break; 1998 1999 default: 2000 return -ENOPROTOOPT; 2001 } 2002 2003 if (len < lv) 2004 return -EINVAL; 2005 if (len > lv) 2006 len = lv; 2007 if (copy_to_user(optval, &v, len)) 2008 return -EFAULT; 2009 2010 if (put_user(len, optlen)) 2011 return -EFAULT; 2012 2013 return 0; 2014 } 2015 2016 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 2017 size_t len) 2018 { 2019 struct sock *sk; 2020 struct vsock_sock *vsk; 2021 const struct vsock_transport *transport; 2022 ssize_t total_written; 2023 long timeout; 2024 int err; 2025 struct vsock_transport_send_notify_data send_data; 2026 DEFINE_WAIT_FUNC(wait, woken_wake_function); 2027 2028 sk = sock->sk; 2029 vsk = vsock_sk(sk); 2030 total_written = 0; 2031 err = 0; 2032 2033 if (msg->msg_flags & MSG_OOB) 2034 return -EOPNOTSUPP; 2035 2036 lock_sock(sk); 2037 2038 transport = vsk->transport; 2039 2040 /* Callers should not provide a destination with connection oriented 2041 * sockets. 2042 */ 2043 if (msg->msg_namelen) { 2044 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2045 goto out; 2046 } 2047 2048 /* Send data only if both sides are not shutdown in the direction. */ 2049 if (sk->sk_shutdown & SEND_SHUTDOWN || 2050 vsk->peer_shutdown & RCV_SHUTDOWN) { 2051 err = -EPIPE; 2052 goto out; 2053 } 2054 2055 if (!transport || sk->sk_state != TCP_ESTABLISHED || 2056 !vsock_addr_bound(&vsk->local_addr)) { 2057 err = -ENOTCONN; 2058 goto out; 2059 } 2060 2061 if (!vsock_addr_bound(&vsk->remote_addr)) { 2062 err = -EDESTADDRREQ; 2063 goto out; 2064 } 2065 2066 if (msg->msg_flags & MSG_ZEROCOPY && 2067 !vsock_msgzerocopy_allow(transport)) { 2068 err = -EOPNOTSUPP; 2069 goto out; 2070 } 2071 2072 /* Wait for room in the produce queue to enqueue our user's data. */ 2073 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 2074 2075 err = transport->notify_send_init(vsk, &send_data); 2076 if (err < 0) 2077 goto out; 2078 2079 while (total_written < len) { 2080 ssize_t written; 2081 2082 add_wait_queue(sk_sleep(sk), &wait); 2083 while (vsock_stream_has_space(vsk) == 0 && 2084 sk->sk_err == 0 && 2085 !(sk->sk_shutdown & SEND_SHUTDOWN) && 2086 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 2087 2088 /* Don't wait for non-blocking sockets. */ 2089 if (timeout == 0) { 2090 err = -EAGAIN; 2091 remove_wait_queue(sk_sleep(sk), &wait); 2092 goto out_err; 2093 } 2094 2095 err = transport->notify_send_pre_block(vsk, &send_data); 2096 if (err < 0) { 2097 remove_wait_queue(sk_sleep(sk), &wait); 2098 goto out_err; 2099 } 2100 2101 release_sock(sk); 2102 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2103 lock_sock(sk); 2104 if (signal_pending(current)) { 2105 err = sock_intr_errno(timeout); 2106 remove_wait_queue(sk_sleep(sk), &wait); 2107 goto out_err; 2108 } else if (timeout == 0) { 2109 err = -EAGAIN; 2110 remove_wait_queue(sk_sleep(sk), &wait); 2111 goto out_err; 2112 } 2113 } 2114 remove_wait_queue(sk_sleep(sk), &wait); 2115 2116 /* These checks occur both as part of and after the loop 2117 * conditional since we need to check before and after 2118 * sleeping. 2119 */ 2120 if (sk->sk_err) { 2121 err = -sk->sk_err; 2122 goto out_err; 2123 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2124 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2125 err = -EPIPE; 2126 goto out_err; 2127 } 2128 2129 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2130 if (err < 0) 2131 goto out_err; 2132 2133 /* Note that enqueue will only write as many bytes as are free 2134 * in the produce queue, so we don't need to ensure len is 2135 * smaller than the queue size. It is the caller's 2136 * responsibility to check how many bytes we were able to send. 2137 */ 2138 2139 if (sk->sk_type == SOCK_SEQPACKET) { 2140 written = transport->seqpacket_enqueue(vsk, 2141 msg, len - total_written); 2142 } else { 2143 written = transport->stream_enqueue(vsk, 2144 msg, len - total_written); 2145 } 2146 2147 if (written < 0) { 2148 err = written; 2149 goto out_err; 2150 } 2151 2152 total_written += written; 2153 2154 err = transport->notify_send_post_enqueue( 2155 vsk, written, &send_data); 2156 if (err < 0) 2157 goto out_err; 2158 2159 } 2160 2161 out_err: 2162 if (total_written > 0) { 2163 /* Return number of written bytes only if: 2164 * 1) SOCK_STREAM socket. 2165 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2166 */ 2167 if (sk->sk_type == SOCK_STREAM || total_written == len) 2168 err = total_written; 2169 } 2170 out: 2171 if (sk->sk_type == SOCK_STREAM) 2172 err = sk_stream_error(sk, msg->msg_flags, err); 2173 2174 release_sock(sk); 2175 return err; 2176 } 2177 2178 static int vsock_connectible_wait_data(struct sock *sk, 2179 struct wait_queue_entry *wait, 2180 long timeout, 2181 struct vsock_transport_recv_notify_data *recv_data, 2182 size_t target) 2183 { 2184 const struct vsock_transport *transport; 2185 struct vsock_sock *vsk; 2186 s64 data; 2187 int err; 2188 2189 vsk = vsock_sk(sk); 2190 err = 0; 2191 transport = vsk->transport; 2192 2193 while (1) { 2194 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2195 data = vsock_connectible_has_data(vsk); 2196 if (data != 0) 2197 break; 2198 2199 if (sk->sk_err != 0 || 2200 (sk->sk_shutdown & RCV_SHUTDOWN) || 2201 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2202 break; 2203 } 2204 2205 /* Don't wait for non-blocking sockets. */ 2206 if (timeout == 0) { 2207 err = -EAGAIN; 2208 break; 2209 } 2210 2211 if (recv_data) { 2212 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2213 if (err < 0) 2214 break; 2215 } 2216 2217 release_sock(sk); 2218 timeout = schedule_timeout(timeout); 2219 lock_sock(sk); 2220 2221 if (signal_pending(current)) { 2222 err = sock_intr_errno(timeout); 2223 break; 2224 } else if (timeout == 0) { 2225 err = -EAGAIN; 2226 break; 2227 } 2228 } 2229 2230 finish_wait(sk_sleep(sk), wait); 2231 2232 if (err) 2233 return err; 2234 2235 /* Internal transport error when checking for available 2236 * data. XXX This should be changed to a connection 2237 * reset in a later change. 2238 */ 2239 if (data < 0) 2240 return -ENOMEM; 2241 2242 return data; 2243 } 2244 2245 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2246 size_t len, int flags) 2247 { 2248 struct vsock_transport_recv_notify_data recv_data; 2249 const struct vsock_transport *transport; 2250 struct vsock_sock *vsk; 2251 ssize_t copied; 2252 size_t target; 2253 long timeout; 2254 int err; 2255 2256 DEFINE_WAIT(wait); 2257 2258 vsk = vsock_sk(sk); 2259 transport = vsk->transport; 2260 2261 /* We must not copy less than target bytes into the user's buffer 2262 * before returning successfully, so we wait for the consume queue to 2263 * have that much data to consume before dequeueing. Note that this 2264 * makes it impossible to handle cases where target is greater than the 2265 * queue size. 2266 */ 2267 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2268 if (target >= transport->stream_rcvhiwat(vsk)) { 2269 err = -ENOMEM; 2270 goto out; 2271 } 2272 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2273 copied = 0; 2274 2275 err = transport->notify_recv_init(vsk, target, &recv_data); 2276 if (err < 0) 2277 goto out; 2278 2279 2280 while (1) { 2281 ssize_t read; 2282 2283 err = vsock_connectible_wait_data(sk, &wait, timeout, 2284 &recv_data, target); 2285 if (err <= 0) 2286 break; 2287 2288 err = transport->notify_recv_pre_dequeue(vsk, target, 2289 &recv_data); 2290 if (err < 0) 2291 break; 2292 2293 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2294 if (read < 0) { 2295 err = read; 2296 break; 2297 } 2298 2299 copied += read; 2300 2301 err = transport->notify_recv_post_dequeue(vsk, target, read, 2302 !(flags & MSG_PEEK), &recv_data); 2303 if (err < 0) 2304 goto out; 2305 2306 if (read >= target || flags & MSG_PEEK) 2307 break; 2308 2309 target -= read; 2310 } 2311 2312 if (sk->sk_err) 2313 err = -sk->sk_err; 2314 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2315 err = 0; 2316 2317 if (copied > 0) 2318 err = copied; 2319 2320 out: 2321 return err; 2322 } 2323 2324 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2325 size_t len, int flags) 2326 { 2327 const struct vsock_transport *transport; 2328 struct vsock_sock *vsk; 2329 ssize_t msg_len; 2330 long timeout; 2331 int err = 0; 2332 DEFINE_WAIT(wait); 2333 2334 vsk = vsock_sk(sk); 2335 transport = vsk->transport; 2336 2337 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2338 2339 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2340 if (err <= 0) 2341 goto out; 2342 2343 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2344 2345 if (msg_len < 0) { 2346 err = msg_len; 2347 goto out; 2348 } 2349 2350 if (sk->sk_err) { 2351 err = -sk->sk_err; 2352 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2353 err = 0; 2354 } else { 2355 /* User sets MSG_TRUNC, so return real length of 2356 * packet. 2357 */ 2358 if (flags & MSG_TRUNC) 2359 err = msg_len; 2360 else 2361 err = len - msg_data_left(msg); 2362 2363 /* Always set MSG_TRUNC if real length of packet is 2364 * bigger than user's buffer. 2365 */ 2366 if (msg_len > len) 2367 msg->msg_flags |= MSG_TRUNC; 2368 } 2369 2370 out: 2371 return err; 2372 } 2373 2374 int 2375 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2376 int flags) 2377 { 2378 struct sock *sk; 2379 struct vsock_sock *vsk; 2380 const struct vsock_transport *transport; 2381 int err; 2382 2383 sk = sock->sk; 2384 2385 if (unlikely(flags & MSG_ERRQUEUE)) 2386 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2387 2388 vsk = vsock_sk(sk); 2389 err = 0; 2390 2391 lock_sock(sk); 2392 2393 transport = vsk->transport; 2394 2395 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2396 /* Recvmsg is supposed to return 0 if a peer performs an 2397 * orderly shutdown. Differentiate between that case and when a 2398 * peer has not connected or a local shutdown occurred with the 2399 * SOCK_DONE flag. 2400 */ 2401 if (sock_flag(sk, SOCK_DONE)) 2402 err = 0; 2403 else 2404 err = -ENOTCONN; 2405 2406 goto out; 2407 } 2408 2409 if (flags & MSG_OOB) { 2410 err = -EOPNOTSUPP; 2411 goto out; 2412 } 2413 2414 /* We don't check peer_shutdown flag here since peer may actually shut 2415 * down, but there can be data in the queue that a local socket can 2416 * receive. 2417 */ 2418 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2419 err = 0; 2420 goto out; 2421 } 2422 2423 /* It is valid on Linux to pass in a zero-length receive buffer. This 2424 * is not an error. We may as well bail out now. 2425 */ 2426 if (!len) { 2427 err = 0; 2428 goto out; 2429 } 2430 2431 if (sk->sk_type == SOCK_STREAM) 2432 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2433 else 2434 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2435 2436 out: 2437 release_sock(sk); 2438 return err; 2439 } 2440 2441 int 2442 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2443 int flags) 2444 { 2445 #ifdef CONFIG_BPF_SYSCALL 2446 struct sock *sk = sock->sk; 2447 const struct proto *prot; 2448 2449 prot = READ_ONCE(sk->sk_prot); 2450 if (prot != &vsock_proto) 2451 return prot->recvmsg(sk, msg, len, flags, NULL); 2452 #endif 2453 2454 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2455 } 2456 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2457 2458 static int vsock_set_rcvlowat(struct sock *sk, int val) 2459 { 2460 const struct vsock_transport *transport; 2461 struct vsock_sock *vsk; 2462 2463 vsk = vsock_sk(sk); 2464 2465 if (val > vsk->buffer_size) 2466 return -EINVAL; 2467 2468 transport = vsk->transport; 2469 2470 if (transport && transport->notify_set_rcvlowat) { 2471 int err; 2472 2473 err = transport->notify_set_rcvlowat(vsk, val); 2474 if (err) 2475 return err; 2476 } 2477 2478 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2479 return 0; 2480 } 2481 2482 static const struct proto_ops vsock_stream_ops = { 2483 .family = PF_VSOCK, 2484 .owner = THIS_MODULE, 2485 .release = vsock_release, 2486 .bind = vsock_bind, 2487 .connect = vsock_connect, 2488 .socketpair = sock_no_socketpair, 2489 .accept = vsock_accept, 2490 .getname = vsock_getname, 2491 .poll = vsock_poll, 2492 .ioctl = vsock_ioctl, 2493 .listen = vsock_listen, 2494 .shutdown = vsock_shutdown, 2495 .setsockopt = vsock_connectible_setsockopt, 2496 .getsockopt = vsock_connectible_getsockopt, 2497 .sendmsg = vsock_connectible_sendmsg, 2498 .recvmsg = vsock_connectible_recvmsg, 2499 .mmap = sock_no_mmap, 2500 .set_rcvlowat = vsock_set_rcvlowat, 2501 .read_skb = vsock_read_skb, 2502 }; 2503 2504 static const struct proto_ops vsock_seqpacket_ops = { 2505 .family = PF_VSOCK, 2506 .owner = THIS_MODULE, 2507 .release = vsock_release, 2508 .bind = vsock_bind, 2509 .connect = vsock_connect, 2510 .socketpair = sock_no_socketpair, 2511 .accept = vsock_accept, 2512 .getname = vsock_getname, 2513 .poll = vsock_poll, 2514 .ioctl = vsock_ioctl, 2515 .listen = vsock_listen, 2516 .shutdown = vsock_shutdown, 2517 .setsockopt = vsock_connectible_setsockopt, 2518 .getsockopt = vsock_connectible_getsockopt, 2519 .sendmsg = vsock_connectible_sendmsg, 2520 .recvmsg = vsock_connectible_recvmsg, 2521 .mmap = sock_no_mmap, 2522 .read_skb = vsock_read_skb, 2523 }; 2524 2525 static int vsock_create(struct net *net, struct socket *sock, 2526 int protocol, int kern) 2527 { 2528 struct vsock_sock *vsk; 2529 struct sock *sk; 2530 int ret; 2531 2532 if (!sock) 2533 return -EINVAL; 2534 2535 if (protocol && protocol != PF_VSOCK) 2536 return -EPROTONOSUPPORT; 2537 2538 switch (sock->type) { 2539 case SOCK_DGRAM: 2540 sock->ops = &vsock_dgram_ops; 2541 break; 2542 case SOCK_STREAM: 2543 sock->ops = &vsock_stream_ops; 2544 break; 2545 case SOCK_SEQPACKET: 2546 sock->ops = &vsock_seqpacket_ops; 2547 break; 2548 default: 2549 return -ESOCKTNOSUPPORT; 2550 } 2551 2552 sock->state = SS_UNCONNECTED; 2553 2554 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2555 if (!sk) 2556 return -ENOMEM; 2557 2558 vsk = vsock_sk(sk); 2559 2560 if (sock->type == SOCK_DGRAM) { 2561 ret = vsock_assign_transport(vsk, NULL); 2562 if (ret < 0) { 2563 sock->sk = NULL; 2564 sock_put(sk); 2565 return ret; 2566 } 2567 } 2568 2569 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2570 * proto_ops, so there is no handler for custom logic. 2571 */ 2572 if (sock_type_connectible(sock->type)) 2573 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2574 2575 vsock_insert_unbound(vsk); 2576 2577 return 0; 2578 } 2579 2580 static const struct net_proto_family vsock_family_ops = { 2581 .family = AF_VSOCK, 2582 .create = vsock_create, 2583 .owner = THIS_MODULE, 2584 }; 2585 2586 static long vsock_dev_do_ioctl(struct file *filp, 2587 unsigned int cmd, void __user *ptr) 2588 { 2589 u32 __user *p = ptr; 2590 int retval = 0; 2591 u32 cid; 2592 2593 switch (cmd) { 2594 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2595 /* To be compatible with the VMCI behavior, we prioritize the 2596 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2597 */ 2598 cid = vsock_registered_transport_cid(&transport_g2h); 2599 if (cid == VMADDR_CID_ANY) 2600 cid = vsock_registered_transport_cid(&transport_h2g); 2601 if (cid == VMADDR_CID_ANY) 2602 cid = vsock_registered_transport_cid(&transport_local); 2603 2604 if (put_user(cid, p) != 0) 2605 retval = -EFAULT; 2606 break; 2607 2608 default: 2609 retval = -ENOIOCTLCMD; 2610 } 2611 2612 return retval; 2613 } 2614 2615 static long vsock_dev_ioctl(struct file *filp, 2616 unsigned int cmd, unsigned long arg) 2617 { 2618 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2619 } 2620 2621 #ifdef CONFIG_COMPAT 2622 static long vsock_dev_compat_ioctl(struct file *filp, 2623 unsigned int cmd, unsigned long arg) 2624 { 2625 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2626 } 2627 #endif 2628 2629 static const struct file_operations vsock_device_ops = { 2630 .owner = THIS_MODULE, 2631 .unlocked_ioctl = vsock_dev_ioctl, 2632 #ifdef CONFIG_COMPAT 2633 .compat_ioctl = vsock_dev_compat_ioctl, 2634 #endif 2635 .open = nonseekable_open, 2636 }; 2637 2638 static struct miscdevice vsock_device = { 2639 .name = "vsock", 2640 .fops = &vsock_device_ops, 2641 }; 2642 2643 static int __init vsock_init(void) 2644 { 2645 int err = 0; 2646 2647 vsock_init_tables(); 2648 2649 vsock_proto.owner = THIS_MODULE; 2650 vsock_device.minor = MISC_DYNAMIC_MINOR; 2651 err = misc_register(&vsock_device); 2652 if (err) { 2653 pr_err("Failed to register misc device\n"); 2654 goto err_reset_transport; 2655 } 2656 2657 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2658 if (err) { 2659 pr_err("Cannot register vsock protocol\n"); 2660 goto err_deregister_misc; 2661 } 2662 2663 err = sock_register(&vsock_family_ops); 2664 if (err) { 2665 pr_err("could not register af_vsock (%d) address family: %d\n", 2666 AF_VSOCK, err); 2667 goto err_unregister_proto; 2668 } 2669 2670 vsock_bpf_build_proto(); 2671 2672 return 0; 2673 2674 err_unregister_proto: 2675 proto_unregister(&vsock_proto); 2676 err_deregister_misc: 2677 misc_deregister(&vsock_device); 2678 err_reset_transport: 2679 return err; 2680 } 2681 2682 static void __exit vsock_exit(void) 2683 { 2684 misc_deregister(&vsock_device); 2685 sock_unregister(AF_VSOCK); 2686 proto_unregister(&vsock_proto); 2687 } 2688 2689 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2690 { 2691 return vsk->transport; 2692 } 2693 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2694 2695 int vsock_core_register(const struct vsock_transport *t, int features) 2696 { 2697 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2698 int err = mutex_lock_interruptible(&vsock_register_mutex); 2699 2700 if (err) 2701 return err; 2702 2703 t_h2g = transport_h2g; 2704 t_g2h = transport_g2h; 2705 t_dgram = transport_dgram; 2706 t_local = transport_local; 2707 2708 if (features & VSOCK_TRANSPORT_F_H2G) { 2709 if (t_h2g) { 2710 err = -EBUSY; 2711 goto err_busy; 2712 } 2713 t_h2g = t; 2714 } 2715 2716 if (features & VSOCK_TRANSPORT_F_G2H) { 2717 if (t_g2h) { 2718 err = -EBUSY; 2719 goto err_busy; 2720 } 2721 t_g2h = t; 2722 } 2723 2724 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2725 if (t_dgram) { 2726 err = -EBUSY; 2727 goto err_busy; 2728 } 2729 t_dgram = t; 2730 } 2731 2732 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2733 if (t_local) { 2734 err = -EBUSY; 2735 goto err_busy; 2736 } 2737 t_local = t; 2738 } 2739 2740 transport_h2g = t_h2g; 2741 transport_g2h = t_g2h; 2742 transport_dgram = t_dgram; 2743 transport_local = t_local; 2744 2745 err_busy: 2746 mutex_unlock(&vsock_register_mutex); 2747 return err; 2748 } 2749 EXPORT_SYMBOL_GPL(vsock_core_register); 2750 2751 void vsock_core_unregister(const struct vsock_transport *t) 2752 { 2753 mutex_lock(&vsock_register_mutex); 2754 2755 if (transport_h2g == t) 2756 transport_h2g = NULL; 2757 2758 if (transport_g2h == t) 2759 transport_g2h = NULL; 2760 2761 if (transport_dgram == t) 2762 transport_dgram = NULL; 2763 2764 if (transport_local == t) 2765 transport_local = NULL; 2766 2767 mutex_unlock(&vsock_register_mutex); 2768 } 2769 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2770 2771 module_init(vsock_init); 2772 module_exit(vsock_exit); 2773 2774 MODULE_AUTHOR("VMware, Inc."); 2775 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2776 MODULE_VERSION("1.0.2.0-k"); 2777 MODULE_LICENSE("GPL v2"); 2778