1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 static void vsock_close(struct sock *sk, long timeout); 121 122 /* Protocol family. */ 123 struct proto vsock_proto = { 124 .name = "AF_VSOCK", 125 .owner = THIS_MODULE, 126 .obj_size = sizeof(struct vsock_sock), 127 .close = vsock_close, 128 #ifdef CONFIG_BPF_SYSCALL 129 .psock_update_sk_prot = vsock_bpf_update_proto, 130 #endif 131 }; 132 133 /* The default peer timeout indicates how long we will wait for a peer response 134 * to a control message. 135 */ 136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 137 138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 141 142 /* Transport used for host->guest communication */ 143 static const struct vsock_transport *transport_h2g; 144 /* Transport used for guest->host communication */ 145 static const struct vsock_transport *transport_g2h; 146 /* Transport used for DGRAM communication */ 147 static const struct vsock_transport *transport_dgram; 148 /* Transport used for local communication */ 149 static const struct vsock_transport *transport_local; 150 static DEFINE_MUTEX(vsock_register_mutex); 151 152 /**** UTILS ****/ 153 154 /* Each bound VSocket is stored in the bind hash table and each connected 155 * VSocket is stored in the connected hash table. 156 * 157 * Unbound sockets are all put on the same list attached to the end of the hash 158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 159 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 160 * represents the list that addr hashes to). 161 * 162 * Specifically, we initialize the vsock_bind_table array to a size of 163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 166 * mods with VSOCK_HASH_SIZE to ensure this. 167 */ 168 #define MAX_PORT_RETRIES 24 169 170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 173 174 /* XXX This can probably be implemented in a better way. */ 175 #define VSOCK_CONN_HASH(src, dst) \ 176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 177 #define vsock_connected_sockets(src, dst) \ 178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 179 #define vsock_connected_sockets_vsk(vsk) \ 180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 181 182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 183 EXPORT_SYMBOL_GPL(vsock_bind_table); 184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 185 EXPORT_SYMBOL_GPL(vsock_connected_table); 186 DEFINE_SPINLOCK(vsock_table_lock); 187 EXPORT_SYMBOL_GPL(vsock_table_lock); 188 189 /* Autobind this socket to the local address if necessary. */ 190 static int vsock_auto_bind(struct vsock_sock *vsk) 191 { 192 struct sock *sk = sk_vsock(vsk); 193 struct sockaddr_vm local_addr; 194 195 if (vsock_addr_bound(&vsk->local_addr)) 196 return 0; 197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 198 return __vsock_bind(sk, &local_addr); 199 } 200 201 static void vsock_init_tables(void) 202 { 203 int i; 204 205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 206 INIT_LIST_HEAD(&vsock_bind_table[i]); 207 208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 209 INIT_LIST_HEAD(&vsock_connected_table[i]); 210 } 211 212 static void __vsock_insert_bound(struct list_head *list, 213 struct vsock_sock *vsk) 214 { 215 sock_hold(&vsk->sk); 216 list_add(&vsk->bound_table, list); 217 } 218 219 static void __vsock_insert_connected(struct list_head *list, 220 struct vsock_sock *vsk) 221 { 222 sock_hold(&vsk->sk); 223 list_add(&vsk->connected_table, list); 224 } 225 226 static void __vsock_remove_bound(struct vsock_sock *vsk) 227 { 228 list_del_init(&vsk->bound_table); 229 sock_put(&vsk->sk); 230 } 231 232 static void __vsock_remove_connected(struct vsock_sock *vsk) 233 { 234 list_del_init(&vsk->connected_table); 235 sock_put(&vsk->sk); 236 } 237 238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 239 { 240 struct vsock_sock *vsk; 241 242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 243 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 244 return sk_vsock(vsk); 245 246 if (addr->svm_port == vsk->local_addr.svm_port && 247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 248 addr->svm_cid == VMADDR_CID_ANY)) 249 return sk_vsock(vsk); 250 } 251 252 return NULL; 253 } 254 255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 256 struct sockaddr_vm *dst) 257 { 258 struct vsock_sock *vsk; 259 260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 261 connected_table) { 262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 263 dst->svm_port == vsk->local_addr.svm_port) { 264 return sk_vsock(vsk); 265 } 266 } 267 268 return NULL; 269 } 270 271 static void vsock_insert_unbound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_bound(vsock_unbound_sockets, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 278 void vsock_insert_connected(struct vsock_sock *vsk) 279 { 280 struct list_head *list = vsock_connected_sockets( 281 &vsk->remote_addr, &vsk->local_addr); 282 283 spin_lock_bh(&vsock_table_lock); 284 __vsock_insert_connected(list, vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_insert_connected); 288 289 void vsock_remove_bound(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_bound_table(vsk)) 293 __vsock_remove_bound(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_bound); 297 298 void vsock_remove_connected(struct vsock_sock *vsk) 299 { 300 spin_lock_bh(&vsock_table_lock); 301 if (__vsock_in_connected_table(vsk)) 302 __vsock_remove_connected(vsk); 303 spin_unlock_bh(&vsock_table_lock); 304 } 305 EXPORT_SYMBOL_GPL(vsock_remove_connected); 306 307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 308 { 309 struct sock *sk; 310 311 spin_lock_bh(&vsock_table_lock); 312 sk = __vsock_find_bound_socket(addr); 313 if (sk) 314 sock_hold(sk); 315 316 spin_unlock_bh(&vsock_table_lock); 317 318 return sk; 319 } 320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 321 322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 323 struct sockaddr_vm *dst) 324 { 325 struct sock *sk; 326 327 spin_lock_bh(&vsock_table_lock); 328 sk = __vsock_find_connected_socket(src, dst); 329 if (sk) 330 sock_hold(sk); 331 332 spin_unlock_bh(&vsock_table_lock); 333 334 return sk; 335 } 336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 337 338 void vsock_remove_sock(struct vsock_sock *vsk) 339 { 340 /* Transport reassignment must not remove the binding. */ 341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD)) 342 vsock_remove_bound(vsk); 343 344 vsock_remove_connected(vsk); 345 } 346 EXPORT_SYMBOL_GPL(vsock_remove_sock); 347 348 void vsock_for_each_connected_socket(struct vsock_transport *transport, 349 void (*fn)(struct sock *sk)) 350 { 351 int i; 352 353 spin_lock_bh(&vsock_table_lock); 354 355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 356 struct vsock_sock *vsk; 357 list_for_each_entry(vsk, &vsock_connected_table[i], 358 connected_table) { 359 if (vsk->transport != transport) 360 continue; 361 362 fn(sk_vsock(vsk)); 363 } 364 } 365 366 spin_unlock_bh(&vsock_table_lock); 367 } 368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 369 370 void vsock_add_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vpending; 374 375 vlistener = vsock_sk(listener); 376 vpending = vsock_sk(pending); 377 378 sock_hold(pending); 379 sock_hold(listener); 380 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 381 } 382 EXPORT_SYMBOL_GPL(vsock_add_pending); 383 384 void vsock_remove_pending(struct sock *listener, struct sock *pending) 385 { 386 struct vsock_sock *vpending = vsock_sk(pending); 387 388 list_del_init(&vpending->pending_links); 389 sock_put(listener); 390 sock_put(pending); 391 } 392 EXPORT_SYMBOL_GPL(vsock_remove_pending); 393 394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 vconnected = vsock_sk(connected); 401 402 sock_hold(connected); 403 sock_hold(listener); 404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 405 } 406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 407 408 static bool vsock_use_local_transport(unsigned int remote_cid) 409 { 410 if (!transport_local) 411 return false; 412 413 if (remote_cid == VMADDR_CID_LOCAL) 414 return true; 415 416 if (transport_g2h) { 417 return remote_cid == transport_g2h->get_local_cid(); 418 } else { 419 return remote_cid == VMADDR_CID_HOST; 420 } 421 } 422 423 static void vsock_deassign_transport(struct vsock_sock *vsk) 424 { 425 if (!vsk->transport) 426 return; 427 428 vsk->transport->destruct(vsk); 429 module_put(vsk->transport->module); 430 vsk->transport = NULL; 431 } 432 433 /* Assign a transport to a socket and call the .init transport callback. 434 * 435 * Note: for connection oriented socket this must be called when vsk->remote_addr 436 * is set (e.g. during the connect() or when a connection request on a listener 437 * socket is received). 438 * The vsk->remote_addr is used to decide which transport to use: 439 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 440 * g2h is not loaded, will use local transport; 441 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 442 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 443 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 444 */ 445 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 446 { 447 const struct vsock_transport *new_transport; 448 struct sock *sk = sk_vsock(vsk); 449 unsigned int remote_cid = vsk->remote_addr.svm_cid; 450 __u8 remote_flags; 451 int ret; 452 453 /* If the packet is coming with the source and destination CIDs higher 454 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 455 * forwarded to the host should be established. Then the host will 456 * need to forward the packets to the guest. 457 * 458 * The flag is set on the (listen) receive path (psk is not NULL). On 459 * the connect path the flag can be set by the user space application. 460 */ 461 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 462 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 463 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 464 465 remote_flags = vsk->remote_addr.svm_flags; 466 467 switch (sk->sk_type) { 468 case SOCK_DGRAM: 469 new_transport = transport_dgram; 470 break; 471 case SOCK_STREAM: 472 case SOCK_SEQPACKET: 473 if (vsock_use_local_transport(remote_cid)) 474 new_transport = transport_local; 475 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 476 (remote_flags & VMADDR_FLAG_TO_HOST)) 477 new_transport = transport_g2h; 478 else 479 new_transport = transport_h2g; 480 break; 481 default: 482 return -ESOCKTNOSUPPORT; 483 } 484 485 if (vsk->transport) { 486 if (vsk->transport == new_transport) 487 return 0; 488 489 /* transport->release() must be called with sock lock acquired. 490 * This path can only be taken during vsock_connect(), where we 491 * have already held the sock lock. In the other cases, this 492 * function is called on a new socket which is not assigned to 493 * any transport. 494 */ 495 vsk->transport->release(vsk); 496 vsock_deassign_transport(vsk); 497 498 /* transport's release() and destruct() can touch some socket 499 * state, since we are reassigning the socket to a new transport 500 * during vsock_connect(), let's reset these fields to have a 501 * clean state. 502 */ 503 sock_reset_flag(sk, SOCK_DONE); 504 sk->sk_state = TCP_CLOSE; 505 vsk->peer_shutdown = 0; 506 } 507 508 /* We increase the module refcnt to prevent the transport unloading 509 * while there are open sockets assigned to it. 510 */ 511 if (!new_transport || !try_module_get(new_transport->module)) 512 return -ENODEV; 513 514 if (sk->sk_type == SOCK_SEQPACKET) { 515 if (!new_transport->seqpacket_allow || 516 !new_transport->seqpacket_allow(remote_cid)) { 517 module_put(new_transport->module); 518 return -ESOCKTNOSUPPORT; 519 } 520 } 521 522 ret = new_transport->init(vsk, psk); 523 if (ret) { 524 module_put(new_transport->module); 525 return ret; 526 } 527 528 vsk->transport = new_transport; 529 530 return 0; 531 } 532 EXPORT_SYMBOL_GPL(vsock_assign_transport); 533 534 bool vsock_find_cid(unsigned int cid) 535 { 536 if (transport_g2h && cid == transport_g2h->get_local_cid()) 537 return true; 538 539 if (transport_h2g && cid == VMADDR_CID_HOST) 540 return true; 541 542 if (transport_local && cid == VMADDR_CID_LOCAL) 543 return true; 544 545 return false; 546 } 547 EXPORT_SYMBOL_GPL(vsock_find_cid); 548 549 static struct sock *vsock_dequeue_accept(struct sock *listener) 550 { 551 struct vsock_sock *vlistener; 552 struct vsock_sock *vconnected; 553 554 vlistener = vsock_sk(listener); 555 556 if (list_empty(&vlistener->accept_queue)) 557 return NULL; 558 559 vconnected = list_entry(vlistener->accept_queue.next, 560 struct vsock_sock, accept_queue); 561 562 list_del_init(&vconnected->accept_queue); 563 sock_put(listener); 564 /* The caller will need a reference on the connected socket so we let 565 * it call sock_put(). 566 */ 567 568 return sk_vsock(vconnected); 569 } 570 571 static bool vsock_is_accept_queue_empty(struct sock *sk) 572 { 573 struct vsock_sock *vsk = vsock_sk(sk); 574 return list_empty(&vsk->accept_queue); 575 } 576 577 static bool vsock_is_pending(struct sock *sk) 578 { 579 struct vsock_sock *vsk = vsock_sk(sk); 580 return !list_empty(&vsk->pending_links); 581 } 582 583 static int vsock_send_shutdown(struct sock *sk, int mode) 584 { 585 struct vsock_sock *vsk = vsock_sk(sk); 586 587 if (!vsk->transport) 588 return -ENODEV; 589 590 return vsk->transport->shutdown(vsk, mode); 591 } 592 593 static void vsock_pending_work(struct work_struct *work) 594 { 595 struct sock *sk; 596 struct sock *listener; 597 struct vsock_sock *vsk; 598 bool cleanup; 599 600 vsk = container_of(work, struct vsock_sock, pending_work.work); 601 sk = sk_vsock(vsk); 602 listener = vsk->listener; 603 cleanup = true; 604 605 lock_sock(listener); 606 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 607 608 if (vsock_is_pending(sk)) { 609 vsock_remove_pending(listener, sk); 610 611 sk_acceptq_removed(listener); 612 } else if (!vsk->rejected) { 613 /* We are not on the pending list and accept() did not reject 614 * us, so we must have been accepted by our user process. We 615 * just need to drop our references to the sockets and be on 616 * our way. 617 */ 618 cleanup = false; 619 goto out; 620 } 621 622 /* We need to remove ourself from the global connected sockets list so 623 * incoming packets can't find this socket, and to reduce the reference 624 * count. 625 */ 626 vsock_remove_connected(vsk); 627 628 sk->sk_state = TCP_CLOSE; 629 630 out: 631 release_sock(sk); 632 release_sock(listener); 633 if (cleanup) 634 sock_put(sk); 635 636 sock_put(sk); 637 sock_put(listener); 638 } 639 640 /**** SOCKET OPERATIONS ****/ 641 642 static int __vsock_bind_connectible(struct vsock_sock *vsk, 643 struct sockaddr_vm *addr) 644 { 645 static u32 port; 646 struct sockaddr_vm new_addr; 647 648 if (!port) 649 port = get_random_u32_above(LAST_RESERVED_PORT); 650 651 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 652 653 if (addr->svm_port == VMADDR_PORT_ANY) { 654 bool found = false; 655 unsigned int i; 656 657 for (i = 0; i < MAX_PORT_RETRIES; i++) { 658 if (port <= LAST_RESERVED_PORT) 659 port = LAST_RESERVED_PORT + 1; 660 661 new_addr.svm_port = port++; 662 663 if (!__vsock_find_bound_socket(&new_addr)) { 664 found = true; 665 break; 666 } 667 } 668 669 if (!found) 670 return -EADDRNOTAVAIL; 671 } else { 672 /* If port is in reserved range, ensure caller 673 * has necessary privileges. 674 */ 675 if (addr->svm_port <= LAST_RESERVED_PORT && 676 !capable(CAP_NET_BIND_SERVICE)) { 677 return -EACCES; 678 } 679 680 if (__vsock_find_bound_socket(&new_addr)) 681 return -EADDRINUSE; 682 } 683 684 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 685 686 /* Remove connection oriented sockets from the unbound list and add them 687 * to the hash table for easy lookup by its address. The unbound list 688 * is simply an extra entry at the end of the hash table, a trick used 689 * by AF_UNIX. 690 */ 691 __vsock_remove_bound(vsk); 692 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 693 694 return 0; 695 } 696 697 static int __vsock_bind_dgram(struct vsock_sock *vsk, 698 struct sockaddr_vm *addr) 699 { 700 return vsk->transport->dgram_bind(vsk, addr); 701 } 702 703 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 704 { 705 struct vsock_sock *vsk = vsock_sk(sk); 706 int retval; 707 708 /* First ensure this socket isn't already bound. */ 709 if (vsock_addr_bound(&vsk->local_addr)) 710 return -EINVAL; 711 712 /* Now bind to the provided address or select appropriate values if 713 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 714 * like AF_INET prevents binding to a non-local IP address (in most 715 * cases), we only allow binding to a local CID. 716 */ 717 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 718 return -EADDRNOTAVAIL; 719 720 switch (sk->sk_socket->type) { 721 case SOCK_STREAM: 722 case SOCK_SEQPACKET: 723 spin_lock_bh(&vsock_table_lock); 724 retval = __vsock_bind_connectible(vsk, addr); 725 spin_unlock_bh(&vsock_table_lock); 726 break; 727 728 case SOCK_DGRAM: 729 retval = __vsock_bind_dgram(vsk, addr); 730 break; 731 732 default: 733 retval = -EINVAL; 734 break; 735 } 736 737 return retval; 738 } 739 740 static void vsock_connect_timeout(struct work_struct *work); 741 742 static struct sock *__vsock_create(struct net *net, 743 struct socket *sock, 744 struct sock *parent, 745 gfp_t priority, 746 unsigned short type, 747 int kern) 748 { 749 struct sock *sk; 750 struct vsock_sock *psk; 751 struct vsock_sock *vsk; 752 753 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 754 if (!sk) 755 return NULL; 756 757 sock_init_data(sock, sk); 758 759 /* sk->sk_type is normally set in sock_init_data, but only if sock is 760 * non-NULL. We make sure that our sockets always have a type by 761 * setting it here if needed. 762 */ 763 if (!sock) 764 sk->sk_type = type; 765 766 vsk = vsock_sk(sk); 767 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 768 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 769 770 sk->sk_destruct = vsock_sk_destruct; 771 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 772 sock_reset_flag(sk, SOCK_DONE); 773 774 INIT_LIST_HEAD(&vsk->bound_table); 775 INIT_LIST_HEAD(&vsk->connected_table); 776 vsk->listener = NULL; 777 INIT_LIST_HEAD(&vsk->pending_links); 778 INIT_LIST_HEAD(&vsk->accept_queue); 779 vsk->rejected = false; 780 vsk->sent_request = false; 781 vsk->ignore_connecting_rst = false; 782 vsk->peer_shutdown = 0; 783 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 784 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 785 786 psk = parent ? vsock_sk(parent) : NULL; 787 if (parent) { 788 vsk->trusted = psk->trusted; 789 vsk->owner = get_cred(psk->owner); 790 vsk->connect_timeout = psk->connect_timeout; 791 vsk->buffer_size = psk->buffer_size; 792 vsk->buffer_min_size = psk->buffer_min_size; 793 vsk->buffer_max_size = psk->buffer_max_size; 794 security_sk_clone(parent, sk); 795 } else { 796 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 797 vsk->owner = get_current_cred(); 798 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 799 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 800 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 801 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 802 } 803 804 return sk; 805 } 806 807 static bool sock_type_connectible(u16 type) 808 { 809 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 810 } 811 812 static void __vsock_release(struct sock *sk, int level) 813 { 814 struct vsock_sock *vsk; 815 struct sock *pending; 816 817 vsk = vsock_sk(sk); 818 pending = NULL; /* Compiler warning. */ 819 820 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 821 * version to avoid the warning "possible recursive locking 822 * detected". When "level" is 0, lock_sock_nested(sk, level) 823 * is the same as lock_sock(sk). 824 */ 825 lock_sock_nested(sk, level); 826 827 /* Indicate to vsock_remove_sock() that the socket is being released and 828 * can be removed from the bound_table. Unlike transport reassignment 829 * case, where the socket must remain bound despite vsock_remove_sock() 830 * being called from the transport release() callback. 831 */ 832 sock_set_flag(sk, SOCK_DEAD); 833 834 if (vsk->transport) 835 vsk->transport->release(vsk); 836 else if (sock_type_connectible(sk->sk_type)) 837 vsock_remove_sock(vsk); 838 839 sock_orphan(sk); 840 sk->sk_shutdown = SHUTDOWN_MASK; 841 842 skb_queue_purge(&sk->sk_receive_queue); 843 844 /* Clean up any sockets that never were accepted. */ 845 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 846 __vsock_release(pending, SINGLE_DEPTH_NESTING); 847 sock_put(pending); 848 } 849 850 release_sock(sk); 851 sock_put(sk); 852 } 853 854 static void vsock_sk_destruct(struct sock *sk) 855 { 856 struct vsock_sock *vsk = vsock_sk(sk); 857 858 /* Flush MSG_ZEROCOPY leftovers. */ 859 __skb_queue_purge(&sk->sk_error_queue); 860 861 vsock_deassign_transport(vsk); 862 863 /* When clearing these addresses, there's no need to set the family and 864 * possibly register the address family with the kernel. 865 */ 866 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 867 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 868 869 put_cred(vsk->owner); 870 } 871 872 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 873 { 874 int err; 875 876 err = sock_queue_rcv_skb(sk, skb); 877 if (err) 878 kfree_skb(skb); 879 880 return err; 881 } 882 883 struct sock *vsock_create_connected(struct sock *parent) 884 { 885 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 886 parent->sk_type, 0); 887 } 888 EXPORT_SYMBOL_GPL(vsock_create_connected); 889 890 s64 vsock_stream_has_data(struct vsock_sock *vsk) 891 { 892 if (WARN_ON(!vsk->transport)) 893 return 0; 894 895 return vsk->transport->stream_has_data(vsk); 896 } 897 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 898 899 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 900 { 901 struct sock *sk = sk_vsock(vsk); 902 903 if (WARN_ON(!vsk->transport)) 904 return 0; 905 906 if (sk->sk_type == SOCK_SEQPACKET) 907 return vsk->transport->seqpacket_has_data(vsk); 908 else 909 return vsock_stream_has_data(vsk); 910 } 911 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 912 913 s64 vsock_stream_has_space(struct vsock_sock *vsk) 914 { 915 if (WARN_ON(!vsk->transport)) 916 return 0; 917 918 return vsk->transport->stream_has_space(vsk); 919 } 920 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 921 922 void vsock_data_ready(struct sock *sk) 923 { 924 struct vsock_sock *vsk = vsock_sk(sk); 925 926 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 927 sock_flag(sk, SOCK_DONE)) 928 sk->sk_data_ready(sk); 929 } 930 EXPORT_SYMBOL_GPL(vsock_data_ready); 931 932 /* Dummy callback required by sockmap. 933 * See unconditional call of saved_close() in sock_map_close(). 934 */ 935 static void vsock_close(struct sock *sk, long timeout) 936 { 937 } 938 939 static int vsock_release(struct socket *sock) 940 { 941 struct sock *sk = sock->sk; 942 943 if (!sk) 944 return 0; 945 946 sk->sk_prot->close(sk, 0); 947 __vsock_release(sk, 0); 948 sock->sk = NULL; 949 sock->state = SS_FREE; 950 951 return 0; 952 } 953 954 static int 955 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 956 { 957 int err; 958 struct sock *sk; 959 struct sockaddr_vm *vm_addr; 960 961 sk = sock->sk; 962 963 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 964 return -EINVAL; 965 966 lock_sock(sk); 967 err = __vsock_bind(sk, vm_addr); 968 release_sock(sk); 969 970 return err; 971 } 972 973 static int vsock_getname(struct socket *sock, 974 struct sockaddr *addr, int peer) 975 { 976 int err; 977 struct sock *sk; 978 struct vsock_sock *vsk; 979 struct sockaddr_vm *vm_addr; 980 981 sk = sock->sk; 982 vsk = vsock_sk(sk); 983 err = 0; 984 985 lock_sock(sk); 986 987 if (peer) { 988 if (sock->state != SS_CONNECTED) { 989 err = -ENOTCONN; 990 goto out; 991 } 992 vm_addr = &vsk->remote_addr; 993 } else { 994 vm_addr = &vsk->local_addr; 995 } 996 997 if (!vm_addr) { 998 err = -EINVAL; 999 goto out; 1000 } 1001 1002 /* sys_getsockname() and sys_getpeername() pass us a 1003 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 1004 * that macro is defined in socket.c instead of .h, so we hardcode its 1005 * value here. 1006 */ 1007 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 1008 memcpy(addr, vm_addr, sizeof(*vm_addr)); 1009 err = sizeof(*vm_addr); 1010 1011 out: 1012 release_sock(sk); 1013 return err; 1014 } 1015 1016 static int vsock_shutdown(struct socket *sock, int mode) 1017 { 1018 int err; 1019 struct sock *sk; 1020 1021 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 1022 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 1023 * here like the other address families do. Note also that the 1024 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 1025 * which is what we want. 1026 */ 1027 mode++; 1028 1029 if ((mode & ~SHUTDOWN_MASK) || !mode) 1030 return -EINVAL; 1031 1032 /* If this is a connection oriented socket and it is not connected then 1033 * bail out immediately. If it is a DGRAM socket then we must first 1034 * kick the socket so that it wakes up from any sleeping calls, for 1035 * example recv(), and then afterwards return the error. 1036 */ 1037 1038 sk = sock->sk; 1039 1040 lock_sock(sk); 1041 if (sock->state == SS_UNCONNECTED) { 1042 err = -ENOTCONN; 1043 if (sock_type_connectible(sk->sk_type)) 1044 goto out; 1045 } else { 1046 sock->state = SS_DISCONNECTING; 1047 err = 0; 1048 } 1049 1050 /* Receive and send shutdowns are treated alike. */ 1051 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1052 if (mode) { 1053 sk->sk_shutdown |= mode; 1054 sk->sk_state_change(sk); 1055 1056 if (sock_type_connectible(sk->sk_type)) { 1057 sock_reset_flag(sk, SOCK_DONE); 1058 vsock_send_shutdown(sk, mode); 1059 } 1060 } 1061 1062 out: 1063 release_sock(sk); 1064 return err; 1065 } 1066 1067 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1068 poll_table *wait) 1069 { 1070 struct sock *sk; 1071 __poll_t mask; 1072 struct vsock_sock *vsk; 1073 1074 sk = sock->sk; 1075 vsk = vsock_sk(sk); 1076 1077 poll_wait(file, sk_sleep(sk), wait); 1078 mask = 0; 1079 1080 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1081 /* Signify that there has been an error on this socket. */ 1082 mask |= EPOLLERR; 1083 1084 /* INET sockets treat local write shutdown and peer write shutdown as a 1085 * case of EPOLLHUP set. 1086 */ 1087 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1088 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1089 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1090 mask |= EPOLLHUP; 1091 } 1092 1093 if (sk->sk_shutdown & RCV_SHUTDOWN || 1094 vsk->peer_shutdown & SEND_SHUTDOWN) { 1095 mask |= EPOLLRDHUP; 1096 } 1097 1098 if (sk_is_readable(sk)) 1099 mask |= EPOLLIN | EPOLLRDNORM; 1100 1101 if (sock->type == SOCK_DGRAM) { 1102 /* For datagram sockets we can read if there is something in 1103 * the queue and write as long as the socket isn't shutdown for 1104 * sending. 1105 */ 1106 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1107 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1108 mask |= EPOLLIN | EPOLLRDNORM; 1109 } 1110 1111 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1112 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1113 1114 } else if (sock_type_connectible(sk->sk_type)) { 1115 const struct vsock_transport *transport; 1116 1117 lock_sock(sk); 1118 1119 transport = vsk->transport; 1120 1121 /* Listening sockets that have connections in their accept 1122 * queue can be read. 1123 */ 1124 if (sk->sk_state == TCP_LISTEN 1125 && !vsock_is_accept_queue_empty(sk)) 1126 mask |= EPOLLIN | EPOLLRDNORM; 1127 1128 /* If there is something in the queue then we can read. */ 1129 if (transport && transport->stream_is_active(vsk) && 1130 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1131 bool data_ready_now = false; 1132 int target = sock_rcvlowat(sk, 0, INT_MAX); 1133 int ret = transport->notify_poll_in( 1134 vsk, target, &data_ready_now); 1135 if (ret < 0) { 1136 mask |= EPOLLERR; 1137 } else { 1138 if (data_ready_now) 1139 mask |= EPOLLIN | EPOLLRDNORM; 1140 1141 } 1142 } 1143 1144 /* Sockets whose connections have been closed, reset, or 1145 * terminated should also be considered read, and we check the 1146 * shutdown flag for that. 1147 */ 1148 if (sk->sk_shutdown & RCV_SHUTDOWN || 1149 vsk->peer_shutdown & SEND_SHUTDOWN) { 1150 mask |= EPOLLIN | EPOLLRDNORM; 1151 } 1152 1153 /* Connected sockets that can produce data can be written. */ 1154 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1155 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1156 bool space_avail_now = false; 1157 int ret = transport->notify_poll_out( 1158 vsk, 1, &space_avail_now); 1159 if (ret < 0) { 1160 mask |= EPOLLERR; 1161 } else { 1162 if (space_avail_now) 1163 /* Remove EPOLLWRBAND since INET 1164 * sockets are not setting it. 1165 */ 1166 mask |= EPOLLOUT | EPOLLWRNORM; 1167 1168 } 1169 } 1170 } 1171 1172 /* Simulate INET socket poll behaviors, which sets 1173 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1174 * but local send is not shutdown. 1175 */ 1176 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1177 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1178 mask |= EPOLLOUT | EPOLLWRNORM; 1179 1180 } 1181 1182 release_sock(sk); 1183 } 1184 1185 return mask; 1186 } 1187 1188 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1189 { 1190 struct vsock_sock *vsk = vsock_sk(sk); 1191 1192 return vsk->transport->read_skb(vsk, read_actor); 1193 } 1194 1195 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1196 size_t len) 1197 { 1198 int err; 1199 struct sock *sk; 1200 struct vsock_sock *vsk; 1201 struct sockaddr_vm *remote_addr; 1202 const struct vsock_transport *transport; 1203 1204 if (msg->msg_flags & MSG_OOB) 1205 return -EOPNOTSUPP; 1206 1207 /* For now, MSG_DONTWAIT is always assumed... */ 1208 err = 0; 1209 sk = sock->sk; 1210 vsk = vsock_sk(sk); 1211 1212 lock_sock(sk); 1213 1214 transport = vsk->transport; 1215 1216 err = vsock_auto_bind(vsk); 1217 if (err) 1218 goto out; 1219 1220 1221 /* If the provided message contains an address, use that. Otherwise 1222 * fall back on the socket's remote handle (if it has been connected). 1223 */ 1224 if (msg->msg_name && 1225 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1226 &remote_addr) == 0) { 1227 /* Ensure this address is of the right type and is a valid 1228 * destination. 1229 */ 1230 1231 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1232 remote_addr->svm_cid = transport->get_local_cid(); 1233 1234 if (!vsock_addr_bound(remote_addr)) { 1235 err = -EINVAL; 1236 goto out; 1237 } 1238 } else if (sock->state == SS_CONNECTED) { 1239 remote_addr = &vsk->remote_addr; 1240 1241 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1242 remote_addr->svm_cid = transport->get_local_cid(); 1243 1244 /* XXX Should connect() or this function ensure remote_addr is 1245 * bound? 1246 */ 1247 if (!vsock_addr_bound(&vsk->remote_addr)) { 1248 err = -EINVAL; 1249 goto out; 1250 } 1251 } else { 1252 err = -EINVAL; 1253 goto out; 1254 } 1255 1256 if (!transport->dgram_allow(remote_addr->svm_cid, 1257 remote_addr->svm_port)) { 1258 err = -EINVAL; 1259 goto out; 1260 } 1261 1262 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1263 1264 out: 1265 release_sock(sk); 1266 return err; 1267 } 1268 1269 static int vsock_dgram_connect(struct socket *sock, 1270 struct sockaddr *addr, int addr_len, int flags) 1271 { 1272 int err; 1273 struct sock *sk; 1274 struct vsock_sock *vsk; 1275 struct sockaddr_vm *remote_addr; 1276 1277 sk = sock->sk; 1278 vsk = vsock_sk(sk); 1279 1280 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1281 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1282 lock_sock(sk); 1283 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1284 VMADDR_PORT_ANY); 1285 sock->state = SS_UNCONNECTED; 1286 release_sock(sk); 1287 return 0; 1288 } else if (err != 0) 1289 return -EINVAL; 1290 1291 lock_sock(sk); 1292 1293 err = vsock_auto_bind(vsk); 1294 if (err) 1295 goto out; 1296 1297 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1298 remote_addr->svm_port)) { 1299 err = -EINVAL; 1300 goto out; 1301 } 1302 1303 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1304 sock->state = SS_CONNECTED; 1305 1306 /* sock map disallows redirection of non-TCP sockets with sk_state != 1307 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1308 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1309 * 1310 * This doesn't seem to be abnormal state for datagram sockets, as the 1311 * same approach can be see in other datagram socket types as well 1312 * (such as unix sockets). 1313 */ 1314 sk->sk_state = TCP_ESTABLISHED; 1315 1316 out: 1317 release_sock(sk); 1318 return err; 1319 } 1320 1321 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1322 size_t len, int flags) 1323 { 1324 struct sock *sk = sock->sk; 1325 struct vsock_sock *vsk = vsock_sk(sk); 1326 1327 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1328 } 1329 1330 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1331 size_t len, int flags) 1332 { 1333 #ifdef CONFIG_BPF_SYSCALL 1334 struct sock *sk = sock->sk; 1335 const struct proto *prot; 1336 1337 prot = READ_ONCE(sk->sk_prot); 1338 if (prot != &vsock_proto) 1339 return prot->recvmsg(sk, msg, len, flags, NULL); 1340 #endif 1341 1342 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1343 } 1344 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1345 1346 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1347 int __user *arg) 1348 { 1349 struct sock *sk = sock->sk; 1350 struct vsock_sock *vsk; 1351 int ret; 1352 1353 vsk = vsock_sk(sk); 1354 1355 switch (cmd) { 1356 case SIOCOUTQ: { 1357 ssize_t n_bytes; 1358 1359 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1360 ret = -EOPNOTSUPP; 1361 break; 1362 } 1363 1364 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1365 ret = -EINVAL; 1366 break; 1367 } 1368 1369 n_bytes = vsk->transport->unsent_bytes(vsk); 1370 if (n_bytes < 0) { 1371 ret = n_bytes; 1372 break; 1373 } 1374 1375 ret = put_user(n_bytes, arg); 1376 break; 1377 } 1378 default: 1379 ret = -ENOIOCTLCMD; 1380 } 1381 1382 return ret; 1383 } 1384 1385 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1386 unsigned long arg) 1387 { 1388 int ret; 1389 1390 lock_sock(sock->sk); 1391 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1392 release_sock(sock->sk); 1393 1394 return ret; 1395 } 1396 1397 static const struct proto_ops vsock_dgram_ops = { 1398 .family = PF_VSOCK, 1399 .owner = THIS_MODULE, 1400 .release = vsock_release, 1401 .bind = vsock_bind, 1402 .connect = vsock_dgram_connect, 1403 .socketpair = sock_no_socketpair, 1404 .accept = sock_no_accept, 1405 .getname = vsock_getname, 1406 .poll = vsock_poll, 1407 .ioctl = vsock_ioctl, 1408 .listen = sock_no_listen, 1409 .shutdown = vsock_shutdown, 1410 .sendmsg = vsock_dgram_sendmsg, 1411 .recvmsg = vsock_dgram_recvmsg, 1412 .mmap = sock_no_mmap, 1413 .read_skb = vsock_read_skb, 1414 }; 1415 1416 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1417 { 1418 const struct vsock_transport *transport = vsk->transport; 1419 1420 if (!transport || !transport->cancel_pkt) 1421 return -EOPNOTSUPP; 1422 1423 return transport->cancel_pkt(vsk); 1424 } 1425 1426 static void vsock_connect_timeout(struct work_struct *work) 1427 { 1428 struct sock *sk; 1429 struct vsock_sock *vsk; 1430 1431 vsk = container_of(work, struct vsock_sock, connect_work.work); 1432 sk = sk_vsock(vsk); 1433 1434 lock_sock(sk); 1435 if (sk->sk_state == TCP_SYN_SENT && 1436 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1437 sk->sk_state = TCP_CLOSE; 1438 sk->sk_socket->state = SS_UNCONNECTED; 1439 sk->sk_err = ETIMEDOUT; 1440 sk_error_report(sk); 1441 vsock_transport_cancel_pkt(vsk); 1442 } 1443 release_sock(sk); 1444 1445 sock_put(sk); 1446 } 1447 1448 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1449 int addr_len, int flags) 1450 { 1451 int err; 1452 struct sock *sk; 1453 struct vsock_sock *vsk; 1454 const struct vsock_transport *transport; 1455 struct sockaddr_vm *remote_addr; 1456 long timeout; 1457 DEFINE_WAIT(wait); 1458 1459 err = 0; 1460 sk = sock->sk; 1461 vsk = vsock_sk(sk); 1462 1463 lock_sock(sk); 1464 1465 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1466 switch (sock->state) { 1467 case SS_CONNECTED: 1468 err = -EISCONN; 1469 goto out; 1470 case SS_DISCONNECTING: 1471 err = -EINVAL; 1472 goto out; 1473 case SS_CONNECTING: 1474 /* This continues on so we can move sock into the SS_CONNECTED 1475 * state once the connection has completed (at which point err 1476 * will be set to zero also). Otherwise, we will either wait 1477 * for the connection or return -EALREADY should this be a 1478 * non-blocking call. 1479 */ 1480 err = -EALREADY; 1481 if (flags & O_NONBLOCK) 1482 goto out; 1483 break; 1484 default: 1485 if ((sk->sk_state == TCP_LISTEN) || 1486 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1487 err = -EINVAL; 1488 goto out; 1489 } 1490 1491 /* Set the remote address that we are connecting to. */ 1492 memcpy(&vsk->remote_addr, remote_addr, 1493 sizeof(vsk->remote_addr)); 1494 1495 err = vsock_assign_transport(vsk, NULL); 1496 if (err) 1497 goto out; 1498 1499 transport = vsk->transport; 1500 1501 /* The hypervisor and well-known contexts do not have socket 1502 * endpoints. 1503 */ 1504 if (!transport || 1505 !transport->stream_allow(remote_addr->svm_cid, 1506 remote_addr->svm_port)) { 1507 err = -ENETUNREACH; 1508 goto out; 1509 } 1510 1511 if (vsock_msgzerocopy_allow(transport)) { 1512 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1513 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1514 /* If this option was set before 'connect()', 1515 * when transport was unknown, check that this 1516 * feature is supported here. 1517 */ 1518 err = -EOPNOTSUPP; 1519 goto out; 1520 } 1521 1522 err = vsock_auto_bind(vsk); 1523 if (err) 1524 goto out; 1525 1526 sk->sk_state = TCP_SYN_SENT; 1527 1528 err = transport->connect(vsk); 1529 if (err < 0) 1530 goto out; 1531 1532 /* sk_err might have been set as a result of an earlier 1533 * (failed) connect attempt. 1534 */ 1535 sk->sk_err = 0; 1536 1537 /* Mark sock as connecting and set the error code to in 1538 * progress in case this is a non-blocking connect. 1539 */ 1540 sock->state = SS_CONNECTING; 1541 err = -EINPROGRESS; 1542 } 1543 1544 /* The receive path will handle all communication until we are able to 1545 * enter the connected state. Here we wait for the connection to be 1546 * completed or a notification of an error. 1547 */ 1548 timeout = vsk->connect_timeout; 1549 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1550 1551 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1552 if (flags & O_NONBLOCK) { 1553 /* If we're not going to block, we schedule a timeout 1554 * function to generate a timeout on the connection 1555 * attempt, in case the peer doesn't respond in a 1556 * timely manner. We hold on to the socket until the 1557 * timeout fires. 1558 */ 1559 sock_hold(sk); 1560 1561 /* If the timeout function is already scheduled, 1562 * reschedule it, then ungrab the socket refcount to 1563 * keep it balanced. 1564 */ 1565 if (mod_delayed_work(system_wq, &vsk->connect_work, 1566 timeout)) 1567 sock_put(sk); 1568 1569 /* Skip ahead to preserve error code set above. */ 1570 goto out_wait; 1571 } 1572 1573 release_sock(sk); 1574 timeout = schedule_timeout(timeout); 1575 lock_sock(sk); 1576 1577 if (signal_pending(current)) { 1578 err = sock_intr_errno(timeout); 1579 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1580 sock->state = SS_UNCONNECTED; 1581 vsock_transport_cancel_pkt(vsk); 1582 vsock_remove_connected(vsk); 1583 goto out_wait; 1584 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1585 err = -ETIMEDOUT; 1586 sk->sk_state = TCP_CLOSE; 1587 sock->state = SS_UNCONNECTED; 1588 vsock_transport_cancel_pkt(vsk); 1589 goto out_wait; 1590 } 1591 1592 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1593 } 1594 1595 if (sk->sk_err) { 1596 err = -sk->sk_err; 1597 sk->sk_state = TCP_CLOSE; 1598 sock->state = SS_UNCONNECTED; 1599 } else { 1600 err = 0; 1601 } 1602 1603 out_wait: 1604 finish_wait(sk_sleep(sk), &wait); 1605 out: 1606 release_sock(sk); 1607 return err; 1608 } 1609 1610 static int vsock_accept(struct socket *sock, struct socket *newsock, 1611 struct proto_accept_arg *arg) 1612 { 1613 struct sock *listener; 1614 int err; 1615 struct sock *connected; 1616 struct vsock_sock *vconnected; 1617 long timeout; 1618 DEFINE_WAIT(wait); 1619 1620 err = 0; 1621 listener = sock->sk; 1622 1623 lock_sock(listener); 1624 1625 if (!sock_type_connectible(sock->type)) { 1626 err = -EOPNOTSUPP; 1627 goto out; 1628 } 1629 1630 if (listener->sk_state != TCP_LISTEN) { 1631 err = -EINVAL; 1632 goto out; 1633 } 1634 1635 /* Wait for children sockets to appear; these are the new sockets 1636 * created upon connection establishment. 1637 */ 1638 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1639 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1640 1641 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1642 listener->sk_err == 0) { 1643 release_sock(listener); 1644 timeout = schedule_timeout(timeout); 1645 finish_wait(sk_sleep(listener), &wait); 1646 lock_sock(listener); 1647 1648 if (signal_pending(current)) { 1649 err = sock_intr_errno(timeout); 1650 goto out; 1651 } else if (timeout == 0) { 1652 err = -EAGAIN; 1653 goto out; 1654 } 1655 1656 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1657 } 1658 finish_wait(sk_sleep(listener), &wait); 1659 1660 if (listener->sk_err) 1661 err = -listener->sk_err; 1662 1663 if (connected) { 1664 sk_acceptq_removed(listener); 1665 1666 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1667 vconnected = vsock_sk(connected); 1668 1669 /* If the listener socket has received an error, then we should 1670 * reject this socket and return. Note that we simply mark the 1671 * socket rejected, drop our reference, and let the cleanup 1672 * function handle the cleanup; the fact that we found it in 1673 * the listener's accept queue guarantees that the cleanup 1674 * function hasn't run yet. 1675 */ 1676 if (err) { 1677 vconnected->rejected = true; 1678 } else { 1679 newsock->state = SS_CONNECTED; 1680 sock_graft(connected, newsock); 1681 if (vsock_msgzerocopy_allow(vconnected->transport)) 1682 set_bit(SOCK_SUPPORT_ZC, 1683 &connected->sk_socket->flags); 1684 } 1685 1686 release_sock(connected); 1687 sock_put(connected); 1688 } 1689 1690 out: 1691 release_sock(listener); 1692 return err; 1693 } 1694 1695 static int vsock_listen(struct socket *sock, int backlog) 1696 { 1697 int err; 1698 struct sock *sk; 1699 struct vsock_sock *vsk; 1700 1701 sk = sock->sk; 1702 1703 lock_sock(sk); 1704 1705 if (!sock_type_connectible(sk->sk_type)) { 1706 err = -EOPNOTSUPP; 1707 goto out; 1708 } 1709 1710 if (sock->state != SS_UNCONNECTED) { 1711 err = -EINVAL; 1712 goto out; 1713 } 1714 1715 vsk = vsock_sk(sk); 1716 1717 if (!vsock_addr_bound(&vsk->local_addr)) { 1718 err = -EINVAL; 1719 goto out; 1720 } 1721 1722 sk->sk_max_ack_backlog = backlog; 1723 sk->sk_state = TCP_LISTEN; 1724 1725 err = 0; 1726 1727 out: 1728 release_sock(sk); 1729 return err; 1730 } 1731 1732 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1733 const struct vsock_transport *transport, 1734 u64 val) 1735 { 1736 if (val > vsk->buffer_max_size) 1737 val = vsk->buffer_max_size; 1738 1739 if (val < vsk->buffer_min_size) 1740 val = vsk->buffer_min_size; 1741 1742 if (val != vsk->buffer_size && 1743 transport && transport->notify_buffer_size) 1744 transport->notify_buffer_size(vsk, &val); 1745 1746 vsk->buffer_size = val; 1747 } 1748 1749 static int vsock_connectible_setsockopt(struct socket *sock, 1750 int level, 1751 int optname, 1752 sockptr_t optval, 1753 unsigned int optlen) 1754 { 1755 int err; 1756 struct sock *sk; 1757 struct vsock_sock *vsk; 1758 const struct vsock_transport *transport; 1759 u64 val; 1760 1761 if (level != AF_VSOCK && level != SOL_SOCKET) 1762 return -ENOPROTOOPT; 1763 1764 #define COPY_IN(_v) \ 1765 do { \ 1766 if (optlen < sizeof(_v)) { \ 1767 err = -EINVAL; \ 1768 goto exit; \ 1769 } \ 1770 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1771 err = -EFAULT; \ 1772 goto exit; \ 1773 } \ 1774 } while (0) 1775 1776 err = 0; 1777 sk = sock->sk; 1778 vsk = vsock_sk(sk); 1779 1780 lock_sock(sk); 1781 1782 transport = vsk->transport; 1783 1784 if (level == SOL_SOCKET) { 1785 int zerocopy; 1786 1787 if (optname != SO_ZEROCOPY) { 1788 release_sock(sk); 1789 return sock_setsockopt(sock, level, optname, optval, optlen); 1790 } 1791 1792 /* Use 'int' type here, because variable to 1793 * set this option usually has this type. 1794 */ 1795 COPY_IN(zerocopy); 1796 1797 if (zerocopy < 0 || zerocopy > 1) { 1798 err = -EINVAL; 1799 goto exit; 1800 } 1801 1802 if (transport && !vsock_msgzerocopy_allow(transport)) { 1803 err = -EOPNOTSUPP; 1804 goto exit; 1805 } 1806 1807 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1808 goto exit; 1809 } 1810 1811 switch (optname) { 1812 case SO_VM_SOCKETS_BUFFER_SIZE: 1813 COPY_IN(val); 1814 vsock_update_buffer_size(vsk, transport, val); 1815 break; 1816 1817 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1818 COPY_IN(val); 1819 vsk->buffer_max_size = val; 1820 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1821 break; 1822 1823 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1824 COPY_IN(val); 1825 vsk->buffer_min_size = val; 1826 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1827 break; 1828 1829 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1830 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1831 struct __kernel_sock_timeval tv; 1832 1833 err = sock_copy_user_timeval(&tv, optval, optlen, 1834 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1835 if (err) 1836 break; 1837 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1838 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1839 vsk->connect_timeout = tv.tv_sec * HZ + 1840 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1841 if (vsk->connect_timeout == 0) 1842 vsk->connect_timeout = 1843 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1844 1845 } else { 1846 err = -ERANGE; 1847 } 1848 break; 1849 } 1850 1851 default: 1852 err = -ENOPROTOOPT; 1853 break; 1854 } 1855 1856 #undef COPY_IN 1857 1858 exit: 1859 release_sock(sk); 1860 return err; 1861 } 1862 1863 static int vsock_connectible_getsockopt(struct socket *sock, 1864 int level, int optname, 1865 char __user *optval, 1866 int __user *optlen) 1867 { 1868 struct sock *sk = sock->sk; 1869 struct vsock_sock *vsk = vsock_sk(sk); 1870 1871 union { 1872 u64 val64; 1873 struct old_timeval32 tm32; 1874 struct __kernel_old_timeval tm; 1875 struct __kernel_sock_timeval stm; 1876 } v; 1877 1878 int lv = sizeof(v.val64); 1879 int len; 1880 1881 if (level != AF_VSOCK) 1882 return -ENOPROTOOPT; 1883 1884 if (get_user(len, optlen)) 1885 return -EFAULT; 1886 1887 memset(&v, 0, sizeof(v)); 1888 1889 switch (optname) { 1890 case SO_VM_SOCKETS_BUFFER_SIZE: 1891 v.val64 = vsk->buffer_size; 1892 break; 1893 1894 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1895 v.val64 = vsk->buffer_max_size; 1896 break; 1897 1898 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1899 v.val64 = vsk->buffer_min_size; 1900 break; 1901 1902 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1903 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1904 lv = sock_get_timeout(vsk->connect_timeout, &v, 1905 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1906 break; 1907 1908 default: 1909 return -ENOPROTOOPT; 1910 } 1911 1912 if (len < lv) 1913 return -EINVAL; 1914 if (len > lv) 1915 len = lv; 1916 if (copy_to_user(optval, &v, len)) 1917 return -EFAULT; 1918 1919 if (put_user(len, optlen)) 1920 return -EFAULT; 1921 1922 return 0; 1923 } 1924 1925 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1926 size_t len) 1927 { 1928 struct sock *sk; 1929 struct vsock_sock *vsk; 1930 const struct vsock_transport *transport; 1931 ssize_t total_written; 1932 long timeout; 1933 int err; 1934 struct vsock_transport_send_notify_data send_data; 1935 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1936 1937 sk = sock->sk; 1938 vsk = vsock_sk(sk); 1939 total_written = 0; 1940 err = 0; 1941 1942 if (msg->msg_flags & MSG_OOB) 1943 return -EOPNOTSUPP; 1944 1945 lock_sock(sk); 1946 1947 transport = vsk->transport; 1948 1949 /* Callers should not provide a destination with connection oriented 1950 * sockets. 1951 */ 1952 if (msg->msg_namelen) { 1953 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1954 goto out; 1955 } 1956 1957 /* Send data only if both sides are not shutdown in the direction. */ 1958 if (sk->sk_shutdown & SEND_SHUTDOWN || 1959 vsk->peer_shutdown & RCV_SHUTDOWN) { 1960 err = -EPIPE; 1961 goto out; 1962 } 1963 1964 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1965 !vsock_addr_bound(&vsk->local_addr)) { 1966 err = -ENOTCONN; 1967 goto out; 1968 } 1969 1970 if (!vsock_addr_bound(&vsk->remote_addr)) { 1971 err = -EDESTADDRREQ; 1972 goto out; 1973 } 1974 1975 if (msg->msg_flags & MSG_ZEROCOPY && 1976 !vsock_msgzerocopy_allow(transport)) { 1977 err = -EOPNOTSUPP; 1978 goto out; 1979 } 1980 1981 /* Wait for room in the produce queue to enqueue our user's data. */ 1982 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1983 1984 err = transport->notify_send_init(vsk, &send_data); 1985 if (err < 0) 1986 goto out; 1987 1988 while (total_written < len) { 1989 ssize_t written; 1990 1991 add_wait_queue(sk_sleep(sk), &wait); 1992 while (vsock_stream_has_space(vsk) == 0 && 1993 sk->sk_err == 0 && 1994 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1995 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1996 1997 /* Don't wait for non-blocking sockets. */ 1998 if (timeout == 0) { 1999 err = -EAGAIN; 2000 remove_wait_queue(sk_sleep(sk), &wait); 2001 goto out_err; 2002 } 2003 2004 err = transport->notify_send_pre_block(vsk, &send_data); 2005 if (err < 0) { 2006 remove_wait_queue(sk_sleep(sk), &wait); 2007 goto out_err; 2008 } 2009 2010 release_sock(sk); 2011 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 2012 lock_sock(sk); 2013 if (signal_pending(current)) { 2014 err = sock_intr_errno(timeout); 2015 remove_wait_queue(sk_sleep(sk), &wait); 2016 goto out_err; 2017 } else if (timeout == 0) { 2018 err = -EAGAIN; 2019 remove_wait_queue(sk_sleep(sk), &wait); 2020 goto out_err; 2021 } 2022 } 2023 remove_wait_queue(sk_sleep(sk), &wait); 2024 2025 /* These checks occur both as part of and after the loop 2026 * conditional since we need to check before and after 2027 * sleeping. 2028 */ 2029 if (sk->sk_err) { 2030 err = -sk->sk_err; 2031 goto out_err; 2032 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 2033 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 2034 err = -EPIPE; 2035 goto out_err; 2036 } 2037 2038 err = transport->notify_send_pre_enqueue(vsk, &send_data); 2039 if (err < 0) 2040 goto out_err; 2041 2042 /* Note that enqueue will only write as many bytes as are free 2043 * in the produce queue, so we don't need to ensure len is 2044 * smaller than the queue size. It is the caller's 2045 * responsibility to check how many bytes we were able to send. 2046 */ 2047 2048 if (sk->sk_type == SOCK_SEQPACKET) { 2049 written = transport->seqpacket_enqueue(vsk, 2050 msg, len - total_written); 2051 } else { 2052 written = transport->stream_enqueue(vsk, 2053 msg, len - total_written); 2054 } 2055 2056 if (written < 0) { 2057 err = written; 2058 goto out_err; 2059 } 2060 2061 total_written += written; 2062 2063 err = transport->notify_send_post_enqueue( 2064 vsk, written, &send_data); 2065 if (err < 0) 2066 goto out_err; 2067 2068 } 2069 2070 out_err: 2071 if (total_written > 0) { 2072 /* Return number of written bytes only if: 2073 * 1) SOCK_STREAM socket. 2074 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2075 */ 2076 if (sk->sk_type == SOCK_STREAM || total_written == len) 2077 err = total_written; 2078 } 2079 out: 2080 if (sk->sk_type == SOCK_STREAM) 2081 err = sk_stream_error(sk, msg->msg_flags, err); 2082 2083 release_sock(sk); 2084 return err; 2085 } 2086 2087 static int vsock_connectible_wait_data(struct sock *sk, 2088 struct wait_queue_entry *wait, 2089 long timeout, 2090 struct vsock_transport_recv_notify_data *recv_data, 2091 size_t target) 2092 { 2093 const struct vsock_transport *transport; 2094 struct vsock_sock *vsk; 2095 s64 data; 2096 int err; 2097 2098 vsk = vsock_sk(sk); 2099 err = 0; 2100 transport = vsk->transport; 2101 2102 while (1) { 2103 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2104 data = vsock_connectible_has_data(vsk); 2105 if (data != 0) 2106 break; 2107 2108 if (sk->sk_err != 0 || 2109 (sk->sk_shutdown & RCV_SHUTDOWN) || 2110 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2111 break; 2112 } 2113 2114 /* Don't wait for non-blocking sockets. */ 2115 if (timeout == 0) { 2116 err = -EAGAIN; 2117 break; 2118 } 2119 2120 if (recv_data) { 2121 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2122 if (err < 0) 2123 break; 2124 } 2125 2126 release_sock(sk); 2127 timeout = schedule_timeout(timeout); 2128 lock_sock(sk); 2129 2130 if (signal_pending(current)) { 2131 err = sock_intr_errno(timeout); 2132 break; 2133 } else if (timeout == 0) { 2134 err = -EAGAIN; 2135 break; 2136 } 2137 } 2138 2139 finish_wait(sk_sleep(sk), wait); 2140 2141 if (err) 2142 return err; 2143 2144 /* Internal transport error when checking for available 2145 * data. XXX This should be changed to a connection 2146 * reset in a later change. 2147 */ 2148 if (data < 0) 2149 return -ENOMEM; 2150 2151 return data; 2152 } 2153 2154 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2155 size_t len, int flags) 2156 { 2157 struct vsock_transport_recv_notify_data recv_data; 2158 const struct vsock_transport *transport; 2159 struct vsock_sock *vsk; 2160 ssize_t copied; 2161 size_t target; 2162 long timeout; 2163 int err; 2164 2165 DEFINE_WAIT(wait); 2166 2167 vsk = vsock_sk(sk); 2168 transport = vsk->transport; 2169 2170 /* We must not copy less than target bytes into the user's buffer 2171 * before returning successfully, so we wait for the consume queue to 2172 * have that much data to consume before dequeueing. Note that this 2173 * makes it impossible to handle cases where target is greater than the 2174 * queue size. 2175 */ 2176 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2177 if (target >= transport->stream_rcvhiwat(vsk)) { 2178 err = -ENOMEM; 2179 goto out; 2180 } 2181 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2182 copied = 0; 2183 2184 err = transport->notify_recv_init(vsk, target, &recv_data); 2185 if (err < 0) 2186 goto out; 2187 2188 2189 while (1) { 2190 ssize_t read; 2191 2192 err = vsock_connectible_wait_data(sk, &wait, timeout, 2193 &recv_data, target); 2194 if (err <= 0) 2195 break; 2196 2197 err = transport->notify_recv_pre_dequeue(vsk, target, 2198 &recv_data); 2199 if (err < 0) 2200 break; 2201 2202 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2203 if (read < 0) { 2204 err = read; 2205 break; 2206 } 2207 2208 copied += read; 2209 2210 err = transport->notify_recv_post_dequeue(vsk, target, read, 2211 !(flags & MSG_PEEK), &recv_data); 2212 if (err < 0) 2213 goto out; 2214 2215 if (read >= target || flags & MSG_PEEK) 2216 break; 2217 2218 target -= read; 2219 } 2220 2221 if (sk->sk_err) 2222 err = -sk->sk_err; 2223 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2224 err = 0; 2225 2226 if (copied > 0) 2227 err = copied; 2228 2229 out: 2230 return err; 2231 } 2232 2233 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2234 size_t len, int flags) 2235 { 2236 const struct vsock_transport *transport; 2237 struct vsock_sock *vsk; 2238 ssize_t msg_len; 2239 long timeout; 2240 int err = 0; 2241 DEFINE_WAIT(wait); 2242 2243 vsk = vsock_sk(sk); 2244 transport = vsk->transport; 2245 2246 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2247 2248 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2249 if (err <= 0) 2250 goto out; 2251 2252 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2253 2254 if (msg_len < 0) { 2255 err = msg_len; 2256 goto out; 2257 } 2258 2259 if (sk->sk_err) { 2260 err = -sk->sk_err; 2261 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2262 err = 0; 2263 } else { 2264 /* User sets MSG_TRUNC, so return real length of 2265 * packet. 2266 */ 2267 if (flags & MSG_TRUNC) 2268 err = msg_len; 2269 else 2270 err = len - msg_data_left(msg); 2271 2272 /* Always set MSG_TRUNC if real length of packet is 2273 * bigger than user's buffer. 2274 */ 2275 if (msg_len > len) 2276 msg->msg_flags |= MSG_TRUNC; 2277 } 2278 2279 out: 2280 return err; 2281 } 2282 2283 int 2284 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2285 int flags) 2286 { 2287 struct sock *sk; 2288 struct vsock_sock *vsk; 2289 const struct vsock_transport *transport; 2290 int err; 2291 2292 sk = sock->sk; 2293 2294 if (unlikely(flags & MSG_ERRQUEUE)) 2295 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2296 2297 vsk = vsock_sk(sk); 2298 err = 0; 2299 2300 lock_sock(sk); 2301 2302 transport = vsk->transport; 2303 2304 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2305 /* Recvmsg is supposed to return 0 if a peer performs an 2306 * orderly shutdown. Differentiate between that case and when a 2307 * peer has not connected or a local shutdown occurred with the 2308 * SOCK_DONE flag. 2309 */ 2310 if (sock_flag(sk, SOCK_DONE)) 2311 err = 0; 2312 else 2313 err = -ENOTCONN; 2314 2315 goto out; 2316 } 2317 2318 if (flags & MSG_OOB) { 2319 err = -EOPNOTSUPP; 2320 goto out; 2321 } 2322 2323 /* We don't check peer_shutdown flag here since peer may actually shut 2324 * down, but there can be data in the queue that a local socket can 2325 * receive. 2326 */ 2327 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2328 err = 0; 2329 goto out; 2330 } 2331 2332 /* It is valid on Linux to pass in a zero-length receive buffer. This 2333 * is not an error. We may as well bail out now. 2334 */ 2335 if (!len) { 2336 err = 0; 2337 goto out; 2338 } 2339 2340 if (sk->sk_type == SOCK_STREAM) 2341 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2342 else 2343 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2344 2345 out: 2346 release_sock(sk); 2347 return err; 2348 } 2349 2350 int 2351 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2352 int flags) 2353 { 2354 #ifdef CONFIG_BPF_SYSCALL 2355 struct sock *sk = sock->sk; 2356 const struct proto *prot; 2357 2358 prot = READ_ONCE(sk->sk_prot); 2359 if (prot != &vsock_proto) 2360 return prot->recvmsg(sk, msg, len, flags, NULL); 2361 #endif 2362 2363 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2364 } 2365 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2366 2367 static int vsock_set_rcvlowat(struct sock *sk, int val) 2368 { 2369 const struct vsock_transport *transport; 2370 struct vsock_sock *vsk; 2371 2372 vsk = vsock_sk(sk); 2373 2374 if (val > vsk->buffer_size) 2375 return -EINVAL; 2376 2377 transport = vsk->transport; 2378 2379 if (transport && transport->notify_set_rcvlowat) { 2380 int err; 2381 2382 err = transport->notify_set_rcvlowat(vsk, val); 2383 if (err) 2384 return err; 2385 } 2386 2387 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2388 return 0; 2389 } 2390 2391 static const struct proto_ops vsock_stream_ops = { 2392 .family = PF_VSOCK, 2393 .owner = THIS_MODULE, 2394 .release = vsock_release, 2395 .bind = vsock_bind, 2396 .connect = vsock_connect, 2397 .socketpair = sock_no_socketpair, 2398 .accept = vsock_accept, 2399 .getname = vsock_getname, 2400 .poll = vsock_poll, 2401 .ioctl = vsock_ioctl, 2402 .listen = vsock_listen, 2403 .shutdown = vsock_shutdown, 2404 .setsockopt = vsock_connectible_setsockopt, 2405 .getsockopt = vsock_connectible_getsockopt, 2406 .sendmsg = vsock_connectible_sendmsg, 2407 .recvmsg = vsock_connectible_recvmsg, 2408 .mmap = sock_no_mmap, 2409 .set_rcvlowat = vsock_set_rcvlowat, 2410 .read_skb = vsock_read_skb, 2411 }; 2412 2413 static const struct proto_ops vsock_seqpacket_ops = { 2414 .family = PF_VSOCK, 2415 .owner = THIS_MODULE, 2416 .release = vsock_release, 2417 .bind = vsock_bind, 2418 .connect = vsock_connect, 2419 .socketpair = sock_no_socketpair, 2420 .accept = vsock_accept, 2421 .getname = vsock_getname, 2422 .poll = vsock_poll, 2423 .ioctl = vsock_ioctl, 2424 .listen = vsock_listen, 2425 .shutdown = vsock_shutdown, 2426 .setsockopt = vsock_connectible_setsockopt, 2427 .getsockopt = vsock_connectible_getsockopt, 2428 .sendmsg = vsock_connectible_sendmsg, 2429 .recvmsg = vsock_connectible_recvmsg, 2430 .mmap = sock_no_mmap, 2431 .read_skb = vsock_read_skb, 2432 }; 2433 2434 static int vsock_create(struct net *net, struct socket *sock, 2435 int protocol, int kern) 2436 { 2437 struct vsock_sock *vsk; 2438 struct sock *sk; 2439 int ret; 2440 2441 if (!sock) 2442 return -EINVAL; 2443 2444 if (protocol && protocol != PF_VSOCK) 2445 return -EPROTONOSUPPORT; 2446 2447 switch (sock->type) { 2448 case SOCK_DGRAM: 2449 sock->ops = &vsock_dgram_ops; 2450 break; 2451 case SOCK_STREAM: 2452 sock->ops = &vsock_stream_ops; 2453 break; 2454 case SOCK_SEQPACKET: 2455 sock->ops = &vsock_seqpacket_ops; 2456 break; 2457 default: 2458 return -ESOCKTNOSUPPORT; 2459 } 2460 2461 sock->state = SS_UNCONNECTED; 2462 2463 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2464 if (!sk) 2465 return -ENOMEM; 2466 2467 vsk = vsock_sk(sk); 2468 2469 if (sock->type == SOCK_DGRAM) { 2470 ret = vsock_assign_transport(vsk, NULL); 2471 if (ret < 0) { 2472 sock->sk = NULL; 2473 sock_put(sk); 2474 return ret; 2475 } 2476 } 2477 2478 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2479 * proto_ops, so there is no handler for custom logic. 2480 */ 2481 if (sock_type_connectible(sock->type)) 2482 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2483 2484 vsock_insert_unbound(vsk); 2485 2486 return 0; 2487 } 2488 2489 static const struct net_proto_family vsock_family_ops = { 2490 .family = AF_VSOCK, 2491 .create = vsock_create, 2492 .owner = THIS_MODULE, 2493 }; 2494 2495 static long vsock_dev_do_ioctl(struct file *filp, 2496 unsigned int cmd, void __user *ptr) 2497 { 2498 u32 __user *p = ptr; 2499 u32 cid = VMADDR_CID_ANY; 2500 int retval = 0; 2501 2502 switch (cmd) { 2503 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2504 /* To be compatible with the VMCI behavior, we prioritize the 2505 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2506 */ 2507 if (transport_g2h) 2508 cid = transport_g2h->get_local_cid(); 2509 else if (transport_h2g) 2510 cid = transport_h2g->get_local_cid(); 2511 2512 if (put_user(cid, p) != 0) 2513 retval = -EFAULT; 2514 break; 2515 2516 default: 2517 retval = -ENOIOCTLCMD; 2518 } 2519 2520 return retval; 2521 } 2522 2523 static long vsock_dev_ioctl(struct file *filp, 2524 unsigned int cmd, unsigned long arg) 2525 { 2526 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2527 } 2528 2529 #ifdef CONFIG_COMPAT 2530 static long vsock_dev_compat_ioctl(struct file *filp, 2531 unsigned int cmd, unsigned long arg) 2532 { 2533 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2534 } 2535 #endif 2536 2537 static const struct file_operations vsock_device_ops = { 2538 .owner = THIS_MODULE, 2539 .unlocked_ioctl = vsock_dev_ioctl, 2540 #ifdef CONFIG_COMPAT 2541 .compat_ioctl = vsock_dev_compat_ioctl, 2542 #endif 2543 .open = nonseekable_open, 2544 }; 2545 2546 static struct miscdevice vsock_device = { 2547 .name = "vsock", 2548 .fops = &vsock_device_ops, 2549 }; 2550 2551 static int __init vsock_init(void) 2552 { 2553 int err = 0; 2554 2555 vsock_init_tables(); 2556 2557 vsock_proto.owner = THIS_MODULE; 2558 vsock_device.minor = MISC_DYNAMIC_MINOR; 2559 err = misc_register(&vsock_device); 2560 if (err) { 2561 pr_err("Failed to register misc device\n"); 2562 goto err_reset_transport; 2563 } 2564 2565 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2566 if (err) { 2567 pr_err("Cannot register vsock protocol\n"); 2568 goto err_deregister_misc; 2569 } 2570 2571 err = sock_register(&vsock_family_ops); 2572 if (err) { 2573 pr_err("could not register af_vsock (%d) address family: %d\n", 2574 AF_VSOCK, err); 2575 goto err_unregister_proto; 2576 } 2577 2578 vsock_bpf_build_proto(); 2579 2580 return 0; 2581 2582 err_unregister_proto: 2583 proto_unregister(&vsock_proto); 2584 err_deregister_misc: 2585 misc_deregister(&vsock_device); 2586 err_reset_transport: 2587 return err; 2588 } 2589 2590 static void __exit vsock_exit(void) 2591 { 2592 misc_deregister(&vsock_device); 2593 sock_unregister(AF_VSOCK); 2594 proto_unregister(&vsock_proto); 2595 } 2596 2597 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2598 { 2599 return vsk->transport; 2600 } 2601 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2602 2603 int vsock_core_register(const struct vsock_transport *t, int features) 2604 { 2605 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2606 int err = mutex_lock_interruptible(&vsock_register_mutex); 2607 2608 if (err) 2609 return err; 2610 2611 t_h2g = transport_h2g; 2612 t_g2h = transport_g2h; 2613 t_dgram = transport_dgram; 2614 t_local = transport_local; 2615 2616 if (features & VSOCK_TRANSPORT_F_H2G) { 2617 if (t_h2g) { 2618 err = -EBUSY; 2619 goto err_busy; 2620 } 2621 t_h2g = t; 2622 } 2623 2624 if (features & VSOCK_TRANSPORT_F_G2H) { 2625 if (t_g2h) { 2626 err = -EBUSY; 2627 goto err_busy; 2628 } 2629 t_g2h = t; 2630 } 2631 2632 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2633 if (t_dgram) { 2634 err = -EBUSY; 2635 goto err_busy; 2636 } 2637 t_dgram = t; 2638 } 2639 2640 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2641 if (t_local) { 2642 err = -EBUSY; 2643 goto err_busy; 2644 } 2645 t_local = t; 2646 } 2647 2648 transport_h2g = t_h2g; 2649 transport_g2h = t_g2h; 2650 transport_dgram = t_dgram; 2651 transport_local = t_local; 2652 2653 err_busy: 2654 mutex_unlock(&vsock_register_mutex); 2655 return err; 2656 } 2657 EXPORT_SYMBOL_GPL(vsock_core_register); 2658 2659 void vsock_core_unregister(const struct vsock_transport *t) 2660 { 2661 mutex_lock(&vsock_register_mutex); 2662 2663 if (transport_h2g == t) 2664 transport_h2g = NULL; 2665 2666 if (transport_g2h == t) 2667 transport_g2h = NULL; 2668 2669 if (transport_dgram == t) 2670 transport_dgram = NULL; 2671 2672 if (transport_local == t) 2673 transport_local = NULL; 2674 2675 mutex_unlock(&vsock_register_mutex); 2676 } 2677 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2678 2679 module_init(vsock_init); 2680 module_exit(vsock_exit); 2681 2682 MODULE_AUTHOR("VMware, Inc."); 2683 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2684 MODULE_VERSION("1.0.2.0-k"); 2685 MODULE_LICENSE("GPL v2"); 2686