1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 121 /* Protocol family. */ 122 struct proto vsock_proto = { 123 .name = "AF_VSOCK", 124 .owner = THIS_MODULE, 125 .obj_size = sizeof(struct vsock_sock), 126 #ifdef CONFIG_BPF_SYSCALL 127 .psock_update_sk_prot = vsock_bpf_update_proto, 128 #endif 129 }; 130 131 /* The default peer timeout indicates how long we will wait for a peer response 132 * to a control message. 133 */ 134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 135 136 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 137 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 138 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 139 140 /* Transport used for host->guest communication */ 141 static const struct vsock_transport *transport_h2g; 142 /* Transport used for guest->host communication */ 143 static const struct vsock_transport *transport_g2h; 144 /* Transport used for DGRAM communication */ 145 static const struct vsock_transport *transport_dgram; 146 /* Transport used for local communication */ 147 static const struct vsock_transport *transport_local; 148 static DEFINE_MUTEX(vsock_register_mutex); 149 150 /**** UTILS ****/ 151 152 /* Each bound VSocket is stored in the bind hash table and each connected 153 * VSocket is stored in the connected hash table. 154 * 155 * Unbound sockets are all put on the same list attached to the end of the hash 156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 157 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 158 * represents the list that addr hashes to). 159 * 160 * Specifically, we initialize the vsock_bind_table array to a size of 161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 164 * mods with VSOCK_HASH_SIZE to ensure this. 165 */ 166 #define MAX_PORT_RETRIES 24 167 168 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 170 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 171 172 /* XXX This can probably be implemented in a better way. */ 173 #define VSOCK_CONN_HASH(src, dst) \ 174 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 175 #define vsock_connected_sockets(src, dst) \ 176 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 177 #define vsock_connected_sockets_vsk(vsk) \ 178 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 179 180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 181 EXPORT_SYMBOL_GPL(vsock_bind_table); 182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 183 EXPORT_SYMBOL_GPL(vsock_connected_table); 184 DEFINE_SPINLOCK(vsock_table_lock); 185 EXPORT_SYMBOL_GPL(vsock_table_lock); 186 187 /* Autobind this socket to the local address if necessary. */ 188 static int vsock_auto_bind(struct vsock_sock *vsk) 189 { 190 struct sock *sk = sk_vsock(vsk); 191 struct sockaddr_vm local_addr; 192 193 if (vsock_addr_bound(&vsk->local_addr)) 194 return 0; 195 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 196 return __vsock_bind(sk, &local_addr); 197 } 198 199 static void vsock_init_tables(void) 200 { 201 int i; 202 203 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 204 INIT_LIST_HEAD(&vsock_bind_table[i]); 205 206 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 207 INIT_LIST_HEAD(&vsock_connected_table[i]); 208 } 209 210 static void __vsock_insert_bound(struct list_head *list, 211 struct vsock_sock *vsk) 212 { 213 sock_hold(&vsk->sk); 214 list_add(&vsk->bound_table, list); 215 } 216 217 static void __vsock_insert_connected(struct list_head *list, 218 struct vsock_sock *vsk) 219 { 220 sock_hold(&vsk->sk); 221 list_add(&vsk->connected_table, list); 222 } 223 224 static void __vsock_remove_bound(struct vsock_sock *vsk) 225 { 226 list_del_init(&vsk->bound_table); 227 sock_put(&vsk->sk); 228 } 229 230 static void __vsock_remove_connected(struct vsock_sock *vsk) 231 { 232 list_del_init(&vsk->connected_table); 233 sock_put(&vsk->sk); 234 } 235 236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 237 { 238 struct vsock_sock *vsk; 239 240 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 241 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 242 return sk_vsock(vsk); 243 244 if (addr->svm_port == vsk->local_addr.svm_port && 245 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 246 addr->svm_cid == VMADDR_CID_ANY)) 247 return sk_vsock(vsk); 248 } 249 250 return NULL; 251 } 252 253 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 254 struct sockaddr_vm *dst) 255 { 256 struct vsock_sock *vsk; 257 258 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 259 connected_table) { 260 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 261 dst->svm_port == vsk->local_addr.svm_port) { 262 return sk_vsock(vsk); 263 } 264 } 265 266 return NULL; 267 } 268 269 static void vsock_insert_unbound(struct vsock_sock *vsk) 270 { 271 spin_lock_bh(&vsock_table_lock); 272 __vsock_insert_bound(vsock_unbound_sockets, vsk); 273 spin_unlock_bh(&vsock_table_lock); 274 } 275 276 void vsock_insert_connected(struct vsock_sock *vsk) 277 { 278 struct list_head *list = vsock_connected_sockets( 279 &vsk->remote_addr, &vsk->local_addr); 280 281 spin_lock_bh(&vsock_table_lock); 282 __vsock_insert_connected(list, vsk); 283 spin_unlock_bh(&vsock_table_lock); 284 } 285 EXPORT_SYMBOL_GPL(vsock_insert_connected); 286 287 void vsock_remove_bound(struct vsock_sock *vsk) 288 { 289 spin_lock_bh(&vsock_table_lock); 290 if (__vsock_in_bound_table(vsk)) 291 __vsock_remove_bound(vsk); 292 spin_unlock_bh(&vsock_table_lock); 293 } 294 EXPORT_SYMBOL_GPL(vsock_remove_bound); 295 296 void vsock_remove_connected(struct vsock_sock *vsk) 297 { 298 spin_lock_bh(&vsock_table_lock); 299 if (__vsock_in_connected_table(vsk)) 300 __vsock_remove_connected(vsk); 301 spin_unlock_bh(&vsock_table_lock); 302 } 303 EXPORT_SYMBOL_GPL(vsock_remove_connected); 304 305 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 306 { 307 struct sock *sk; 308 309 spin_lock_bh(&vsock_table_lock); 310 sk = __vsock_find_bound_socket(addr); 311 if (sk) 312 sock_hold(sk); 313 314 spin_unlock_bh(&vsock_table_lock); 315 316 return sk; 317 } 318 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 319 320 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 321 struct sockaddr_vm *dst) 322 { 323 struct sock *sk; 324 325 spin_lock_bh(&vsock_table_lock); 326 sk = __vsock_find_connected_socket(src, dst); 327 if (sk) 328 sock_hold(sk); 329 330 spin_unlock_bh(&vsock_table_lock); 331 332 return sk; 333 } 334 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 335 336 void vsock_remove_sock(struct vsock_sock *vsk) 337 { 338 vsock_remove_bound(vsk); 339 vsock_remove_connected(vsk); 340 } 341 EXPORT_SYMBOL_GPL(vsock_remove_sock); 342 343 void vsock_for_each_connected_socket(struct vsock_transport *transport, 344 void (*fn)(struct sock *sk)) 345 { 346 int i; 347 348 spin_lock_bh(&vsock_table_lock); 349 350 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 351 struct vsock_sock *vsk; 352 list_for_each_entry(vsk, &vsock_connected_table[i], 353 connected_table) { 354 if (vsk->transport != transport) 355 continue; 356 357 fn(sk_vsock(vsk)); 358 } 359 } 360 361 spin_unlock_bh(&vsock_table_lock); 362 } 363 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 364 365 void vsock_add_pending(struct sock *listener, struct sock *pending) 366 { 367 struct vsock_sock *vlistener; 368 struct vsock_sock *vpending; 369 370 vlistener = vsock_sk(listener); 371 vpending = vsock_sk(pending); 372 373 sock_hold(pending); 374 sock_hold(listener); 375 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 376 } 377 EXPORT_SYMBOL_GPL(vsock_add_pending); 378 379 void vsock_remove_pending(struct sock *listener, struct sock *pending) 380 { 381 struct vsock_sock *vpending = vsock_sk(pending); 382 383 list_del_init(&vpending->pending_links); 384 sock_put(listener); 385 sock_put(pending); 386 } 387 EXPORT_SYMBOL_GPL(vsock_remove_pending); 388 389 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 390 { 391 struct vsock_sock *vlistener; 392 struct vsock_sock *vconnected; 393 394 vlistener = vsock_sk(listener); 395 vconnected = vsock_sk(connected); 396 397 sock_hold(connected); 398 sock_hold(listener); 399 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 400 } 401 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 402 403 static bool vsock_use_local_transport(unsigned int remote_cid) 404 { 405 if (!transport_local) 406 return false; 407 408 if (remote_cid == VMADDR_CID_LOCAL) 409 return true; 410 411 if (transport_g2h) { 412 return remote_cid == transport_g2h->get_local_cid(); 413 } else { 414 return remote_cid == VMADDR_CID_HOST; 415 } 416 } 417 418 static void vsock_deassign_transport(struct vsock_sock *vsk) 419 { 420 if (!vsk->transport) 421 return; 422 423 vsk->transport->destruct(vsk); 424 module_put(vsk->transport->module); 425 vsk->transport = NULL; 426 } 427 428 /* Assign a transport to a socket and call the .init transport callback. 429 * 430 * Note: for connection oriented socket this must be called when vsk->remote_addr 431 * is set (e.g. during the connect() or when a connection request on a listener 432 * socket is received). 433 * The vsk->remote_addr is used to decide which transport to use: 434 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 435 * g2h is not loaded, will use local transport; 436 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 437 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 438 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 439 */ 440 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 441 { 442 const struct vsock_transport *new_transport; 443 struct sock *sk = sk_vsock(vsk); 444 unsigned int remote_cid = vsk->remote_addr.svm_cid; 445 __u8 remote_flags; 446 int ret; 447 448 /* If the packet is coming with the source and destination CIDs higher 449 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 450 * forwarded to the host should be established. Then the host will 451 * need to forward the packets to the guest. 452 * 453 * The flag is set on the (listen) receive path (psk is not NULL). On 454 * the connect path the flag can be set by the user space application. 455 */ 456 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 457 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 458 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 459 460 remote_flags = vsk->remote_addr.svm_flags; 461 462 switch (sk->sk_type) { 463 case SOCK_DGRAM: 464 new_transport = transport_dgram; 465 break; 466 case SOCK_STREAM: 467 case SOCK_SEQPACKET: 468 if (vsock_use_local_transport(remote_cid)) 469 new_transport = transport_local; 470 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 471 (remote_flags & VMADDR_FLAG_TO_HOST)) 472 new_transport = transport_g2h; 473 else 474 new_transport = transport_h2g; 475 break; 476 default: 477 return -ESOCKTNOSUPPORT; 478 } 479 480 if (vsk->transport) { 481 if (vsk->transport == new_transport) 482 return 0; 483 484 /* transport->release() must be called with sock lock acquired. 485 * This path can only be taken during vsock_connect(), where we 486 * have already held the sock lock. In the other cases, this 487 * function is called on a new socket which is not assigned to 488 * any transport. 489 */ 490 vsk->transport->release(vsk); 491 vsock_deassign_transport(vsk); 492 } 493 494 /* We increase the module refcnt to prevent the transport unloading 495 * while there are open sockets assigned to it. 496 */ 497 if (!new_transport || !try_module_get(new_transport->module)) 498 return -ENODEV; 499 500 if (sk->sk_type == SOCK_SEQPACKET) { 501 if (!new_transport->seqpacket_allow || 502 !new_transport->seqpacket_allow(remote_cid)) { 503 module_put(new_transport->module); 504 return -ESOCKTNOSUPPORT; 505 } 506 } 507 508 ret = new_transport->init(vsk, psk); 509 if (ret) { 510 module_put(new_transport->module); 511 return ret; 512 } 513 514 vsk->transport = new_transport; 515 516 return 0; 517 } 518 EXPORT_SYMBOL_GPL(vsock_assign_transport); 519 520 bool vsock_find_cid(unsigned int cid) 521 { 522 if (transport_g2h && cid == transport_g2h->get_local_cid()) 523 return true; 524 525 if (transport_h2g && cid == VMADDR_CID_HOST) 526 return true; 527 528 if (transport_local && cid == VMADDR_CID_LOCAL) 529 return true; 530 531 return false; 532 } 533 EXPORT_SYMBOL_GPL(vsock_find_cid); 534 535 static struct sock *vsock_dequeue_accept(struct sock *listener) 536 { 537 struct vsock_sock *vlistener; 538 struct vsock_sock *vconnected; 539 540 vlistener = vsock_sk(listener); 541 542 if (list_empty(&vlistener->accept_queue)) 543 return NULL; 544 545 vconnected = list_entry(vlistener->accept_queue.next, 546 struct vsock_sock, accept_queue); 547 548 list_del_init(&vconnected->accept_queue); 549 sock_put(listener); 550 /* The caller will need a reference on the connected socket so we let 551 * it call sock_put(). 552 */ 553 554 return sk_vsock(vconnected); 555 } 556 557 static bool vsock_is_accept_queue_empty(struct sock *sk) 558 { 559 struct vsock_sock *vsk = vsock_sk(sk); 560 return list_empty(&vsk->accept_queue); 561 } 562 563 static bool vsock_is_pending(struct sock *sk) 564 { 565 struct vsock_sock *vsk = vsock_sk(sk); 566 return !list_empty(&vsk->pending_links); 567 } 568 569 static int vsock_send_shutdown(struct sock *sk, int mode) 570 { 571 struct vsock_sock *vsk = vsock_sk(sk); 572 573 if (!vsk->transport) 574 return -ENODEV; 575 576 return vsk->transport->shutdown(vsk, mode); 577 } 578 579 static void vsock_pending_work(struct work_struct *work) 580 { 581 struct sock *sk; 582 struct sock *listener; 583 struct vsock_sock *vsk; 584 bool cleanup; 585 586 vsk = container_of(work, struct vsock_sock, pending_work.work); 587 sk = sk_vsock(vsk); 588 listener = vsk->listener; 589 cleanup = true; 590 591 lock_sock(listener); 592 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 593 594 if (vsock_is_pending(sk)) { 595 vsock_remove_pending(listener, sk); 596 597 sk_acceptq_removed(listener); 598 } else if (!vsk->rejected) { 599 /* We are not on the pending list and accept() did not reject 600 * us, so we must have been accepted by our user process. We 601 * just need to drop our references to the sockets and be on 602 * our way. 603 */ 604 cleanup = false; 605 goto out; 606 } 607 608 /* We need to remove ourself from the global connected sockets list so 609 * incoming packets can't find this socket, and to reduce the reference 610 * count. 611 */ 612 vsock_remove_connected(vsk); 613 614 sk->sk_state = TCP_CLOSE; 615 616 out: 617 release_sock(sk); 618 release_sock(listener); 619 if (cleanup) 620 sock_put(sk); 621 622 sock_put(sk); 623 sock_put(listener); 624 } 625 626 /**** SOCKET OPERATIONS ****/ 627 628 static int __vsock_bind_connectible(struct vsock_sock *vsk, 629 struct sockaddr_vm *addr) 630 { 631 static u32 port; 632 struct sockaddr_vm new_addr; 633 634 if (!port) 635 port = get_random_u32_above(LAST_RESERVED_PORT); 636 637 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 638 639 if (addr->svm_port == VMADDR_PORT_ANY) { 640 bool found = false; 641 unsigned int i; 642 643 for (i = 0; i < MAX_PORT_RETRIES; i++) { 644 if (port <= LAST_RESERVED_PORT) 645 port = LAST_RESERVED_PORT + 1; 646 647 new_addr.svm_port = port++; 648 649 if (!__vsock_find_bound_socket(&new_addr)) { 650 found = true; 651 break; 652 } 653 } 654 655 if (!found) 656 return -EADDRNOTAVAIL; 657 } else { 658 /* If port is in reserved range, ensure caller 659 * has necessary privileges. 660 */ 661 if (addr->svm_port <= LAST_RESERVED_PORT && 662 !capable(CAP_NET_BIND_SERVICE)) { 663 return -EACCES; 664 } 665 666 if (__vsock_find_bound_socket(&new_addr)) 667 return -EADDRINUSE; 668 } 669 670 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 671 672 /* Remove connection oriented sockets from the unbound list and add them 673 * to the hash table for easy lookup by its address. The unbound list 674 * is simply an extra entry at the end of the hash table, a trick used 675 * by AF_UNIX. 676 */ 677 __vsock_remove_bound(vsk); 678 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 679 680 return 0; 681 } 682 683 static int __vsock_bind_dgram(struct vsock_sock *vsk, 684 struct sockaddr_vm *addr) 685 { 686 return vsk->transport->dgram_bind(vsk, addr); 687 } 688 689 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 690 { 691 struct vsock_sock *vsk = vsock_sk(sk); 692 int retval; 693 694 /* First ensure this socket isn't already bound. */ 695 if (vsock_addr_bound(&vsk->local_addr)) 696 return -EINVAL; 697 698 /* Now bind to the provided address or select appropriate values if 699 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 700 * like AF_INET prevents binding to a non-local IP address (in most 701 * cases), we only allow binding to a local CID. 702 */ 703 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 704 return -EADDRNOTAVAIL; 705 706 switch (sk->sk_socket->type) { 707 case SOCK_STREAM: 708 case SOCK_SEQPACKET: 709 spin_lock_bh(&vsock_table_lock); 710 retval = __vsock_bind_connectible(vsk, addr); 711 spin_unlock_bh(&vsock_table_lock); 712 break; 713 714 case SOCK_DGRAM: 715 retval = __vsock_bind_dgram(vsk, addr); 716 break; 717 718 default: 719 retval = -EINVAL; 720 break; 721 } 722 723 return retval; 724 } 725 726 static void vsock_connect_timeout(struct work_struct *work); 727 728 static struct sock *__vsock_create(struct net *net, 729 struct socket *sock, 730 struct sock *parent, 731 gfp_t priority, 732 unsigned short type, 733 int kern) 734 { 735 struct sock *sk; 736 struct vsock_sock *psk; 737 struct vsock_sock *vsk; 738 739 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 740 if (!sk) 741 return NULL; 742 743 sock_init_data(sock, sk); 744 745 /* sk->sk_type is normally set in sock_init_data, but only if sock is 746 * non-NULL. We make sure that our sockets always have a type by 747 * setting it here if needed. 748 */ 749 if (!sock) 750 sk->sk_type = type; 751 752 vsk = vsock_sk(sk); 753 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 754 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 755 756 sk->sk_destruct = vsock_sk_destruct; 757 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 758 sock_reset_flag(sk, SOCK_DONE); 759 760 INIT_LIST_HEAD(&vsk->bound_table); 761 INIT_LIST_HEAD(&vsk->connected_table); 762 vsk->listener = NULL; 763 INIT_LIST_HEAD(&vsk->pending_links); 764 INIT_LIST_HEAD(&vsk->accept_queue); 765 vsk->rejected = false; 766 vsk->sent_request = false; 767 vsk->ignore_connecting_rst = false; 768 vsk->peer_shutdown = 0; 769 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 770 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 771 772 psk = parent ? vsock_sk(parent) : NULL; 773 if (parent) { 774 vsk->trusted = psk->trusted; 775 vsk->owner = get_cred(psk->owner); 776 vsk->connect_timeout = psk->connect_timeout; 777 vsk->buffer_size = psk->buffer_size; 778 vsk->buffer_min_size = psk->buffer_min_size; 779 vsk->buffer_max_size = psk->buffer_max_size; 780 security_sk_clone(parent, sk); 781 } else { 782 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 783 vsk->owner = get_current_cred(); 784 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 785 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 786 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 787 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 788 } 789 790 return sk; 791 } 792 793 static bool sock_type_connectible(u16 type) 794 { 795 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 796 } 797 798 static void __vsock_release(struct sock *sk, int level) 799 { 800 if (sk) { 801 struct sock *pending; 802 struct vsock_sock *vsk; 803 804 vsk = vsock_sk(sk); 805 pending = NULL; /* Compiler warning. */ 806 807 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 808 * version to avoid the warning "possible recursive locking 809 * detected". When "level" is 0, lock_sock_nested(sk, level) 810 * is the same as lock_sock(sk). 811 */ 812 lock_sock_nested(sk, level); 813 814 if (vsk->transport) 815 vsk->transport->release(vsk); 816 else if (sock_type_connectible(sk->sk_type)) 817 vsock_remove_sock(vsk); 818 819 sock_orphan(sk); 820 sk->sk_shutdown = SHUTDOWN_MASK; 821 822 skb_queue_purge(&sk->sk_receive_queue); 823 824 /* Clean up any sockets that never were accepted. */ 825 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 826 __vsock_release(pending, SINGLE_DEPTH_NESTING); 827 sock_put(pending); 828 } 829 830 release_sock(sk); 831 sock_put(sk); 832 } 833 } 834 835 static void vsock_sk_destruct(struct sock *sk) 836 { 837 struct vsock_sock *vsk = vsock_sk(sk); 838 839 /* Flush MSG_ZEROCOPY leftovers. */ 840 __skb_queue_purge(&sk->sk_error_queue); 841 842 vsock_deassign_transport(vsk); 843 844 /* When clearing these addresses, there's no need to set the family and 845 * possibly register the address family with the kernel. 846 */ 847 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 848 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 849 850 put_cred(vsk->owner); 851 } 852 853 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 854 { 855 int err; 856 857 err = sock_queue_rcv_skb(sk, skb); 858 if (err) 859 kfree_skb(skb); 860 861 return err; 862 } 863 864 struct sock *vsock_create_connected(struct sock *parent) 865 { 866 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 867 parent->sk_type, 0); 868 } 869 EXPORT_SYMBOL_GPL(vsock_create_connected); 870 871 s64 vsock_stream_has_data(struct vsock_sock *vsk) 872 { 873 return vsk->transport->stream_has_data(vsk); 874 } 875 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 876 877 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 878 { 879 struct sock *sk = sk_vsock(vsk); 880 881 if (sk->sk_type == SOCK_SEQPACKET) 882 return vsk->transport->seqpacket_has_data(vsk); 883 else 884 return vsock_stream_has_data(vsk); 885 } 886 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 887 888 s64 vsock_stream_has_space(struct vsock_sock *vsk) 889 { 890 return vsk->transport->stream_has_space(vsk); 891 } 892 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 893 894 void vsock_data_ready(struct sock *sk) 895 { 896 struct vsock_sock *vsk = vsock_sk(sk); 897 898 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 899 sock_flag(sk, SOCK_DONE)) 900 sk->sk_data_ready(sk); 901 } 902 EXPORT_SYMBOL_GPL(vsock_data_ready); 903 904 static int vsock_release(struct socket *sock) 905 { 906 __vsock_release(sock->sk, 0); 907 sock->sk = NULL; 908 sock->state = SS_FREE; 909 910 return 0; 911 } 912 913 static int 914 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 915 { 916 int err; 917 struct sock *sk; 918 struct sockaddr_vm *vm_addr; 919 920 sk = sock->sk; 921 922 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 923 return -EINVAL; 924 925 lock_sock(sk); 926 err = __vsock_bind(sk, vm_addr); 927 release_sock(sk); 928 929 return err; 930 } 931 932 static int vsock_getname(struct socket *sock, 933 struct sockaddr *addr, int peer) 934 { 935 int err; 936 struct sock *sk; 937 struct vsock_sock *vsk; 938 struct sockaddr_vm *vm_addr; 939 940 sk = sock->sk; 941 vsk = vsock_sk(sk); 942 err = 0; 943 944 lock_sock(sk); 945 946 if (peer) { 947 if (sock->state != SS_CONNECTED) { 948 err = -ENOTCONN; 949 goto out; 950 } 951 vm_addr = &vsk->remote_addr; 952 } else { 953 vm_addr = &vsk->local_addr; 954 } 955 956 if (!vm_addr) { 957 err = -EINVAL; 958 goto out; 959 } 960 961 /* sys_getsockname() and sys_getpeername() pass us a 962 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 963 * that macro is defined in socket.c instead of .h, so we hardcode its 964 * value here. 965 */ 966 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 967 memcpy(addr, vm_addr, sizeof(*vm_addr)); 968 err = sizeof(*vm_addr); 969 970 out: 971 release_sock(sk); 972 return err; 973 } 974 975 static int vsock_shutdown(struct socket *sock, int mode) 976 { 977 int err; 978 struct sock *sk; 979 980 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 981 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 982 * here like the other address families do. Note also that the 983 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 984 * which is what we want. 985 */ 986 mode++; 987 988 if ((mode & ~SHUTDOWN_MASK) || !mode) 989 return -EINVAL; 990 991 /* If this is a connection oriented socket and it is not connected then 992 * bail out immediately. If it is a DGRAM socket then we must first 993 * kick the socket so that it wakes up from any sleeping calls, for 994 * example recv(), and then afterwards return the error. 995 */ 996 997 sk = sock->sk; 998 999 lock_sock(sk); 1000 if (sock->state == SS_UNCONNECTED) { 1001 err = -ENOTCONN; 1002 if (sock_type_connectible(sk->sk_type)) 1003 goto out; 1004 } else { 1005 sock->state = SS_DISCONNECTING; 1006 err = 0; 1007 } 1008 1009 /* Receive and send shutdowns are treated alike. */ 1010 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1011 if (mode) { 1012 sk->sk_shutdown |= mode; 1013 sk->sk_state_change(sk); 1014 1015 if (sock_type_connectible(sk->sk_type)) { 1016 sock_reset_flag(sk, SOCK_DONE); 1017 vsock_send_shutdown(sk, mode); 1018 } 1019 } 1020 1021 out: 1022 release_sock(sk); 1023 return err; 1024 } 1025 1026 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1027 poll_table *wait) 1028 { 1029 struct sock *sk; 1030 __poll_t mask; 1031 struct vsock_sock *vsk; 1032 1033 sk = sock->sk; 1034 vsk = vsock_sk(sk); 1035 1036 poll_wait(file, sk_sleep(sk), wait); 1037 mask = 0; 1038 1039 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1040 /* Signify that there has been an error on this socket. */ 1041 mask |= EPOLLERR; 1042 1043 /* INET sockets treat local write shutdown and peer write shutdown as a 1044 * case of EPOLLHUP set. 1045 */ 1046 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1047 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1048 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1049 mask |= EPOLLHUP; 1050 } 1051 1052 if (sk->sk_shutdown & RCV_SHUTDOWN || 1053 vsk->peer_shutdown & SEND_SHUTDOWN) { 1054 mask |= EPOLLRDHUP; 1055 } 1056 1057 if (sock->type == SOCK_DGRAM) { 1058 /* For datagram sockets we can read if there is something in 1059 * the queue and write as long as the socket isn't shutdown for 1060 * sending. 1061 */ 1062 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1063 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1064 mask |= EPOLLIN | EPOLLRDNORM; 1065 } 1066 1067 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1068 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1069 1070 } else if (sock_type_connectible(sk->sk_type)) { 1071 const struct vsock_transport *transport; 1072 1073 lock_sock(sk); 1074 1075 transport = vsk->transport; 1076 1077 /* Listening sockets that have connections in their accept 1078 * queue can be read. 1079 */ 1080 if (sk->sk_state == TCP_LISTEN 1081 && !vsock_is_accept_queue_empty(sk)) 1082 mask |= EPOLLIN | EPOLLRDNORM; 1083 1084 /* If there is something in the queue then we can read. */ 1085 if (transport && transport->stream_is_active(vsk) && 1086 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1087 bool data_ready_now = false; 1088 int target = sock_rcvlowat(sk, 0, INT_MAX); 1089 int ret = transport->notify_poll_in( 1090 vsk, target, &data_ready_now); 1091 if (ret < 0) { 1092 mask |= EPOLLERR; 1093 } else { 1094 if (data_ready_now) 1095 mask |= EPOLLIN | EPOLLRDNORM; 1096 1097 } 1098 } 1099 1100 /* Sockets whose connections have been closed, reset, or 1101 * terminated should also be considered read, and we check the 1102 * shutdown flag for that. 1103 */ 1104 if (sk->sk_shutdown & RCV_SHUTDOWN || 1105 vsk->peer_shutdown & SEND_SHUTDOWN) { 1106 mask |= EPOLLIN | EPOLLRDNORM; 1107 } 1108 1109 /* Connected sockets that can produce data can be written. */ 1110 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1111 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1112 bool space_avail_now = false; 1113 int ret = transport->notify_poll_out( 1114 vsk, 1, &space_avail_now); 1115 if (ret < 0) { 1116 mask |= EPOLLERR; 1117 } else { 1118 if (space_avail_now) 1119 /* Remove EPOLLWRBAND since INET 1120 * sockets are not setting it. 1121 */ 1122 mask |= EPOLLOUT | EPOLLWRNORM; 1123 1124 } 1125 } 1126 } 1127 1128 /* Simulate INET socket poll behaviors, which sets 1129 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1130 * but local send is not shutdown. 1131 */ 1132 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1133 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1134 mask |= EPOLLOUT | EPOLLWRNORM; 1135 1136 } 1137 1138 release_sock(sk); 1139 } 1140 1141 return mask; 1142 } 1143 1144 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1145 { 1146 struct vsock_sock *vsk = vsock_sk(sk); 1147 1148 return vsk->transport->read_skb(vsk, read_actor); 1149 } 1150 1151 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1152 size_t len) 1153 { 1154 int err; 1155 struct sock *sk; 1156 struct vsock_sock *vsk; 1157 struct sockaddr_vm *remote_addr; 1158 const struct vsock_transport *transport; 1159 1160 if (msg->msg_flags & MSG_OOB) 1161 return -EOPNOTSUPP; 1162 1163 /* For now, MSG_DONTWAIT is always assumed... */ 1164 err = 0; 1165 sk = sock->sk; 1166 vsk = vsock_sk(sk); 1167 1168 lock_sock(sk); 1169 1170 transport = vsk->transport; 1171 1172 err = vsock_auto_bind(vsk); 1173 if (err) 1174 goto out; 1175 1176 1177 /* If the provided message contains an address, use that. Otherwise 1178 * fall back on the socket's remote handle (if it has been connected). 1179 */ 1180 if (msg->msg_name && 1181 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1182 &remote_addr) == 0) { 1183 /* Ensure this address is of the right type and is a valid 1184 * destination. 1185 */ 1186 1187 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1188 remote_addr->svm_cid = transport->get_local_cid(); 1189 1190 if (!vsock_addr_bound(remote_addr)) { 1191 err = -EINVAL; 1192 goto out; 1193 } 1194 } else if (sock->state == SS_CONNECTED) { 1195 remote_addr = &vsk->remote_addr; 1196 1197 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1198 remote_addr->svm_cid = transport->get_local_cid(); 1199 1200 /* XXX Should connect() or this function ensure remote_addr is 1201 * bound? 1202 */ 1203 if (!vsock_addr_bound(&vsk->remote_addr)) { 1204 err = -EINVAL; 1205 goto out; 1206 } 1207 } else { 1208 err = -EINVAL; 1209 goto out; 1210 } 1211 1212 if (!transport->dgram_allow(remote_addr->svm_cid, 1213 remote_addr->svm_port)) { 1214 err = -EINVAL; 1215 goto out; 1216 } 1217 1218 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1219 1220 out: 1221 release_sock(sk); 1222 return err; 1223 } 1224 1225 static int vsock_dgram_connect(struct socket *sock, 1226 struct sockaddr *addr, int addr_len, int flags) 1227 { 1228 int err; 1229 struct sock *sk; 1230 struct vsock_sock *vsk; 1231 struct sockaddr_vm *remote_addr; 1232 1233 sk = sock->sk; 1234 vsk = vsock_sk(sk); 1235 1236 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1237 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1238 lock_sock(sk); 1239 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1240 VMADDR_PORT_ANY); 1241 sock->state = SS_UNCONNECTED; 1242 release_sock(sk); 1243 return 0; 1244 } else if (err != 0) 1245 return -EINVAL; 1246 1247 lock_sock(sk); 1248 1249 err = vsock_auto_bind(vsk); 1250 if (err) 1251 goto out; 1252 1253 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1254 remote_addr->svm_port)) { 1255 err = -EINVAL; 1256 goto out; 1257 } 1258 1259 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1260 sock->state = SS_CONNECTED; 1261 1262 /* sock map disallows redirection of non-TCP sockets with sk_state != 1263 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1264 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1265 * 1266 * This doesn't seem to be abnormal state for datagram sockets, as the 1267 * same approach can be see in other datagram socket types as well 1268 * (such as unix sockets). 1269 */ 1270 sk->sk_state = TCP_ESTABLISHED; 1271 1272 out: 1273 release_sock(sk); 1274 return err; 1275 } 1276 1277 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1278 size_t len, int flags) 1279 { 1280 struct sock *sk = sock->sk; 1281 struct vsock_sock *vsk = vsock_sk(sk); 1282 1283 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1284 } 1285 1286 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1287 size_t len, int flags) 1288 { 1289 #ifdef CONFIG_BPF_SYSCALL 1290 struct sock *sk = sock->sk; 1291 const struct proto *prot; 1292 1293 prot = READ_ONCE(sk->sk_prot); 1294 if (prot != &vsock_proto) 1295 return prot->recvmsg(sk, msg, len, flags, NULL); 1296 #endif 1297 1298 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1299 } 1300 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1301 1302 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1303 int __user *arg) 1304 { 1305 struct sock *sk = sock->sk; 1306 struct vsock_sock *vsk; 1307 int ret; 1308 1309 vsk = vsock_sk(sk); 1310 1311 switch (cmd) { 1312 case SIOCOUTQ: { 1313 ssize_t n_bytes; 1314 1315 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1316 ret = -EOPNOTSUPP; 1317 break; 1318 } 1319 1320 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1321 ret = -EINVAL; 1322 break; 1323 } 1324 1325 n_bytes = vsk->transport->unsent_bytes(vsk); 1326 if (n_bytes < 0) { 1327 ret = n_bytes; 1328 break; 1329 } 1330 1331 ret = put_user(n_bytes, arg); 1332 break; 1333 } 1334 default: 1335 ret = -ENOIOCTLCMD; 1336 } 1337 1338 return ret; 1339 } 1340 1341 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1342 unsigned long arg) 1343 { 1344 int ret; 1345 1346 lock_sock(sock->sk); 1347 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1348 release_sock(sock->sk); 1349 1350 return ret; 1351 } 1352 1353 static const struct proto_ops vsock_dgram_ops = { 1354 .family = PF_VSOCK, 1355 .owner = THIS_MODULE, 1356 .release = vsock_release, 1357 .bind = vsock_bind, 1358 .connect = vsock_dgram_connect, 1359 .socketpair = sock_no_socketpair, 1360 .accept = sock_no_accept, 1361 .getname = vsock_getname, 1362 .poll = vsock_poll, 1363 .ioctl = vsock_ioctl, 1364 .listen = sock_no_listen, 1365 .shutdown = vsock_shutdown, 1366 .sendmsg = vsock_dgram_sendmsg, 1367 .recvmsg = vsock_dgram_recvmsg, 1368 .mmap = sock_no_mmap, 1369 .read_skb = vsock_read_skb, 1370 }; 1371 1372 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1373 { 1374 const struct vsock_transport *transport = vsk->transport; 1375 1376 if (!transport || !transport->cancel_pkt) 1377 return -EOPNOTSUPP; 1378 1379 return transport->cancel_pkt(vsk); 1380 } 1381 1382 static void vsock_connect_timeout(struct work_struct *work) 1383 { 1384 struct sock *sk; 1385 struct vsock_sock *vsk; 1386 1387 vsk = container_of(work, struct vsock_sock, connect_work.work); 1388 sk = sk_vsock(vsk); 1389 1390 lock_sock(sk); 1391 if (sk->sk_state == TCP_SYN_SENT && 1392 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1393 sk->sk_state = TCP_CLOSE; 1394 sk->sk_socket->state = SS_UNCONNECTED; 1395 sk->sk_err = ETIMEDOUT; 1396 sk_error_report(sk); 1397 vsock_transport_cancel_pkt(vsk); 1398 } 1399 release_sock(sk); 1400 1401 sock_put(sk); 1402 } 1403 1404 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1405 int addr_len, int flags) 1406 { 1407 int err; 1408 struct sock *sk; 1409 struct vsock_sock *vsk; 1410 const struct vsock_transport *transport; 1411 struct sockaddr_vm *remote_addr; 1412 long timeout; 1413 DEFINE_WAIT(wait); 1414 1415 err = 0; 1416 sk = sock->sk; 1417 vsk = vsock_sk(sk); 1418 1419 lock_sock(sk); 1420 1421 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1422 switch (sock->state) { 1423 case SS_CONNECTED: 1424 err = -EISCONN; 1425 goto out; 1426 case SS_DISCONNECTING: 1427 err = -EINVAL; 1428 goto out; 1429 case SS_CONNECTING: 1430 /* This continues on so we can move sock into the SS_CONNECTED 1431 * state once the connection has completed (at which point err 1432 * will be set to zero also). Otherwise, we will either wait 1433 * for the connection or return -EALREADY should this be a 1434 * non-blocking call. 1435 */ 1436 err = -EALREADY; 1437 if (flags & O_NONBLOCK) 1438 goto out; 1439 break; 1440 default: 1441 if ((sk->sk_state == TCP_LISTEN) || 1442 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1443 err = -EINVAL; 1444 goto out; 1445 } 1446 1447 /* Set the remote address that we are connecting to. */ 1448 memcpy(&vsk->remote_addr, remote_addr, 1449 sizeof(vsk->remote_addr)); 1450 1451 err = vsock_assign_transport(vsk, NULL); 1452 if (err) 1453 goto out; 1454 1455 transport = vsk->transport; 1456 1457 /* The hypervisor and well-known contexts do not have socket 1458 * endpoints. 1459 */ 1460 if (!transport || 1461 !transport->stream_allow(remote_addr->svm_cid, 1462 remote_addr->svm_port)) { 1463 err = -ENETUNREACH; 1464 goto out; 1465 } 1466 1467 if (vsock_msgzerocopy_allow(transport)) { 1468 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1469 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1470 /* If this option was set before 'connect()', 1471 * when transport was unknown, check that this 1472 * feature is supported here. 1473 */ 1474 err = -EOPNOTSUPP; 1475 goto out; 1476 } 1477 1478 err = vsock_auto_bind(vsk); 1479 if (err) 1480 goto out; 1481 1482 sk->sk_state = TCP_SYN_SENT; 1483 1484 err = transport->connect(vsk); 1485 if (err < 0) 1486 goto out; 1487 1488 /* Mark sock as connecting and set the error code to in 1489 * progress in case this is a non-blocking connect. 1490 */ 1491 sock->state = SS_CONNECTING; 1492 err = -EINPROGRESS; 1493 } 1494 1495 /* The receive path will handle all communication until we are able to 1496 * enter the connected state. Here we wait for the connection to be 1497 * completed or a notification of an error. 1498 */ 1499 timeout = vsk->connect_timeout; 1500 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1501 1502 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1503 if (flags & O_NONBLOCK) { 1504 /* If we're not going to block, we schedule a timeout 1505 * function to generate a timeout on the connection 1506 * attempt, in case the peer doesn't respond in a 1507 * timely manner. We hold on to the socket until the 1508 * timeout fires. 1509 */ 1510 sock_hold(sk); 1511 1512 /* If the timeout function is already scheduled, 1513 * reschedule it, then ungrab the socket refcount to 1514 * keep it balanced. 1515 */ 1516 if (mod_delayed_work(system_wq, &vsk->connect_work, 1517 timeout)) 1518 sock_put(sk); 1519 1520 /* Skip ahead to preserve error code set above. */ 1521 goto out_wait; 1522 } 1523 1524 release_sock(sk); 1525 timeout = schedule_timeout(timeout); 1526 lock_sock(sk); 1527 1528 if (signal_pending(current)) { 1529 err = sock_intr_errno(timeout); 1530 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1531 sock->state = SS_UNCONNECTED; 1532 vsock_transport_cancel_pkt(vsk); 1533 vsock_remove_connected(vsk); 1534 goto out_wait; 1535 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1536 err = -ETIMEDOUT; 1537 sk->sk_state = TCP_CLOSE; 1538 sock->state = SS_UNCONNECTED; 1539 vsock_transport_cancel_pkt(vsk); 1540 goto out_wait; 1541 } 1542 1543 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1544 } 1545 1546 if (sk->sk_err) { 1547 err = -sk->sk_err; 1548 sk->sk_state = TCP_CLOSE; 1549 sock->state = SS_UNCONNECTED; 1550 } else { 1551 err = 0; 1552 } 1553 1554 out_wait: 1555 finish_wait(sk_sleep(sk), &wait); 1556 out: 1557 release_sock(sk); 1558 return err; 1559 } 1560 1561 static int vsock_accept(struct socket *sock, struct socket *newsock, 1562 struct proto_accept_arg *arg) 1563 { 1564 struct sock *listener; 1565 int err; 1566 struct sock *connected; 1567 struct vsock_sock *vconnected; 1568 long timeout; 1569 DEFINE_WAIT(wait); 1570 1571 err = 0; 1572 listener = sock->sk; 1573 1574 lock_sock(listener); 1575 1576 if (!sock_type_connectible(sock->type)) { 1577 err = -EOPNOTSUPP; 1578 goto out; 1579 } 1580 1581 if (listener->sk_state != TCP_LISTEN) { 1582 err = -EINVAL; 1583 goto out; 1584 } 1585 1586 /* Wait for children sockets to appear; these are the new sockets 1587 * created upon connection establishment. 1588 */ 1589 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1590 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1591 1592 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1593 listener->sk_err == 0) { 1594 release_sock(listener); 1595 timeout = schedule_timeout(timeout); 1596 finish_wait(sk_sleep(listener), &wait); 1597 lock_sock(listener); 1598 1599 if (signal_pending(current)) { 1600 err = sock_intr_errno(timeout); 1601 goto out; 1602 } else if (timeout == 0) { 1603 err = -EAGAIN; 1604 goto out; 1605 } 1606 1607 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1608 } 1609 finish_wait(sk_sleep(listener), &wait); 1610 1611 if (listener->sk_err) 1612 err = -listener->sk_err; 1613 1614 if (connected) { 1615 sk_acceptq_removed(listener); 1616 1617 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1618 vconnected = vsock_sk(connected); 1619 1620 /* If the listener socket has received an error, then we should 1621 * reject this socket and return. Note that we simply mark the 1622 * socket rejected, drop our reference, and let the cleanup 1623 * function handle the cleanup; the fact that we found it in 1624 * the listener's accept queue guarantees that the cleanup 1625 * function hasn't run yet. 1626 */ 1627 if (err) { 1628 vconnected->rejected = true; 1629 } else { 1630 newsock->state = SS_CONNECTED; 1631 sock_graft(connected, newsock); 1632 if (vsock_msgzerocopy_allow(vconnected->transport)) 1633 set_bit(SOCK_SUPPORT_ZC, 1634 &connected->sk_socket->flags); 1635 } 1636 1637 release_sock(connected); 1638 sock_put(connected); 1639 } 1640 1641 out: 1642 release_sock(listener); 1643 return err; 1644 } 1645 1646 static int vsock_listen(struct socket *sock, int backlog) 1647 { 1648 int err; 1649 struct sock *sk; 1650 struct vsock_sock *vsk; 1651 1652 sk = sock->sk; 1653 1654 lock_sock(sk); 1655 1656 if (!sock_type_connectible(sk->sk_type)) { 1657 err = -EOPNOTSUPP; 1658 goto out; 1659 } 1660 1661 if (sock->state != SS_UNCONNECTED) { 1662 err = -EINVAL; 1663 goto out; 1664 } 1665 1666 vsk = vsock_sk(sk); 1667 1668 if (!vsock_addr_bound(&vsk->local_addr)) { 1669 err = -EINVAL; 1670 goto out; 1671 } 1672 1673 sk->sk_max_ack_backlog = backlog; 1674 sk->sk_state = TCP_LISTEN; 1675 1676 err = 0; 1677 1678 out: 1679 release_sock(sk); 1680 return err; 1681 } 1682 1683 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1684 const struct vsock_transport *transport, 1685 u64 val) 1686 { 1687 if (val > vsk->buffer_max_size) 1688 val = vsk->buffer_max_size; 1689 1690 if (val < vsk->buffer_min_size) 1691 val = vsk->buffer_min_size; 1692 1693 if (val != vsk->buffer_size && 1694 transport && transport->notify_buffer_size) 1695 transport->notify_buffer_size(vsk, &val); 1696 1697 vsk->buffer_size = val; 1698 } 1699 1700 static int vsock_connectible_setsockopt(struct socket *sock, 1701 int level, 1702 int optname, 1703 sockptr_t optval, 1704 unsigned int optlen) 1705 { 1706 int err; 1707 struct sock *sk; 1708 struct vsock_sock *vsk; 1709 const struct vsock_transport *transport; 1710 u64 val; 1711 1712 if (level != AF_VSOCK && level != SOL_SOCKET) 1713 return -ENOPROTOOPT; 1714 1715 #define COPY_IN(_v) \ 1716 do { \ 1717 if (optlen < sizeof(_v)) { \ 1718 err = -EINVAL; \ 1719 goto exit; \ 1720 } \ 1721 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1722 err = -EFAULT; \ 1723 goto exit; \ 1724 } \ 1725 } while (0) 1726 1727 err = 0; 1728 sk = sock->sk; 1729 vsk = vsock_sk(sk); 1730 1731 lock_sock(sk); 1732 1733 transport = vsk->transport; 1734 1735 if (level == SOL_SOCKET) { 1736 int zerocopy; 1737 1738 if (optname != SO_ZEROCOPY) { 1739 release_sock(sk); 1740 return sock_setsockopt(sock, level, optname, optval, optlen); 1741 } 1742 1743 /* Use 'int' type here, because variable to 1744 * set this option usually has this type. 1745 */ 1746 COPY_IN(zerocopy); 1747 1748 if (zerocopy < 0 || zerocopy > 1) { 1749 err = -EINVAL; 1750 goto exit; 1751 } 1752 1753 if (transport && !vsock_msgzerocopy_allow(transport)) { 1754 err = -EOPNOTSUPP; 1755 goto exit; 1756 } 1757 1758 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1759 goto exit; 1760 } 1761 1762 switch (optname) { 1763 case SO_VM_SOCKETS_BUFFER_SIZE: 1764 COPY_IN(val); 1765 vsock_update_buffer_size(vsk, transport, val); 1766 break; 1767 1768 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1769 COPY_IN(val); 1770 vsk->buffer_max_size = val; 1771 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1772 break; 1773 1774 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1775 COPY_IN(val); 1776 vsk->buffer_min_size = val; 1777 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1778 break; 1779 1780 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1781 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1782 struct __kernel_sock_timeval tv; 1783 1784 err = sock_copy_user_timeval(&tv, optval, optlen, 1785 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1786 if (err) 1787 break; 1788 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1789 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1790 vsk->connect_timeout = tv.tv_sec * HZ + 1791 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1792 if (vsk->connect_timeout == 0) 1793 vsk->connect_timeout = 1794 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1795 1796 } else { 1797 err = -ERANGE; 1798 } 1799 break; 1800 } 1801 1802 default: 1803 err = -ENOPROTOOPT; 1804 break; 1805 } 1806 1807 #undef COPY_IN 1808 1809 exit: 1810 release_sock(sk); 1811 return err; 1812 } 1813 1814 static int vsock_connectible_getsockopt(struct socket *sock, 1815 int level, int optname, 1816 char __user *optval, 1817 int __user *optlen) 1818 { 1819 struct sock *sk = sock->sk; 1820 struct vsock_sock *vsk = vsock_sk(sk); 1821 1822 union { 1823 u64 val64; 1824 struct old_timeval32 tm32; 1825 struct __kernel_old_timeval tm; 1826 struct __kernel_sock_timeval stm; 1827 } v; 1828 1829 int lv = sizeof(v.val64); 1830 int len; 1831 1832 if (level != AF_VSOCK) 1833 return -ENOPROTOOPT; 1834 1835 if (get_user(len, optlen)) 1836 return -EFAULT; 1837 1838 memset(&v, 0, sizeof(v)); 1839 1840 switch (optname) { 1841 case SO_VM_SOCKETS_BUFFER_SIZE: 1842 v.val64 = vsk->buffer_size; 1843 break; 1844 1845 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1846 v.val64 = vsk->buffer_max_size; 1847 break; 1848 1849 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1850 v.val64 = vsk->buffer_min_size; 1851 break; 1852 1853 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1854 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1855 lv = sock_get_timeout(vsk->connect_timeout, &v, 1856 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1857 break; 1858 1859 default: 1860 return -ENOPROTOOPT; 1861 } 1862 1863 if (len < lv) 1864 return -EINVAL; 1865 if (len > lv) 1866 len = lv; 1867 if (copy_to_user(optval, &v, len)) 1868 return -EFAULT; 1869 1870 if (put_user(len, optlen)) 1871 return -EFAULT; 1872 1873 return 0; 1874 } 1875 1876 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1877 size_t len) 1878 { 1879 struct sock *sk; 1880 struct vsock_sock *vsk; 1881 const struct vsock_transport *transport; 1882 ssize_t total_written; 1883 long timeout; 1884 int err; 1885 struct vsock_transport_send_notify_data send_data; 1886 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1887 1888 sk = sock->sk; 1889 vsk = vsock_sk(sk); 1890 total_written = 0; 1891 err = 0; 1892 1893 if (msg->msg_flags & MSG_OOB) 1894 return -EOPNOTSUPP; 1895 1896 lock_sock(sk); 1897 1898 transport = vsk->transport; 1899 1900 /* Callers should not provide a destination with connection oriented 1901 * sockets. 1902 */ 1903 if (msg->msg_namelen) { 1904 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1905 goto out; 1906 } 1907 1908 /* Send data only if both sides are not shutdown in the direction. */ 1909 if (sk->sk_shutdown & SEND_SHUTDOWN || 1910 vsk->peer_shutdown & RCV_SHUTDOWN) { 1911 err = -EPIPE; 1912 goto out; 1913 } 1914 1915 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1916 !vsock_addr_bound(&vsk->local_addr)) { 1917 err = -ENOTCONN; 1918 goto out; 1919 } 1920 1921 if (!vsock_addr_bound(&vsk->remote_addr)) { 1922 err = -EDESTADDRREQ; 1923 goto out; 1924 } 1925 1926 if (msg->msg_flags & MSG_ZEROCOPY && 1927 !vsock_msgzerocopy_allow(transport)) { 1928 err = -EOPNOTSUPP; 1929 goto out; 1930 } 1931 1932 /* Wait for room in the produce queue to enqueue our user's data. */ 1933 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1934 1935 err = transport->notify_send_init(vsk, &send_data); 1936 if (err < 0) 1937 goto out; 1938 1939 while (total_written < len) { 1940 ssize_t written; 1941 1942 add_wait_queue(sk_sleep(sk), &wait); 1943 while (vsock_stream_has_space(vsk) == 0 && 1944 sk->sk_err == 0 && 1945 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1946 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1947 1948 /* Don't wait for non-blocking sockets. */ 1949 if (timeout == 0) { 1950 err = -EAGAIN; 1951 remove_wait_queue(sk_sleep(sk), &wait); 1952 goto out_err; 1953 } 1954 1955 err = transport->notify_send_pre_block(vsk, &send_data); 1956 if (err < 0) { 1957 remove_wait_queue(sk_sleep(sk), &wait); 1958 goto out_err; 1959 } 1960 1961 release_sock(sk); 1962 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 1963 lock_sock(sk); 1964 if (signal_pending(current)) { 1965 err = sock_intr_errno(timeout); 1966 remove_wait_queue(sk_sleep(sk), &wait); 1967 goto out_err; 1968 } else if (timeout == 0) { 1969 err = -EAGAIN; 1970 remove_wait_queue(sk_sleep(sk), &wait); 1971 goto out_err; 1972 } 1973 } 1974 remove_wait_queue(sk_sleep(sk), &wait); 1975 1976 /* These checks occur both as part of and after the loop 1977 * conditional since we need to check before and after 1978 * sleeping. 1979 */ 1980 if (sk->sk_err) { 1981 err = -sk->sk_err; 1982 goto out_err; 1983 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1984 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1985 err = -EPIPE; 1986 goto out_err; 1987 } 1988 1989 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1990 if (err < 0) 1991 goto out_err; 1992 1993 /* Note that enqueue will only write as many bytes as are free 1994 * in the produce queue, so we don't need to ensure len is 1995 * smaller than the queue size. It is the caller's 1996 * responsibility to check how many bytes we were able to send. 1997 */ 1998 1999 if (sk->sk_type == SOCK_SEQPACKET) { 2000 written = transport->seqpacket_enqueue(vsk, 2001 msg, len - total_written); 2002 } else { 2003 written = transport->stream_enqueue(vsk, 2004 msg, len - total_written); 2005 } 2006 2007 if (written < 0) { 2008 err = written; 2009 goto out_err; 2010 } 2011 2012 total_written += written; 2013 2014 err = transport->notify_send_post_enqueue( 2015 vsk, written, &send_data); 2016 if (err < 0) 2017 goto out_err; 2018 2019 } 2020 2021 out_err: 2022 if (total_written > 0) { 2023 /* Return number of written bytes only if: 2024 * 1) SOCK_STREAM socket. 2025 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2026 */ 2027 if (sk->sk_type == SOCK_STREAM || total_written == len) 2028 err = total_written; 2029 } 2030 out: 2031 if (sk->sk_type == SOCK_STREAM) 2032 err = sk_stream_error(sk, msg->msg_flags, err); 2033 2034 release_sock(sk); 2035 return err; 2036 } 2037 2038 static int vsock_connectible_wait_data(struct sock *sk, 2039 struct wait_queue_entry *wait, 2040 long timeout, 2041 struct vsock_transport_recv_notify_data *recv_data, 2042 size_t target) 2043 { 2044 const struct vsock_transport *transport; 2045 struct vsock_sock *vsk; 2046 s64 data; 2047 int err; 2048 2049 vsk = vsock_sk(sk); 2050 err = 0; 2051 transport = vsk->transport; 2052 2053 while (1) { 2054 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2055 data = vsock_connectible_has_data(vsk); 2056 if (data != 0) 2057 break; 2058 2059 if (sk->sk_err != 0 || 2060 (sk->sk_shutdown & RCV_SHUTDOWN) || 2061 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2062 break; 2063 } 2064 2065 /* Don't wait for non-blocking sockets. */ 2066 if (timeout == 0) { 2067 err = -EAGAIN; 2068 break; 2069 } 2070 2071 if (recv_data) { 2072 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2073 if (err < 0) 2074 break; 2075 } 2076 2077 release_sock(sk); 2078 timeout = schedule_timeout(timeout); 2079 lock_sock(sk); 2080 2081 if (signal_pending(current)) { 2082 err = sock_intr_errno(timeout); 2083 break; 2084 } else if (timeout == 0) { 2085 err = -EAGAIN; 2086 break; 2087 } 2088 } 2089 2090 finish_wait(sk_sleep(sk), wait); 2091 2092 if (err) 2093 return err; 2094 2095 /* Internal transport error when checking for available 2096 * data. XXX This should be changed to a connection 2097 * reset in a later change. 2098 */ 2099 if (data < 0) 2100 return -ENOMEM; 2101 2102 return data; 2103 } 2104 2105 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2106 size_t len, int flags) 2107 { 2108 struct vsock_transport_recv_notify_data recv_data; 2109 const struct vsock_transport *transport; 2110 struct vsock_sock *vsk; 2111 ssize_t copied; 2112 size_t target; 2113 long timeout; 2114 int err; 2115 2116 DEFINE_WAIT(wait); 2117 2118 vsk = vsock_sk(sk); 2119 transport = vsk->transport; 2120 2121 /* We must not copy less than target bytes into the user's buffer 2122 * before returning successfully, so we wait for the consume queue to 2123 * have that much data to consume before dequeueing. Note that this 2124 * makes it impossible to handle cases where target is greater than the 2125 * queue size. 2126 */ 2127 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2128 if (target >= transport->stream_rcvhiwat(vsk)) { 2129 err = -ENOMEM; 2130 goto out; 2131 } 2132 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2133 copied = 0; 2134 2135 err = transport->notify_recv_init(vsk, target, &recv_data); 2136 if (err < 0) 2137 goto out; 2138 2139 2140 while (1) { 2141 ssize_t read; 2142 2143 err = vsock_connectible_wait_data(sk, &wait, timeout, 2144 &recv_data, target); 2145 if (err <= 0) 2146 break; 2147 2148 err = transport->notify_recv_pre_dequeue(vsk, target, 2149 &recv_data); 2150 if (err < 0) 2151 break; 2152 2153 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2154 if (read < 0) { 2155 err = read; 2156 break; 2157 } 2158 2159 copied += read; 2160 2161 err = transport->notify_recv_post_dequeue(vsk, target, read, 2162 !(flags & MSG_PEEK), &recv_data); 2163 if (err < 0) 2164 goto out; 2165 2166 if (read >= target || flags & MSG_PEEK) 2167 break; 2168 2169 target -= read; 2170 } 2171 2172 if (sk->sk_err) 2173 err = -sk->sk_err; 2174 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2175 err = 0; 2176 2177 if (copied > 0) 2178 err = copied; 2179 2180 out: 2181 return err; 2182 } 2183 2184 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2185 size_t len, int flags) 2186 { 2187 const struct vsock_transport *transport; 2188 struct vsock_sock *vsk; 2189 ssize_t msg_len; 2190 long timeout; 2191 int err = 0; 2192 DEFINE_WAIT(wait); 2193 2194 vsk = vsock_sk(sk); 2195 transport = vsk->transport; 2196 2197 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2198 2199 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2200 if (err <= 0) 2201 goto out; 2202 2203 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2204 2205 if (msg_len < 0) { 2206 err = msg_len; 2207 goto out; 2208 } 2209 2210 if (sk->sk_err) { 2211 err = -sk->sk_err; 2212 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2213 err = 0; 2214 } else { 2215 /* User sets MSG_TRUNC, so return real length of 2216 * packet. 2217 */ 2218 if (flags & MSG_TRUNC) 2219 err = msg_len; 2220 else 2221 err = len - msg_data_left(msg); 2222 2223 /* Always set MSG_TRUNC if real length of packet is 2224 * bigger than user's buffer. 2225 */ 2226 if (msg_len > len) 2227 msg->msg_flags |= MSG_TRUNC; 2228 } 2229 2230 out: 2231 return err; 2232 } 2233 2234 int 2235 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2236 int flags) 2237 { 2238 struct sock *sk; 2239 struct vsock_sock *vsk; 2240 const struct vsock_transport *transport; 2241 int err; 2242 2243 sk = sock->sk; 2244 2245 if (unlikely(flags & MSG_ERRQUEUE)) 2246 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2247 2248 vsk = vsock_sk(sk); 2249 err = 0; 2250 2251 lock_sock(sk); 2252 2253 transport = vsk->transport; 2254 2255 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2256 /* Recvmsg is supposed to return 0 if a peer performs an 2257 * orderly shutdown. Differentiate between that case and when a 2258 * peer has not connected or a local shutdown occurred with the 2259 * SOCK_DONE flag. 2260 */ 2261 if (sock_flag(sk, SOCK_DONE)) 2262 err = 0; 2263 else 2264 err = -ENOTCONN; 2265 2266 goto out; 2267 } 2268 2269 if (flags & MSG_OOB) { 2270 err = -EOPNOTSUPP; 2271 goto out; 2272 } 2273 2274 /* We don't check peer_shutdown flag here since peer may actually shut 2275 * down, but there can be data in the queue that a local socket can 2276 * receive. 2277 */ 2278 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2279 err = 0; 2280 goto out; 2281 } 2282 2283 /* It is valid on Linux to pass in a zero-length receive buffer. This 2284 * is not an error. We may as well bail out now. 2285 */ 2286 if (!len) { 2287 err = 0; 2288 goto out; 2289 } 2290 2291 if (sk->sk_type == SOCK_STREAM) 2292 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2293 else 2294 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2295 2296 out: 2297 release_sock(sk); 2298 return err; 2299 } 2300 2301 int 2302 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2303 int flags) 2304 { 2305 #ifdef CONFIG_BPF_SYSCALL 2306 struct sock *sk = sock->sk; 2307 const struct proto *prot; 2308 2309 prot = READ_ONCE(sk->sk_prot); 2310 if (prot != &vsock_proto) 2311 return prot->recvmsg(sk, msg, len, flags, NULL); 2312 #endif 2313 2314 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2315 } 2316 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2317 2318 static int vsock_set_rcvlowat(struct sock *sk, int val) 2319 { 2320 const struct vsock_transport *transport; 2321 struct vsock_sock *vsk; 2322 2323 vsk = vsock_sk(sk); 2324 2325 if (val > vsk->buffer_size) 2326 return -EINVAL; 2327 2328 transport = vsk->transport; 2329 2330 if (transport && transport->notify_set_rcvlowat) { 2331 int err; 2332 2333 err = transport->notify_set_rcvlowat(vsk, val); 2334 if (err) 2335 return err; 2336 } 2337 2338 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2339 return 0; 2340 } 2341 2342 static const struct proto_ops vsock_stream_ops = { 2343 .family = PF_VSOCK, 2344 .owner = THIS_MODULE, 2345 .release = vsock_release, 2346 .bind = vsock_bind, 2347 .connect = vsock_connect, 2348 .socketpair = sock_no_socketpair, 2349 .accept = vsock_accept, 2350 .getname = vsock_getname, 2351 .poll = vsock_poll, 2352 .ioctl = vsock_ioctl, 2353 .listen = vsock_listen, 2354 .shutdown = vsock_shutdown, 2355 .setsockopt = vsock_connectible_setsockopt, 2356 .getsockopt = vsock_connectible_getsockopt, 2357 .sendmsg = vsock_connectible_sendmsg, 2358 .recvmsg = vsock_connectible_recvmsg, 2359 .mmap = sock_no_mmap, 2360 .set_rcvlowat = vsock_set_rcvlowat, 2361 .read_skb = vsock_read_skb, 2362 }; 2363 2364 static const struct proto_ops vsock_seqpacket_ops = { 2365 .family = PF_VSOCK, 2366 .owner = THIS_MODULE, 2367 .release = vsock_release, 2368 .bind = vsock_bind, 2369 .connect = vsock_connect, 2370 .socketpair = sock_no_socketpair, 2371 .accept = vsock_accept, 2372 .getname = vsock_getname, 2373 .poll = vsock_poll, 2374 .ioctl = vsock_ioctl, 2375 .listen = vsock_listen, 2376 .shutdown = vsock_shutdown, 2377 .setsockopt = vsock_connectible_setsockopt, 2378 .getsockopt = vsock_connectible_getsockopt, 2379 .sendmsg = vsock_connectible_sendmsg, 2380 .recvmsg = vsock_connectible_recvmsg, 2381 .mmap = sock_no_mmap, 2382 .read_skb = vsock_read_skb, 2383 }; 2384 2385 static int vsock_create(struct net *net, struct socket *sock, 2386 int protocol, int kern) 2387 { 2388 struct vsock_sock *vsk; 2389 struct sock *sk; 2390 int ret; 2391 2392 if (!sock) 2393 return -EINVAL; 2394 2395 if (protocol && protocol != PF_VSOCK) 2396 return -EPROTONOSUPPORT; 2397 2398 switch (sock->type) { 2399 case SOCK_DGRAM: 2400 sock->ops = &vsock_dgram_ops; 2401 break; 2402 case SOCK_STREAM: 2403 sock->ops = &vsock_stream_ops; 2404 break; 2405 case SOCK_SEQPACKET: 2406 sock->ops = &vsock_seqpacket_ops; 2407 break; 2408 default: 2409 return -ESOCKTNOSUPPORT; 2410 } 2411 2412 sock->state = SS_UNCONNECTED; 2413 2414 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2415 if (!sk) 2416 return -ENOMEM; 2417 2418 vsk = vsock_sk(sk); 2419 2420 if (sock->type == SOCK_DGRAM) { 2421 ret = vsock_assign_transport(vsk, NULL); 2422 if (ret < 0) { 2423 sock_put(sk); 2424 return ret; 2425 } 2426 } 2427 2428 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2429 * proto_ops, so there is no handler for custom logic. 2430 */ 2431 if (sock_type_connectible(sock->type)) 2432 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2433 2434 vsock_insert_unbound(vsk); 2435 2436 return 0; 2437 } 2438 2439 static const struct net_proto_family vsock_family_ops = { 2440 .family = AF_VSOCK, 2441 .create = vsock_create, 2442 .owner = THIS_MODULE, 2443 }; 2444 2445 static long vsock_dev_do_ioctl(struct file *filp, 2446 unsigned int cmd, void __user *ptr) 2447 { 2448 u32 __user *p = ptr; 2449 u32 cid = VMADDR_CID_ANY; 2450 int retval = 0; 2451 2452 switch (cmd) { 2453 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2454 /* To be compatible with the VMCI behavior, we prioritize the 2455 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2456 */ 2457 if (transport_g2h) 2458 cid = transport_g2h->get_local_cid(); 2459 else if (transport_h2g) 2460 cid = transport_h2g->get_local_cid(); 2461 2462 if (put_user(cid, p) != 0) 2463 retval = -EFAULT; 2464 break; 2465 2466 default: 2467 retval = -ENOIOCTLCMD; 2468 } 2469 2470 return retval; 2471 } 2472 2473 static long vsock_dev_ioctl(struct file *filp, 2474 unsigned int cmd, unsigned long arg) 2475 { 2476 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2477 } 2478 2479 #ifdef CONFIG_COMPAT 2480 static long vsock_dev_compat_ioctl(struct file *filp, 2481 unsigned int cmd, unsigned long arg) 2482 { 2483 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2484 } 2485 #endif 2486 2487 static const struct file_operations vsock_device_ops = { 2488 .owner = THIS_MODULE, 2489 .unlocked_ioctl = vsock_dev_ioctl, 2490 #ifdef CONFIG_COMPAT 2491 .compat_ioctl = vsock_dev_compat_ioctl, 2492 #endif 2493 .open = nonseekable_open, 2494 }; 2495 2496 static struct miscdevice vsock_device = { 2497 .name = "vsock", 2498 .fops = &vsock_device_ops, 2499 }; 2500 2501 static int __init vsock_init(void) 2502 { 2503 int err = 0; 2504 2505 vsock_init_tables(); 2506 2507 vsock_proto.owner = THIS_MODULE; 2508 vsock_device.minor = MISC_DYNAMIC_MINOR; 2509 err = misc_register(&vsock_device); 2510 if (err) { 2511 pr_err("Failed to register misc device\n"); 2512 goto err_reset_transport; 2513 } 2514 2515 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2516 if (err) { 2517 pr_err("Cannot register vsock protocol\n"); 2518 goto err_deregister_misc; 2519 } 2520 2521 err = sock_register(&vsock_family_ops); 2522 if (err) { 2523 pr_err("could not register af_vsock (%d) address family: %d\n", 2524 AF_VSOCK, err); 2525 goto err_unregister_proto; 2526 } 2527 2528 vsock_bpf_build_proto(); 2529 2530 return 0; 2531 2532 err_unregister_proto: 2533 proto_unregister(&vsock_proto); 2534 err_deregister_misc: 2535 misc_deregister(&vsock_device); 2536 err_reset_transport: 2537 return err; 2538 } 2539 2540 static void __exit vsock_exit(void) 2541 { 2542 misc_deregister(&vsock_device); 2543 sock_unregister(AF_VSOCK); 2544 proto_unregister(&vsock_proto); 2545 } 2546 2547 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2548 { 2549 return vsk->transport; 2550 } 2551 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2552 2553 int vsock_core_register(const struct vsock_transport *t, int features) 2554 { 2555 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2556 int err = mutex_lock_interruptible(&vsock_register_mutex); 2557 2558 if (err) 2559 return err; 2560 2561 t_h2g = transport_h2g; 2562 t_g2h = transport_g2h; 2563 t_dgram = transport_dgram; 2564 t_local = transport_local; 2565 2566 if (features & VSOCK_TRANSPORT_F_H2G) { 2567 if (t_h2g) { 2568 err = -EBUSY; 2569 goto err_busy; 2570 } 2571 t_h2g = t; 2572 } 2573 2574 if (features & VSOCK_TRANSPORT_F_G2H) { 2575 if (t_g2h) { 2576 err = -EBUSY; 2577 goto err_busy; 2578 } 2579 t_g2h = t; 2580 } 2581 2582 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2583 if (t_dgram) { 2584 err = -EBUSY; 2585 goto err_busy; 2586 } 2587 t_dgram = t; 2588 } 2589 2590 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2591 if (t_local) { 2592 err = -EBUSY; 2593 goto err_busy; 2594 } 2595 t_local = t; 2596 } 2597 2598 transport_h2g = t_h2g; 2599 transport_g2h = t_g2h; 2600 transport_dgram = t_dgram; 2601 transport_local = t_local; 2602 2603 err_busy: 2604 mutex_unlock(&vsock_register_mutex); 2605 return err; 2606 } 2607 EXPORT_SYMBOL_GPL(vsock_core_register); 2608 2609 void vsock_core_unregister(const struct vsock_transport *t) 2610 { 2611 mutex_lock(&vsock_register_mutex); 2612 2613 if (transport_h2g == t) 2614 transport_h2g = NULL; 2615 2616 if (transport_g2h == t) 2617 transport_g2h = NULL; 2618 2619 if (transport_dgram == t) 2620 transport_dgram = NULL; 2621 2622 if (transport_local == t) 2623 transport_local = NULL; 2624 2625 mutex_unlock(&vsock_register_mutex); 2626 } 2627 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2628 2629 module_init(vsock_init); 2630 module_exit(vsock_exit); 2631 2632 MODULE_AUTHOR("VMware, Inc."); 2633 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2634 MODULE_VERSION("1.0.2.0-k"); 2635 MODULE_LICENSE("GPL v2"); 2636