1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/errqueue.h> 93 #include <linux/init.h> 94 #include <linux/io.h> 95 #include <linux/kernel.h> 96 #include <linux/sched/signal.h> 97 #include <linux/kmod.h> 98 #include <linux/list.h> 99 #include <linux/miscdevice.h> 100 #include <linux/module.h> 101 #include <linux/mutex.h> 102 #include <linux/net.h> 103 #include <linux/poll.h> 104 #include <linux/random.h> 105 #include <linux/skbuff.h> 106 #include <linux/smp.h> 107 #include <linux/socket.h> 108 #include <linux/stddef.h> 109 #include <linux/unistd.h> 110 #include <linux/wait.h> 111 #include <linux/workqueue.h> 112 #include <net/sock.h> 113 #include <net/af_vsock.h> 114 #include <uapi/linux/vm_sockets.h> 115 #include <uapi/asm-generic/ioctls.h> 116 117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 118 static void vsock_sk_destruct(struct sock *sk); 119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 120 121 /* Protocol family. */ 122 struct proto vsock_proto = { 123 .name = "AF_VSOCK", 124 .owner = THIS_MODULE, 125 .obj_size = sizeof(struct vsock_sock), 126 #ifdef CONFIG_BPF_SYSCALL 127 .psock_update_sk_prot = vsock_bpf_update_proto, 128 #endif 129 }; 130 131 /* The default peer timeout indicates how long we will wait for a peer response 132 * to a control message. 133 */ 134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 135 136 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 137 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 138 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 139 140 /* Transport used for host->guest communication */ 141 static const struct vsock_transport *transport_h2g; 142 /* Transport used for guest->host communication */ 143 static const struct vsock_transport *transport_g2h; 144 /* Transport used for DGRAM communication */ 145 static const struct vsock_transport *transport_dgram; 146 /* Transport used for local communication */ 147 static const struct vsock_transport *transport_local; 148 static DEFINE_MUTEX(vsock_register_mutex); 149 150 /**** UTILS ****/ 151 152 /* Each bound VSocket is stored in the bind hash table and each connected 153 * VSocket is stored in the connected hash table. 154 * 155 * Unbound sockets are all put on the same list attached to the end of the hash 156 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 157 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 158 * represents the list that addr hashes to). 159 * 160 * Specifically, we initialize the vsock_bind_table array to a size of 161 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 162 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 163 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 164 * mods with VSOCK_HASH_SIZE to ensure this. 165 */ 166 #define MAX_PORT_RETRIES 24 167 168 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 170 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 171 172 /* XXX This can probably be implemented in a better way. */ 173 #define VSOCK_CONN_HASH(src, dst) \ 174 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 175 #define vsock_connected_sockets(src, dst) \ 176 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 177 #define vsock_connected_sockets_vsk(vsk) \ 178 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 179 180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 181 EXPORT_SYMBOL_GPL(vsock_bind_table); 182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 183 EXPORT_SYMBOL_GPL(vsock_connected_table); 184 DEFINE_SPINLOCK(vsock_table_lock); 185 EXPORT_SYMBOL_GPL(vsock_table_lock); 186 187 /* Autobind this socket to the local address if necessary. */ 188 static int vsock_auto_bind(struct vsock_sock *vsk) 189 { 190 struct sock *sk = sk_vsock(vsk); 191 struct sockaddr_vm local_addr; 192 193 if (vsock_addr_bound(&vsk->local_addr)) 194 return 0; 195 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 196 return __vsock_bind(sk, &local_addr); 197 } 198 199 static void vsock_init_tables(void) 200 { 201 int i; 202 203 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 204 INIT_LIST_HEAD(&vsock_bind_table[i]); 205 206 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 207 INIT_LIST_HEAD(&vsock_connected_table[i]); 208 } 209 210 static void __vsock_insert_bound(struct list_head *list, 211 struct vsock_sock *vsk) 212 { 213 sock_hold(&vsk->sk); 214 list_add(&vsk->bound_table, list); 215 } 216 217 static void __vsock_insert_connected(struct list_head *list, 218 struct vsock_sock *vsk) 219 { 220 sock_hold(&vsk->sk); 221 list_add(&vsk->connected_table, list); 222 } 223 224 static void __vsock_remove_bound(struct vsock_sock *vsk) 225 { 226 list_del_init(&vsk->bound_table); 227 sock_put(&vsk->sk); 228 } 229 230 static void __vsock_remove_connected(struct vsock_sock *vsk) 231 { 232 list_del_init(&vsk->connected_table); 233 sock_put(&vsk->sk); 234 } 235 236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 237 { 238 struct vsock_sock *vsk; 239 240 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 241 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 242 return sk_vsock(vsk); 243 244 if (addr->svm_port == vsk->local_addr.svm_port && 245 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 246 addr->svm_cid == VMADDR_CID_ANY)) 247 return sk_vsock(vsk); 248 } 249 250 return NULL; 251 } 252 253 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 254 struct sockaddr_vm *dst) 255 { 256 struct vsock_sock *vsk; 257 258 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 259 connected_table) { 260 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 261 dst->svm_port == vsk->local_addr.svm_port) { 262 return sk_vsock(vsk); 263 } 264 } 265 266 return NULL; 267 } 268 269 static void vsock_insert_unbound(struct vsock_sock *vsk) 270 { 271 spin_lock_bh(&vsock_table_lock); 272 __vsock_insert_bound(vsock_unbound_sockets, vsk); 273 spin_unlock_bh(&vsock_table_lock); 274 } 275 276 void vsock_insert_connected(struct vsock_sock *vsk) 277 { 278 struct list_head *list = vsock_connected_sockets( 279 &vsk->remote_addr, &vsk->local_addr); 280 281 spin_lock_bh(&vsock_table_lock); 282 __vsock_insert_connected(list, vsk); 283 spin_unlock_bh(&vsock_table_lock); 284 } 285 EXPORT_SYMBOL_GPL(vsock_insert_connected); 286 287 void vsock_remove_bound(struct vsock_sock *vsk) 288 { 289 spin_lock_bh(&vsock_table_lock); 290 if (__vsock_in_bound_table(vsk)) 291 __vsock_remove_bound(vsk); 292 spin_unlock_bh(&vsock_table_lock); 293 } 294 EXPORT_SYMBOL_GPL(vsock_remove_bound); 295 296 void vsock_remove_connected(struct vsock_sock *vsk) 297 { 298 spin_lock_bh(&vsock_table_lock); 299 if (__vsock_in_connected_table(vsk)) 300 __vsock_remove_connected(vsk); 301 spin_unlock_bh(&vsock_table_lock); 302 } 303 EXPORT_SYMBOL_GPL(vsock_remove_connected); 304 305 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 306 { 307 struct sock *sk; 308 309 spin_lock_bh(&vsock_table_lock); 310 sk = __vsock_find_bound_socket(addr); 311 if (sk) 312 sock_hold(sk); 313 314 spin_unlock_bh(&vsock_table_lock); 315 316 return sk; 317 } 318 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 319 320 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 321 struct sockaddr_vm *dst) 322 { 323 struct sock *sk; 324 325 spin_lock_bh(&vsock_table_lock); 326 sk = __vsock_find_connected_socket(src, dst); 327 if (sk) 328 sock_hold(sk); 329 330 spin_unlock_bh(&vsock_table_lock); 331 332 return sk; 333 } 334 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 335 336 void vsock_remove_sock(struct vsock_sock *vsk) 337 { 338 vsock_remove_bound(vsk); 339 vsock_remove_connected(vsk); 340 } 341 EXPORT_SYMBOL_GPL(vsock_remove_sock); 342 343 void vsock_for_each_connected_socket(struct vsock_transport *transport, 344 void (*fn)(struct sock *sk)) 345 { 346 int i; 347 348 spin_lock_bh(&vsock_table_lock); 349 350 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 351 struct vsock_sock *vsk; 352 list_for_each_entry(vsk, &vsock_connected_table[i], 353 connected_table) { 354 if (vsk->transport != transport) 355 continue; 356 357 fn(sk_vsock(vsk)); 358 } 359 } 360 361 spin_unlock_bh(&vsock_table_lock); 362 } 363 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 364 365 void vsock_add_pending(struct sock *listener, struct sock *pending) 366 { 367 struct vsock_sock *vlistener; 368 struct vsock_sock *vpending; 369 370 vlistener = vsock_sk(listener); 371 vpending = vsock_sk(pending); 372 373 sock_hold(pending); 374 sock_hold(listener); 375 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 376 } 377 EXPORT_SYMBOL_GPL(vsock_add_pending); 378 379 void vsock_remove_pending(struct sock *listener, struct sock *pending) 380 { 381 struct vsock_sock *vpending = vsock_sk(pending); 382 383 list_del_init(&vpending->pending_links); 384 sock_put(listener); 385 sock_put(pending); 386 } 387 EXPORT_SYMBOL_GPL(vsock_remove_pending); 388 389 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 390 { 391 struct vsock_sock *vlistener; 392 struct vsock_sock *vconnected; 393 394 vlistener = vsock_sk(listener); 395 vconnected = vsock_sk(connected); 396 397 sock_hold(connected); 398 sock_hold(listener); 399 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 400 } 401 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 402 403 static bool vsock_use_local_transport(unsigned int remote_cid) 404 { 405 if (!transport_local) 406 return false; 407 408 if (remote_cid == VMADDR_CID_LOCAL) 409 return true; 410 411 if (transport_g2h) { 412 return remote_cid == transport_g2h->get_local_cid(); 413 } else { 414 return remote_cid == VMADDR_CID_HOST; 415 } 416 } 417 418 static void vsock_deassign_transport(struct vsock_sock *vsk) 419 { 420 if (!vsk->transport) 421 return; 422 423 vsk->transport->destruct(vsk); 424 module_put(vsk->transport->module); 425 vsk->transport = NULL; 426 } 427 428 /* Assign a transport to a socket and call the .init transport callback. 429 * 430 * Note: for connection oriented socket this must be called when vsk->remote_addr 431 * is set (e.g. during the connect() or when a connection request on a listener 432 * socket is received). 433 * The vsk->remote_addr is used to decide which transport to use: 434 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 435 * g2h is not loaded, will use local transport; 436 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 437 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 438 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 439 */ 440 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 441 { 442 const struct vsock_transport *new_transport; 443 struct sock *sk = sk_vsock(vsk); 444 unsigned int remote_cid = vsk->remote_addr.svm_cid; 445 __u8 remote_flags; 446 int ret; 447 448 /* If the packet is coming with the source and destination CIDs higher 449 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 450 * forwarded to the host should be established. Then the host will 451 * need to forward the packets to the guest. 452 * 453 * The flag is set on the (listen) receive path (psk is not NULL). On 454 * the connect path the flag can be set by the user space application. 455 */ 456 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 457 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 458 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 459 460 remote_flags = vsk->remote_addr.svm_flags; 461 462 switch (sk->sk_type) { 463 case SOCK_DGRAM: 464 new_transport = transport_dgram; 465 break; 466 case SOCK_STREAM: 467 case SOCK_SEQPACKET: 468 if (vsock_use_local_transport(remote_cid)) 469 new_transport = transport_local; 470 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 471 (remote_flags & VMADDR_FLAG_TO_HOST)) 472 new_transport = transport_g2h; 473 else 474 new_transport = transport_h2g; 475 break; 476 default: 477 return -ESOCKTNOSUPPORT; 478 } 479 480 if (vsk->transport) { 481 if (vsk->transport == new_transport) 482 return 0; 483 484 /* transport->release() must be called with sock lock acquired. 485 * This path can only be taken during vsock_connect(), where we 486 * have already held the sock lock. In the other cases, this 487 * function is called on a new socket which is not assigned to 488 * any transport. 489 */ 490 vsk->transport->release(vsk); 491 vsock_deassign_transport(vsk); 492 } 493 494 /* We increase the module refcnt to prevent the transport unloading 495 * while there are open sockets assigned to it. 496 */ 497 if (!new_transport || !try_module_get(new_transport->module)) 498 return -ENODEV; 499 500 if (sk->sk_type == SOCK_SEQPACKET) { 501 if (!new_transport->seqpacket_allow || 502 !new_transport->seqpacket_allow(remote_cid)) { 503 module_put(new_transport->module); 504 return -ESOCKTNOSUPPORT; 505 } 506 } 507 508 ret = new_transport->init(vsk, psk); 509 if (ret) { 510 module_put(new_transport->module); 511 return ret; 512 } 513 514 vsk->transport = new_transport; 515 516 return 0; 517 } 518 EXPORT_SYMBOL_GPL(vsock_assign_transport); 519 520 bool vsock_find_cid(unsigned int cid) 521 { 522 if (transport_g2h && cid == transport_g2h->get_local_cid()) 523 return true; 524 525 if (transport_h2g && cid == VMADDR_CID_HOST) 526 return true; 527 528 if (transport_local && cid == VMADDR_CID_LOCAL) 529 return true; 530 531 return false; 532 } 533 EXPORT_SYMBOL_GPL(vsock_find_cid); 534 535 static struct sock *vsock_dequeue_accept(struct sock *listener) 536 { 537 struct vsock_sock *vlistener; 538 struct vsock_sock *vconnected; 539 540 vlistener = vsock_sk(listener); 541 542 if (list_empty(&vlistener->accept_queue)) 543 return NULL; 544 545 vconnected = list_entry(vlistener->accept_queue.next, 546 struct vsock_sock, accept_queue); 547 548 list_del_init(&vconnected->accept_queue); 549 sock_put(listener); 550 /* The caller will need a reference on the connected socket so we let 551 * it call sock_put(). 552 */ 553 554 return sk_vsock(vconnected); 555 } 556 557 static bool vsock_is_accept_queue_empty(struct sock *sk) 558 { 559 struct vsock_sock *vsk = vsock_sk(sk); 560 return list_empty(&vsk->accept_queue); 561 } 562 563 static bool vsock_is_pending(struct sock *sk) 564 { 565 struct vsock_sock *vsk = vsock_sk(sk); 566 return !list_empty(&vsk->pending_links); 567 } 568 569 static int vsock_send_shutdown(struct sock *sk, int mode) 570 { 571 struct vsock_sock *vsk = vsock_sk(sk); 572 573 if (!vsk->transport) 574 return -ENODEV; 575 576 return vsk->transport->shutdown(vsk, mode); 577 } 578 579 static void vsock_pending_work(struct work_struct *work) 580 { 581 struct sock *sk; 582 struct sock *listener; 583 struct vsock_sock *vsk; 584 bool cleanup; 585 586 vsk = container_of(work, struct vsock_sock, pending_work.work); 587 sk = sk_vsock(vsk); 588 listener = vsk->listener; 589 cleanup = true; 590 591 lock_sock(listener); 592 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 593 594 if (vsock_is_pending(sk)) { 595 vsock_remove_pending(listener, sk); 596 597 sk_acceptq_removed(listener); 598 } else if (!vsk->rejected) { 599 /* We are not on the pending list and accept() did not reject 600 * us, so we must have been accepted by our user process. We 601 * just need to drop our references to the sockets and be on 602 * our way. 603 */ 604 cleanup = false; 605 goto out; 606 } 607 608 /* We need to remove ourself from the global connected sockets list so 609 * incoming packets can't find this socket, and to reduce the reference 610 * count. 611 */ 612 vsock_remove_connected(vsk); 613 614 sk->sk_state = TCP_CLOSE; 615 616 out: 617 release_sock(sk); 618 release_sock(listener); 619 if (cleanup) 620 sock_put(sk); 621 622 sock_put(sk); 623 sock_put(listener); 624 } 625 626 /**** SOCKET OPERATIONS ****/ 627 628 static int __vsock_bind_connectible(struct vsock_sock *vsk, 629 struct sockaddr_vm *addr) 630 { 631 static u32 port; 632 struct sockaddr_vm new_addr; 633 634 if (!port) 635 port = get_random_u32_above(LAST_RESERVED_PORT); 636 637 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 638 639 if (addr->svm_port == VMADDR_PORT_ANY) { 640 bool found = false; 641 unsigned int i; 642 643 for (i = 0; i < MAX_PORT_RETRIES; i++) { 644 if (port <= LAST_RESERVED_PORT) 645 port = LAST_RESERVED_PORT + 1; 646 647 new_addr.svm_port = port++; 648 649 if (!__vsock_find_bound_socket(&new_addr)) { 650 found = true; 651 break; 652 } 653 } 654 655 if (!found) 656 return -EADDRNOTAVAIL; 657 } else { 658 /* If port is in reserved range, ensure caller 659 * has necessary privileges. 660 */ 661 if (addr->svm_port <= LAST_RESERVED_PORT && 662 !capable(CAP_NET_BIND_SERVICE)) { 663 return -EACCES; 664 } 665 666 if (__vsock_find_bound_socket(&new_addr)) 667 return -EADDRINUSE; 668 } 669 670 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 671 672 /* Remove connection oriented sockets from the unbound list and add them 673 * to the hash table for easy lookup by its address. The unbound list 674 * is simply an extra entry at the end of the hash table, a trick used 675 * by AF_UNIX. 676 */ 677 __vsock_remove_bound(vsk); 678 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 679 680 return 0; 681 } 682 683 static int __vsock_bind_dgram(struct vsock_sock *vsk, 684 struct sockaddr_vm *addr) 685 { 686 return vsk->transport->dgram_bind(vsk, addr); 687 } 688 689 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 690 { 691 struct vsock_sock *vsk = vsock_sk(sk); 692 int retval; 693 694 /* First ensure this socket isn't already bound. */ 695 if (vsock_addr_bound(&vsk->local_addr)) 696 return -EINVAL; 697 698 /* Now bind to the provided address or select appropriate values if 699 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 700 * like AF_INET prevents binding to a non-local IP address (in most 701 * cases), we only allow binding to a local CID. 702 */ 703 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 704 return -EADDRNOTAVAIL; 705 706 switch (sk->sk_socket->type) { 707 case SOCK_STREAM: 708 case SOCK_SEQPACKET: 709 spin_lock_bh(&vsock_table_lock); 710 retval = __vsock_bind_connectible(vsk, addr); 711 spin_unlock_bh(&vsock_table_lock); 712 break; 713 714 case SOCK_DGRAM: 715 retval = __vsock_bind_dgram(vsk, addr); 716 break; 717 718 default: 719 retval = -EINVAL; 720 break; 721 } 722 723 return retval; 724 } 725 726 static void vsock_connect_timeout(struct work_struct *work); 727 728 static struct sock *__vsock_create(struct net *net, 729 struct socket *sock, 730 struct sock *parent, 731 gfp_t priority, 732 unsigned short type, 733 int kern) 734 { 735 struct sock *sk; 736 struct vsock_sock *psk; 737 struct vsock_sock *vsk; 738 739 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 740 if (!sk) 741 return NULL; 742 743 sock_init_data(sock, sk); 744 745 /* sk->sk_type is normally set in sock_init_data, but only if sock is 746 * non-NULL. We make sure that our sockets always have a type by 747 * setting it here if needed. 748 */ 749 if (!sock) 750 sk->sk_type = type; 751 752 vsk = vsock_sk(sk); 753 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 754 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 755 756 sk->sk_destruct = vsock_sk_destruct; 757 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 758 sock_reset_flag(sk, SOCK_DONE); 759 760 INIT_LIST_HEAD(&vsk->bound_table); 761 INIT_LIST_HEAD(&vsk->connected_table); 762 vsk->listener = NULL; 763 INIT_LIST_HEAD(&vsk->pending_links); 764 INIT_LIST_HEAD(&vsk->accept_queue); 765 vsk->rejected = false; 766 vsk->sent_request = false; 767 vsk->ignore_connecting_rst = false; 768 vsk->peer_shutdown = 0; 769 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 770 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 771 772 psk = parent ? vsock_sk(parent) : NULL; 773 if (parent) { 774 vsk->trusted = psk->trusted; 775 vsk->owner = get_cred(psk->owner); 776 vsk->connect_timeout = psk->connect_timeout; 777 vsk->buffer_size = psk->buffer_size; 778 vsk->buffer_min_size = psk->buffer_min_size; 779 vsk->buffer_max_size = psk->buffer_max_size; 780 security_sk_clone(parent, sk); 781 } else { 782 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 783 vsk->owner = get_current_cred(); 784 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 785 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 786 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 787 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 788 } 789 790 return sk; 791 } 792 793 static bool sock_type_connectible(u16 type) 794 { 795 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 796 } 797 798 static void __vsock_release(struct sock *sk, int level) 799 { 800 if (sk) { 801 struct sock *pending; 802 struct vsock_sock *vsk; 803 804 vsk = vsock_sk(sk); 805 pending = NULL; /* Compiler warning. */ 806 807 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 808 * version to avoid the warning "possible recursive locking 809 * detected". When "level" is 0, lock_sock_nested(sk, level) 810 * is the same as lock_sock(sk). 811 */ 812 lock_sock_nested(sk, level); 813 814 if (vsk->transport) 815 vsk->transport->release(vsk); 816 else if (sock_type_connectible(sk->sk_type)) 817 vsock_remove_sock(vsk); 818 819 sock_orphan(sk); 820 sk->sk_shutdown = SHUTDOWN_MASK; 821 822 skb_queue_purge(&sk->sk_receive_queue); 823 824 /* Clean up any sockets that never were accepted. */ 825 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 826 __vsock_release(pending, SINGLE_DEPTH_NESTING); 827 sock_put(pending); 828 } 829 830 release_sock(sk); 831 sock_put(sk); 832 } 833 } 834 835 static void vsock_sk_destruct(struct sock *sk) 836 { 837 struct vsock_sock *vsk = vsock_sk(sk); 838 839 vsock_deassign_transport(vsk); 840 841 /* When clearing these addresses, there's no need to set the family and 842 * possibly register the address family with the kernel. 843 */ 844 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 845 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 846 847 put_cred(vsk->owner); 848 } 849 850 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 851 { 852 int err; 853 854 err = sock_queue_rcv_skb(sk, skb); 855 if (err) 856 kfree_skb(skb); 857 858 return err; 859 } 860 861 struct sock *vsock_create_connected(struct sock *parent) 862 { 863 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 864 parent->sk_type, 0); 865 } 866 EXPORT_SYMBOL_GPL(vsock_create_connected); 867 868 s64 vsock_stream_has_data(struct vsock_sock *vsk) 869 { 870 return vsk->transport->stream_has_data(vsk); 871 } 872 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 873 874 s64 vsock_connectible_has_data(struct vsock_sock *vsk) 875 { 876 struct sock *sk = sk_vsock(vsk); 877 878 if (sk->sk_type == SOCK_SEQPACKET) 879 return vsk->transport->seqpacket_has_data(vsk); 880 else 881 return vsock_stream_has_data(vsk); 882 } 883 EXPORT_SYMBOL_GPL(vsock_connectible_has_data); 884 885 s64 vsock_stream_has_space(struct vsock_sock *vsk) 886 { 887 return vsk->transport->stream_has_space(vsk); 888 } 889 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 890 891 void vsock_data_ready(struct sock *sk) 892 { 893 struct vsock_sock *vsk = vsock_sk(sk); 894 895 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat || 896 sock_flag(sk, SOCK_DONE)) 897 sk->sk_data_ready(sk); 898 } 899 EXPORT_SYMBOL_GPL(vsock_data_ready); 900 901 static int vsock_release(struct socket *sock) 902 { 903 __vsock_release(sock->sk, 0); 904 sock->sk = NULL; 905 sock->state = SS_FREE; 906 907 return 0; 908 } 909 910 static int 911 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 912 { 913 int err; 914 struct sock *sk; 915 struct sockaddr_vm *vm_addr; 916 917 sk = sock->sk; 918 919 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 920 return -EINVAL; 921 922 lock_sock(sk); 923 err = __vsock_bind(sk, vm_addr); 924 release_sock(sk); 925 926 return err; 927 } 928 929 static int vsock_getname(struct socket *sock, 930 struct sockaddr *addr, int peer) 931 { 932 int err; 933 struct sock *sk; 934 struct vsock_sock *vsk; 935 struct sockaddr_vm *vm_addr; 936 937 sk = sock->sk; 938 vsk = vsock_sk(sk); 939 err = 0; 940 941 lock_sock(sk); 942 943 if (peer) { 944 if (sock->state != SS_CONNECTED) { 945 err = -ENOTCONN; 946 goto out; 947 } 948 vm_addr = &vsk->remote_addr; 949 } else { 950 vm_addr = &vsk->local_addr; 951 } 952 953 if (!vm_addr) { 954 err = -EINVAL; 955 goto out; 956 } 957 958 /* sys_getsockname() and sys_getpeername() pass us a 959 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 960 * that macro is defined in socket.c instead of .h, so we hardcode its 961 * value here. 962 */ 963 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 964 memcpy(addr, vm_addr, sizeof(*vm_addr)); 965 err = sizeof(*vm_addr); 966 967 out: 968 release_sock(sk); 969 return err; 970 } 971 972 static int vsock_shutdown(struct socket *sock, int mode) 973 { 974 int err; 975 struct sock *sk; 976 977 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 978 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 979 * here like the other address families do. Note also that the 980 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 981 * which is what we want. 982 */ 983 mode++; 984 985 if ((mode & ~SHUTDOWN_MASK) || !mode) 986 return -EINVAL; 987 988 /* If this is a connection oriented socket and it is not connected then 989 * bail out immediately. If it is a DGRAM socket then we must first 990 * kick the socket so that it wakes up from any sleeping calls, for 991 * example recv(), and then afterwards return the error. 992 */ 993 994 sk = sock->sk; 995 996 lock_sock(sk); 997 if (sock->state == SS_UNCONNECTED) { 998 err = -ENOTCONN; 999 if (sock_type_connectible(sk->sk_type)) 1000 goto out; 1001 } else { 1002 sock->state = SS_DISCONNECTING; 1003 err = 0; 1004 } 1005 1006 /* Receive and send shutdowns are treated alike. */ 1007 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 1008 if (mode) { 1009 sk->sk_shutdown |= mode; 1010 sk->sk_state_change(sk); 1011 1012 if (sock_type_connectible(sk->sk_type)) { 1013 sock_reset_flag(sk, SOCK_DONE); 1014 vsock_send_shutdown(sk, mode); 1015 } 1016 } 1017 1018 out: 1019 release_sock(sk); 1020 return err; 1021 } 1022 1023 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1024 poll_table *wait) 1025 { 1026 struct sock *sk; 1027 __poll_t mask; 1028 struct vsock_sock *vsk; 1029 1030 sk = sock->sk; 1031 vsk = vsock_sk(sk); 1032 1033 poll_wait(file, sk_sleep(sk), wait); 1034 mask = 0; 1035 1036 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 1037 /* Signify that there has been an error on this socket. */ 1038 mask |= EPOLLERR; 1039 1040 /* INET sockets treat local write shutdown and peer write shutdown as a 1041 * case of EPOLLHUP set. 1042 */ 1043 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1044 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1045 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1046 mask |= EPOLLHUP; 1047 } 1048 1049 if (sk->sk_shutdown & RCV_SHUTDOWN || 1050 vsk->peer_shutdown & SEND_SHUTDOWN) { 1051 mask |= EPOLLRDHUP; 1052 } 1053 1054 if (sock->type == SOCK_DGRAM) { 1055 /* For datagram sockets we can read if there is something in 1056 * the queue and write as long as the socket isn't shutdown for 1057 * sending. 1058 */ 1059 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1060 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1061 mask |= EPOLLIN | EPOLLRDNORM; 1062 } 1063 1064 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1065 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1066 1067 } else if (sock_type_connectible(sk->sk_type)) { 1068 const struct vsock_transport *transport; 1069 1070 lock_sock(sk); 1071 1072 transport = vsk->transport; 1073 1074 /* Listening sockets that have connections in their accept 1075 * queue can be read. 1076 */ 1077 if (sk->sk_state == TCP_LISTEN 1078 && !vsock_is_accept_queue_empty(sk)) 1079 mask |= EPOLLIN | EPOLLRDNORM; 1080 1081 /* If there is something in the queue then we can read. */ 1082 if (transport && transport->stream_is_active(vsk) && 1083 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1084 bool data_ready_now = false; 1085 int target = sock_rcvlowat(sk, 0, INT_MAX); 1086 int ret = transport->notify_poll_in( 1087 vsk, target, &data_ready_now); 1088 if (ret < 0) { 1089 mask |= EPOLLERR; 1090 } else { 1091 if (data_ready_now) 1092 mask |= EPOLLIN | EPOLLRDNORM; 1093 1094 } 1095 } 1096 1097 /* Sockets whose connections have been closed, reset, or 1098 * terminated should also be considered read, and we check the 1099 * shutdown flag for that. 1100 */ 1101 if (sk->sk_shutdown & RCV_SHUTDOWN || 1102 vsk->peer_shutdown & SEND_SHUTDOWN) { 1103 mask |= EPOLLIN | EPOLLRDNORM; 1104 } 1105 1106 /* Connected sockets that can produce data can be written. */ 1107 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1108 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1109 bool space_avail_now = false; 1110 int ret = transport->notify_poll_out( 1111 vsk, 1, &space_avail_now); 1112 if (ret < 0) { 1113 mask |= EPOLLERR; 1114 } else { 1115 if (space_avail_now) 1116 /* Remove EPOLLWRBAND since INET 1117 * sockets are not setting it. 1118 */ 1119 mask |= EPOLLOUT | EPOLLWRNORM; 1120 1121 } 1122 } 1123 } 1124 1125 /* Simulate INET socket poll behaviors, which sets 1126 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1127 * but local send is not shutdown. 1128 */ 1129 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1130 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1131 mask |= EPOLLOUT | EPOLLWRNORM; 1132 1133 } 1134 1135 release_sock(sk); 1136 } 1137 1138 return mask; 1139 } 1140 1141 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor) 1142 { 1143 struct vsock_sock *vsk = vsock_sk(sk); 1144 1145 return vsk->transport->read_skb(vsk, read_actor); 1146 } 1147 1148 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1149 size_t len) 1150 { 1151 int err; 1152 struct sock *sk; 1153 struct vsock_sock *vsk; 1154 struct sockaddr_vm *remote_addr; 1155 const struct vsock_transport *transport; 1156 1157 if (msg->msg_flags & MSG_OOB) 1158 return -EOPNOTSUPP; 1159 1160 /* For now, MSG_DONTWAIT is always assumed... */ 1161 err = 0; 1162 sk = sock->sk; 1163 vsk = vsock_sk(sk); 1164 1165 lock_sock(sk); 1166 1167 transport = vsk->transport; 1168 1169 err = vsock_auto_bind(vsk); 1170 if (err) 1171 goto out; 1172 1173 1174 /* If the provided message contains an address, use that. Otherwise 1175 * fall back on the socket's remote handle (if it has been connected). 1176 */ 1177 if (msg->msg_name && 1178 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1179 &remote_addr) == 0) { 1180 /* Ensure this address is of the right type and is a valid 1181 * destination. 1182 */ 1183 1184 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1185 remote_addr->svm_cid = transport->get_local_cid(); 1186 1187 if (!vsock_addr_bound(remote_addr)) { 1188 err = -EINVAL; 1189 goto out; 1190 } 1191 } else if (sock->state == SS_CONNECTED) { 1192 remote_addr = &vsk->remote_addr; 1193 1194 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1195 remote_addr->svm_cid = transport->get_local_cid(); 1196 1197 /* XXX Should connect() or this function ensure remote_addr is 1198 * bound? 1199 */ 1200 if (!vsock_addr_bound(&vsk->remote_addr)) { 1201 err = -EINVAL; 1202 goto out; 1203 } 1204 } else { 1205 err = -EINVAL; 1206 goto out; 1207 } 1208 1209 if (!transport->dgram_allow(remote_addr->svm_cid, 1210 remote_addr->svm_port)) { 1211 err = -EINVAL; 1212 goto out; 1213 } 1214 1215 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1216 1217 out: 1218 release_sock(sk); 1219 return err; 1220 } 1221 1222 static int vsock_dgram_connect(struct socket *sock, 1223 struct sockaddr *addr, int addr_len, int flags) 1224 { 1225 int err; 1226 struct sock *sk; 1227 struct vsock_sock *vsk; 1228 struct sockaddr_vm *remote_addr; 1229 1230 sk = sock->sk; 1231 vsk = vsock_sk(sk); 1232 1233 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1234 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1235 lock_sock(sk); 1236 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1237 VMADDR_PORT_ANY); 1238 sock->state = SS_UNCONNECTED; 1239 release_sock(sk); 1240 return 0; 1241 } else if (err != 0) 1242 return -EINVAL; 1243 1244 lock_sock(sk); 1245 1246 err = vsock_auto_bind(vsk); 1247 if (err) 1248 goto out; 1249 1250 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1251 remote_addr->svm_port)) { 1252 err = -EINVAL; 1253 goto out; 1254 } 1255 1256 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1257 sock->state = SS_CONNECTED; 1258 1259 /* sock map disallows redirection of non-TCP sockets with sk_state != 1260 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set 1261 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams. 1262 * 1263 * This doesn't seem to be abnormal state for datagram sockets, as the 1264 * same approach can be see in other datagram socket types as well 1265 * (such as unix sockets). 1266 */ 1267 sk->sk_state = TCP_ESTABLISHED; 1268 1269 out: 1270 release_sock(sk); 1271 return err; 1272 } 1273 1274 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1275 size_t len, int flags) 1276 { 1277 struct sock *sk = sock->sk; 1278 struct vsock_sock *vsk = vsock_sk(sk); 1279 1280 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1281 } 1282 1283 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1284 size_t len, int flags) 1285 { 1286 #ifdef CONFIG_BPF_SYSCALL 1287 struct sock *sk = sock->sk; 1288 const struct proto *prot; 1289 1290 prot = READ_ONCE(sk->sk_prot); 1291 if (prot != &vsock_proto) 1292 return prot->recvmsg(sk, msg, len, flags, NULL); 1293 #endif 1294 1295 return __vsock_dgram_recvmsg(sock, msg, len, flags); 1296 } 1297 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg); 1298 1299 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd, 1300 int __user *arg) 1301 { 1302 struct sock *sk = sock->sk; 1303 struct vsock_sock *vsk; 1304 int ret; 1305 1306 vsk = vsock_sk(sk); 1307 1308 switch (cmd) { 1309 case SIOCOUTQ: { 1310 ssize_t n_bytes; 1311 1312 if (!vsk->transport || !vsk->transport->unsent_bytes) { 1313 ret = -EOPNOTSUPP; 1314 break; 1315 } 1316 1317 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) { 1318 ret = -EINVAL; 1319 break; 1320 } 1321 1322 n_bytes = vsk->transport->unsent_bytes(vsk); 1323 if (n_bytes < 0) { 1324 ret = n_bytes; 1325 break; 1326 } 1327 1328 ret = put_user(n_bytes, arg); 1329 break; 1330 } 1331 default: 1332 ret = -ENOIOCTLCMD; 1333 } 1334 1335 return ret; 1336 } 1337 1338 static int vsock_ioctl(struct socket *sock, unsigned int cmd, 1339 unsigned long arg) 1340 { 1341 int ret; 1342 1343 lock_sock(sock->sk); 1344 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg); 1345 release_sock(sock->sk); 1346 1347 return ret; 1348 } 1349 1350 static const struct proto_ops vsock_dgram_ops = { 1351 .family = PF_VSOCK, 1352 .owner = THIS_MODULE, 1353 .release = vsock_release, 1354 .bind = vsock_bind, 1355 .connect = vsock_dgram_connect, 1356 .socketpair = sock_no_socketpair, 1357 .accept = sock_no_accept, 1358 .getname = vsock_getname, 1359 .poll = vsock_poll, 1360 .ioctl = vsock_ioctl, 1361 .listen = sock_no_listen, 1362 .shutdown = vsock_shutdown, 1363 .sendmsg = vsock_dgram_sendmsg, 1364 .recvmsg = vsock_dgram_recvmsg, 1365 .mmap = sock_no_mmap, 1366 .read_skb = vsock_read_skb, 1367 }; 1368 1369 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1370 { 1371 const struct vsock_transport *transport = vsk->transport; 1372 1373 if (!transport || !transport->cancel_pkt) 1374 return -EOPNOTSUPP; 1375 1376 return transport->cancel_pkt(vsk); 1377 } 1378 1379 static void vsock_connect_timeout(struct work_struct *work) 1380 { 1381 struct sock *sk; 1382 struct vsock_sock *vsk; 1383 1384 vsk = container_of(work, struct vsock_sock, connect_work.work); 1385 sk = sk_vsock(vsk); 1386 1387 lock_sock(sk); 1388 if (sk->sk_state == TCP_SYN_SENT && 1389 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1390 sk->sk_state = TCP_CLOSE; 1391 sk->sk_socket->state = SS_UNCONNECTED; 1392 sk->sk_err = ETIMEDOUT; 1393 sk_error_report(sk); 1394 vsock_transport_cancel_pkt(vsk); 1395 } 1396 release_sock(sk); 1397 1398 sock_put(sk); 1399 } 1400 1401 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1402 int addr_len, int flags) 1403 { 1404 int err; 1405 struct sock *sk; 1406 struct vsock_sock *vsk; 1407 const struct vsock_transport *transport; 1408 struct sockaddr_vm *remote_addr; 1409 long timeout; 1410 DEFINE_WAIT(wait); 1411 1412 err = 0; 1413 sk = sock->sk; 1414 vsk = vsock_sk(sk); 1415 1416 lock_sock(sk); 1417 1418 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1419 switch (sock->state) { 1420 case SS_CONNECTED: 1421 err = -EISCONN; 1422 goto out; 1423 case SS_DISCONNECTING: 1424 err = -EINVAL; 1425 goto out; 1426 case SS_CONNECTING: 1427 /* This continues on so we can move sock into the SS_CONNECTED 1428 * state once the connection has completed (at which point err 1429 * will be set to zero also). Otherwise, we will either wait 1430 * for the connection or return -EALREADY should this be a 1431 * non-blocking call. 1432 */ 1433 err = -EALREADY; 1434 if (flags & O_NONBLOCK) 1435 goto out; 1436 break; 1437 default: 1438 if ((sk->sk_state == TCP_LISTEN) || 1439 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1440 err = -EINVAL; 1441 goto out; 1442 } 1443 1444 /* Set the remote address that we are connecting to. */ 1445 memcpy(&vsk->remote_addr, remote_addr, 1446 sizeof(vsk->remote_addr)); 1447 1448 err = vsock_assign_transport(vsk, NULL); 1449 if (err) 1450 goto out; 1451 1452 transport = vsk->transport; 1453 1454 /* The hypervisor and well-known contexts do not have socket 1455 * endpoints. 1456 */ 1457 if (!transport || 1458 !transport->stream_allow(remote_addr->svm_cid, 1459 remote_addr->svm_port)) { 1460 err = -ENETUNREACH; 1461 goto out; 1462 } 1463 1464 if (vsock_msgzerocopy_allow(transport)) { 1465 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1466 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1467 /* If this option was set before 'connect()', 1468 * when transport was unknown, check that this 1469 * feature is supported here. 1470 */ 1471 err = -EOPNOTSUPP; 1472 goto out; 1473 } 1474 1475 err = vsock_auto_bind(vsk); 1476 if (err) 1477 goto out; 1478 1479 sk->sk_state = TCP_SYN_SENT; 1480 1481 err = transport->connect(vsk); 1482 if (err < 0) 1483 goto out; 1484 1485 /* Mark sock as connecting and set the error code to in 1486 * progress in case this is a non-blocking connect. 1487 */ 1488 sock->state = SS_CONNECTING; 1489 err = -EINPROGRESS; 1490 } 1491 1492 /* The receive path will handle all communication until we are able to 1493 * enter the connected state. Here we wait for the connection to be 1494 * completed or a notification of an error. 1495 */ 1496 timeout = vsk->connect_timeout; 1497 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1498 1499 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1500 if (flags & O_NONBLOCK) { 1501 /* If we're not going to block, we schedule a timeout 1502 * function to generate a timeout on the connection 1503 * attempt, in case the peer doesn't respond in a 1504 * timely manner. We hold on to the socket until the 1505 * timeout fires. 1506 */ 1507 sock_hold(sk); 1508 1509 /* If the timeout function is already scheduled, 1510 * reschedule it, then ungrab the socket refcount to 1511 * keep it balanced. 1512 */ 1513 if (mod_delayed_work(system_wq, &vsk->connect_work, 1514 timeout)) 1515 sock_put(sk); 1516 1517 /* Skip ahead to preserve error code set above. */ 1518 goto out_wait; 1519 } 1520 1521 release_sock(sk); 1522 timeout = schedule_timeout(timeout); 1523 lock_sock(sk); 1524 1525 if (signal_pending(current)) { 1526 err = sock_intr_errno(timeout); 1527 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1528 sock->state = SS_UNCONNECTED; 1529 vsock_transport_cancel_pkt(vsk); 1530 vsock_remove_connected(vsk); 1531 goto out_wait; 1532 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) { 1533 err = -ETIMEDOUT; 1534 sk->sk_state = TCP_CLOSE; 1535 sock->state = SS_UNCONNECTED; 1536 vsock_transport_cancel_pkt(vsk); 1537 goto out_wait; 1538 } 1539 1540 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1541 } 1542 1543 if (sk->sk_err) { 1544 err = -sk->sk_err; 1545 sk->sk_state = TCP_CLOSE; 1546 sock->state = SS_UNCONNECTED; 1547 } else { 1548 err = 0; 1549 } 1550 1551 out_wait: 1552 finish_wait(sk_sleep(sk), &wait); 1553 out: 1554 release_sock(sk); 1555 return err; 1556 } 1557 1558 static int vsock_accept(struct socket *sock, struct socket *newsock, 1559 struct proto_accept_arg *arg) 1560 { 1561 struct sock *listener; 1562 int err; 1563 struct sock *connected; 1564 struct vsock_sock *vconnected; 1565 long timeout; 1566 DEFINE_WAIT(wait); 1567 1568 err = 0; 1569 listener = sock->sk; 1570 1571 lock_sock(listener); 1572 1573 if (!sock_type_connectible(sock->type)) { 1574 err = -EOPNOTSUPP; 1575 goto out; 1576 } 1577 1578 if (listener->sk_state != TCP_LISTEN) { 1579 err = -EINVAL; 1580 goto out; 1581 } 1582 1583 /* Wait for children sockets to appear; these are the new sockets 1584 * created upon connection establishment. 1585 */ 1586 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK); 1587 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1588 1589 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1590 listener->sk_err == 0) { 1591 release_sock(listener); 1592 timeout = schedule_timeout(timeout); 1593 finish_wait(sk_sleep(listener), &wait); 1594 lock_sock(listener); 1595 1596 if (signal_pending(current)) { 1597 err = sock_intr_errno(timeout); 1598 goto out; 1599 } else if (timeout == 0) { 1600 err = -EAGAIN; 1601 goto out; 1602 } 1603 1604 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1605 } 1606 finish_wait(sk_sleep(listener), &wait); 1607 1608 if (listener->sk_err) 1609 err = -listener->sk_err; 1610 1611 if (connected) { 1612 sk_acceptq_removed(listener); 1613 1614 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1615 vconnected = vsock_sk(connected); 1616 1617 /* If the listener socket has received an error, then we should 1618 * reject this socket and return. Note that we simply mark the 1619 * socket rejected, drop our reference, and let the cleanup 1620 * function handle the cleanup; the fact that we found it in 1621 * the listener's accept queue guarantees that the cleanup 1622 * function hasn't run yet. 1623 */ 1624 if (err) { 1625 vconnected->rejected = true; 1626 } else { 1627 newsock->state = SS_CONNECTED; 1628 sock_graft(connected, newsock); 1629 if (vsock_msgzerocopy_allow(vconnected->transport)) 1630 set_bit(SOCK_SUPPORT_ZC, 1631 &connected->sk_socket->flags); 1632 } 1633 1634 release_sock(connected); 1635 sock_put(connected); 1636 } 1637 1638 out: 1639 release_sock(listener); 1640 return err; 1641 } 1642 1643 static int vsock_listen(struct socket *sock, int backlog) 1644 { 1645 int err; 1646 struct sock *sk; 1647 struct vsock_sock *vsk; 1648 1649 sk = sock->sk; 1650 1651 lock_sock(sk); 1652 1653 if (!sock_type_connectible(sk->sk_type)) { 1654 err = -EOPNOTSUPP; 1655 goto out; 1656 } 1657 1658 if (sock->state != SS_UNCONNECTED) { 1659 err = -EINVAL; 1660 goto out; 1661 } 1662 1663 vsk = vsock_sk(sk); 1664 1665 if (!vsock_addr_bound(&vsk->local_addr)) { 1666 err = -EINVAL; 1667 goto out; 1668 } 1669 1670 sk->sk_max_ack_backlog = backlog; 1671 sk->sk_state = TCP_LISTEN; 1672 1673 err = 0; 1674 1675 out: 1676 release_sock(sk); 1677 return err; 1678 } 1679 1680 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1681 const struct vsock_transport *transport, 1682 u64 val) 1683 { 1684 if (val > vsk->buffer_max_size) 1685 val = vsk->buffer_max_size; 1686 1687 if (val < vsk->buffer_min_size) 1688 val = vsk->buffer_min_size; 1689 1690 if (val != vsk->buffer_size && 1691 transport && transport->notify_buffer_size) 1692 transport->notify_buffer_size(vsk, &val); 1693 1694 vsk->buffer_size = val; 1695 } 1696 1697 static int vsock_connectible_setsockopt(struct socket *sock, 1698 int level, 1699 int optname, 1700 sockptr_t optval, 1701 unsigned int optlen) 1702 { 1703 int err; 1704 struct sock *sk; 1705 struct vsock_sock *vsk; 1706 const struct vsock_transport *transport; 1707 u64 val; 1708 1709 if (level != AF_VSOCK && level != SOL_SOCKET) 1710 return -ENOPROTOOPT; 1711 1712 #define COPY_IN(_v) \ 1713 do { \ 1714 if (optlen < sizeof(_v)) { \ 1715 err = -EINVAL; \ 1716 goto exit; \ 1717 } \ 1718 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1719 err = -EFAULT; \ 1720 goto exit; \ 1721 } \ 1722 } while (0) 1723 1724 err = 0; 1725 sk = sock->sk; 1726 vsk = vsock_sk(sk); 1727 1728 lock_sock(sk); 1729 1730 transport = vsk->transport; 1731 1732 if (level == SOL_SOCKET) { 1733 int zerocopy; 1734 1735 if (optname != SO_ZEROCOPY) { 1736 release_sock(sk); 1737 return sock_setsockopt(sock, level, optname, optval, optlen); 1738 } 1739 1740 /* Use 'int' type here, because variable to 1741 * set this option usually has this type. 1742 */ 1743 COPY_IN(zerocopy); 1744 1745 if (zerocopy < 0 || zerocopy > 1) { 1746 err = -EINVAL; 1747 goto exit; 1748 } 1749 1750 if (transport && !vsock_msgzerocopy_allow(transport)) { 1751 err = -EOPNOTSUPP; 1752 goto exit; 1753 } 1754 1755 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy); 1756 goto exit; 1757 } 1758 1759 switch (optname) { 1760 case SO_VM_SOCKETS_BUFFER_SIZE: 1761 COPY_IN(val); 1762 vsock_update_buffer_size(vsk, transport, val); 1763 break; 1764 1765 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1766 COPY_IN(val); 1767 vsk->buffer_max_size = val; 1768 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1769 break; 1770 1771 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1772 COPY_IN(val); 1773 vsk->buffer_min_size = val; 1774 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1775 break; 1776 1777 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1778 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1779 struct __kernel_sock_timeval tv; 1780 1781 err = sock_copy_user_timeval(&tv, optval, optlen, 1782 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1783 if (err) 1784 break; 1785 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1786 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1787 vsk->connect_timeout = tv.tv_sec * HZ + 1788 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1789 if (vsk->connect_timeout == 0) 1790 vsk->connect_timeout = 1791 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1792 1793 } else { 1794 err = -ERANGE; 1795 } 1796 break; 1797 } 1798 1799 default: 1800 err = -ENOPROTOOPT; 1801 break; 1802 } 1803 1804 #undef COPY_IN 1805 1806 exit: 1807 release_sock(sk); 1808 return err; 1809 } 1810 1811 static int vsock_connectible_getsockopt(struct socket *sock, 1812 int level, int optname, 1813 char __user *optval, 1814 int __user *optlen) 1815 { 1816 struct sock *sk = sock->sk; 1817 struct vsock_sock *vsk = vsock_sk(sk); 1818 1819 union { 1820 u64 val64; 1821 struct old_timeval32 tm32; 1822 struct __kernel_old_timeval tm; 1823 struct __kernel_sock_timeval stm; 1824 } v; 1825 1826 int lv = sizeof(v.val64); 1827 int len; 1828 1829 if (level != AF_VSOCK) 1830 return -ENOPROTOOPT; 1831 1832 if (get_user(len, optlen)) 1833 return -EFAULT; 1834 1835 memset(&v, 0, sizeof(v)); 1836 1837 switch (optname) { 1838 case SO_VM_SOCKETS_BUFFER_SIZE: 1839 v.val64 = vsk->buffer_size; 1840 break; 1841 1842 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1843 v.val64 = vsk->buffer_max_size; 1844 break; 1845 1846 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1847 v.val64 = vsk->buffer_min_size; 1848 break; 1849 1850 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1851 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1852 lv = sock_get_timeout(vsk->connect_timeout, &v, 1853 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1854 break; 1855 1856 default: 1857 return -ENOPROTOOPT; 1858 } 1859 1860 if (len < lv) 1861 return -EINVAL; 1862 if (len > lv) 1863 len = lv; 1864 if (copy_to_user(optval, &v, len)) 1865 return -EFAULT; 1866 1867 if (put_user(len, optlen)) 1868 return -EFAULT; 1869 1870 return 0; 1871 } 1872 1873 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1874 size_t len) 1875 { 1876 struct sock *sk; 1877 struct vsock_sock *vsk; 1878 const struct vsock_transport *transport; 1879 ssize_t total_written; 1880 long timeout; 1881 int err; 1882 struct vsock_transport_send_notify_data send_data; 1883 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1884 1885 sk = sock->sk; 1886 vsk = vsock_sk(sk); 1887 total_written = 0; 1888 err = 0; 1889 1890 if (msg->msg_flags & MSG_OOB) 1891 return -EOPNOTSUPP; 1892 1893 lock_sock(sk); 1894 1895 transport = vsk->transport; 1896 1897 /* Callers should not provide a destination with connection oriented 1898 * sockets. 1899 */ 1900 if (msg->msg_namelen) { 1901 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1902 goto out; 1903 } 1904 1905 /* Send data only if both sides are not shutdown in the direction. */ 1906 if (sk->sk_shutdown & SEND_SHUTDOWN || 1907 vsk->peer_shutdown & RCV_SHUTDOWN) { 1908 err = -EPIPE; 1909 goto out; 1910 } 1911 1912 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1913 !vsock_addr_bound(&vsk->local_addr)) { 1914 err = -ENOTCONN; 1915 goto out; 1916 } 1917 1918 if (!vsock_addr_bound(&vsk->remote_addr)) { 1919 err = -EDESTADDRREQ; 1920 goto out; 1921 } 1922 1923 if (msg->msg_flags & MSG_ZEROCOPY && 1924 !vsock_msgzerocopy_allow(transport)) { 1925 err = -EOPNOTSUPP; 1926 goto out; 1927 } 1928 1929 /* Wait for room in the produce queue to enqueue our user's data. */ 1930 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1931 1932 err = transport->notify_send_init(vsk, &send_data); 1933 if (err < 0) 1934 goto out; 1935 1936 while (total_written < len) { 1937 ssize_t written; 1938 1939 add_wait_queue(sk_sleep(sk), &wait); 1940 while (vsock_stream_has_space(vsk) == 0 && 1941 sk->sk_err == 0 && 1942 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1943 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1944 1945 /* Don't wait for non-blocking sockets. */ 1946 if (timeout == 0) { 1947 err = -EAGAIN; 1948 remove_wait_queue(sk_sleep(sk), &wait); 1949 goto out_err; 1950 } 1951 1952 err = transport->notify_send_pre_block(vsk, &send_data); 1953 if (err < 0) { 1954 remove_wait_queue(sk_sleep(sk), &wait); 1955 goto out_err; 1956 } 1957 1958 release_sock(sk); 1959 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 1960 lock_sock(sk); 1961 if (signal_pending(current)) { 1962 err = sock_intr_errno(timeout); 1963 remove_wait_queue(sk_sleep(sk), &wait); 1964 goto out_err; 1965 } else if (timeout == 0) { 1966 err = -EAGAIN; 1967 remove_wait_queue(sk_sleep(sk), &wait); 1968 goto out_err; 1969 } 1970 } 1971 remove_wait_queue(sk_sleep(sk), &wait); 1972 1973 /* These checks occur both as part of and after the loop 1974 * conditional since we need to check before and after 1975 * sleeping. 1976 */ 1977 if (sk->sk_err) { 1978 err = -sk->sk_err; 1979 goto out_err; 1980 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1981 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1982 err = -EPIPE; 1983 goto out_err; 1984 } 1985 1986 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1987 if (err < 0) 1988 goto out_err; 1989 1990 /* Note that enqueue will only write as many bytes as are free 1991 * in the produce queue, so we don't need to ensure len is 1992 * smaller than the queue size. It is the caller's 1993 * responsibility to check how many bytes we were able to send. 1994 */ 1995 1996 if (sk->sk_type == SOCK_SEQPACKET) { 1997 written = transport->seqpacket_enqueue(vsk, 1998 msg, len - total_written); 1999 } else { 2000 written = transport->stream_enqueue(vsk, 2001 msg, len - total_written); 2002 } 2003 2004 if (written < 0) { 2005 err = written; 2006 goto out_err; 2007 } 2008 2009 total_written += written; 2010 2011 err = transport->notify_send_post_enqueue( 2012 vsk, written, &send_data); 2013 if (err < 0) 2014 goto out_err; 2015 2016 } 2017 2018 out_err: 2019 if (total_written > 0) { 2020 /* Return number of written bytes only if: 2021 * 1) SOCK_STREAM socket. 2022 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 2023 */ 2024 if (sk->sk_type == SOCK_STREAM || total_written == len) 2025 err = total_written; 2026 } 2027 out: 2028 if (sk->sk_type == SOCK_STREAM) 2029 err = sk_stream_error(sk, msg->msg_flags, err); 2030 2031 release_sock(sk); 2032 return err; 2033 } 2034 2035 static int vsock_connectible_wait_data(struct sock *sk, 2036 struct wait_queue_entry *wait, 2037 long timeout, 2038 struct vsock_transport_recv_notify_data *recv_data, 2039 size_t target) 2040 { 2041 const struct vsock_transport *transport; 2042 struct vsock_sock *vsk; 2043 s64 data; 2044 int err; 2045 2046 vsk = vsock_sk(sk); 2047 err = 0; 2048 transport = vsk->transport; 2049 2050 while (1) { 2051 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 2052 data = vsock_connectible_has_data(vsk); 2053 if (data != 0) 2054 break; 2055 2056 if (sk->sk_err != 0 || 2057 (sk->sk_shutdown & RCV_SHUTDOWN) || 2058 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 2059 break; 2060 } 2061 2062 /* Don't wait for non-blocking sockets. */ 2063 if (timeout == 0) { 2064 err = -EAGAIN; 2065 break; 2066 } 2067 2068 if (recv_data) { 2069 err = transport->notify_recv_pre_block(vsk, target, recv_data); 2070 if (err < 0) 2071 break; 2072 } 2073 2074 release_sock(sk); 2075 timeout = schedule_timeout(timeout); 2076 lock_sock(sk); 2077 2078 if (signal_pending(current)) { 2079 err = sock_intr_errno(timeout); 2080 break; 2081 } else if (timeout == 0) { 2082 err = -EAGAIN; 2083 break; 2084 } 2085 } 2086 2087 finish_wait(sk_sleep(sk), wait); 2088 2089 if (err) 2090 return err; 2091 2092 /* Internal transport error when checking for available 2093 * data. XXX This should be changed to a connection 2094 * reset in a later change. 2095 */ 2096 if (data < 0) 2097 return -ENOMEM; 2098 2099 return data; 2100 } 2101 2102 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2103 size_t len, int flags) 2104 { 2105 struct vsock_transport_recv_notify_data recv_data; 2106 const struct vsock_transport *transport; 2107 struct vsock_sock *vsk; 2108 ssize_t copied; 2109 size_t target; 2110 long timeout; 2111 int err; 2112 2113 DEFINE_WAIT(wait); 2114 2115 vsk = vsock_sk(sk); 2116 transport = vsk->transport; 2117 2118 /* We must not copy less than target bytes into the user's buffer 2119 * before returning successfully, so we wait for the consume queue to 2120 * have that much data to consume before dequeueing. Note that this 2121 * makes it impossible to handle cases where target is greater than the 2122 * queue size. 2123 */ 2124 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2125 if (target >= transport->stream_rcvhiwat(vsk)) { 2126 err = -ENOMEM; 2127 goto out; 2128 } 2129 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2130 copied = 0; 2131 2132 err = transport->notify_recv_init(vsk, target, &recv_data); 2133 if (err < 0) 2134 goto out; 2135 2136 2137 while (1) { 2138 ssize_t read; 2139 2140 err = vsock_connectible_wait_data(sk, &wait, timeout, 2141 &recv_data, target); 2142 if (err <= 0) 2143 break; 2144 2145 err = transport->notify_recv_pre_dequeue(vsk, target, 2146 &recv_data); 2147 if (err < 0) 2148 break; 2149 2150 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 2151 if (read < 0) { 2152 err = read; 2153 break; 2154 } 2155 2156 copied += read; 2157 2158 err = transport->notify_recv_post_dequeue(vsk, target, read, 2159 !(flags & MSG_PEEK), &recv_data); 2160 if (err < 0) 2161 goto out; 2162 2163 if (read >= target || flags & MSG_PEEK) 2164 break; 2165 2166 target -= read; 2167 } 2168 2169 if (sk->sk_err) 2170 err = -sk->sk_err; 2171 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2172 err = 0; 2173 2174 if (copied > 0) 2175 err = copied; 2176 2177 out: 2178 return err; 2179 } 2180 2181 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2182 size_t len, int flags) 2183 { 2184 const struct vsock_transport *transport; 2185 struct vsock_sock *vsk; 2186 ssize_t msg_len; 2187 long timeout; 2188 int err = 0; 2189 DEFINE_WAIT(wait); 2190 2191 vsk = vsock_sk(sk); 2192 transport = vsk->transport; 2193 2194 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2195 2196 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2197 if (err <= 0) 2198 goto out; 2199 2200 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2201 2202 if (msg_len < 0) { 2203 err = msg_len; 2204 goto out; 2205 } 2206 2207 if (sk->sk_err) { 2208 err = -sk->sk_err; 2209 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2210 err = 0; 2211 } else { 2212 /* User sets MSG_TRUNC, so return real length of 2213 * packet. 2214 */ 2215 if (flags & MSG_TRUNC) 2216 err = msg_len; 2217 else 2218 err = len - msg_data_left(msg); 2219 2220 /* Always set MSG_TRUNC if real length of packet is 2221 * bigger than user's buffer. 2222 */ 2223 if (msg_len > len) 2224 msg->msg_flags |= MSG_TRUNC; 2225 } 2226 2227 out: 2228 return err; 2229 } 2230 2231 int 2232 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2233 int flags) 2234 { 2235 struct sock *sk; 2236 struct vsock_sock *vsk; 2237 const struct vsock_transport *transport; 2238 int err; 2239 2240 sk = sock->sk; 2241 2242 if (unlikely(flags & MSG_ERRQUEUE)) 2243 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR); 2244 2245 vsk = vsock_sk(sk); 2246 err = 0; 2247 2248 lock_sock(sk); 2249 2250 transport = vsk->transport; 2251 2252 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2253 /* Recvmsg is supposed to return 0 if a peer performs an 2254 * orderly shutdown. Differentiate between that case and when a 2255 * peer has not connected or a local shutdown occurred with the 2256 * SOCK_DONE flag. 2257 */ 2258 if (sock_flag(sk, SOCK_DONE)) 2259 err = 0; 2260 else 2261 err = -ENOTCONN; 2262 2263 goto out; 2264 } 2265 2266 if (flags & MSG_OOB) { 2267 err = -EOPNOTSUPP; 2268 goto out; 2269 } 2270 2271 /* We don't check peer_shutdown flag here since peer may actually shut 2272 * down, but there can be data in the queue that a local socket can 2273 * receive. 2274 */ 2275 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2276 err = 0; 2277 goto out; 2278 } 2279 2280 /* It is valid on Linux to pass in a zero-length receive buffer. This 2281 * is not an error. We may as well bail out now. 2282 */ 2283 if (!len) { 2284 err = 0; 2285 goto out; 2286 } 2287 2288 if (sk->sk_type == SOCK_STREAM) 2289 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2290 else 2291 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2292 2293 out: 2294 release_sock(sk); 2295 return err; 2296 } 2297 2298 int 2299 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2300 int flags) 2301 { 2302 #ifdef CONFIG_BPF_SYSCALL 2303 struct sock *sk = sock->sk; 2304 const struct proto *prot; 2305 2306 prot = READ_ONCE(sk->sk_prot); 2307 if (prot != &vsock_proto) 2308 return prot->recvmsg(sk, msg, len, flags, NULL); 2309 #endif 2310 2311 return __vsock_connectible_recvmsg(sock, msg, len, flags); 2312 } 2313 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg); 2314 2315 static int vsock_set_rcvlowat(struct sock *sk, int val) 2316 { 2317 const struct vsock_transport *transport; 2318 struct vsock_sock *vsk; 2319 2320 vsk = vsock_sk(sk); 2321 2322 if (val > vsk->buffer_size) 2323 return -EINVAL; 2324 2325 transport = vsk->transport; 2326 2327 if (transport && transport->notify_set_rcvlowat) { 2328 int err; 2329 2330 err = transport->notify_set_rcvlowat(vsk, val); 2331 if (err) 2332 return err; 2333 } 2334 2335 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 2336 return 0; 2337 } 2338 2339 static const struct proto_ops vsock_stream_ops = { 2340 .family = PF_VSOCK, 2341 .owner = THIS_MODULE, 2342 .release = vsock_release, 2343 .bind = vsock_bind, 2344 .connect = vsock_connect, 2345 .socketpair = sock_no_socketpair, 2346 .accept = vsock_accept, 2347 .getname = vsock_getname, 2348 .poll = vsock_poll, 2349 .ioctl = vsock_ioctl, 2350 .listen = vsock_listen, 2351 .shutdown = vsock_shutdown, 2352 .setsockopt = vsock_connectible_setsockopt, 2353 .getsockopt = vsock_connectible_getsockopt, 2354 .sendmsg = vsock_connectible_sendmsg, 2355 .recvmsg = vsock_connectible_recvmsg, 2356 .mmap = sock_no_mmap, 2357 .set_rcvlowat = vsock_set_rcvlowat, 2358 .read_skb = vsock_read_skb, 2359 }; 2360 2361 static const struct proto_ops vsock_seqpacket_ops = { 2362 .family = PF_VSOCK, 2363 .owner = THIS_MODULE, 2364 .release = vsock_release, 2365 .bind = vsock_bind, 2366 .connect = vsock_connect, 2367 .socketpair = sock_no_socketpair, 2368 .accept = vsock_accept, 2369 .getname = vsock_getname, 2370 .poll = vsock_poll, 2371 .ioctl = vsock_ioctl, 2372 .listen = vsock_listen, 2373 .shutdown = vsock_shutdown, 2374 .setsockopt = vsock_connectible_setsockopt, 2375 .getsockopt = vsock_connectible_getsockopt, 2376 .sendmsg = vsock_connectible_sendmsg, 2377 .recvmsg = vsock_connectible_recvmsg, 2378 .mmap = sock_no_mmap, 2379 .read_skb = vsock_read_skb, 2380 }; 2381 2382 static int vsock_create(struct net *net, struct socket *sock, 2383 int protocol, int kern) 2384 { 2385 struct vsock_sock *vsk; 2386 struct sock *sk; 2387 int ret; 2388 2389 if (!sock) 2390 return -EINVAL; 2391 2392 if (protocol && protocol != PF_VSOCK) 2393 return -EPROTONOSUPPORT; 2394 2395 switch (sock->type) { 2396 case SOCK_DGRAM: 2397 sock->ops = &vsock_dgram_ops; 2398 break; 2399 case SOCK_STREAM: 2400 sock->ops = &vsock_stream_ops; 2401 break; 2402 case SOCK_SEQPACKET: 2403 sock->ops = &vsock_seqpacket_ops; 2404 break; 2405 default: 2406 return -ESOCKTNOSUPPORT; 2407 } 2408 2409 sock->state = SS_UNCONNECTED; 2410 2411 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2412 if (!sk) 2413 return -ENOMEM; 2414 2415 vsk = vsock_sk(sk); 2416 2417 if (sock->type == SOCK_DGRAM) { 2418 ret = vsock_assign_transport(vsk, NULL); 2419 if (ret < 0) { 2420 sock_put(sk); 2421 return ret; 2422 } 2423 } 2424 2425 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its 2426 * proto_ops, so there is no handler for custom logic. 2427 */ 2428 if (sock_type_connectible(sock->type)) 2429 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2430 2431 vsock_insert_unbound(vsk); 2432 2433 return 0; 2434 } 2435 2436 static const struct net_proto_family vsock_family_ops = { 2437 .family = AF_VSOCK, 2438 .create = vsock_create, 2439 .owner = THIS_MODULE, 2440 }; 2441 2442 static long vsock_dev_do_ioctl(struct file *filp, 2443 unsigned int cmd, void __user *ptr) 2444 { 2445 u32 __user *p = ptr; 2446 u32 cid = VMADDR_CID_ANY; 2447 int retval = 0; 2448 2449 switch (cmd) { 2450 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2451 /* To be compatible with the VMCI behavior, we prioritize the 2452 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2453 */ 2454 if (transport_g2h) 2455 cid = transport_g2h->get_local_cid(); 2456 else if (transport_h2g) 2457 cid = transport_h2g->get_local_cid(); 2458 2459 if (put_user(cid, p) != 0) 2460 retval = -EFAULT; 2461 break; 2462 2463 default: 2464 retval = -ENOIOCTLCMD; 2465 } 2466 2467 return retval; 2468 } 2469 2470 static long vsock_dev_ioctl(struct file *filp, 2471 unsigned int cmd, unsigned long arg) 2472 { 2473 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2474 } 2475 2476 #ifdef CONFIG_COMPAT 2477 static long vsock_dev_compat_ioctl(struct file *filp, 2478 unsigned int cmd, unsigned long arg) 2479 { 2480 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2481 } 2482 #endif 2483 2484 static const struct file_operations vsock_device_ops = { 2485 .owner = THIS_MODULE, 2486 .unlocked_ioctl = vsock_dev_ioctl, 2487 #ifdef CONFIG_COMPAT 2488 .compat_ioctl = vsock_dev_compat_ioctl, 2489 #endif 2490 .open = nonseekable_open, 2491 }; 2492 2493 static struct miscdevice vsock_device = { 2494 .name = "vsock", 2495 .fops = &vsock_device_ops, 2496 }; 2497 2498 static int __init vsock_init(void) 2499 { 2500 int err = 0; 2501 2502 vsock_init_tables(); 2503 2504 vsock_proto.owner = THIS_MODULE; 2505 vsock_device.minor = MISC_DYNAMIC_MINOR; 2506 err = misc_register(&vsock_device); 2507 if (err) { 2508 pr_err("Failed to register misc device\n"); 2509 goto err_reset_transport; 2510 } 2511 2512 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2513 if (err) { 2514 pr_err("Cannot register vsock protocol\n"); 2515 goto err_deregister_misc; 2516 } 2517 2518 err = sock_register(&vsock_family_ops); 2519 if (err) { 2520 pr_err("could not register af_vsock (%d) address family: %d\n", 2521 AF_VSOCK, err); 2522 goto err_unregister_proto; 2523 } 2524 2525 vsock_bpf_build_proto(); 2526 2527 return 0; 2528 2529 err_unregister_proto: 2530 proto_unregister(&vsock_proto); 2531 err_deregister_misc: 2532 misc_deregister(&vsock_device); 2533 err_reset_transport: 2534 return err; 2535 } 2536 2537 static void __exit vsock_exit(void) 2538 { 2539 misc_deregister(&vsock_device); 2540 sock_unregister(AF_VSOCK); 2541 proto_unregister(&vsock_proto); 2542 } 2543 2544 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2545 { 2546 return vsk->transport; 2547 } 2548 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2549 2550 int vsock_core_register(const struct vsock_transport *t, int features) 2551 { 2552 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2553 int err = mutex_lock_interruptible(&vsock_register_mutex); 2554 2555 if (err) 2556 return err; 2557 2558 t_h2g = transport_h2g; 2559 t_g2h = transport_g2h; 2560 t_dgram = transport_dgram; 2561 t_local = transport_local; 2562 2563 if (features & VSOCK_TRANSPORT_F_H2G) { 2564 if (t_h2g) { 2565 err = -EBUSY; 2566 goto err_busy; 2567 } 2568 t_h2g = t; 2569 } 2570 2571 if (features & VSOCK_TRANSPORT_F_G2H) { 2572 if (t_g2h) { 2573 err = -EBUSY; 2574 goto err_busy; 2575 } 2576 t_g2h = t; 2577 } 2578 2579 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2580 if (t_dgram) { 2581 err = -EBUSY; 2582 goto err_busy; 2583 } 2584 t_dgram = t; 2585 } 2586 2587 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2588 if (t_local) { 2589 err = -EBUSY; 2590 goto err_busy; 2591 } 2592 t_local = t; 2593 } 2594 2595 transport_h2g = t_h2g; 2596 transport_g2h = t_g2h; 2597 transport_dgram = t_dgram; 2598 transport_local = t_local; 2599 2600 err_busy: 2601 mutex_unlock(&vsock_register_mutex); 2602 return err; 2603 } 2604 EXPORT_SYMBOL_GPL(vsock_core_register); 2605 2606 void vsock_core_unregister(const struct vsock_transport *t) 2607 { 2608 mutex_lock(&vsock_register_mutex); 2609 2610 if (transport_h2g == t) 2611 transport_h2g = NULL; 2612 2613 if (transport_g2h == t) 2614 transport_g2h = NULL; 2615 2616 if (transport_dgram == t) 2617 transport_dgram = NULL; 2618 2619 if (transport_local == t) 2620 transport_local = NULL; 2621 2622 mutex_unlock(&vsock_register_mutex); 2623 } 2624 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2625 2626 module_init(vsock_init); 2627 module_exit(vsock_exit); 2628 2629 MODULE_AUTHOR("VMware, Inc."); 2630 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2631 MODULE_VERSION("1.0.2.0-k"); 2632 MODULE_LICENSE("GPL v2"); 2633