xref: /linux/net/vmw_vsock/af_vsock.c (revision 1b2965a8cd8d444cbea891e55083b5987d00cc66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 	.name = "AF_VSOCK",
124 	.owner = THIS_MODULE,
125 	.obj_size = sizeof(struct vsock_sock),
126 #ifdef CONFIG_BPF_SYSCALL
127 	.psock_update_sk_prot = vsock_bpf_update_proto,
128 #endif
129 };
130 
131 /* The default peer timeout indicates how long we will wait for a peer response
132  * to a control message.
133  */
134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135 
136 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
137 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
139 
140 /* Transport used for host->guest communication */
141 static const struct vsock_transport *transport_h2g;
142 /* Transport used for guest->host communication */
143 static const struct vsock_transport *transport_g2h;
144 /* Transport used for DGRAM communication */
145 static const struct vsock_transport *transport_dgram;
146 /* Transport used for local communication */
147 static const struct vsock_transport *transport_local;
148 static DEFINE_MUTEX(vsock_register_mutex);
149 
150 /**** UTILS ****/
151 
152 /* Each bound VSocket is stored in the bind hash table and each connected
153  * VSocket is stored in the connected hash table.
154  *
155  * Unbound sockets are all put on the same list attached to the end of the hash
156  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
157  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158  * represents the list that addr hashes to).
159  *
160  * Specifically, we initialize the vsock_bind_table array to a size of
161  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
164  * mods with VSOCK_HASH_SIZE to ensure this.
165  */
166 #define MAX_PORT_RETRIES        24
167 
168 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
171 
172 /* XXX This can probably be implemented in a better way. */
173 #define VSOCK_CONN_HASH(src, dst)				\
174 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175 #define vsock_connected_sockets(src, dst)		\
176 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177 #define vsock_connected_sockets_vsk(vsk)				\
178 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179 
180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181 EXPORT_SYMBOL_GPL(vsock_bind_table);
182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 EXPORT_SYMBOL_GPL(vsock_connected_table);
184 DEFINE_SPINLOCK(vsock_table_lock);
185 EXPORT_SYMBOL_GPL(vsock_table_lock);
186 
187 /* Autobind this socket to the local address if necessary. */
188 static int vsock_auto_bind(struct vsock_sock *vsk)
189 {
190 	struct sock *sk = sk_vsock(vsk);
191 	struct sockaddr_vm local_addr;
192 
193 	if (vsock_addr_bound(&vsk->local_addr))
194 		return 0;
195 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 	return __vsock_bind(sk, &local_addr);
197 }
198 
199 static void vsock_init_tables(void)
200 {
201 	int i;
202 
203 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 		INIT_LIST_HEAD(&vsock_bind_table[i]);
205 
206 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 		INIT_LIST_HEAD(&vsock_connected_table[i]);
208 }
209 
210 static void __vsock_insert_bound(struct list_head *list,
211 				 struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->bound_table, list);
215 }
216 
217 static void __vsock_insert_connected(struct list_head *list,
218 				     struct vsock_sock *vsk)
219 {
220 	sock_hold(&vsk->sk);
221 	list_add(&vsk->connected_table, list);
222 }
223 
224 static void __vsock_remove_bound(struct vsock_sock *vsk)
225 {
226 	list_del_init(&vsk->bound_table);
227 	sock_put(&vsk->sk);
228 }
229 
230 static void __vsock_remove_connected(struct vsock_sock *vsk)
231 {
232 	list_del_init(&vsk->connected_table);
233 	sock_put(&vsk->sk);
234 }
235 
236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237 {
238 	struct vsock_sock *vsk;
239 
240 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
241 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
242 			return sk_vsock(vsk);
243 
244 		if (addr->svm_port == vsk->local_addr.svm_port &&
245 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
246 		     addr->svm_cid == VMADDR_CID_ANY))
247 			return sk_vsock(vsk);
248 	}
249 
250 	return NULL;
251 }
252 
253 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
254 						  struct sockaddr_vm *dst)
255 {
256 	struct vsock_sock *vsk;
257 
258 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
259 			    connected_table) {
260 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
261 		    dst->svm_port == vsk->local_addr.svm_port) {
262 			return sk_vsock(vsk);
263 		}
264 	}
265 
266 	return NULL;
267 }
268 
269 static void vsock_insert_unbound(struct vsock_sock *vsk)
270 {
271 	spin_lock_bh(&vsock_table_lock);
272 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
273 	spin_unlock_bh(&vsock_table_lock);
274 }
275 
276 void vsock_insert_connected(struct vsock_sock *vsk)
277 {
278 	struct list_head *list = vsock_connected_sockets(
279 		&vsk->remote_addr, &vsk->local_addr);
280 
281 	spin_lock_bh(&vsock_table_lock);
282 	__vsock_insert_connected(list, vsk);
283 	spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_insert_connected);
286 
287 void vsock_remove_bound(struct vsock_sock *vsk)
288 {
289 	spin_lock_bh(&vsock_table_lock);
290 	if (__vsock_in_bound_table(vsk))
291 		__vsock_remove_bound(vsk);
292 	spin_unlock_bh(&vsock_table_lock);
293 }
294 EXPORT_SYMBOL_GPL(vsock_remove_bound);
295 
296 void vsock_remove_connected(struct vsock_sock *vsk)
297 {
298 	spin_lock_bh(&vsock_table_lock);
299 	if (__vsock_in_connected_table(vsk))
300 		__vsock_remove_connected(vsk);
301 	spin_unlock_bh(&vsock_table_lock);
302 }
303 EXPORT_SYMBOL_GPL(vsock_remove_connected);
304 
305 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
306 {
307 	struct sock *sk;
308 
309 	spin_lock_bh(&vsock_table_lock);
310 	sk = __vsock_find_bound_socket(addr);
311 	if (sk)
312 		sock_hold(sk);
313 
314 	spin_unlock_bh(&vsock_table_lock);
315 
316 	return sk;
317 }
318 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
319 
320 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
321 					 struct sockaddr_vm *dst)
322 {
323 	struct sock *sk;
324 
325 	spin_lock_bh(&vsock_table_lock);
326 	sk = __vsock_find_connected_socket(src, dst);
327 	if (sk)
328 		sock_hold(sk);
329 
330 	spin_unlock_bh(&vsock_table_lock);
331 
332 	return sk;
333 }
334 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
335 
336 void vsock_remove_sock(struct vsock_sock *vsk)
337 {
338 	vsock_remove_bound(vsk);
339 	vsock_remove_connected(vsk);
340 }
341 EXPORT_SYMBOL_GPL(vsock_remove_sock);
342 
343 void vsock_for_each_connected_socket(struct vsock_transport *transport,
344 				     void (*fn)(struct sock *sk))
345 {
346 	int i;
347 
348 	spin_lock_bh(&vsock_table_lock);
349 
350 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
351 		struct vsock_sock *vsk;
352 		list_for_each_entry(vsk, &vsock_connected_table[i],
353 				    connected_table) {
354 			if (vsk->transport != transport)
355 				continue;
356 
357 			fn(sk_vsock(vsk));
358 		}
359 	}
360 
361 	spin_unlock_bh(&vsock_table_lock);
362 }
363 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
364 
365 void vsock_add_pending(struct sock *listener, struct sock *pending)
366 {
367 	struct vsock_sock *vlistener;
368 	struct vsock_sock *vpending;
369 
370 	vlistener = vsock_sk(listener);
371 	vpending = vsock_sk(pending);
372 
373 	sock_hold(pending);
374 	sock_hold(listener);
375 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
376 }
377 EXPORT_SYMBOL_GPL(vsock_add_pending);
378 
379 void vsock_remove_pending(struct sock *listener, struct sock *pending)
380 {
381 	struct vsock_sock *vpending = vsock_sk(pending);
382 
383 	list_del_init(&vpending->pending_links);
384 	sock_put(listener);
385 	sock_put(pending);
386 }
387 EXPORT_SYMBOL_GPL(vsock_remove_pending);
388 
389 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
390 {
391 	struct vsock_sock *vlistener;
392 	struct vsock_sock *vconnected;
393 
394 	vlistener = vsock_sk(listener);
395 	vconnected = vsock_sk(connected);
396 
397 	sock_hold(connected);
398 	sock_hold(listener);
399 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
400 }
401 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
402 
403 static bool vsock_use_local_transport(unsigned int remote_cid)
404 {
405 	if (!transport_local)
406 		return false;
407 
408 	if (remote_cid == VMADDR_CID_LOCAL)
409 		return true;
410 
411 	if (transport_g2h) {
412 		return remote_cid == transport_g2h->get_local_cid();
413 	} else {
414 		return remote_cid == VMADDR_CID_HOST;
415 	}
416 }
417 
418 static void vsock_deassign_transport(struct vsock_sock *vsk)
419 {
420 	if (!vsk->transport)
421 		return;
422 
423 	vsk->transport->destruct(vsk);
424 	module_put(vsk->transport->module);
425 	vsk->transport = NULL;
426 }
427 
428 /* Assign a transport to a socket and call the .init transport callback.
429  *
430  * Note: for connection oriented socket this must be called when vsk->remote_addr
431  * is set (e.g. during the connect() or when a connection request on a listener
432  * socket is received).
433  * The vsk->remote_addr is used to decide which transport to use:
434  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
435  *    g2h is not loaded, will use local transport;
436  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
437  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
438  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
439  */
440 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
441 {
442 	const struct vsock_transport *new_transport;
443 	struct sock *sk = sk_vsock(vsk);
444 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
445 	__u8 remote_flags;
446 	int ret;
447 
448 	/* If the packet is coming with the source and destination CIDs higher
449 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
450 	 * forwarded to the host should be established. Then the host will
451 	 * need to forward the packets to the guest.
452 	 *
453 	 * The flag is set on the (listen) receive path (psk is not NULL). On
454 	 * the connect path the flag can be set by the user space application.
455 	 */
456 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
457 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
458 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
459 
460 	remote_flags = vsk->remote_addr.svm_flags;
461 
462 	switch (sk->sk_type) {
463 	case SOCK_DGRAM:
464 		new_transport = transport_dgram;
465 		break;
466 	case SOCK_STREAM:
467 	case SOCK_SEQPACKET:
468 		if (vsock_use_local_transport(remote_cid))
469 			new_transport = transport_local;
470 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
471 			 (remote_flags & VMADDR_FLAG_TO_HOST))
472 			new_transport = transport_g2h;
473 		else
474 			new_transport = transport_h2g;
475 		break;
476 	default:
477 		return -ESOCKTNOSUPPORT;
478 	}
479 
480 	if (vsk->transport) {
481 		if (vsk->transport == new_transport)
482 			return 0;
483 
484 		/* transport->release() must be called with sock lock acquired.
485 		 * This path can only be taken during vsock_connect(), where we
486 		 * have already held the sock lock. In the other cases, this
487 		 * function is called on a new socket which is not assigned to
488 		 * any transport.
489 		 */
490 		vsk->transport->release(vsk);
491 		vsock_deassign_transport(vsk);
492 	}
493 
494 	/* We increase the module refcnt to prevent the transport unloading
495 	 * while there are open sockets assigned to it.
496 	 */
497 	if (!new_transport || !try_module_get(new_transport->module))
498 		return -ENODEV;
499 
500 	if (sk->sk_type == SOCK_SEQPACKET) {
501 		if (!new_transport->seqpacket_allow ||
502 		    !new_transport->seqpacket_allow(remote_cid)) {
503 			module_put(new_transport->module);
504 			return -ESOCKTNOSUPPORT;
505 		}
506 	}
507 
508 	ret = new_transport->init(vsk, psk);
509 	if (ret) {
510 		module_put(new_transport->module);
511 		return ret;
512 	}
513 
514 	vsk->transport = new_transport;
515 
516 	return 0;
517 }
518 EXPORT_SYMBOL_GPL(vsock_assign_transport);
519 
520 bool vsock_find_cid(unsigned int cid)
521 {
522 	if (transport_g2h && cid == transport_g2h->get_local_cid())
523 		return true;
524 
525 	if (transport_h2g && cid == VMADDR_CID_HOST)
526 		return true;
527 
528 	if (transport_local && cid == VMADDR_CID_LOCAL)
529 		return true;
530 
531 	return false;
532 }
533 EXPORT_SYMBOL_GPL(vsock_find_cid);
534 
535 static struct sock *vsock_dequeue_accept(struct sock *listener)
536 {
537 	struct vsock_sock *vlistener;
538 	struct vsock_sock *vconnected;
539 
540 	vlistener = vsock_sk(listener);
541 
542 	if (list_empty(&vlistener->accept_queue))
543 		return NULL;
544 
545 	vconnected = list_entry(vlistener->accept_queue.next,
546 				struct vsock_sock, accept_queue);
547 
548 	list_del_init(&vconnected->accept_queue);
549 	sock_put(listener);
550 	/* The caller will need a reference on the connected socket so we let
551 	 * it call sock_put().
552 	 */
553 
554 	return sk_vsock(vconnected);
555 }
556 
557 static bool vsock_is_accept_queue_empty(struct sock *sk)
558 {
559 	struct vsock_sock *vsk = vsock_sk(sk);
560 	return list_empty(&vsk->accept_queue);
561 }
562 
563 static bool vsock_is_pending(struct sock *sk)
564 {
565 	struct vsock_sock *vsk = vsock_sk(sk);
566 	return !list_empty(&vsk->pending_links);
567 }
568 
569 static int vsock_send_shutdown(struct sock *sk, int mode)
570 {
571 	struct vsock_sock *vsk = vsock_sk(sk);
572 
573 	if (!vsk->transport)
574 		return -ENODEV;
575 
576 	return vsk->transport->shutdown(vsk, mode);
577 }
578 
579 static void vsock_pending_work(struct work_struct *work)
580 {
581 	struct sock *sk;
582 	struct sock *listener;
583 	struct vsock_sock *vsk;
584 	bool cleanup;
585 
586 	vsk = container_of(work, struct vsock_sock, pending_work.work);
587 	sk = sk_vsock(vsk);
588 	listener = vsk->listener;
589 	cleanup = true;
590 
591 	lock_sock(listener);
592 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
593 
594 	if (vsock_is_pending(sk)) {
595 		vsock_remove_pending(listener, sk);
596 
597 		sk_acceptq_removed(listener);
598 	} else if (!vsk->rejected) {
599 		/* We are not on the pending list and accept() did not reject
600 		 * us, so we must have been accepted by our user process.  We
601 		 * just need to drop our references to the sockets and be on
602 		 * our way.
603 		 */
604 		cleanup = false;
605 		goto out;
606 	}
607 
608 	/* We need to remove ourself from the global connected sockets list so
609 	 * incoming packets can't find this socket, and to reduce the reference
610 	 * count.
611 	 */
612 	vsock_remove_connected(vsk);
613 
614 	sk->sk_state = TCP_CLOSE;
615 
616 out:
617 	release_sock(sk);
618 	release_sock(listener);
619 	if (cleanup)
620 		sock_put(sk);
621 
622 	sock_put(sk);
623 	sock_put(listener);
624 }
625 
626 /**** SOCKET OPERATIONS ****/
627 
628 static int __vsock_bind_connectible(struct vsock_sock *vsk,
629 				    struct sockaddr_vm *addr)
630 {
631 	static u32 port;
632 	struct sockaddr_vm new_addr;
633 
634 	if (!port)
635 		port = get_random_u32_above(LAST_RESERVED_PORT);
636 
637 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
638 
639 	if (addr->svm_port == VMADDR_PORT_ANY) {
640 		bool found = false;
641 		unsigned int i;
642 
643 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
644 			if (port <= LAST_RESERVED_PORT)
645 				port = LAST_RESERVED_PORT + 1;
646 
647 			new_addr.svm_port = port++;
648 
649 			if (!__vsock_find_bound_socket(&new_addr)) {
650 				found = true;
651 				break;
652 			}
653 		}
654 
655 		if (!found)
656 			return -EADDRNOTAVAIL;
657 	} else {
658 		/* If port is in reserved range, ensure caller
659 		 * has necessary privileges.
660 		 */
661 		if (addr->svm_port <= LAST_RESERVED_PORT &&
662 		    !capable(CAP_NET_BIND_SERVICE)) {
663 			return -EACCES;
664 		}
665 
666 		if (__vsock_find_bound_socket(&new_addr))
667 			return -EADDRINUSE;
668 	}
669 
670 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
671 
672 	/* Remove connection oriented sockets from the unbound list and add them
673 	 * to the hash table for easy lookup by its address.  The unbound list
674 	 * is simply an extra entry at the end of the hash table, a trick used
675 	 * by AF_UNIX.
676 	 */
677 	__vsock_remove_bound(vsk);
678 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
679 
680 	return 0;
681 }
682 
683 static int __vsock_bind_dgram(struct vsock_sock *vsk,
684 			      struct sockaddr_vm *addr)
685 {
686 	return vsk->transport->dgram_bind(vsk, addr);
687 }
688 
689 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
690 {
691 	struct vsock_sock *vsk = vsock_sk(sk);
692 	int retval;
693 
694 	/* First ensure this socket isn't already bound. */
695 	if (vsock_addr_bound(&vsk->local_addr))
696 		return -EINVAL;
697 
698 	/* Now bind to the provided address or select appropriate values if
699 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
700 	 * like AF_INET prevents binding to a non-local IP address (in most
701 	 * cases), we only allow binding to a local CID.
702 	 */
703 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
704 		return -EADDRNOTAVAIL;
705 
706 	switch (sk->sk_socket->type) {
707 	case SOCK_STREAM:
708 	case SOCK_SEQPACKET:
709 		spin_lock_bh(&vsock_table_lock);
710 		retval = __vsock_bind_connectible(vsk, addr);
711 		spin_unlock_bh(&vsock_table_lock);
712 		break;
713 
714 	case SOCK_DGRAM:
715 		retval = __vsock_bind_dgram(vsk, addr);
716 		break;
717 
718 	default:
719 		retval = -EINVAL;
720 		break;
721 	}
722 
723 	return retval;
724 }
725 
726 static void vsock_connect_timeout(struct work_struct *work);
727 
728 static struct sock *__vsock_create(struct net *net,
729 				   struct socket *sock,
730 				   struct sock *parent,
731 				   gfp_t priority,
732 				   unsigned short type,
733 				   int kern)
734 {
735 	struct sock *sk;
736 	struct vsock_sock *psk;
737 	struct vsock_sock *vsk;
738 
739 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
740 	if (!sk)
741 		return NULL;
742 
743 	sock_init_data(sock, sk);
744 
745 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
746 	 * non-NULL. We make sure that our sockets always have a type by
747 	 * setting it here if needed.
748 	 */
749 	if (!sock)
750 		sk->sk_type = type;
751 
752 	vsk = vsock_sk(sk);
753 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
755 
756 	sk->sk_destruct = vsock_sk_destruct;
757 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
758 	sock_reset_flag(sk, SOCK_DONE);
759 
760 	INIT_LIST_HEAD(&vsk->bound_table);
761 	INIT_LIST_HEAD(&vsk->connected_table);
762 	vsk->listener = NULL;
763 	INIT_LIST_HEAD(&vsk->pending_links);
764 	INIT_LIST_HEAD(&vsk->accept_queue);
765 	vsk->rejected = false;
766 	vsk->sent_request = false;
767 	vsk->ignore_connecting_rst = false;
768 	vsk->peer_shutdown = 0;
769 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
770 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
771 
772 	psk = parent ? vsock_sk(parent) : NULL;
773 	if (parent) {
774 		vsk->trusted = psk->trusted;
775 		vsk->owner = get_cred(psk->owner);
776 		vsk->connect_timeout = psk->connect_timeout;
777 		vsk->buffer_size = psk->buffer_size;
778 		vsk->buffer_min_size = psk->buffer_min_size;
779 		vsk->buffer_max_size = psk->buffer_max_size;
780 		security_sk_clone(parent, sk);
781 	} else {
782 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
783 		vsk->owner = get_current_cred();
784 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
785 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
786 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
787 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
788 	}
789 
790 	return sk;
791 }
792 
793 static bool sock_type_connectible(u16 type)
794 {
795 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
796 }
797 
798 static void __vsock_release(struct sock *sk, int level)
799 {
800 	if (sk) {
801 		struct sock *pending;
802 		struct vsock_sock *vsk;
803 
804 		vsk = vsock_sk(sk);
805 		pending = NULL;	/* Compiler warning. */
806 
807 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
808 		 * version to avoid the warning "possible recursive locking
809 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
810 		 * is the same as lock_sock(sk).
811 		 */
812 		lock_sock_nested(sk, level);
813 
814 		if (vsk->transport)
815 			vsk->transport->release(vsk);
816 		else if (sock_type_connectible(sk->sk_type))
817 			vsock_remove_sock(vsk);
818 
819 		sock_orphan(sk);
820 		sk->sk_shutdown = SHUTDOWN_MASK;
821 
822 		skb_queue_purge(&sk->sk_receive_queue);
823 
824 		/* Clean up any sockets that never were accepted. */
825 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
826 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
827 			sock_put(pending);
828 		}
829 
830 		release_sock(sk);
831 		sock_put(sk);
832 	}
833 }
834 
835 static void vsock_sk_destruct(struct sock *sk)
836 {
837 	struct vsock_sock *vsk = vsock_sk(sk);
838 
839 	vsock_deassign_transport(vsk);
840 
841 	/* When clearing these addresses, there's no need to set the family and
842 	 * possibly register the address family with the kernel.
843 	 */
844 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
845 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
846 
847 	put_cred(vsk->owner);
848 }
849 
850 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
851 {
852 	int err;
853 
854 	err = sock_queue_rcv_skb(sk, skb);
855 	if (err)
856 		kfree_skb(skb);
857 
858 	return err;
859 }
860 
861 struct sock *vsock_create_connected(struct sock *parent)
862 {
863 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
864 			      parent->sk_type, 0);
865 }
866 EXPORT_SYMBOL_GPL(vsock_create_connected);
867 
868 s64 vsock_stream_has_data(struct vsock_sock *vsk)
869 {
870 	return vsk->transport->stream_has_data(vsk);
871 }
872 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
873 
874 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
875 {
876 	struct sock *sk = sk_vsock(vsk);
877 
878 	if (sk->sk_type == SOCK_SEQPACKET)
879 		return vsk->transport->seqpacket_has_data(vsk);
880 	else
881 		return vsock_stream_has_data(vsk);
882 }
883 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
884 
885 s64 vsock_stream_has_space(struct vsock_sock *vsk)
886 {
887 	return vsk->transport->stream_has_space(vsk);
888 }
889 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
890 
891 void vsock_data_ready(struct sock *sk)
892 {
893 	struct vsock_sock *vsk = vsock_sk(sk);
894 
895 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
896 	    sock_flag(sk, SOCK_DONE))
897 		sk->sk_data_ready(sk);
898 }
899 EXPORT_SYMBOL_GPL(vsock_data_ready);
900 
901 static int vsock_release(struct socket *sock)
902 {
903 	__vsock_release(sock->sk, 0);
904 	sock->sk = NULL;
905 	sock->state = SS_FREE;
906 
907 	return 0;
908 }
909 
910 static int
911 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
912 {
913 	int err;
914 	struct sock *sk;
915 	struct sockaddr_vm *vm_addr;
916 
917 	sk = sock->sk;
918 
919 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
920 		return -EINVAL;
921 
922 	lock_sock(sk);
923 	err = __vsock_bind(sk, vm_addr);
924 	release_sock(sk);
925 
926 	return err;
927 }
928 
929 static int vsock_getname(struct socket *sock,
930 			 struct sockaddr *addr, int peer)
931 {
932 	int err;
933 	struct sock *sk;
934 	struct vsock_sock *vsk;
935 	struct sockaddr_vm *vm_addr;
936 
937 	sk = sock->sk;
938 	vsk = vsock_sk(sk);
939 	err = 0;
940 
941 	lock_sock(sk);
942 
943 	if (peer) {
944 		if (sock->state != SS_CONNECTED) {
945 			err = -ENOTCONN;
946 			goto out;
947 		}
948 		vm_addr = &vsk->remote_addr;
949 	} else {
950 		vm_addr = &vsk->local_addr;
951 	}
952 
953 	if (!vm_addr) {
954 		err = -EINVAL;
955 		goto out;
956 	}
957 
958 	/* sys_getsockname() and sys_getpeername() pass us a
959 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
960 	 * that macro is defined in socket.c instead of .h, so we hardcode its
961 	 * value here.
962 	 */
963 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
964 	memcpy(addr, vm_addr, sizeof(*vm_addr));
965 	err = sizeof(*vm_addr);
966 
967 out:
968 	release_sock(sk);
969 	return err;
970 }
971 
972 static int vsock_shutdown(struct socket *sock, int mode)
973 {
974 	int err;
975 	struct sock *sk;
976 
977 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
978 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
979 	 * here like the other address families do.  Note also that the
980 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
981 	 * which is what we want.
982 	 */
983 	mode++;
984 
985 	if ((mode & ~SHUTDOWN_MASK) || !mode)
986 		return -EINVAL;
987 
988 	/* If this is a connection oriented socket and it is not connected then
989 	 * bail out immediately.  If it is a DGRAM socket then we must first
990 	 * kick the socket so that it wakes up from any sleeping calls, for
991 	 * example recv(), and then afterwards return the error.
992 	 */
993 
994 	sk = sock->sk;
995 
996 	lock_sock(sk);
997 	if (sock->state == SS_UNCONNECTED) {
998 		err = -ENOTCONN;
999 		if (sock_type_connectible(sk->sk_type))
1000 			goto out;
1001 	} else {
1002 		sock->state = SS_DISCONNECTING;
1003 		err = 0;
1004 	}
1005 
1006 	/* Receive and send shutdowns are treated alike. */
1007 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1008 	if (mode) {
1009 		sk->sk_shutdown |= mode;
1010 		sk->sk_state_change(sk);
1011 
1012 		if (sock_type_connectible(sk->sk_type)) {
1013 			sock_reset_flag(sk, SOCK_DONE);
1014 			vsock_send_shutdown(sk, mode);
1015 		}
1016 	}
1017 
1018 out:
1019 	release_sock(sk);
1020 	return err;
1021 }
1022 
1023 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1024 			       poll_table *wait)
1025 {
1026 	struct sock *sk;
1027 	__poll_t mask;
1028 	struct vsock_sock *vsk;
1029 
1030 	sk = sock->sk;
1031 	vsk = vsock_sk(sk);
1032 
1033 	poll_wait(file, sk_sleep(sk), wait);
1034 	mask = 0;
1035 
1036 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1037 		/* Signify that there has been an error on this socket. */
1038 		mask |= EPOLLERR;
1039 
1040 	/* INET sockets treat local write shutdown and peer write shutdown as a
1041 	 * case of EPOLLHUP set.
1042 	 */
1043 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1044 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1045 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1046 		mask |= EPOLLHUP;
1047 	}
1048 
1049 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1050 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1051 		mask |= EPOLLRDHUP;
1052 	}
1053 
1054 	if (sock->type == SOCK_DGRAM) {
1055 		/* For datagram sockets we can read if there is something in
1056 		 * the queue and write as long as the socket isn't shutdown for
1057 		 * sending.
1058 		 */
1059 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1060 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1061 			mask |= EPOLLIN | EPOLLRDNORM;
1062 		}
1063 
1064 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1065 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1066 
1067 	} else if (sock_type_connectible(sk->sk_type)) {
1068 		const struct vsock_transport *transport;
1069 
1070 		lock_sock(sk);
1071 
1072 		transport = vsk->transport;
1073 
1074 		/* Listening sockets that have connections in their accept
1075 		 * queue can be read.
1076 		 */
1077 		if (sk->sk_state == TCP_LISTEN
1078 		    && !vsock_is_accept_queue_empty(sk))
1079 			mask |= EPOLLIN | EPOLLRDNORM;
1080 
1081 		/* If there is something in the queue then we can read. */
1082 		if (transport && transport->stream_is_active(vsk) &&
1083 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1084 			bool data_ready_now = false;
1085 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1086 			int ret = transport->notify_poll_in(
1087 					vsk, target, &data_ready_now);
1088 			if (ret < 0) {
1089 				mask |= EPOLLERR;
1090 			} else {
1091 				if (data_ready_now)
1092 					mask |= EPOLLIN | EPOLLRDNORM;
1093 
1094 			}
1095 		}
1096 
1097 		/* Sockets whose connections have been closed, reset, or
1098 		 * terminated should also be considered read, and we check the
1099 		 * shutdown flag for that.
1100 		 */
1101 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1102 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1103 			mask |= EPOLLIN | EPOLLRDNORM;
1104 		}
1105 
1106 		/* Connected sockets that can produce data can be written. */
1107 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1108 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1109 				bool space_avail_now = false;
1110 				int ret = transport->notify_poll_out(
1111 						vsk, 1, &space_avail_now);
1112 				if (ret < 0) {
1113 					mask |= EPOLLERR;
1114 				} else {
1115 					if (space_avail_now)
1116 						/* Remove EPOLLWRBAND since INET
1117 						 * sockets are not setting it.
1118 						 */
1119 						mask |= EPOLLOUT | EPOLLWRNORM;
1120 
1121 				}
1122 			}
1123 		}
1124 
1125 		/* Simulate INET socket poll behaviors, which sets
1126 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1127 		 * but local send is not shutdown.
1128 		 */
1129 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1130 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1131 				mask |= EPOLLOUT | EPOLLWRNORM;
1132 
1133 		}
1134 
1135 		release_sock(sk);
1136 	}
1137 
1138 	return mask;
1139 }
1140 
1141 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1142 {
1143 	struct vsock_sock *vsk = vsock_sk(sk);
1144 
1145 	return vsk->transport->read_skb(vsk, read_actor);
1146 }
1147 
1148 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1149 			       size_t len)
1150 {
1151 	int err;
1152 	struct sock *sk;
1153 	struct vsock_sock *vsk;
1154 	struct sockaddr_vm *remote_addr;
1155 	const struct vsock_transport *transport;
1156 
1157 	if (msg->msg_flags & MSG_OOB)
1158 		return -EOPNOTSUPP;
1159 
1160 	/* For now, MSG_DONTWAIT is always assumed... */
1161 	err = 0;
1162 	sk = sock->sk;
1163 	vsk = vsock_sk(sk);
1164 
1165 	lock_sock(sk);
1166 
1167 	transport = vsk->transport;
1168 
1169 	err = vsock_auto_bind(vsk);
1170 	if (err)
1171 		goto out;
1172 
1173 
1174 	/* If the provided message contains an address, use that.  Otherwise
1175 	 * fall back on the socket's remote handle (if it has been connected).
1176 	 */
1177 	if (msg->msg_name &&
1178 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1179 			    &remote_addr) == 0) {
1180 		/* Ensure this address is of the right type and is a valid
1181 		 * destination.
1182 		 */
1183 
1184 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1185 			remote_addr->svm_cid = transport->get_local_cid();
1186 
1187 		if (!vsock_addr_bound(remote_addr)) {
1188 			err = -EINVAL;
1189 			goto out;
1190 		}
1191 	} else if (sock->state == SS_CONNECTED) {
1192 		remote_addr = &vsk->remote_addr;
1193 
1194 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1195 			remote_addr->svm_cid = transport->get_local_cid();
1196 
1197 		/* XXX Should connect() or this function ensure remote_addr is
1198 		 * bound?
1199 		 */
1200 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1201 			err = -EINVAL;
1202 			goto out;
1203 		}
1204 	} else {
1205 		err = -EINVAL;
1206 		goto out;
1207 	}
1208 
1209 	if (!transport->dgram_allow(remote_addr->svm_cid,
1210 				    remote_addr->svm_port)) {
1211 		err = -EINVAL;
1212 		goto out;
1213 	}
1214 
1215 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1216 
1217 out:
1218 	release_sock(sk);
1219 	return err;
1220 }
1221 
1222 static int vsock_dgram_connect(struct socket *sock,
1223 			       struct sockaddr *addr, int addr_len, int flags)
1224 {
1225 	int err;
1226 	struct sock *sk;
1227 	struct vsock_sock *vsk;
1228 	struct sockaddr_vm *remote_addr;
1229 
1230 	sk = sock->sk;
1231 	vsk = vsock_sk(sk);
1232 
1233 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1234 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1235 		lock_sock(sk);
1236 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1237 				VMADDR_PORT_ANY);
1238 		sock->state = SS_UNCONNECTED;
1239 		release_sock(sk);
1240 		return 0;
1241 	} else if (err != 0)
1242 		return -EINVAL;
1243 
1244 	lock_sock(sk);
1245 
1246 	err = vsock_auto_bind(vsk);
1247 	if (err)
1248 		goto out;
1249 
1250 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1251 					 remote_addr->svm_port)) {
1252 		err = -EINVAL;
1253 		goto out;
1254 	}
1255 
1256 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1257 	sock->state = SS_CONNECTED;
1258 
1259 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1260 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1261 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1262 	 *
1263 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1264 	 * same approach can be see in other datagram socket types as well
1265 	 * (such as unix sockets).
1266 	 */
1267 	sk->sk_state = TCP_ESTABLISHED;
1268 
1269 out:
1270 	release_sock(sk);
1271 	return err;
1272 }
1273 
1274 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1275 			  size_t len, int flags)
1276 {
1277 	struct sock *sk = sock->sk;
1278 	struct vsock_sock *vsk = vsock_sk(sk);
1279 
1280 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1281 }
1282 
1283 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1284 			size_t len, int flags)
1285 {
1286 #ifdef CONFIG_BPF_SYSCALL
1287 	struct sock *sk = sock->sk;
1288 	const struct proto *prot;
1289 
1290 	prot = READ_ONCE(sk->sk_prot);
1291 	if (prot != &vsock_proto)
1292 		return prot->recvmsg(sk, msg, len, flags, NULL);
1293 #endif
1294 
1295 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1296 }
1297 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1298 
1299 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1300 			  int __user *arg)
1301 {
1302 	struct sock *sk = sock->sk;
1303 	struct vsock_sock *vsk;
1304 	int ret;
1305 
1306 	vsk = vsock_sk(sk);
1307 
1308 	switch (cmd) {
1309 	case SIOCOUTQ: {
1310 		ssize_t n_bytes;
1311 
1312 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1313 			ret = -EOPNOTSUPP;
1314 			break;
1315 		}
1316 
1317 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1318 			ret = -EINVAL;
1319 			break;
1320 		}
1321 
1322 		n_bytes = vsk->transport->unsent_bytes(vsk);
1323 		if (n_bytes < 0) {
1324 			ret = n_bytes;
1325 			break;
1326 		}
1327 
1328 		ret = put_user(n_bytes, arg);
1329 		break;
1330 	}
1331 	default:
1332 		ret = -ENOIOCTLCMD;
1333 	}
1334 
1335 	return ret;
1336 }
1337 
1338 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1339 		       unsigned long arg)
1340 {
1341 	int ret;
1342 
1343 	lock_sock(sock->sk);
1344 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1345 	release_sock(sock->sk);
1346 
1347 	return ret;
1348 }
1349 
1350 static const struct proto_ops vsock_dgram_ops = {
1351 	.family = PF_VSOCK,
1352 	.owner = THIS_MODULE,
1353 	.release = vsock_release,
1354 	.bind = vsock_bind,
1355 	.connect = vsock_dgram_connect,
1356 	.socketpair = sock_no_socketpair,
1357 	.accept = sock_no_accept,
1358 	.getname = vsock_getname,
1359 	.poll = vsock_poll,
1360 	.ioctl = vsock_ioctl,
1361 	.listen = sock_no_listen,
1362 	.shutdown = vsock_shutdown,
1363 	.sendmsg = vsock_dgram_sendmsg,
1364 	.recvmsg = vsock_dgram_recvmsg,
1365 	.mmap = sock_no_mmap,
1366 	.read_skb = vsock_read_skb,
1367 };
1368 
1369 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1370 {
1371 	const struct vsock_transport *transport = vsk->transport;
1372 
1373 	if (!transport || !transport->cancel_pkt)
1374 		return -EOPNOTSUPP;
1375 
1376 	return transport->cancel_pkt(vsk);
1377 }
1378 
1379 static void vsock_connect_timeout(struct work_struct *work)
1380 {
1381 	struct sock *sk;
1382 	struct vsock_sock *vsk;
1383 
1384 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1385 	sk = sk_vsock(vsk);
1386 
1387 	lock_sock(sk);
1388 	if (sk->sk_state == TCP_SYN_SENT &&
1389 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1390 		sk->sk_state = TCP_CLOSE;
1391 		sk->sk_socket->state = SS_UNCONNECTED;
1392 		sk->sk_err = ETIMEDOUT;
1393 		sk_error_report(sk);
1394 		vsock_transport_cancel_pkt(vsk);
1395 	}
1396 	release_sock(sk);
1397 
1398 	sock_put(sk);
1399 }
1400 
1401 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1402 			 int addr_len, int flags)
1403 {
1404 	int err;
1405 	struct sock *sk;
1406 	struct vsock_sock *vsk;
1407 	const struct vsock_transport *transport;
1408 	struct sockaddr_vm *remote_addr;
1409 	long timeout;
1410 	DEFINE_WAIT(wait);
1411 
1412 	err = 0;
1413 	sk = sock->sk;
1414 	vsk = vsock_sk(sk);
1415 
1416 	lock_sock(sk);
1417 
1418 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1419 	switch (sock->state) {
1420 	case SS_CONNECTED:
1421 		err = -EISCONN;
1422 		goto out;
1423 	case SS_DISCONNECTING:
1424 		err = -EINVAL;
1425 		goto out;
1426 	case SS_CONNECTING:
1427 		/* This continues on so we can move sock into the SS_CONNECTED
1428 		 * state once the connection has completed (at which point err
1429 		 * will be set to zero also).  Otherwise, we will either wait
1430 		 * for the connection or return -EALREADY should this be a
1431 		 * non-blocking call.
1432 		 */
1433 		err = -EALREADY;
1434 		if (flags & O_NONBLOCK)
1435 			goto out;
1436 		break;
1437 	default:
1438 		if ((sk->sk_state == TCP_LISTEN) ||
1439 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1440 			err = -EINVAL;
1441 			goto out;
1442 		}
1443 
1444 		/* Set the remote address that we are connecting to. */
1445 		memcpy(&vsk->remote_addr, remote_addr,
1446 		       sizeof(vsk->remote_addr));
1447 
1448 		err = vsock_assign_transport(vsk, NULL);
1449 		if (err)
1450 			goto out;
1451 
1452 		transport = vsk->transport;
1453 
1454 		/* The hypervisor and well-known contexts do not have socket
1455 		 * endpoints.
1456 		 */
1457 		if (!transport ||
1458 		    !transport->stream_allow(remote_addr->svm_cid,
1459 					     remote_addr->svm_port)) {
1460 			err = -ENETUNREACH;
1461 			goto out;
1462 		}
1463 
1464 		if (vsock_msgzerocopy_allow(transport)) {
1465 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1466 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1467 			/* If this option was set before 'connect()',
1468 			 * when transport was unknown, check that this
1469 			 * feature is supported here.
1470 			 */
1471 			err = -EOPNOTSUPP;
1472 			goto out;
1473 		}
1474 
1475 		err = vsock_auto_bind(vsk);
1476 		if (err)
1477 			goto out;
1478 
1479 		sk->sk_state = TCP_SYN_SENT;
1480 
1481 		err = transport->connect(vsk);
1482 		if (err < 0)
1483 			goto out;
1484 
1485 		/* Mark sock as connecting and set the error code to in
1486 		 * progress in case this is a non-blocking connect.
1487 		 */
1488 		sock->state = SS_CONNECTING;
1489 		err = -EINPROGRESS;
1490 	}
1491 
1492 	/* The receive path will handle all communication until we are able to
1493 	 * enter the connected state.  Here we wait for the connection to be
1494 	 * completed or a notification of an error.
1495 	 */
1496 	timeout = vsk->connect_timeout;
1497 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1498 
1499 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1500 		if (flags & O_NONBLOCK) {
1501 			/* If we're not going to block, we schedule a timeout
1502 			 * function to generate a timeout on the connection
1503 			 * attempt, in case the peer doesn't respond in a
1504 			 * timely manner. We hold on to the socket until the
1505 			 * timeout fires.
1506 			 */
1507 			sock_hold(sk);
1508 
1509 			/* If the timeout function is already scheduled,
1510 			 * reschedule it, then ungrab the socket refcount to
1511 			 * keep it balanced.
1512 			 */
1513 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1514 					     timeout))
1515 				sock_put(sk);
1516 
1517 			/* Skip ahead to preserve error code set above. */
1518 			goto out_wait;
1519 		}
1520 
1521 		release_sock(sk);
1522 		timeout = schedule_timeout(timeout);
1523 		lock_sock(sk);
1524 
1525 		if (signal_pending(current)) {
1526 			err = sock_intr_errno(timeout);
1527 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1528 			sock->state = SS_UNCONNECTED;
1529 			vsock_transport_cancel_pkt(vsk);
1530 			vsock_remove_connected(vsk);
1531 			goto out_wait;
1532 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1533 			err = -ETIMEDOUT;
1534 			sk->sk_state = TCP_CLOSE;
1535 			sock->state = SS_UNCONNECTED;
1536 			vsock_transport_cancel_pkt(vsk);
1537 			goto out_wait;
1538 		}
1539 
1540 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1541 	}
1542 
1543 	if (sk->sk_err) {
1544 		err = -sk->sk_err;
1545 		sk->sk_state = TCP_CLOSE;
1546 		sock->state = SS_UNCONNECTED;
1547 	} else {
1548 		err = 0;
1549 	}
1550 
1551 out_wait:
1552 	finish_wait(sk_sleep(sk), &wait);
1553 out:
1554 	release_sock(sk);
1555 	return err;
1556 }
1557 
1558 static int vsock_accept(struct socket *sock, struct socket *newsock,
1559 			struct proto_accept_arg *arg)
1560 {
1561 	struct sock *listener;
1562 	int err;
1563 	struct sock *connected;
1564 	struct vsock_sock *vconnected;
1565 	long timeout;
1566 	DEFINE_WAIT(wait);
1567 
1568 	err = 0;
1569 	listener = sock->sk;
1570 
1571 	lock_sock(listener);
1572 
1573 	if (!sock_type_connectible(sock->type)) {
1574 		err = -EOPNOTSUPP;
1575 		goto out;
1576 	}
1577 
1578 	if (listener->sk_state != TCP_LISTEN) {
1579 		err = -EINVAL;
1580 		goto out;
1581 	}
1582 
1583 	/* Wait for children sockets to appear; these are the new sockets
1584 	 * created upon connection establishment.
1585 	 */
1586 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1587 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1588 
1589 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1590 	       listener->sk_err == 0) {
1591 		release_sock(listener);
1592 		timeout = schedule_timeout(timeout);
1593 		finish_wait(sk_sleep(listener), &wait);
1594 		lock_sock(listener);
1595 
1596 		if (signal_pending(current)) {
1597 			err = sock_intr_errno(timeout);
1598 			goto out;
1599 		} else if (timeout == 0) {
1600 			err = -EAGAIN;
1601 			goto out;
1602 		}
1603 
1604 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1605 	}
1606 	finish_wait(sk_sleep(listener), &wait);
1607 
1608 	if (listener->sk_err)
1609 		err = -listener->sk_err;
1610 
1611 	if (connected) {
1612 		sk_acceptq_removed(listener);
1613 
1614 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1615 		vconnected = vsock_sk(connected);
1616 
1617 		/* If the listener socket has received an error, then we should
1618 		 * reject this socket and return.  Note that we simply mark the
1619 		 * socket rejected, drop our reference, and let the cleanup
1620 		 * function handle the cleanup; the fact that we found it in
1621 		 * the listener's accept queue guarantees that the cleanup
1622 		 * function hasn't run yet.
1623 		 */
1624 		if (err) {
1625 			vconnected->rejected = true;
1626 		} else {
1627 			newsock->state = SS_CONNECTED;
1628 			sock_graft(connected, newsock);
1629 			if (vsock_msgzerocopy_allow(vconnected->transport))
1630 				set_bit(SOCK_SUPPORT_ZC,
1631 					&connected->sk_socket->flags);
1632 		}
1633 
1634 		release_sock(connected);
1635 		sock_put(connected);
1636 	}
1637 
1638 out:
1639 	release_sock(listener);
1640 	return err;
1641 }
1642 
1643 static int vsock_listen(struct socket *sock, int backlog)
1644 {
1645 	int err;
1646 	struct sock *sk;
1647 	struct vsock_sock *vsk;
1648 
1649 	sk = sock->sk;
1650 
1651 	lock_sock(sk);
1652 
1653 	if (!sock_type_connectible(sk->sk_type)) {
1654 		err = -EOPNOTSUPP;
1655 		goto out;
1656 	}
1657 
1658 	if (sock->state != SS_UNCONNECTED) {
1659 		err = -EINVAL;
1660 		goto out;
1661 	}
1662 
1663 	vsk = vsock_sk(sk);
1664 
1665 	if (!vsock_addr_bound(&vsk->local_addr)) {
1666 		err = -EINVAL;
1667 		goto out;
1668 	}
1669 
1670 	sk->sk_max_ack_backlog = backlog;
1671 	sk->sk_state = TCP_LISTEN;
1672 
1673 	err = 0;
1674 
1675 out:
1676 	release_sock(sk);
1677 	return err;
1678 }
1679 
1680 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1681 				     const struct vsock_transport *transport,
1682 				     u64 val)
1683 {
1684 	if (val > vsk->buffer_max_size)
1685 		val = vsk->buffer_max_size;
1686 
1687 	if (val < vsk->buffer_min_size)
1688 		val = vsk->buffer_min_size;
1689 
1690 	if (val != vsk->buffer_size &&
1691 	    transport && transport->notify_buffer_size)
1692 		transport->notify_buffer_size(vsk, &val);
1693 
1694 	vsk->buffer_size = val;
1695 }
1696 
1697 static int vsock_connectible_setsockopt(struct socket *sock,
1698 					int level,
1699 					int optname,
1700 					sockptr_t optval,
1701 					unsigned int optlen)
1702 {
1703 	int err;
1704 	struct sock *sk;
1705 	struct vsock_sock *vsk;
1706 	const struct vsock_transport *transport;
1707 	u64 val;
1708 
1709 	if (level != AF_VSOCK && level != SOL_SOCKET)
1710 		return -ENOPROTOOPT;
1711 
1712 #define COPY_IN(_v)                                       \
1713 	do {						  \
1714 		if (optlen < sizeof(_v)) {		  \
1715 			err = -EINVAL;			  \
1716 			goto exit;			  \
1717 		}					  \
1718 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1719 			err = -EFAULT;					\
1720 			goto exit;					\
1721 		}							\
1722 	} while (0)
1723 
1724 	err = 0;
1725 	sk = sock->sk;
1726 	vsk = vsock_sk(sk);
1727 
1728 	lock_sock(sk);
1729 
1730 	transport = vsk->transport;
1731 
1732 	if (level == SOL_SOCKET) {
1733 		int zerocopy;
1734 
1735 		if (optname != SO_ZEROCOPY) {
1736 			release_sock(sk);
1737 			return sock_setsockopt(sock, level, optname, optval, optlen);
1738 		}
1739 
1740 		/* Use 'int' type here, because variable to
1741 		 * set this option usually has this type.
1742 		 */
1743 		COPY_IN(zerocopy);
1744 
1745 		if (zerocopy < 0 || zerocopy > 1) {
1746 			err = -EINVAL;
1747 			goto exit;
1748 		}
1749 
1750 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1751 			err = -EOPNOTSUPP;
1752 			goto exit;
1753 		}
1754 
1755 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1756 		goto exit;
1757 	}
1758 
1759 	switch (optname) {
1760 	case SO_VM_SOCKETS_BUFFER_SIZE:
1761 		COPY_IN(val);
1762 		vsock_update_buffer_size(vsk, transport, val);
1763 		break;
1764 
1765 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1766 		COPY_IN(val);
1767 		vsk->buffer_max_size = val;
1768 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1769 		break;
1770 
1771 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1772 		COPY_IN(val);
1773 		vsk->buffer_min_size = val;
1774 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1775 		break;
1776 
1777 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1778 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1779 		struct __kernel_sock_timeval tv;
1780 
1781 		err = sock_copy_user_timeval(&tv, optval, optlen,
1782 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1783 		if (err)
1784 			break;
1785 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1786 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1787 			vsk->connect_timeout = tv.tv_sec * HZ +
1788 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1789 			if (vsk->connect_timeout == 0)
1790 				vsk->connect_timeout =
1791 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1792 
1793 		} else {
1794 			err = -ERANGE;
1795 		}
1796 		break;
1797 	}
1798 
1799 	default:
1800 		err = -ENOPROTOOPT;
1801 		break;
1802 	}
1803 
1804 #undef COPY_IN
1805 
1806 exit:
1807 	release_sock(sk);
1808 	return err;
1809 }
1810 
1811 static int vsock_connectible_getsockopt(struct socket *sock,
1812 					int level, int optname,
1813 					char __user *optval,
1814 					int __user *optlen)
1815 {
1816 	struct sock *sk = sock->sk;
1817 	struct vsock_sock *vsk = vsock_sk(sk);
1818 
1819 	union {
1820 		u64 val64;
1821 		struct old_timeval32 tm32;
1822 		struct __kernel_old_timeval tm;
1823 		struct  __kernel_sock_timeval stm;
1824 	} v;
1825 
1826 	int lv = sizeof(v.val64);
1827 	int len;
1828 
1829 	if (level != AF_VSOCK)
1830 		return -ENOPROTOOPT;
1831 
1832 	if (get_user(len, optlen))
1833 		return -EFAULT;
1834 
1835 	memset(&v, 0, sizeof(v));
1836 
1837 	switch (optname) {
1838 	case SO_VM_SOCKETS_BUFFER_SIZE:
1839 		v.val64 = vsk->buffer_size;
1840 		break;
1841 
1842 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1843 		v.val64 = vsk->buffer_max_size;
1844 		break;
1845 
1846 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1847 		v.val64 = vsk->buffer_min_size;
1848 		break;
1849 
1850 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1851 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1852 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1853 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1854 		break;
1855 
1856 	default:
1857 		return -ENOPROTOOPT;
1858 	}
1859 
1860 	if (len < lv)
1861 		return -EINVAL;
1862 	if (len > lv)
1863 		len = lv;
1864 	if (copy_to_user(optval, &v, len))
1865 		return -EFAULT;
1866 
1867 	if (put_user(len, optlen))
1868 		return -EFAULT;
1869 
1870 	return 0;
1871 }
1872 
1873 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1874 				     size_t len)
1875 {
1876 	struct sock *sk;
1877 	struct vsock_sock *vsk;
1878 	const struct vsock_transport *transport;
1879 	ssize_t total_written;
1880 	long timeout;
1881 	int err;
1882 	struct vsock_transport_send_notify_data send_data;
1883 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1884 
1885 	sk = sock->sk;
1886 	vsk = vsock_sk(sk);
1887 	total_written = 0;
1888 	err = 0;
1889 
1890 	if (msg->msg_flags & MSG_OOB)
1891 		return -EOPNOTSUPP;
1892 
1893 	lock_sock(sk);
1894 
1895 	transport = vsk->transport;
1896 
1897 	/* Callers should not provide a destination with connection oriented
1898 	 * sockets.
1899 	 */
1900 	if (msg->msg_namelen) {
1901 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1902 		goto out;
1903 	}
1904 
1905 	/* Send data only if both sides are not shutdown in the direction. */
1906 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1907 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1908 		err = -EPIPE;
1909 		goto out;
1910 	}
1911 
1912 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1913 	    !vsock_addr_bound(&vsk->local_addr)) {
1914 		err = -ENOTCONN;
1915 		goto out;
1916 	}
1917 
1918 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1919 		err = -EDESTADDRREQ;
1920 		goto out;
1921 	}
1922 
1923 	if (msg->msg_flags & MSG_ZEROCOPY &&
1924 	    !vsock_msgzerocopy_allow(transport)) {
1925 		err = -EOPNOTSUPP;
1926 		goto out;
1927 	}
1928 
1929 	/* Wait for room in the produce queue to enqueue our user's data. */
1930 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1931 
1932 	err = transport->notify_send_init(vsk, &send_data);
1933 	if (err < 0)
1934 		goto out;
1935 
1936 	while (total_written < len) {
1937 		ssize_t written;
1938 
1939 		add_wait_queue(sk_sleep(sk), &wait);
1940 		while (vsock_stream_has_space(vsk) == 0 &&
1941 		       sk->sk_err == 0 &&
1942 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1943 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1944 
1945 			/* Don't wait for non-blocking sockets. */
1946 			if (timeout == 0) {
1947 				err = -EAGAIN;
1948 				remove_wait_queue(sk_sleep(sk), &wait);
1949 				goto out_err;
1950 			}
1951 
1952 			err = transport->notify_send_pre_block(vsk, &send_data);
1953 			if (err < 0) {
1954 				remove_wait_queue(sk_sleep(sk), &wait);
1955 				goto out_err;
1956 			}
1957 
1958 			release_sock(sk);
1959 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1960 			lock_sock(sk);
1961 			if (signal_pending(current)) {
1962 				err = sock_intr_errno(timeout);
1963 				remove_wait_queue(sk_sleep(sk), &wait);
1964 				goto out_err;
1965 			} else if (timeout == 0) {
1966 				err = -EAGAIN;
1967 				remove_wait_queue(sk_sleep(sk), &wait);
1968 				goto out_err;
1969 			}
1970 		}
1971 		remove_wait_queue(sk_sleep(sk), &wait);
1972 
1973 		/* These checks occur both as part of and after the loop
1974 		 * conditional since we need to check before and after
1975 		 * sleeping.
1976 		 */
1977 		if (sk->sk_err) {
1978 			err = -sk->sk_err;
1979 			goto out_err;
1980 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1981 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1982 			err = -EPIPE;
1983 			goto out_err;
1984 		}
1985 
1986 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1987 		if (err < 0)
1988 			goto out_err;
1989 
1990 		/* Note that enqueue will only write as many bytes as are free
1991 		 * in the produce queue, so we don't need to ensure len is
1992 		 * smaller than the queue size.  It is the caller's
1993 		 * responsibility to check how many bytes we were able to send.
1994 		 */
1995 
1996 		if (sk->sk_type == SOCK_SEQPACKET) {
1997 			written = transport->seqpacket_enqueue(vsk,
1998 						msg, len - total_written);
1999 		} else {
2000 			written = transport->stream_enqueue(vsk,
2001 					msg, len - total_written);
2002 		}
2003 
2004 		if (written < 0) {
2005 			err = written;
2006 			goto out_err;
2007 		}
2008 
2009 		total_written += written;
2010 
2011 		err = transport->notify_send_post_enqueue(
2012 				vsk, written, &send_data);
2013 		if (err < 0)
2014 			goto out_err;
2015 
2016 	}
2017 
2018 out_err:
2019 	if (total_written > 0) {
2020 		/* Return number of written bytes only if:
2021 		 * 1) SOCK_STREAM socket.
2022 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2023 		 */
2024 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2025 			err = total_written;
2026 	}
2027 out:
2028 	if (sk->sk_type == SOCK_STREAM)
2029 		err = sk_stream_error(sk, msg->msg_flags, err);
2030 
2031 	release_sock(sk);
2032 	return err;
2033 }
2034 
2035 static int vsock_connectible_wait_data(struct sock *sk,
2036 				       struct wait_queue_entry *wait,
2037 				       long timeout,
2038 				       struct vsock_transport_recv_notify_data *recv_data,
2039 				       size_t target)
2040 {
2041 	const struct vsock_transport *transport;
2042 	struct vsock_sock *vsk;
2043 	s64 data;
2044 	int err;
2045 
2046 	vsk = vsock_sk(sk);
2047 	err = 0;
2048 	transport = vsk->transport;
2049 
2050 	while (1) {
2051 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2052 		data = vsock_connectible_has_data(vsk);
2053 		if (data != 0)
2054 			break;
2055 
2056 		if (sk->sk_err != 0 ||
2057 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2058 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2059 			break;
2060 		}
2061 
2062 		/* Don't wait for non-blocking sockets. */
2063 		if (timeout == 0) {
2064 			err = -EAGAIN;
2065 			break;
2066 		}
2067 
2068 		if (recv_data) {
2069 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2070 			if (err < 0)
2071 				break;
2072 		}
2073 
2074 		release_sock(sk);
2075 		timeout = schedule_timeout(timeout);
2076 		lock_sock(sk);
2077 
2078 		if (signal_pending(current)) {
2079 			err = sock_intr_errno(timeout);
2080 			break;
2081 		} else if (timeout == 0) {
2082 			err = -EAGAIN;
2083 			break;
2084 		}
2085 	}
2086 
2087 	finish_wait(sk_sleep(sk), wait);
2088 
2089 	if (err)
2090 		return err;
2091 
2092 	/* Internal transport error when checking for available
2093 	 * data. XXX This should be changed to a connection
2094 	 * reset in a later change.
2095 	 */
2096 	if (data < 0)
2097 		return -ENOMEM;
2098 
2099 	return data;
2100 }
2101 
2102 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2103 				  size_t len, int flags)
2104 {
2105 	struct vsock_transport_recv_notify_data recv_data;
2106 	const struct vsock_transport *transport;
2107 	struct vsock_sock *vsk;
2108 	ssize_t copied;
2109 	size_t target;
2110 	long timeout;
2111 	int err;
2112 
2113 	DEFINE_WAIT(wait);
2114 
2115 	vsk = vsock_sk(sk);
2116 	transport = vsk->transport;
2117 
2118 	/* We must not copy less than target bytes into the user's buffer
2119 	 * before returning successfully, so we wait for the consume queue to
2120 	 * have that much data to consume before dequeueing.  Note that this
2121 	 * makes it impossible to handle cases where target is greater than the
2122 	 * queue size.
2123 	 */
2124 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2125 	if (target >= transport->stream_rcvhiwat(vsk)) {
2126 		err = -ENOMEM;
2127 		goto out;
2128 	}
2129 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2130 	copied = 0;
2131 
2132 	err = transport->notify_recv_init(vsk, target, &recv_data);
2133 	if (err < 0)
2134 		goto out;
2135 
2136 
2137 	while (1) {
2138 		ssize_t read;
2139 
2140 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2141 						  &recv_data, target);
2142 		if (err <= 0)
2143 			break;
2144 
2145 		err = transport->notify_recv_pre_dequeue(vsk, target,
2146 							 &recv_data);
2147 		if (err < 0)
2148 			break;
2149 
2150 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2151 		if (read < 0) {
2152 			err = read;
2153 			break;
2154 		}
2155 
2156 		copied += read;
2157 
2158 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2159 						!(flags & MSG_PEEK), &recv_data);
2160 		if (err < 0)
2161 			goto out;
2162 
2163 		if (read >= target || flags & MSG_PEEK)
2164 			break;
2165 
2166 		target -= read;
2167 	}
2168 
2169 	if (sk->sk_err)
2170 		err = -sk->sk_err;
2171 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2172 		err = 0;
2173 
2174 	if (copied > 0)
2175 		err = copied;
2176 
2177 out:
2178 	return err;
2179 }
2180 
2181 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2182 				     size_t len, int flags)
2183 {
2184 	const struct vsock_transport *transport;
2185 	struct vsock_sock *vsk;
2186 	ssize_t msg_len;
2187 	long timeout;
2188 	int err = 0;
2189 	DEFINE_WAIT(wait);
2190 
2191 	vsk = vsock_sk(sk);
2192 	transport = vsk->transport;
2193 
2194 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2195 
2196 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2197 	if (err <= 0)
2198 		goto out;
2199 
2200 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2201 
2202 	if (msg_len < 0) {
2203 		err = msg_len;
2204 		goto out;
2205 	}
2206 
2207 	if (sk->sk_err) {
2208 		err = -sk->sk_err;
2209 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2210 		err = 0;
2211 	} else {
2212 		/* User sets MSG_TRUNC, so return real length of
2213 		 * packet.
2214 		 */
2215 		if (flags & MSG_TRUNC)
2216 			err = msg_len;
2217 		else
2218 			err = len - msg_data_left(msg);
2219 
2220 		/* Always set MSG_TRUNC if real length of packet is
2221 		 * bigger than user's buffer.
2222 		 */
2223 		if (msg_len > len)
2224 			msg->msg_flags |= MSG_TRUNC;
2225 	}
2226 
2227 out:
2228 	return err;
2229 }
2230 
2231 int
2232 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2233 			    int flags)
2234 {
2235 	struct sock *sk;
2236 	struct vsock_sock *vsk;
2237 	const struct vsock_transport *transport;
2238 	int err;
2239 
2240 	sk = sock->sk;
2241 
2242 	if (unlikely(flags & MSG_ERRQUEUE))
2243 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2244 
2245 	vsk = vsock_sk(sk);
2246 	err = 0;
2247 
2248 	lock_sock(sk);
2249 
2250 	transport = vsk->transport;
2251 
2252 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2253 		/* Recvmsg is supposed to return 0 if a peer performs an
2254 		 * orderly shutdown. Differentiate between that case and when a
2255 		 * peer has not connected or a local shutdown occurred with the
2256 		 * SOCK_DONE flag.
2257 		 */
2258 		if (sock_flag(sk, SOCK_DONE))
2259 			err = 0;
2260 		else
2261 			err = -ENOTCONN;
2262 
2263 		goto out;
2264 	}
2265 
2266 	if (flags & MSG_OOB) {
2267 		err = -EOPNOTSUPP;
2268 		goto out;
2269 	}
2270 
2271 	/* We don't check peer_shutdown flag here since peer may actually shut
2272 	 * down, but there can be data in the queue that a local socket can
2273 	 * receive.
2274 	 */
2275 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2276 		err = 0;
2277 		goto out;
2278 	}
2279 
2280 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2281 	 * is not an error.  We may as well bail out now.
2282 	 */
2283 	if (!len) {
2284 		err = 0;
2285 		goto out;
2286 	}
2287 
2288 	if (sk->sk_type == SOCK_STREAM)
2289 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2290 	else
2291 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2292 
2293 out:
2294 	release_sock(sk);
2295 	return err;
2296 }
2297 
2298 int
2299 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2300 			  int flags)
2301 {
2302 #ifdef CONFIG_BPF_SYSCALL
2303 	struct sock *sk = sock->sk;
2304 	const struct proto *prot;
2305 
2306 	prot = READ_ONCE(sk->sk_prot);
2307 	if (prot != &vsock_proto)
2308 		return prot->recvmsg(sk, msg, len, flags, NULL);
2309 #endif
2310 
2311 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2312 }
2313 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2314 
2315 static int vsock_set_rcvlowat(struct sock *sk, int val)
2316 {
2317 	const struct vsock_transport *transport;
2318 	struct vsock_sock *vsk;
2319 
2320 	vsk = vsock_sk(sk);
2321 
2322 	if (val > vsk->buffer_size)
2323 		return -EINVAL;
2324 
2325 	transport = vsk->transport;
2326 
2327 	if (transport && transport->notify_set_rcvlowat) {
2328 		int err;
2329 
2330 		err = transport->notify_set_rcvlowat(vsk, val);
2331 		if (err)
2332 			return err;
2333 	}
2334 
2335 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2336 	return 0;
2337 }
2338 
2339 static const struct proto_ops vsock_stream_ops = {
2340 	.family = PF_VSOCK,
2341 	.owner = THIS_MODULE,
2342 	.release = vsock_release,
2343 	.bind = vsock_bind,
2344 	.connect = vsock_connect,
2345 	.socketpair = sock_no_socketpair,
2346 	.accept = vsock_accept,
2347 	.getname = vsock_getname,
2348 	.poll = vsock_poll,
2349 	.ioctl = vsock_ioctl,
2350 	.listen = vsock_listen,
2351 	.shutdown = vsock_shutdown,
2352 	.setsockopt = vsock_connectible_setsockopt,
2353 	.getsockopt = vsock_connectible_getsockopt,
2354 	.sendmsg = vsock_connectible_sendmsg,
2355 	.recvmsg = vsock_connectible_recvmsg,
2356 	.mmap = sock_no_mmap,
2357 	.set_rcvlowat = vsock_set_rcvlowat,
2358 	.read_skb = vsock_read_skb,
2359 };
2360 
2361 static const struct proto_ops vsock_seqpacket_ops = {
2362 	.family = PF_VSOCK,
2363 	.owner = THIS_MODULE,
2364 	.release = vsock_release,
2365 	.bind = vsock_bind,
2366 	.connect = vsock_connect,
2367 	.socketpair = sock_no_socketpair,
2368 	.accept = vsock_accept,
2369 	.getname = vsock_getname,
2370 	.poll = vsock_poll,
2371 	.ioctl = vsock_ioctl,
2372 	.listen = vsock_listen,
2373 	.shutdown = vsock_shutdown,
2374 	.setsockopt = vsock_connectible_setsockopt,
2375 	.getsockopt = vsock_connectible_getsockopt,
2376 	.sendmsg = vsock_connectible_sendmsg,
2377 	.recvmsg = vsock_connectible_recvmsg,
2378 	.mmap = sock_no_mmap,
2379 	.read_skb = vsock_read_skb,
2380 };
2381 
2382 static int vsock_create(struct net *net, struct socket *sock,
2383 			int protocol, int kern)
2384 {
2385 	struct vsock_sock *vsk;
2386 	struct sock *sk;
2387 	int ret;
2388 
2389 	if (!sock)
2390 		return -EINVAL;
2391 
2392 	if (protocol && protocol != PF_VSOCK)
2393 		return -EPROTONOSUPPORT;
2394 
2395 	switch (sock->type) {
2396 	case SOCK_DGRAM:
2397 		sock->ops = &vsock_dgram_ops;
2398 		break;
2399 	case SOCK_STREAM:
2400 		sock->ops = &vsock_stream_ops;
2401 		break;
2402 	case SOCK_SEQPACKET:
2403 		sock->ops = &vsock_seqpacket_ops;
2404 		break;
2405 	default:
2406 		return -ESOCKTNOSUPPORT;
2407 	}
2408 
2409 	sock->state = SS_UNCONNECTED;
2410 
2411 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2412 	if (!sk)
2413 		return -ENOMEM;
2414 
2415 	vsk = vsock_sk(sk);
2416 
2417 	if (sock->type == SOCK_DGRAM) {
2418 		ret = vsock_assign_transport(vsk, NULL);
2419 		if (ret < 0) {
2420 			sock_put(sk);
2421 			return ret;
2422 		}
2423 	}
2424 
2425 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2426 	 * proto_ops, so there is no handler for custom logic.
2427 	 */
2428 	if (sock_type_connectible(sock->type))
2429 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2430 
2431 	vsock_insert_unbound(vsk);
2432 
2433 	return 0;
2434 }
2435 
2436 static const struct net_proto_family vsock_family_ops = {
2437 	.family = AF_VSOCK,
2438 	.create = vsock_create,
2439 	.owner = THIS_MODULE,
2440 };
2441 
2442 static long vsock_dev_do_ioctl(struct file *filp,
2443 			       unsigned int cmd, void __user *ptr)
2444 {
2445 	u32 __user *p = ptr;
2446 	u32 cid = VMADDR_CID_ANY;
2447 	int retval = 0;
2448 
2449 	switch (cmd) {
2450 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2451 		/* To be compatible with the VMCI behavior, we prioritize the
2452 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2453 		 */
2454 		if (transport_g2h)
2455 			cid = transport_g2h->get_local_cid();
2456 		else if (transport_h2g)
2457 			cid = transport_h2g->get_local_cid();
2458 
2459 		if (put_user(cid, p) != 0)
2460 			retval = -EFAULT;
2461 		break;
2462 
2463 	default:
2464 		retval = -ENOIOCTLCMD;
2465 	}
2466 
2467 	return retval;
2468 }
2469 
2470 static long vsock_dev_ioctl(struct file *filp,
2471 			    unsigned int cmd, unsigned long arg)
2472 {
2473 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2474 }
2475 
2476 #ifdef CONFIG_COMPAT
2477 static long vsock_dev_compat_ioctl(struct file *filp,
2478 				   unsigned int cmd, unsigned long arg)
2479 {
2480 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2481 }
2482 #endif
2483 
2484 static const struct file_operations vsock_device_ops = {
2485 	.owner		= THIS_MODULE,
2486 	.unlocked_ioctl	= vsock_dev_ioctl,
2487 #ifdef CONFIG_COMPAT
2488 	.compat_ioctl	= vsock_dev_compat_ioctl,
2489 #endif
2490 	.open		= nonseekable_open,
2491 };
2492 
2493 static struct miscdevice vsock_device = {
2494 	.name		= "vsock",
2495 	.fops		= &vsock_device_ops,
2496 };
2497 
2498 static int __init vsock_init(void)
2499 {
2500 	int err = 0;
2501 
2502 	vsock_init_tables();
2503 
2504 	vsock_proto.owner = THIS_MODULE;
2505 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2506 	err = misc_register(&vsock_device);
2507 	if (err) {
2508 		pr_err("Failed to register misc device\n");
2509 		goto err_reset_transport;
2510 	}
2511 
2512 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2513 	if (err) {
2514 		pr_err("Cannot register vsock protocol\n");
2515 		goto err_deregister_misc;
2516 	}
2517 
2518 	err = sock_register(&vsock_family_ops);
2519 	if (err) {
2520 		pr_err("could not register af_vsock (%d) address family: %d\n",
2521 		       AF_VSOCK, err);
2522 		goto err_unregister_proto;
2523 	}
2524 
2525 	vsock_bpf_build_proto();
2526 
2527 	return 0;
2528 
2529 err_unregister_proto:
2530 	proto_unregister(&vsock_proto);
2531 err_deregister_misc:
2532 	misc_deregister(&vsock_device);
2533 err_reset_transport:
2534 	return err;
2535 }
2536 
2537 static void __exit vsock_exit(void)
2538 {
2539 	misc_deregister(&vsock_device);
2540 	sock_unregister(AF_VSOCK);
2541 	proto_unregister(&vsock_proto);
2542 }
2543 
2544 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2545 {
2546 	return vsk->transport;
2547 }
2548 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2549 
2550 int vsock_core_register(const struct vsock_transport *t, int features)
2551 {
2552 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2553 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2554 
2555 	if (err)
2556 		return err;
2557 
2558 	t_h2g = transport_h2g;
2559 	t_g2h = transport_g2h;
2560 	t_dgram = transport_dgram;
2561 	t_local = transport_local;
2562 
2563 	if (features & VSOCK_TRANSPORT_F_H2G) {
2564 		if (t_h2g) {
2565 			err = -EBUSY;
2566 			goto err_busy;
2567 		}
2568 		t_h2g = t;
2569 	}
2570 
2571 	if (features & VSOCK_TRANSPORT_F_G2H) {
2572 		if (t_g2h) {
2573 			err = -EBUSY;
2574 			goto err_busy;
2575 		}
2576 		t_g2h = t;
2577 	}
2578 
2579 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2580 		if (t_dgram) {
2581 			err = -EBUSY;
2582 			goto err_busy;
2583 		}
2584 		t_dgram = t;
2585 	}
2586 
2587 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2588 		if (t_local) {
2589 			err = -EBUSY;
2590 			goto err_busy;
2591 		}
2592 		t_local = t;
2593 	}
2594 
2595 	transport_h2g = t_h2g;
2596 	transport_g2h = t_g2h;
2597 	transport_dgram = t_dgram;
2598 	transport_local = t_local;
2599 
2600 err_busy:
2601 	mutex_unlock(&vsock_register_mutex);
2602 	return err;
2603 }
2604 EXPORT_SYMBOL_GPL(vsock_core_register);
2605 
2606 void vsock_core_unregister(const struct vsock_transport *t)
2607 {
2608 	mutex_lock(&vsock_register_mutex);
2609 
2610 	if (transport_h2g == t)
2611 		transport_h2g = NULL;
2612 
2613 	if (transport_g2h == t)
2614 		transport_g2h = NULL;
2615 
2616 	if (transport_dgram == t)
2617 		transport_dgram = NULL;
2618 
2619 	if (transport_local == t)
2620 		transport_local = NULL;
2621 
2622 	mutex_unlock(&vsock_register_mutex);
2623 }
2624 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2625 
2626 module_init(vsock_init);
2627 module_exit(vsock_exit);
2628 
2629 MODULE_AUTHOR("VMware, Inc.");
2630 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2631 MODULE_VERSION("1.0.2.0-k");
2632 MODULE_LICENSE("GPL v2");
2633