1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the SS_LISTEN state. When a connection 40 * request is received (the second kind of socket mentioned above), we create a 41 * new socket and refer to it as a pending socket. These pending sockets are 42 * placed on the pending connection list of the listener socket. When future 43 * packets are received for the address the listener socket is bound to, we 44 * check if the source of the packet is from one that has an existing pending 45 * connection. If it does, we process the packet for the pending socket. When 46 * that socket reaches the connected state, it is removed from the listener 47 * socket's pending list and enqueued in the listener socket's accept queue. 48 * Callers of accept(2) will accept connected sockets from the listener socket's 49 * accept queue. If the socket cannot be accepted for some reason then it is 50 * marked rejected. Once the connection is accepted, it is owned by the user 51 * process and the responsibility for cleanup falls with that user process. 52 * 53 * - It is possible that these pending sockets will never reach the connected 54 * state; in fact, we may never receive another packet after the connection 55 * request. Because of this, we must schedule a cleanup function to run in the 56 * future, after some amount of time passes where a connection should have been 57 * established. This function ensures that the socket is off all lists so it 58 * cannot be retrieved, then drops all references to the socket so it is cleaned 59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 60 * function will also cleanup rejected sockets, those that reach the connected 61 * state but leave it before they have been accepted. 62 * 63 * - Sockets created by user action will be cleaned up when the user process 64 * calls close(2), causing our release implementation to be called. Our release 65 * implementation will perform some cleanup then drop the last reference so our 66 * sk_destruct implementation is invoked. Our sk_destruct implementation will 67 * perform additional cleanup that's common for both types of sockets. 68 * 69 * - A socket's reference count is what ensures that the structure won't be 70 * freed. Each entry in a list (such as the "global" bound and connected tables 71 * and the listener socket's pending list and connected queue) ensures a 72 * reference. When we defer work until process context and pass a socket as our 73 * argument, we must ensure the reference count is increased to ensure the 74 * socket isn't freed before the function is run; the deferred function will 75 * then drop the reference. 76 */ 77 78 #include <linux/types.h> 79 #include <linux/bitops.h> 80 #include <linux/cred.h> 81 #include <linux/init.h> 82 #include <linux/io.h> 83 #include <linux/kernel.h> 84 #include <linux/kmod.h> 85 #include <linux/list.h> 86 #include <linux/miscdevice.h> 87 #include <linux/module.h> 88 #include <linux/mutex.h> 89 #include <linux/net.h> 90 #include <linux/poll.h> 91 #include <linux/skbuff.h> 92 #include <linux/smp.h> 93 #include <linux/socket.h> 94 #include <linux/stddef.h> 95 #include <linux/unistd.h> 96 #include <linux/wait.h> 97 #include <linux/workqueue.h> 98 #include <net/sock.h> 99 100 #include "af_vsock.h" 101 102 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 103 static void vsock_sk_destruct(struct sock *sk); 104 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 105 106 /* Protocol family. */ 107 static struct proto vsock_proto = { 108 .name = "AF_VSOCK", 109 .owner = THIS_MODULE, 110 .obj_size = sizeof(struct vsock_sock), 111 }; 112 113 /* The default peer timeout indicates how long we will wait for a peer response 114 * to a control message. 115 */ 116 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 117 118 #define SS_LISTEN 255 119 120 static const struct vsock_transport *transport; 121 static DEFINE_MUTEX(vsock_register_mutex); 122 123 /**** EXPORTS ****/ 124 125 /* Get the ID of the local context. This is transport dependent. */ 126 127 int vm_sockets_get_local_cid(void) 128 { 129 return transport->get_local_cid(); 130 } 131 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 132 133 /**** UTILS ****/ 134 135 /* Each bound VSocket is stored in the bind hash table and each connected 136 * VSocket is stored in the connected hash table. 137 * 138 * Unbound sockets are all put on the same list attached to the end of the hash 139 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 140 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 141 * represents the list that addr hashes to). 142 * 143 * Specifically, we initialize the vsock_bind_table array to a size of 144 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 145 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 146 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 147 * mods with VSOCK_HASH_SIZE to ensure this. 148 */ 149 #define VSOCK_HASH_SIZE 251 150 #define MAX_PORT_RETRIES 24 151 152 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 153 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 154 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 155 156 /* XXX This can probably be implemented in a better way. */ 157 #define VSOCK_CONN_HASH(src, dst) \ 158 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 159 #define vsock_connected_sockets(src, dst) \ 160 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 161 #define vsock_connected_sockets_vsk(vsk) \ 162 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 163 164 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 165 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 166 static DEFINE_SPINLOCK(vsock_table_lock); 167 168 /* Autobind this socket to the local address if necessary. */ 169 static int vsock_auto_bind(struct vsock_sock *vsk) 170 { 171 struct sock *sk = sk_vsock(vsk); 172 struct sockaddr_vm local_addr; 173 174 if (vsock_addr_bound(&vsk->local_addr)) 175 return 0; 176 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 177 return __vsock_bind(sk, &local_addr); 178 } 179 180 static void vsock_init_tables(void) 181 { 182 int i; 183 184 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 185 INIT_LIST_HEAD(&vsock_bind_table[i]); 186 187 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 188 INIT_LIST_HEAD(&vsock_connected_table[i]); 189 } 190 191 static void __vsock_insert_bound(struct list_head *list, 192 struct vsock_sock *vsk) 193 { 194 sock_hold(&vsk->sk); 195 list_add(&vsk->bound_table, list); 196 } 197 198 static void __vsock_insert_connected(struct list_head *list, 199 struct vsock_sock *vsk) 200 { 201 sock_hold(&vsk->sk); 202 list_add(&vsk->connected_table, list); 203 } 204 205 static void __vsock_remove_bound(struct vsock_sock *vsk) 206 { 207 list_del_init(&vsk->bound_table); 208 sock_put(&vsk->sk); 209 } 210 211 static void __vsock_remove_connected(struct vsock_sock *vsk) 212 { 213 list_del_init(&vsk->connected_table); 214 sock_put(&vsk->sk); 215 } 216 217 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 218 { 219 struct vsock_sock *vsk; 220 221 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 222 if (addr->svm_port == vsk->local_addr.svm_port) 223 return sk_vsock(vsk); 224 225 return NULL; 226 } 227 228 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 229 struct sockaddr_vm *dst) 230 { 231 struct vsock_sock *vsk; 232 233 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 234 connected_table) { 235 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 236 dst->svm_port == vsk->local_addr.svm_port) { 237 return sk_vsock(vsk); 238 } 239 } 240 241 return NULL; 242 } 243 244 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 245 { 246 return !list_empty(&vsk->bound_table); 247 } 248 249 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 250 { 251 return !list_empty(&vsk->connected_table); 252 } 253 254 static void vsock_insert_unbound(struct vsock_sock *vsk) 255 { 256 spin_lock_bh(&vsock_table_lock); 257 __vsock_insert_bound(vsock_unbound_sockets, vsk); 258 spin_unlock_bh(&vsock_table_lock); 259 } 260 261 void vsock_insert_connected(struct vsock_sock *vsk) 262 { 263 struct list_head *list = vsock_connected_sockets( 264 &vsk->remote_addr, &vsk->local_addr); 265 266 spin_lock_bh(&vsock_table_lock); 267 __vsock_insert_connected(list, vsk); 268 spin_unlock_bh(&vsock_table_lock); 269 } 270 EXPORT_SYMBOL_GPL(vsock_insert_connected); 271 272 void vsock_remove_bound(struct vsock_sock *vsk) 273 { 274 spin_lock_bh(&vsock_table_lock); 275 __vsock_remove_bound(vsk); 276 spin_unlock_bh(&vsock_table_lock); 277 } 278 EXPORT_SYMBOL_GPL(vsock_remove_bound); 279 280 void vsock_remove_connected(struct vsock_sock *vsk) 281 { 282 spin_lock_bh(&vsock_table_lock); 283 __vsock_remove_connected(vsk); 284 spin_unlock_bh(&vsock_table_lock); 285 } 286 EXPORT_SYMBOL_GPL(vsock_remove_connected); 287 288 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 289 { 290 struct sock *sk; 291 292 spin_lock_bh(&vsock_table_lock); 293 sk = __vsock_find_bound_socket(addr); 294 if (sk) 295 sock_hold(sk); 296 297 spin_unlock_bh(&vsock_table_lock); 298 299 return sk; 300 } 301 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 302 303 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 304 struct sockaddr_vm *dst) 305 { 306 struct sock *sk; 307 308 spin_lock_bh(&vsock_table_lock); 309 sk = __vsock_find_connected_socket(src, dst); 310 if (sk) 311 sock_hold(sk); 312 313 spin_unlock_bh(&vsock_table_lock); 314 315 return sk; 316 } 317 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 318 319 static bool vsock_in_bound_table(struct vsock_sock *vsk) 320 { 321 bool ret; 322 323 spin_lock_bh(&vsock_table_lock); 324 ret = __vsock_in_bound_table(vsk); 325 spin_unlock_bh(&vsock_table_lock); 326 327 return ret; 328 } 329 330 static bool vsock_in_connected_table(struct vsock_sock *vsk) 331 { 332 bool ret; 333 334 spin_lock_bh(&vsock_table_lock); 335 ret = __vsock_in_connected_table(vsk); 336 spin_unlock_bh(&vsock_table_lock); 337 338 return ret; 339 } 340 341 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 342 { 343 int i; 344 345 spin_lock_bh(&vsock_table_lock); 346 347 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 348 struct vsock_sock *vsk; 349 list_for_each_entry(vsk, &vsock_connected_table[i], 350 connected_table); 351 fn(sk_vsock(vsk)); 352 } 353 354 spin_unlock_bh(&vsock_table_lock); 355 } 356 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 357 358 void vsock_add_pending(struct sock *listener, struct sock *pending) 359 { 360 struct vsock_sock *vlistener; 361 struct vsock_sock *vpending; 362 363 vlistener = vsock_sk(listener); 364 vpending = vsock_sk(pending); 365 366 sock_hold(pending); 367 sock_hold(listener); 368 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 369 } 370 EXPORT_SYMBOL_GPL(vsock_add_pending); 371 372 void vsock_remove_pending(struct sock *listener, struct sock *pending) 373 { 374 struct vsock_sock *vpending = vsock_sk(pending); 375 376 list_del_init(&vpending->pending_links); 377 sock_put(listener); 378 sock_put(pending); 379 } 380 EXPORT_SYMBOL_GPL(vsock_remove_pending); 381 382 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 383 { 384 struct vsock_sock *vlistener; 385 struct vsock_sock *vconnected; 386 387 vlistener = vsock_sk(listener); 388 vconnected = vsock_sk(connected); 389 390 sock_hold(connected); 391 sock_hold(listener); 392 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 393 } 394 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 395 396 static struct sock *vsock_dequeue_accept(struct sock *listener) 397 { 398 struct vsock_sock *vlistener; 399 struct vsock_sock *vconnected; 400 401 vlistener = vsock_sk(listener); 402 403 if (list_empty(&vlistener->accept_queue)) 404 return NULL; 405 406 vconnected = list_entry(vlistener->accept_queue.next, 407 struct vsock_sock, accept_queue); 408 409 list_del_init(&vconnected->accept_queue); 410 sock_put(listener); 411 /* The caller will need a reference on the connected socket so we let 412 * it call sock_put(). 413 */ 414 415 return sk_vsock(vconnected); 416 } 417 418 static bool vsock_is_accept_queue_empty(struct sock *sk) 419 { 420 struct vsock_sock *vsk = vsock_sk(sk); 421 return list_empty(&vsk->accept_queue); 422 } 423 424 static bool vsock_is_pending(struct sock *sk) 425 { 426 struct vsock_sock *vsk = vsock_sk(sk); 427 return !list_empty(&vsk->pending_links); 428 } 429 430 static int vsock_send_shutdown(struct sock *sk, int mode) 431 { 432 return transport->shutdown(vsock_sk(sk), mode); 433 } 434 435 void vsock_pending_work(struct work_struct *work) 436 { 437 struct sock *sk; 438 struct sock *listener; 439 struct vsock_sock *vsk; 440 bool cleanup; 441 442 vsk = container_of(work, struct vsock_sock, dwork.work); 443 sk = sk_vsock(vsk); 444 listener = vsk->listener; 445 cleanup = true; 446 447 lock_sock(listener); 448 lock_sock(sk); 449 450 if (vsock_is_pending(sk)) { 451 vsock_remove_pending(listener, sk); 452 } else if (!vsk->rejected) { 453 /* We are not on the pending list and accept() did not reject 454 * us, so we must have been accepted by our user process. We 455 * just need to drop our references to the sockets and be on 456 * our way. 457 */ 458 cleanup = false; 459 goto out; 460 } 461 462 listener->sk_ack_backlog--; 463 464 /* We need to remove ourself from the global connected sockets list so 465 * incoming packets can't find this socket, and to reduce the reference 466 * count. 467 */ 468 if (vsock_in_connected_table(vsk)) 469 vsock_remove_connected(vsk); 470 471 sk->sk_state = SS_FREE; 472 473 out: 474 release_sock(sk); 475 release_sock(listener); 476 if (cleanup) 477 sock_put(sk); 478 479 sock_put(sk); 480 sock_put(listener); 481 } 482 EXPORT_SYMBOL_GPL(vsock_pending_work); 483 484 /**** SOCKET OPERATIONS ****/ 485 486 static int __vsock_bind_stream(struct vsock_sock *vsk, 487 struct sockaddr_vm *addr) 488 { 489 static u32 port = LAST_RESERVED_PORT + 1; 490 struct sockaddr_vm new_addr; 491 492 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 493 494 if (addr->svm_port == VMADDR_PORT_ANY) { 495 bool found = false; 496 unsigned int i; 497 498 for (i = 0; i < MAX_PORT_RETRIES; i++) { 499 if (port <= LAST_RESERVED_PORT) 500 port = LAST_RESERVED_PORT + 1; 501 502 new_addr.svm_port = port++; 503 504 if (!__vsock_find_bound_socket(&new_addr)) { 505 found = true; 506 break; 507 } 508 } 509 510 if (!found) 511 return -EADDRNOTAVAIL; 512 } else { 513 /* If port is in reserved range, ensure caller 514 * has necessary privileges. 515 */ 516 if (addr->svm_port <= LAST_RESERVED_PORT && 517 !capable(CAP_NET_BIND_SERVICE)) { 518 return -EACCES; 519 } 520 521 if (__vsock_find_bound_socket(&new_addr)) 522 return -EADDRINUSE; 523 } 524 525 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 526 527 /* Remove stream sockets from the unbound list and add them to the hash 528 * table for easy lookup by its address. The unbound list is simply an 529 * extra entry at the end of the hash table, a trick used by AF_UNIX. 530 */ 531 __vsock_remove_bound(vsk); 532 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 533 534 return 0; 535 } 536 537 static int __vsock_bind_dgram(struct vsock_sock *vsk, 538 struct sockaddr_vm *addr) 539 { 540 return transport->dgram_bind(vsk, addr); 541 } 542 543 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 544 { 545 struct vsock_sock *vsk = vsock_sk(sk); 546 u32 cid; 547 int retval; 548 549 /* First ensure this socket isn't already bound. */ 550 if (vsock_addr_bound(&vsk->local_addr)) 551 return -EINVAL; 552 553 /* Now bind to the provided address or select appropriate values if 554 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 555 * like AF_INET prevents binding to a non-local IP address (in most 556 * cases), we only allow binding to the local CID. 557 */ 558 cid = transport->get_local_cid(); 559 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 560 return -EADDRNOTAVAIL; 561 562 switch (sk->sk_socket->type) { 563 case SOCK_STREAM: 564 spin_lock_bh(&vsock_table_lock); 565 retval = __vsock_bind_stream(vsk, addr); 566 spin_unlock_bh(&vsock_table_lock); 567 break; 568 569 case SOCK_DGRAM: 570 retval = __vsock_bind_dgram(vsk, addr); 571 break; 572 573 default: 574 retval = -EINVAL; 575 break; 576 } 577 578 return retval; 579 } 580 581 struct sock *__vsock_create(struct net *net, 582 struct socket *sock, 583 struct sock *parent, 584 gfp_t priority, 585 unsigned short type) 586 { 587 struct sock *sk; 588 struct vsock_sock *psk; 589 struct vsock_sock *vsk; 590 591 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto); 592 if (!sk) 593 return NULL; 594 595 sock_init_data(sock, sk); 596 597 /* sk->sk_type is normally set in sock_init_data, but only if sock is 598 * non-NULL. We make sure that our sockets always have a type by 599 * setting it here if needed. 600 */ 601 if (!sock) 602 sk->sk_type = type; 603 604 vsk = vsock_sk(sk); 605 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 606 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 607 608 sk->sk_destruct = vsock_sk_destruct; 609 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 610 sk->sk_state = 0; 611 sock_reset_flag(sk, SOCK_DONE); 612 613 INIT_LIST_HEAD(&vsk->bound_table); 614 INIT_LIST_HEAD(&vsk->connected_table); 615 vsk->listener = NULL; 616 INIT_LIST_HEAD(&vsk->pending_links); 617 INIT_LIST_HEAD(&vsk->accept_queue); 618 vsk->rejected = false; 619 vsk->sent_request = false; 620 vsk->ignore_connecting_rst = false; 621 vsk->peer_shutdown = 0; 622 623 psk = parent ? vsock_sk(parent) : NULL; 624 if (parent) { 625 vsk->trusted = psk->trusted; 626 vsk->owner = get_cred(psk->owner); 627 vsk->connect_timeout = psk->connect_timeout; 628 } else { 629 vsk->trusted = capable(CAP_NET_ADMIN); 630 vsk->owner = get_current_cred(); 631 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 632 } 633 634 if (transport->init(vsk, psk) < 0) { 635 sk_free(sk); 636 return NULL; 637 } 638 639 if (sock) 640 vsock_insert_unbound(vsk); 641 642 return sk; 643 } 644 EXPORT_SYMBOL_GPL(__vsock_create); 645 646 static void __vsock_release(struct sock *sk) 647 { 648 if (sk) { 649 struct sk_buff *skb; 650 struct sock *pending; 651 struct vsock_sock *vsk; 652 653 vsk = vsock_sk(sk); 654 pending = NULL; /* Compiler warning. */ 655 656 if (vsock_in_bound_table(vsk)) 657 vsock_remove_bound(vsk); 658 659 if (vsock_in_connected_table(vsk)) 660 vsock_remove_connected(vsk); 661 662 transport->release(vsk); 663 664 lock_sock(sk); 665 sock_orphan(sk); 666 sk->sk_shutdown = SHUTDOWN_MASK; 667 668 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 669 kfree_skb(skb); 670 671 /* Clean up any sockets that never were accepted. */ 672 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 673 __vsock_release(pending); 674 sock_put(pending); 675 } 676 677 release_sock(sk); 678 sock_put(sk); 679 } 680 } 681 682 static void vsock_sk_destruct(struct sock *sk) 683 { 684 struct vsock_sock *vsk = vsock_sk(sk); 685 686 transport->destruct(vsk); 687 688 /* When clearing these addresses, there's no need to set the family and 689 * possibly register the address family with the kernel. 690 */ 691 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 692 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 693 694 put_cred(vsk->owner); 695 } 696 697 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 698 { 699 int err; 700 701 err = sock_queue_rcv_skb(sk, skb); 702 if (err) 703 kfree_skb(skb); 704 705 return err; 706 } 707 708 s64 vsock_stream_has_data(struct vsock_sock *vsk) 709 { 710 return transport->stream_has_data(vsk); 711 } 712 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 713 714 s64 vsock_stream_has_space(struct vsock_sock *vsk) 715 { 716 return transport->stream_has_space(vsk); 717 } 718 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 719 720 static int vsock_release(struct socket *sock) 721 { 722 __vsock_release(sock->sk); 723 sock->sk = NULL; 724 sock->state = SS_FREE; 725 726 return 0; 727 } 728 729 static int 730 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 731 { 732 int err; 733 struct sock *sk; 734 struct sockaddr_vm *vm_addr; 735 736 sk = sock->sk; 737 738 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 739 return -EINVAL; 740 741 lock_sock(sk); 742 err = __vsock_bind(sk, vm_addr); 743 release_sock(sk); 744 745 return err; 746 } 747 748 static int vsock_getname(struct socket *sock, 749 struct sockaddr *addr, int *addr_len, int peer) 750 { 751 int err; 752 struct sock *sk; 753 struct vsock_sock *vsk; 754 struct sockaddr_vm *vm_addr; 755 756 sk = sock->sk; 757 vsk = vsock_sk(sk); 758 err = 0; 759 760 lock_sock(sk); 761 762 if (peer) { 763 if (sock->state != SS_CONNECTED) { 764 err = -ENOTCONN; 765 goto out; 766 } 767 vm_addr = &vsk->remote_addr; 768 } else { 769 vm_addr = &vsk->local_addr; 770 } 771 772 if (!vm_addr) { 773 err = -EINVAL; 774 goto out; 775 } 776 777 /* sys_getsockname() and sys_getpeername() pass us a 778 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 779 * that macro is defined in socket.c instead of .h, so we hardcode its 780 * value here. 781 */ 782 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 783 memcpy(addr, vm_addr, sizeof(*vm_addr)); 784 *addr_len = sizeof(*vm_addr); 785 786 out: 787 release_sock(sk); 788 return err; 789 } 790 791 static int vsock_shutdown(struct socket *sock, int mode) 792 { 793 int err; 794 struct sock *sk; 795 796 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 797 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 798 * here like the other address families do. Note also that the 799 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 800 * which is what we want. 801 */ 802 mode++; 803 804 if ((mode & ~SHUTDOWN_MASK) || !mode) 805 return -EINVAL; 806 807 /* If this is a STREAM socket and it is not connected then bail out 808 * immediately. If it is a DGRAM socket then we must first kick the 809 * socket so that it wakes up from any sleeping calls, for example 810 * recv(), and then afterwards return the error. 811 */ 812 813 sk = sock->sk; 814 if (sock->state == SS_UNCONNECTED) { 815 err = -ENOTCONN; 816 if (sk->sk_type == SOCK_STREAM) 817 return err; 818 } else { 819 sock->state = SS_DISCONNECTING; 820 err = 0; 821 } 822 823 /* Receive and send shutdowns are treated alike. */ 824 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 825 if (mode) { 826 lock_sock(sk); 827 sk->sk_shutdown |= mode; 828 sk->sk_state_change(sk); 829 release_sock(sk); 830 831 if (sk->sk_type == SOCK_STREAM) { 832 sock_reset_flag(sk, SOCK_DONE); 833 vsock_send_shutdown(sk, mode); 834 } 835 } 836 837 return err; 838 } 839 840 static unsigned int vsock_poll(struct file *file, struct socket *sock, 841 poll_table *wait) 842 { 843 struct sock *sk; 844 unsigned int mask; 845 struct vsock_sock *vsk; 846 847 sk = sock->sk; 848 vsk = vsock_sk(sk); 849 850 poll_wait(file, sk_sleep(sk), wait); 851 mask = 0; 852 853 if (sk->sk_err) 854 /* Signify that there has been an error on this socket. */ 855 mask |= POLLERR; 856 857 /* INET sockets treat local write shutdown and peer write shutdown as a 858 * case of POLLHUP set. 859 */ 860 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 861 ((sk->sk_shutdown & SEND_SHUTDOWN) && 862 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 863 mask |= POLLHUP; 864 } 865 866 if (sk->sk_shutdown & RCV_SHUTDOWN || 867 vsk->peer_shutdown & SEND_SHUTDOWN) { 868 mask |= POLLRDHUP; 869 } 870 871 if (sock->type == SOCK_DGRAM) { 872 /* For datagram sockets we can read if there is something in 873 * the queue and write as long as the socket isn't shutdown for 874 * sending. 875 */ 876 if (!skb_queue_empty(&sk->sk_receive_queue) || 877 (sk->sk_shutdown & RCV_SHUTDOWN)) { 878 mask |= POLLIN | POLLRDNORM; 879 } 880 881 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 882 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 883 884 } else if (sock->type == SOCK_STREAM) { 885 lock_sock(sk); 886 887 /* Listening sockets that have connections in their accept 888 * queue can be read. 889 */ 890 if (sk->sk_state == SS_LISTEN 891 && !vsock_is_accept_queue_empty(sk)) 892 mask |= POLLIN | POLLRDNORM; 893 894 /* If there is something in the queue then we can read. */ 895 if (transport->stream_is_active(vsk) && 896 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 897 bool data_ready_now = false; 898 int ret = transport->notify_poll_in( 899 vsk, 1, &data_ready_now); 900 if (ret < 0) { 901 mask |= POLLERR; 902 } else { 903 if (data_ready_now) 904 mask |= POLLIN | POLLRDNORM; 905 906 } 907 } 908 909 /* Sockets whose connections have been closed, reset, or 910 * terminated should also be considered read, and we check the 911 * shutdown flag for that. 912 */ 913 if (sk->sk_shutdown & RCV_SHUTDOWN || 914 vsk->peer_shutdown & SEND_SHUTDOWN) { 915 mask |= POLLIN | POLLRDNORM; 916 } 917 918 /* Connected sockets that can produce data can be written. */ 919 if (sk->sk_state == SS_CONNECTED) { 920 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 921 bool space_avail_now = false; 922 int ret = transport->notify_poll_out( 923 vsk, 1, &space_avail_now); 924 if (ret < 0) { 925 mask |= POLLERR; 926 } else { 927 if (space_avail_now) 928 /* Remove POLLWRBAND since INET 929 * sockets are not setting it. 930 */ 931 mask |= POLLOUT | POLLWRNORM; 932 933 } 934 } 935 } 936 937 /* Simulate INET socket poll behaviors, which sets 938 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 939 * but local send is not shutdown. 940 */ 941 if (sk->sk_state == SS_UNCONNECTED) { 942 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 943 mask |= POLLOUT | POLLWRNORM; 944 945 } 946 947 release_sock(sk); 948 } 949 950 return mask; 951 } 952 953 static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock, 954 struct msghdr *msg, size_t len) 955 { 956 int err; 957 struct sock *sk; 958 struct vsock_sock *vsk; 959 struct sockaddr_vm *remote_addr; 960 961 if (msg->msg_flags & MSG_OOB) 962 return -EOPNOTSUPP; 963 964 /* For now, MSG_DONTWAIT is always assumed... */ 965 err = 0; 966 sk = sock->sk; 967 vsk = vsock_sk(sk); 968 969 lock_sock(sk); 970 971 err = vsock_auto_bind(vsk); 972 if (err) 973 goto out; 974 975 976 /* If the provided message contains an address, use that. Otherwise 977 * fall back on the socket's remote handle (if it has been connected). 978 */ 979 if (msg->msg_name && 980 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 981 &remote_addr) == 0) { 982 /* Ensure this address is of the right type and is a valid 983 * destination. 984 */ 985 986 if (remote_addr->svm_cid == VMADDR_CID_ANY) 987 remote_addr->svm_cid = transport->get_local_cid(); 988 989 if (!vsock_addr_bound(remote_addr)) { 990 err = -EINVAL; 991 goto out; 992 } 993 } else if (sock->state == SS_CONNECTED) { 994 remote_addr = &vsk->remote_addr; 995 996 if (remote_addr->svm_cid == VMADDR_CID_ANY) 997 remote_addr->svm_cid = transport->get_local_cid(); 998 999 /* XXX Should connect() or this function ensure remote_addr is 1000 * bound? 1001 */ 1002 if (!vsock_addr_bound(&vsk->remote_addr)) { 1003 err = -EINVAL; 1004 goto out; 1005 } 1006 } else { 1007 err = -EINVAL; 1008 goto out; 1009 } 1010 1011 if (!transport->dgram_allow(remote_addr->svm_cid, 1012 remote_addr->svm_port)) { 1013 err = -EINVAL; 1014 goto out; 1015 } 1016 1017 err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len); 1018 1019 out: 1020 release_sock(sk); 1021 return err; 1022 } 1023 1024 static int vsock_dgram_connect(struct socket *sock, 1025 struct sockaddr *addr, int addr_len, int flags) 1026 { 1027 int err; 1028 struct sock *sk; 1029 struct vsock_sock *vsk; 1030 struct sockaddr_vm *remote_addr; 1031 1032 sk = sock->sk; 1033 vsk = vsock_sk(sk); 1034 1035 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1036 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1037 lock_sock(sk); 1038 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1039 VMADDR_PORT_ANY); 1040 sock->state = SS_UNCONNECTED; 1041 release_sock(sk); 1042 return 0; 1043 } else if (err != 0) 1044 return -EINVAL; 1045 1046 lock_sock(sk); 1047 1048 err = vsock_auto_bind(vsk); 1049 if (err) 1050 goto out; 1051 1052 if (!transport->dgram_allow(remote_addr->svm_cid, 1053 remote_addr->svm_port)) { 1054 err = -EINVAL; 1055 goto out; 1056 } 1057 1058 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1059 sock->state = SS_CONNECTED; 1060 1061 out: 1062 release_sock(sk); 1063 return err; 1064 } 1065 1066 static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock, 1067 struct msghdr *msg, size_t len, int flags) 1068 { 1069 return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len, 1070 flags); 1071 } 1072 1073 static const struct proto_ops vsock_dgram_ops = { 1074 .family = PF_VSOCK, 1075 .owner = THIS_MODULE, 1076 .release = vsock_release, 1077 .bind = vsock_bind, 1078 .connect = vsock_dgram_connect, 1079 .socketpair = sock_no_socketpair, 1080 .accept = sock_no_accept, 1081 .getname = vsock_getname, 1082 .poll = vsock_poll, 1083 .ioctl = sock_no_ioctl, 1084 .listen = sock_no_listen, 1085 .shutdown = vsock_shutdown, 1086 .setsockopt = sock_no_setsockopt, 1087 .getsockopt = sock_no_getsockopt, 1088 .sendmsg = vsock_dgram_sendmsg, 1089 .recvmsg = vsock_dgram_recvmsg, 1090 .mmap = sock_no_mmap, 1091 .sendpage = sock_no_sendpage, 1092 }; 1093 1094 static void vsock_connect_timeout(struct work_struct *work) 1095 { 1096 struct sock *sk; 1097 struct vsock_sock *vsk; 1098 1099 vsk = container_of(work, struct vsock_sock, dwork.work); 1100 sk = sk_vsock(vsk); 1101 1102 lock_sock(sk); 1103 if (sk->sk_state == SS_CONNECTING && 1104 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1105 sk->sk_state = SS_UNCONNECTED; 1106 sk->sk_err = ETIMEDOUT; 1107 sk->sk_error_report(sk); 1108 } 1109 release_sock(sk); 1110 1111 sock_put(sk); 1112 } 1113 1114 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1115 int addr_len, int flags) 1116 { 1117 int err; 1118 struct sock *sk; 1119 struct vsock_sock *vsk; 1120 struct sockaddr_vm *remote_addr; 1121 long timeout; 1122 DEFINE_WAIT(wait); 1123 1124 err = 0; 1125 sk = sock->sk; 1126 vsk = vsock_sk(sk); 1127 1128 lock_sock(sk); 1129 1130 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1131 switch (sock->state) { 1132 case SS_CONNECTED: 1133 err = -EISCONN; 1134 goto out; 1135 case SS_DISCONNECTING: 1136 err = -EINVAL; 1137 goto out; 1138 case SS_CONNECTING: 1139 /* This continues on so we can move sock into the SS_CONNECTED 1140 * state once the connection has completed (at which point err 1141 * will be set to zero also). Otherwise, we will either wait 1142 * for the connection or return -EALREADY should this be a 1143 * non-blocking call. 1144 */ 1145 err = -EALREADY; 1146 break; 1147 default: 1148 if ((sk->sk_state == SS_LISTEN) || 1149 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1150 err = -EINVAL; 1151 goto out; 1152 } 1153 1154 /* The hypervisor and well-known contexts do not have socket 1155 * endpoints. 1156 */ 1157 if (!transport->stream_allow(remote_addr->svm_cid, 1158 remote_addr->svm_port)) { 1159 err = -ENETUNREACH; 1160 goto out; 1161 } 1162 1163 /* Set the remote address that we are connecting to. */ 1164 memcpy(&vsk->remote_addr, remote_addr, 1165 sizeof(vsk->remote_addr)); 1166 1167 err = vsock_auto_bind(vsk); 1168 if (err) 1169 goto out; 1170 1171 sk->sk_state = SS_CONNECTING; 1172 1173 err = transport->connect(vsk); 1174 if (err < 0) 1175 goto out; 1176 1177 /* Mark sock as connecting and set the error code to in 1178 * progress in case this is a non-blocking connect. 1179 */ 1180 sock->state = SS_CONNECTING; 1181 err = -EINPROGRESS; 1182 } 1183 1184 /* The receive path will handle all communication until we are able to 1185 * enter the connected state. Here we wait for the connection to be 1186 * completed or a notification of an error. 1187 */ 1188 timeout = vsk->connect_timeout; 1189 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1190 1191 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1192 if (flags & O_NONBLOCK) { 1193 /* If we're not going to block, we schedule a timeout 1194 * function to generate a timeout on the connection 1195 * attempt, in case the peer doesn't respond in a 1196 * timely manner. We hold on to the socket until the 1197 * timeout fires. 1198 */ 1199 sock_hold(sk); 1200 INIT_DELAYED_WORK(&vsk->dwork, 1201 vsock_connect_timeout); 1202 schedule_delayed_work(&vsk->dwork, timeout); 1203 1204 /* Skip ahead to preserve error code set above. */ 1205 goto out_wait; 1206 } 1207 1208 release_sock(sk); 1209 timeout = schedule_timeout(timeout); 1210 lock_sock(sk); 1211 1212 if (signal_pending(current)) { 1213 err = sock_intr_errno(timeout); 1214 goto out_wait_error; 1215 } else if (timeout == 0) { 1216 err = -ETIMEDOUT; 1217 goto out_wait_error; 1218 } 1219 1220 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1221 } 1222 1223 if (sk->sk_err) { 1224 err = -sk->sk_err; 1225 goto out_wait_error; 1226 } else 1227 err = 0; 1228 1229 out_wait: 1230 finish_wait(sk_sleep(sk), &wait); 1231 out: 1232 release_sock(sk); 1233 return err; 1234 1235 out_wait_error: 1236 sk->sk_state = SS_UNCONNECTED; 1237 sock->state = SS_UNCONNECTED; 1238 goto out_wait; 1239 } 1240 1241 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1242 { 1243 struct sock *listener; 1244 int err; 1245 struct sock *connected; 1246 struct vsock_sock *vconnected; 1247 long timeout; 1248 DEFINE_WAIT(wait); 1249 1250 err = 0; 1251 listener = sock->sk; 1252 1253 lock_sock(listener); 1254 1255 if (sock->type != SOCK_STREAM) { 1256 err = -EOPNOTSUPP; 1257 goto out; 1258 } 1259 1260 if (listener->sk_state != SS_LISTEN) { 1261 err = -EINVAL; 1262 goto out; 1263 } 1264 1265 /* Wait for children sockets to appear; these are the new sockets 1266 * created upon connection establishment. 1267 */ 1268 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1269 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1270 1271 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1272 listener->sk_err == 0) { 1273 release_sock(listener); 1274 timeout = schedule_timeout(timeout); 1275 lock_sock(listener); 1276 1277 if (signal_pending(current)) { 1278 err = sock_intr_errno(timeout); 1279 goto out_wait; 1280 } else if (timeout == 0) { 1281 err = -EAGAIN; 1282 goto out_wait; 1283 } 1284 1285 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1286 } 1287 1288 if (listener->sk_err) 1289 err = -listener->sk_err; 1290 1291 if (connected) { 1292 listener->sk_ack_backlog--; 1293 1294 lock_sock(connected); 1295 vconnected = vsock_sk(connected); 1296 1297 /* If the listener socket has received an error, then we should 1298 * reject this socket and return. Note that we simply mark the 1299 * socket rejected, drop our reference, and let the cleanup 1300 * function handle the cleanup; the fact that we found it in 1301 * the listener's accept queue guarantees that the cleanup 1302 * function hasn't run yet. 1303 */ 1304 if (err) { 1305 vconnected->rejected = true; 1306 release_sock(connected); 1307 sock_put(connected); 1308 goto out_wait; 1309 } 1310 1311 newsock->state = SS_CONNECTED; 1312 sock_graft(connected, newsock); 1313 release_sock(connected); 1314 sock_put(connected); 1315 } 1316 1317 out_wait: 1318 finish_wait(sk_sleep(listener), &wait); 1319 out: 1320 release_sock(listener); 1321 return err; 1322 } 1323 1324 static int vsock_listen(struct socket *sock, int backlog) 1325 { 1326 int err; 1327 struct sock *sk; 1328 struct vsock_sock *vsk; 1329 1330 sk = sock->sk; 1331 1332 lock_sock(sk); 1333 1334 if (sock->type != SOCK_STREAM) { 1335 err = -EOPNOTSUPP; 1336 goto out; 1337 } 1338 1339 if (sock->state != SS_UNCONNECTED) { 1340 err = -EINVAL; 1341 goto out; 1342 } 1343 1344 vsk = vsock_sk(sk); 1345 1346 if (!vsock_addr_bound(&vsk->local_addr)) { 1347 err = -EINVAL; 1348 goto out; 1349 } 1350 1351 sk->sk_max_ack_backlog = backlog; 1352 sk->sk_state = SS_LISTEN; 1353 1354 err = 0; 1355 1356 out: 1357 release_sock(sk); 1358 return err; 1359 } 1360 1361 static int vsock_stream_setsockopt(struct socket *sock, 1362 int level, 1363 int optname, 1364 char __user *optval, 1365 unsigned int optlen) 1366 { 1367 int err; 1368 struct sock *sk; 1369 struct vsock_sock *vsk; 1370 u64 val; 1371 1372 if (level != AF_VSOCK) 1373 return -ENOPROTOOPT; 1374 1375 #define COPY_IN(_v) \ 1376 do { \ 1377 if (optlen < sizeof(_v)) { \ 1378 err = -EINVAL; \ 1379 goto exit; \ 1380 } \ 1381 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1382 err = -EFAULT; \ 1383 goto exit; \ 1384 } \ 1385 } while (0) 1386 1387 err = 0; 1388 sk = sock->sk; 1389 vsk = vsock_sk(sk); 1390 1391 lock_sock(sk); 1392 1393 switch (optname) { 1394 case SO_VM_SOCKETS_BUFFER_SIZE: 1395 COPY_IN(val); 1396 transport->set_buffer_size(vsk, val); 1397 break; 1398 1399 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1400 COPY_IN(val); 1401 transport->set_max_buffer_size(vsk, val); 1402 break; 1403 1404 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1405 COPY_IN(val); 1406 transport->set_min_buffer_size(vsk, val); 1407 break; 1408 1409 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1410 struct timeval tv; 1411 COPY_IN(tv); 1412 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1413 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1414 vsk->connect_timeout = tv.tv_sec * HZ + 1415 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1416 if (vsk->connect_timeout == 0) 1417 vsk->connect_timeout = 1418 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1419 1420 } else { 1421 err = -ERANGE; 1422 } 1423 break; 1424 } 1425 1426 default: 1427 err = -ENOPROTOOPT; 1428 break; 1429 } 1430 1431 #undef COPY_IN 1432 1433 exit: 1434 release_sock(sk); 1435 return err; 1436 } 1437 1438 static int vsock_stream_getsockopt(struct socket *sock, 1439 int level, int optname, 1440 char __user *optval, 1441 int __user *optlen) 1442 { 1443 int err; 1444 int len; 1445 struct sock *sk; 1446 struct vsock_sock *vsk; 1447 u64 val; 1448 1449 if (level != AF_VSOCK) 1450 return -ENOPROTOOPT; 1451 1452 err = get_user(len, optlen); 1453 if (err != 0) 1454 return err; 1455 1456 #define COPY_OUT(_v) \ 1457 do { \ 1458 if (len < sizeof(_v)) \ 1459 return -EINVAL; \ 1460 \ 1461 len = sizeof(_v); \ 1462 if (copy_to_user(optval, &_v, len) != 0) \ 1463 return -EFAULT; \ 1464 \ 1465 } while (0) 1466 1467 err = 0; 1468 sk = sock->sk; 1469 vsk = vsock_sk(sk); 1470 1471 switch (optname) { 1472 case SO_VM_SOCKETS_BUFFER_SIZE: 1473 val = transport->get_buffer_size(vsk); 1474 COPY_OUT(val); 1475 break; 1476 1477 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1478 val = transport->get_max_buffer_size(vsk); 1479 COPY_OUT(val); 1480 break; 1481 1482 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1483 val = transport->get_min_buffer_size(vsk); 1484 COPY_OUT(val); 1485 break; 1486 1487 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1488 struct timeval tv; 1489 tv.tv_sec = vsk->connect_timeout / HZ; 1490 tv.tv_usec = 1491 (vsk->connect_timeout - 1492 tv.tv_sec * HZ) * (1000000 / HZ); 1493 COPY_OUT(tv); 1494 break; 1495 } 1496 default: 1497 return -ENOPROTOOPT; 1498 } 1499 1500 err = put_user(len, optlen); 1501 if (err != 0) 1502 return -EFAULT; 1503 1504 #undef COPY_OUT 1505 1506 return 0; 1507 } 1508 1509 static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock, 1510 struct msghdr *msg, size_t len) 1511 { 1512 struct sock *sk; 1513 struct vsock_sock *vsk; 1514 ssize_t total_written; 1515 long timeout; 1516 int err; 1517 struct vsock_transport_send_notify_data send_data; 1518 1519 DEFINE_WAIT(wait); 1520 1521 sk = sock->sk; 1522 vsk = vsock_sk(sk); 1523 total_written = 0; 1524 err = 0; 1525 1526 if (msg->msg_flags & MSG_OOB) 1527 return -EOPNOTSUPP; 1528 1529 lock_sock(sk); 1530 1531 /* Callers should not provide a destination with stream sockets. */ 1532 if (msg->msg_namelen) { 1533 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1534 goto out; 1535 } 1536 1537 /* Send data only if both sides are not shutdown in the direction. */ 1538 if (sk->sk_shutdown & SEND_SHUTDOWN || 1539 vsk->peer_shutdown & RCV_SHUTDOWN) { 1540 err = -EPIPE; 1541 goto out; 1542 } 1543 1544 if (sk->sk_state != SS_CONNECTED || 1545 !vsock_addr_bound(&vsk->local_addr)) { 1546 err = -ENOTCONN; 1547 goto out; 1548 } 1549 1550 if (!vsock_addr_bound(&vsk->remote_addr)) { 1551 err = -EDESTADDRREQ; 1552 goto out; 1553 } 1554 1555 /* Wait for room in the produce queue to enqueue our user's data. */ 1556 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1557 1558 err = transport->notify_send_init(vsk, &send_data); 1559 if (err < 0) 1560 goto out; 1561 1562 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1563 1564 while (total_written < len) { 1565 ssize_t written; 1566 1567 while (vsock_stream_has_space(vsk) == 0 && 1568 sk->sk_err == 0 && 1569 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1570 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1571 1572 /* Don't wait for non-blocking sockets. */ 1573 if (timeout == 0) { 1574 err = -EAGAIN; 1575 goto out_wait; 1576 } 1577 1578 err = transport->notify_send_pre_block(vsk, &send_data); 1579 if (err < 0) 1580 goto out_wait; 1581 1582 release_sock(sk); 1583 timeout = schedule_timeout(timeout); 1584 lock_sock(sk); 1585 if (signal_pending(current)) { 1586 err = sock_intr_errno(timeout); 1587 goto out_wait; 1588 } else if (timeout == 0) { 1589 err = -EAGAIN; 1590 goto out_wait; 1591 } 1592 1593 prepare_to_wait(sk_sleep(sk), &wait, 1594 TASK_INTERRUPTIBLE); 1595 } 1596 1597 /* These checks occur both as part of and after the loop 1598 * conditional since we need to check before and after 1599 * sleeping. 1600 */ 1601 if (sk->sk_err) { 1602 err = -sk->sk_err; 1603 goto out_wait; 1604 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1605 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1606 err = -EPIPE; 1607 goto out_wait; 1608 } 1609 1610 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1611 if (err < 0) 1612 goto out_wait; 1613 1614 /* Note that enqueue will only write as many bytes as are free 1615 * in the produce queue, so we don't need to ensure len is 1616 * smaller than the queue size. It is the caller's 1617 * responsibility to check how many bytes we were able to send. 1618 */ 1619 1620 written = transport->stream_enqueue( 1621 vsk, msg->msg_iov, 1622 len - total_written); 1623 if (written < 0) { 1624 err = -ENOMEM; 1625 goto out_wait; 1626 } 1627 1628 total_written += written; 1629 1630 err = transport->notify_send_post_enqueue( 1631 vsk, written, &send_data); 1632 if (err < 0) 1633 goto out_wait; 1634 1635 } 1636 1637 out_wait: 1638 if (total_written > 0) 1639 err = total_written; 1640 finish_wait(sk_sleep(sk), &wait); 1641 out: 1642 release_sock(sk); 1643 return err; 1644 } 1645 1646 1647 static int 1648 vsock_stream_recvmsg(struct kiocb *kiocb, 1649 struct socket *sock, 1650 struct msghdr *msg, size_t len, int flags) 1651 { 1652 struct sock *sk; 1653 struct vsock_sock *vsk; 1654 int err; 1655 size_t target; 1656 ssize_t copied; 1657 long timeout; 1658 struct vsock_transport_recv_notify_data recv_data; 1659 1660 DEFINE_WAIT(wait); 1661 1662 sk = sock->sk; 1663 vsk = vsock_sk(sk); 1664 err = 0; 1665 1666 msg->msg_namelen = 0; 1667 1668 lock_sock(sk); 1669 1670 if (sk->sk_state != SS_CONNECTED) { 1671 /* Recvmsg is supposed to return 0 if a peer performs an 1672 * orderly shutdown. Differentiate between that case and when a 1673 * peer has not connected or a local shutdown occured with the 1674 * SOCK_DONE flag. 1675 */ 1676 if (sock_flag(sk, SOCK_DONE)) 1677 err = 0; 1678 else 1679 err = -ENOTCONN; 1680 1681 goto out; 1682 } 1683 1684 if (flags & MSG_OOB) { 1685 err = -EOPNOTSUPP; 1686 goto out; 1687 } 1688 1689 /* We don't check peer_shutdown flag here since peer may actually shut 1690 * down, but there can be data in the queue that a local socket can 1691 * receive. 1692 */ 1693 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1694 err = 0; 1695 goto out; 1696 } 1697 1698 /* It is valid on Linux to pass in a zero-length receive buffer. This 1699 * is not an error. We may as well bail out now. 1700 */ 1701 if (!len) { 1702 err = 0; 1703 goto out; 1704 } 1705 1706 /* We must not copy less than target bytes into the user's buffer 1707 * before returning successfully, so we wait for the consume queue to 1708 * have that much data to consume before dequeueing. Note that this 1709 * makes it impossible to handle cases where target is greater than the 1710 * queue size. 1711 */ 1712 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1713 if (target >= transport->stream_rcvhiwat(vsk)) { 1714 err = -ENOMEM; 1715 goto out; 1716 } 1717 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1718 copied = 0; 1719 1720 err = transport->notify_recv_init(vsk, target, &recv_data); 1721 if (err < 0) 1722 goto out; 1723 1724 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1725 1726 while (1) { 1727 s64 ready = vsock_stream_has_data(vsk); 1728 1729 if (ready < 0) { 1730 /* Invalid queue pair content. XXX This should be 1731 * changed to a connection reset in a later change. 1732 */ 1733 1734 err = -ENOMEM; 1735 goto out_wait; 1736 } else if (ready > 0) { 1737 ssize_t read; 1738 1739 err = transport->notify_recv_pre_dequeue( 1740 vsk, target, &recv_data); 1741 if (err < 0) 1742 break; 1743 1744 read = transport->stream_dequeue( 1745 vsk, msg->msg_iov, 1746 len - copied, flags); 1747 if (read < 0) { 1748 err = -ENOMEM; 1749 break; 1750 } 1751 1752 copied += read; 1753 1754 err = transport->notify_recv_post_dequeue( 1755 vsk, target, read, 1756 !(flags & MSG_PEEK), &recv_data); 1757 if (err < 0) 1758 goto out_wait; 1759 1760 if (read >= target || flags & MSG_PEEK) 1761 break; 1762 1763 target -= read; 1764 } else { 1765 if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN) 1766 || (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1767 break; 1768 } 1769 /* Don't wait for non-blocking sockets. */ 1770 if (timeout == 0) { 1771 err = -EAGAIN; 1772 break; 1773 } 1774 1775 err = transport->notify_recv_pre_block( 1776 vsk, target, &recv_data); 1777 if (err < 0) 1778 break; 1779 1780 release_sock(sk); 1781 timeout = schedule_timeout(timeout); 1782 lock_sock(sk); 1783 1784 if (signal_pending(current)) { 1785 err = sock_intr_errno(timeout); 1786 break; 1787 } else if (timeout == 0) { 1788 err = -EAGAIN; 1789 break; 1790 } 1791 1792 prepare_to_wait(sk_sleep(sk), &wait, 1793 TASK_INTERRUPTIBLE); 1794 } 1795 } 1796 1797 if (sk->sk_err) 1798 err = -sk->sk_err; 1799 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1800 err = 0; 1801 1802 if (copied > 0) { 1803 /* We only do these additional bookkeeping/notification steps 1804 * if we actually copied something out of the queue pair 1805 * instead of just peeking ahead. 1806 */ 1807 1808 if (!(flags & MSG_PEEK)) { 1809 /* If the other side has shutdown for sending and there 1810 * is nothing more to read, then modify the socket 1811 * state. 1812 */ 1813 if (vsk->peer_shutdown & SEND_SHUTDOWN) { 1814 if (vsock_stream_has_data(vsk) <= 0) { 1815 sk->sk_state = SS_UNCONNECTED; 1816 sock_set_flag(sk, SOCK_DONE); 1817 sk->sk_state_change(sk); 1818 } 1819 } 1820 } 1821 err = copied; 1822 } 1823 1824 out_wait: 1825 finish_wait(sk_sleep(sk), &wait); 1826 out: 1827 release_sock(sk); 1828 return err; 1829 } 1830 1831 static const struct proto_ops vsock_stream_ops = { 1832 .family = PF_VSOCK, 1833 .owner = THIS_MODULE, 1834 .release = vsock_release, 1835 .bind = vsock_bind, 1836 .connect = vsock_stream_connect, 1837 .socketpair = sock_no_socketpair, 1838 .accept = vsock_accept, 1839 .getname = vsock_getname, 1840 .poll = vsock_poll, 1841 .ioctl = sock_no_ioctl, 1842 .listen = vsock_listen, 1843 .shutdown = vsock_shutdown, 1844 .setsockopt = vsock_stream_setsockopt, 1845 .getsockopt = vsock_stream_getsockopt, 1846 .sendmsg = vsock_stream_sendmsg, 1847 .recvmsg = vsock_stream_recvmsg, 1848 .mmap = sock_no_mmap, 1849 .sendpage = sock_no_sendpage, 1850 }; 1851 1852 static int vsock_create(struct net *net, struct socket *sock, 1853 int protocol, int kern) 1854 { 1855 if (!sock) 1856 return -EINVAL; 1857 1858 if (protocol && protocol != PF_VSOCK) 1859 return -EPROTONOSUPPORT; 1860 1861 switch (sock->type) { 1862 case SOCK_DGRAM: 1863 sock->ops = &vsock_dgram_ops; 1864 break; 1865 case SOCK_STREAM: 1866 sock->ops = &vsock_stream_ops; 1867 break; 1868 default: 1869 return -ESOCKTNOSUPPORT; 1870 } 1871 1872 sock->state = SS_UNCONNECTED; 1873 1874 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM; 1875 } 1876 1877 static const struct net_proto_family vsock_family_ops = { 1878 .family = AF_VSOCK, 1879 .create = vsock_create, 1880 .owner = THIS_MODULE, 1881 }; 1882 1883 static long vsock_dev_do_ioctl(struct file *filp, 1884 unsigned int cmd, void __user *ptr) 1885 { 1886 u32 __user *p = ptr; 1887 int retval = 0; 1888 1889 switch (cmd) { 1890 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1891 if (put_user(transport->get_local_cid(), p) != 0) 1892 retval = -EFAULT; 1893 break; 1894 1895 default: 1896 pr_err("Unknown ioctl %d\n", cmd); 1897 retval = -EINVAL; 1898 } 1899 1900 return retval; 1901 } 1902 1903 static long vsock_dev_ioctl(struct file *filp, 1904 unsigned int cmd, unsigned long arg) 1905 { 1906 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1907 } 1908 1909 #ifdef CONFIG_COMPAT 1910 static long vsock_dev_compat_ioctl(struct file *filp, 1911 unsigned int cmd, unsigned long arg) 1912 { 1913 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1914 } 1915 #endif 1916 1917 static const struct file_operations vsock_device_ops = { 1918 .owner = THIS_MODULE, 1919 .unlocked_ioctl = vsock_dev_ioctl, 1920 #ifdef CONFIG_COMPAT 1921 .compat_ioctl = vsock_dev_compat_ioctl, 1922 #endif 1923 .open = nonseekable_open, 1924 }; 1925 1926 static struct miscdevice vsock_device = { 1927 .name = "vsock", 1928 .fops = &vsock_device_ops, 1929 }; 1930 1931 static int __vsock_core_init(void) 1932 { 1933 int err; 1934 1935 vsock_init_tables(); 1936 1937 vsock_device.minor = MISC_DYNAMIC_MINOR; 1938 err = misc_register(&vsock_device); 1939 if (err) { 1940 pr_err("Failed to register misc device\n"); 1941 return -ENOENT; 1942 } 1943 1944 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1945 if (err) { 1946 pr_err("Cannot register vsock protocol\n"); 1947 goto err_misc_deregister; 1948 } 1949 1950 err = sock_register(&vsock_family_ops); 1951 if (err) { 1952 pr_err("could not register af_vsock (%d) address family: %d\n", 1953 AF_VSOCK, err); 1954 goto err_unregister_proto; 1955 } 1956 1957 return 0; 1958 1959 err_unregister_proto: 1960 proto_unregister(&vsock_proto); 1961 err_misc_deregister: 1962 misc_deregister(&vsock_device); 1963 return err; 1964 } 1965 1966 int vsock_core_init(const struct vsock_transport *t) 1967 { 1968 int retval = mutex_lock_interruptible(&vsock_register_mutex); 1969 if (retval) 1970 return retval; 1971 1972 if (transport) { 1973 retval = -EBUSY; 1974 goto out; 1975 } 1976 1977 transport = t; 1978 retval = __vsock_core_init(); 1979 if (retval) 1980 transport = NULL; 1981 1982 out: 1983 mutex_unlock(&vsock_register_mutex); 1984 return retval; 1985 } 1986 EXPORT_SYMBOL_GPL(vsock_core_init); 1987 1988 void vsock_core_exit(void) 1989 { 1990 mutex_lock(&vsock_register_mutex); 1991 1992 misc_deregister(&vsock_device); 1993 sock_unregister(AF_VSOCK); 1994 proto_unregister(&vsock_proto); 1995 1996 /* We do not want the assignment below re-ordered. */ 1997 mb(); 1998 transport = NULL; 1999 2000 mutex_unlock(&vsock_register_mutex); 2001 } 2002 EXPORT_SYMBOL_GPL(vsock_core_exit); 2003 2004 MODULE_AUTHOR("VMware, Inc."); 2005 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2006 MODULE_VERSION("1.0.0.0-k"); 2007 MODULE_LICENSE("GPL v2"); 2008