xref: /linux/net/vmw_vsock/af_vsock.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the SS_LISTEN state.  When a connection
40  * request is received (the second kind of socket mentioned above), we create a
41  * new socket and refer to it as a pending socket.  These pending sockets are
42  * placed on the pending connection list of the listener socket.  When future
43  * packets are received for the address the listener socket is bound to, we
44  * check if the source of the packet is from one that has an existing pending
45  * connection.  If it does, we process the packet for the pending socket.  When
46  * that socket reaches the connected state, it is removed from the listener
47  * socket's pending list and enqueued in the listener socket's accept queue.
48  * Callers of accept(2) will accept connected sockets from the listener socket's
49  * accept queue.  If the socket cannot be accepted for some reason then it is
50  * marked rejected.  Once the connection is accepted, it is owned by the user
51  * process and the responsibility for cleanup falls with that user process.
52  *
53  * - It is possible that these pending sockets will never reach the connected
54  * state; in fact, we may never receive another packet after the connection
55  * request.  Because of this, we must schedule a cleanup function to run in the
56  * future, after some amount of time passes where a connection should have been
57  * established.  This function ensures that the socket is off all lists so it
58  * cannot be retrieved, then drops all references to the socket so it is cleaned
59  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
60  * function will also cleanup rejected sockets, those that reach the connected
61  * state but leave it before they have been accepted.
62  *
63  * - Sockets created by user action will be cleaned up when the user process
64  * calls close(2), causing our release implementation to be called. Our release
65  * implementation will perform some cleanup then drop the last reference so our
66  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
67  * perform additional cleanup that's common for both types of sockets.
68  *
69  * - A socket's reference count is what ensures that the structure won't be
70  * freed.  Each entry in a list (such as the "global" bound and connected tables
71  * and the listener socket's pending list and connected queue) ensures a
72  * reference.  When we defer work until process context and pass a socket as our
73  * argument, we must ensure the reference count is increased to ensure the
74  * socket isn't freed before the function is run; the deferred function will
75  * then drop the reference.
76  */
77 
78 #include <linux/types.h>
79 #include <linux/bitops.h>
80 #include <linux/cred.h>
81 #include <linux/init.h>
82 #include <linux/io.h>
83 #include <linux/kernel.h>
84 #include <linux/kmod.h>
85 #include <linux/list.h>
86 #include <linux/miscdevice.h>
87 #include <linux/module.h>
88 #include <linux/mutex.h>
89 #include <linux/net.h>
90 #include <linux/poll.h>
91 #include <linux/skbuff.h>
92 #include <linux/smp.h>
93 #include <linux/socket.h>
94 #include <linux/stddef.h>
95 #include <linux/unistd.h>
96 #include <linux/wait.h>
97 #include <linux/workqueue.h>
98 #include <net/sock.h>
99 
100 #include "af_vsock.h"
101 
102 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
103 static void vsock_sk_destruct(struct sock *sk);
104 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
105 
106 /* Protocol family. */
107 static struct proto vsock_proto = {
108 	.name = "AF_VSOCK",
109 	.owner = THIS_MODULE,
110 	.obj_size = sizeof(struct vsock_sock),
111 };
112 
113 /* The default peer timeout indicates how long we will wait for a peer response
114  * to a control message.
115  */
116 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
117 
118 #define SS_LISTEN 255
119 
120 static const struct vsock_transport *transport;
121 static DEFINE_MUTEX(vsock_register_mutex);
122 
123 /**** EXPORTS ****/
124 
125 /* Get the ID of the local context.  This is transport dependent. */
126 
127 int vm_sockets_get_local_cid(void)
128 {
129 	return transport->get_local_cid();
130 }
131 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
132 
133 /**** UTILS ****/
134 
135 /* Each bound VSocket is stored in the bind hash table and each connected
136  * VSocket is stored in the connected hash table.
137  *
138  * Unbound sockets are all put on the same list attached to the end of the hash
139  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
140  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
141  * represents the list that addr hashes to).
142  *
143  * Specifically, we initialize the vsock_bind_table array to a size of
144  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
145  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
146  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
147  * mods with VSOCK_HASH_SIZE to ensure this.
148  */
149 #define VSOCK_HASH_SIZE         251
150 #define MAX_PORT_RETRIES        24
151 
152 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
153 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
154 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
155 
156 /* XXX This can probably be implemented in a better way. */
157 #define VSOCK_CONN_HASH(src, dst)				\
158 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
159 #define vsock_connected_sockets(src, dst)		\
160 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
161 #define vsock_connected_sockets_vsk(vsk)				\
162 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
163 
164 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
165 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
166 static DEFINE_SPINLOCK(vsock_table_lock);
167 
168 /* Autobind this socket to the local address if necessary. */
169 static int vsock_auto_bind(struct vsock_sock *vsk)
170 {
171 	struct sock *sk = sk_vsock(vsk);
172 	struct sockaddr_vm local_addr;
173 
174 	if (vsock_addr_bound(&vsk->local_addr))
175 		return 0;
176 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
177 	return __vsock_bind(sk, &local_addr);
178 }
179 
180 static void vsock_init_tables(void)
181 {
182 	int i;
183 
184 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
185 		INIT_LIST_HEAD(&vsock_bind_table[i]);
186 
187 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
188 		INIT_LIST_HEAD(&vsock_connected_table[i]);
189 }
190 
191 static void __vsock_insert_bound(struct list_head *list,
192 				 struct vsock_sock *vsk)
193 {
194 	sock_hold(&vsk->sk);
195 	list_add(&vsk->bound_table, list);
196 }
197 
198 static void __vsock_insert_connected(struct list_head *list,
199 				     struct vsock_sock *vsk)
200 {
201 	sock_hold(&vsk->sk);
202 	list_add(&vsk->connected_table, list);
203 }
204 
205 static void __vsock_remove_bound(struct vsock_sock *vsk)
206 {
207 	list_del_init(&vsk->bound_table);
208 	sock_put(&vsk->sk);
209 }
210 
211 static void __vsock_remove_connected(struct vsock_sock *vsk)
212 {
213 	list_del_init(&vsk->connected_table);
214 	sock_put(&vsk->sk);
215 }
216 
217 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
218 {
219 	struct vsock_sock *vsk;
220 
221 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
222 		if (addr->svm_port == vsk->local_addr.svm_port)
223 			return sk_vsock(vsk);
224 
225 	return NULL;
226 }
227 
228 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
229 						  struct sockaddr_vm *dst)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
234 			    connected_table) {
235 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
236 		    dst->svm_port == vsk->local_addr.svm_port) {
237 			return sk_vsock(vsk);
238 		}
239 	}
240 
241 	return NULL;
242 }
243 
244 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
245 {
246 	return !list_empty(&vsk->bound_table);
247 }
248 
249 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
250 {
251 	return !list_empty(&vsk->connected_table);
252 }
253 
254 static void vsock_insert_unbound(struct vsock_sock *vsk)
255 {
256 	spin_lock_bh(&vsock_table_lock);
257 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
258 	spin_unlock_bh(&vsock_table_lock);
259 }
260 
261 void vsock_insert_connected(struct vsock_sock *vsk)
262 {
263 	struct list_head *list = vsock_connected_sockets(
264 		&vsk->remote_addr, &vsk->local_addr);
265 
266 	spin_lock_bh(&vsock_table_lock);
267 	__vsock_insert_connected(list, vsk);
268 	spin_unlock_bh(&vsock_table_lock);
269 }
270 EXPORT_SYMBOL_GPL(vsock_insert_connected);
271 
272 void vsock_remove_bound(struct vsock_sock *vsk)
273 {
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_remove_bound(vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_remove_bound);
279 
280 void vsock_remove_connected(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	__vsock_remove_connected(vsk);
284 	spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_remove_connected);
287 
288 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
289 {
290 	struct sock *sk;
291 
292 	spin_lock_bh(&vsock_table_lock);
293 	sk = __vsock_find_bound_socket(addr);
294 	if (sk)
295 		sock_hold(sk);
296 
297 	spin_unlock_bh(&vsock_table_lock);
298 
299 	return sk;
300 }
301 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
302 
303 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
304 					 struct sockaddr_vm *dst)
305 {
306 	struct sock *sk;
307 
308 	spin_lock_bh(&vsock_table_lock);
309 	sk = __vsock_find_connected_socket(src, dst);
310 	if (sk)
311 		sock_hold(sk);
312 
313 	spin_unlock_bh(&vsock_table_lock);
314 
315 	return sk;
316 }
317 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
318 
319 static bool vsock_in_bound_table(struct vsock_sock *vsk)
320 {
321 	bool ret;
322 
323 	spin_lock_bh(&vsock_table_lock);
324 	ret = __vsock_in_bound_table(vsk);
325 	spin_unlock_bh(&vsock_table_lock);
326 
327 	return ret;
328 }
329 
330 static bool vsock_in_connected_table(struct vsock_sock *vsk)
331 {
332 	bool ret;
333 
334 	spin_lock_bh(&vsock_table_lock);
335 	ret = __vsock_in_connected_table(vsk);
336 	spin_unlock_bh(&vsock_table_lock);
337 
338 	return ret;
339 }
340 
341 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
342 {
343 	int i;
344 
345 	spin_lock_bh(&vsock_table_lock);
346 
347 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
348 		struct vsock_sock *vsk;
349 		list_for_each_entry(vsk, &vsock_connected_table[i],
350 				    connected_table);
351 			fn(sk_vsock(vsk));
352 	}
353 
354 	spin_unlock_bh(&vsock_table_lock);
355 }
356 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
357 
358 void vsock_add_pending(struct sock *listener, struct sock *pending)
359 {
360 	struct vsock_sock *vlistener;
361 	struct vsock_sock *vpending;
362 
363 	vlistener = vsock_sk(listener);
364 	vpending = vsock_sk(pending);
365 
366 	sock_hold(pending);
367 	sock_hold(listener);
368 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
369 }
370 EXPORT_SYMBOL_GPL(vsock_add_pending);
371 
372 void vsock_remove_pending(struct sock *listener, struct sock *pending)
373 {
374 	struct vsock_sock *vpending = vsock_sk(pending);
375 
376 	list_del_init(&vpending->pending_links);
377 	sock_put(listener);
378 	sock_put(pending);
379 }
380 EXPORT_SYMBOL_GPL(vsock_remove_pending);
381 
382 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
383 {
384 	struct vsock_sock *vlistener;
385 	struct vsock_sock *vconnected;
386 
387 	vlistener = vsock_sk(listener);
388 	vconnected = vsock_sk(connected);
389 
390 	sock_hold(connected);
391 	sock_hold(listener);
392 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
393 }
394 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
395 
396 static struct sock *vsock_dequeue_accept(struct sock *listener)
397 {
398 	struct vsock_sock *vlistener;
399 	struct vsock_sock *vconnected;
400 
401 	vlistener = vsock_sk(listener);
402 
403 	if (list_empty(&vlistener->accept_queue))
404 		return NULL;
405 
406 	vconnected = list_entry(vlistener->accept_queue.next,
407 				struct vsock_sock, accept_queue);
408 
409 	list_del_init(&vconnected->accept_queue);
410 	sock_put(listener);
411 	/* The caller will need a reference on the connected socket so we let
412 	 * it call sock_put().
413 	 */
414 
415 	return sk_vsock(vconnected);
416 }
417 
418 static bool vsock_is_accept_queue_empty(struct sock *sk)
419 {
420 	struct vsock_sock *vsk = vsock_sk(sk);
421 	return list_empty(&vsk->accept_queue);
422 }
423 
424 static bool vsock_is_pending(struct sock *sk)
425 {
426 	struct vsock_sock *vsk = vsock_sk(sk);
427 	return !list_empty(&vsk->pending_links);
428 }
429 
430 static int vsock_send_shutdown(struct sock *sk, int mode)
431 {
432 	return transport->shutdown(vsock_sk(sk), mode);
433 }
434 
435 void vsock_pending_work(struct work_struct *work)
436 {
437 	struct sock *sk;
438 	struct sock *listener;
439 	struct vsock_sock *vsk;
440 	bool cleanup;
441 
442 	vsk = container_of(work, struct vsock_sock, dwork.work);
443 	sk = sk_vsock(vsk);
444 	listener = vsk->listener;
445 	cleanup = true;
446 
447 	lock_sock(listener);
448 	lock_sock(sk);
449 
450 	if (vsock_is_pending(sk)) {
451 		vsock_remove_pending(listener, sk);
452 	} else if (!vsk->rejected) {
453 		/* We are not on the pending list and accept() did not reject
454 		 * us, so we must have been accepted by our user process.  We
455 		 * just need to drop our references to the sockets and be on
456 		 * our way.
457 		 */
458 		cleanup = false;
459 		goto out;
460 	}
461 
462 	listener->sk_ack_backlog--;
463 
464 	/* We need to remove ourself from the global connected sockets list so
465 	 * incoming packets can't find this socket, and to reduce the reference
466 	 * count.
467 	 */
468 	if (vsock_in_connected_table(vsk))
469 		vsock_remove_connected(vsk);
470 
471 	sk->sk_state = SS_FREE;
472 
473 out:
474 	release_sock(sk);
475 	release_sock(listener);
476 	if (cleanup)
477 		sock_put(sk);
478 
479 	sock_put(sk);
480 	sock_put(listener);
481 }
482 EXPORT_SYMBOL_GPL(vsock_pending_work);
483 
484 /**** SOCKET OPERATIONS ****/
485 
486 static int __vsock_bind_stream(struct vsock_sock *vsk,
487 			       struct sockaddr_vm *addr)
488 {
489 	static u32 port = LAST_RESERVED_PORT + 1;
490 	struct sockaddr_vm new_addr;
491 
492 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
493 
494 	if (addr->svm_port == VMADDR_PORT_ANY) {
495 		bool found = false;
496 		unsigned int i;
497 
498 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
499 			if (port <= LAST_RESERVED_PORT)
500 				port = LAST_RESERVED_PORT + 1;
501 
502 			new_addr.svm_port = port++;
503 
504 			if (!__vsock_find_bound_socket(&new_addr)) {
505 				found = true;
506 				break;
507 			}
508 		}
509 
510 		if (!found)
511 			return -EADDRNOTAVAIL;
512 	} else {
513 		/* If port is in reserved range, ensure caller
514 		 * has necessary privileges.
515 		 */
516 		if (addr->svm_port <= LAST_RESERVED_PORT &&
517 		    !capable(CAP_NET_BIND_SERVICE)) {
518 			return -EACCES;
519 		}
520 
521 		if (__vsock_find_bound_socket(&new_addr))
522 			return -EADDRINUSE;
523 	}
524 
525 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
526 
527 	/* Remove stream sockets from the unbound list and add them to the hash
528 	 * table for easy lookup by its address.  The unbound list is simply an
529 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
530 	 */
531 	__vsock_remove_bound(vsk);
532 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
533 
534 	return 0;
535 }
536 
537 static int __vsock_bind_dgram(struct vsock_sock *vsk,
538 			      struct sockaddr_vm *addr)
539 {
540 	return transport->dgram_bind(vsk, addr);
541 }
542 
543 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
544 {
545 	struct vsock_sock *vsk = vsock_sk(sk);
546 	u32 cid;
547 	int retval;
548 
549 	/* First ensure this socket isn't already bound. */
550 	if (vsock_addr_bound(&vsk->local_addr))
551 		return -EINVAL;
552 
553 	/* Now bind to the provided address or select appropriate values if
554 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
555 	 * like AF_INET prevents binding to a non-local IP address (in most
556 	 * cases), we only allow binding to the local CID.
557 	 */
558 	cid = transport->get_local_cid();
559 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
560 		return -EADDRNOTAVAIL;
561 
562 	switch (sk->sk_socket->type) {
563 	case SOCK_STREAM:
564 		spin_lock_bh(&vsock_table_lock);
565 		retval = __vsock_bind_stream(vsk, addr);
566 		spin_unlock_bh(&vsock_table_lock);
567 		break;
568 
569 	case SOCK_DGRAM:
570 		retval = __vsock_bind_dgram(vsk, addr);
571 		break;
572 
573 	default:
574 		retval = -EINVAL;
575 		break;
576 	}
577 
578 	return retval;
579 }
580 
581 struct sock *__vsock_create(struct net *net,
582 			    struct socket *sock,
583 			    struct sock *parent,
584 			    gfp_t priority,
585 			    unsigned short type)
586 {
587 	struct sock *sk;
588 	struct vsock_sock *psk;
589 	struct vsock_sock *vsk;
590 
591 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
592 	if (!sk)
593 		return NULL;
594 
595 	sock_init_data(sock, sk);
596 
597 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
598 	 * non-NULL. We make sure that our sockets always have a type by
599 	 * setting it here if needed.
600 	 */
601 	if (!sock)
602 		sk->sk_type = type;
603 
604 	vsk = vsock_sk(sk);
605 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
606 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
607 
608 	sk->sk_destruct = vsock_sk_destruct;
609 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
610 	sk->sk_state = 0;
611 	sock_reset_flag(sk, SOCK_DONE);
612 
613 	INIT_LIST_HEAD(&vsk->bound_table);
614 	INIT_LIST_HEAD(&vsk->connected_table);
615 	vsk->listener = NULL;
616 	INIT_LIST_HEAD(&vsk->pending_links);
617 	INIT_LIST_HEAD(&vsk->accept_queue);
618 	vsk->rejected = false;
619 	vsk->sent_request = false;
620 	vsk->ignore_connecting_rst = false;
621 	vsk->peer_shutdown = 0;
622 
623 	psk = parent ? vsock_sk(parent) : NULL;
624 	if (parent) {
625 		vsk->trusted = psk->trusted;
626 		vsk->owner = get_cred(psk->owner);
627 		vsk->connect_timeout = psk->connect_timeout;
628 	} else {
629 		vsk->trusted = capable(CAP_NET_ADMIN);
630 		vsk->owner = get_current_cred();
631 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
632 	}
633 
634 	if (transport->init(vsk, psk) < 0) {
635 		sk_free(sk);
636 		return NULL;
637 	}
638 
639 	if (sock)
640 		vsock_insert_unbound(vsk);
641 
642 	return sk;
643 }
644 EXPORT_SYMBOL_GPL(__vsock_create);
645 
646 static void __vsock_release(struct sock *sk)
647 {
648 	if (sk) {
649 		struct sk_buff *skb;
650 		struct sock *pending;
651 		struct vsock_sock *vsk;
652 
653 		vsk = vsock_sk(sk);
654 		pending = NULL;	/* Compiler warning. */
655 
656 		if (vsock_in_bound_table(vsk))
657 			vsock_remove_bound(vsk);
658 
659 		if (vsock_in_connected_table(vsk))
660 			vsock_remove_connected(vsk);
661 
662 		transport->release(vsk);
663 
664 		lock_sock(sk);
665 		sock_orphan(sk);
666 		sk->sk_shutdown = SHUTDOWN_MASK;
667 
668 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
669 			kfree_skb(skb);
670 
671 		/* Clean up any sockets that never were accepted. */
672 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
673 			__vsock_release(pending);
674 			sock_put(pending);
675 		}
676 
677 		release_sock(sk);
678 		sock_put(sk);
679 	}
680 }
681 
682 static void vsock_sk_destruct(struct sock *sk)
683 {
684 	struct vsock_sock *vsk = vsock_sk(sk);
685 
686 	transport->destruct(vsk);
687 
688 	/* When clearing these addresses, there's no need to set the family and
689 	 * possibly register the address family with the kernel.
690 	 */
691 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
692 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
693 
694 	put_cred(vsk->owner);
695 }
696 
697 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
698 {
699 	int err;
700 
701 	err = sock_queue_rcv_skb(sk, skb);
702 	if (err)
703 		kfree_skb(skb);
704 
705 	return err;
706 }
707 
708 s64 vsock_stream_has_data(struct vsock_sock *vsk)
709 {
710 	return transport->stream_has_data(vsk);
711 }
712 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
713 
714 s64 vsock_stream_has_space(struct vsock_sock *vsk)
715 {
716 	return transport->stream_has_space(vsk);
717 }
718 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
719 
720 static int vsock_release(struct socket *sock)
721 {
722 	__vsock_release(sock->sk);
723 	sock->sk = NULL;
724 	sock->state = SS_FREE;
725 
726 	return 0;
727 }
728 
729 static int
730 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
731 {
732 	int err;
733 	struct sock *sk;
734 	struct sockaddr_vm *vm_addr;
735 
736 	sk = sock->sk;
737 
738 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
739 		return -EINVAL;
740 
741 	lock_sock(sk);
742 	err = __vsock_bind(sk, vm_addr);
743 	release_sock(sk);
744 
745 	return err;
746 }
747 
748 static int vsock_getname(struct socket *sock,
749 			 struct sockaddr *addr, int *addr_len, int peer)
750 {
751 	int err;
752 	struct sock *sk;
753 	struct vsock_sock *vsk;
754 	struct sockaddr_vm *vm_addr;
755 
756 	sk = sock->sk;
757 	vsk = vsock_sk(sk);
758 	err = 0;
759 
760 	lock_sock(sk);
761 
762 	if (peer) {
763 		if (sock->state != SS_CONNECTED) {
764 			err = -ENOTCONN;
765 			goto out;
766 		}
767 		vm_addr = &vsk->remote_addr;
768 	} else {
769 		vm_addr = &vsk->local_addr;
770 	}
771 
772 	if (!vm_addr) {
773 		err = -EINVAL;
774 		goto out;
775 	}
776 
777 	/* sys_getsockname() and sys_getpeername() pass us a
778 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
779 	 * that macro is defined in socket.c instead of .h, so we hardcode its
780 	 * value here.
781 	 */
782 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
783 	memcpy(addr, vm_addr, sizeof(*vm_addr));
784 	*addr_len = sizeof(*vm_addr);
785 
786 out:
787 	release_sock(sk);
788 	return err;
789 }
790 
791 static int vsock_shutdown(struct socket *sock, int mode)
792 {
793 	int err;
794 	struct sock *sk;
795 
796 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
797 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
798 	 * here like the other address families do.  Note also that the
799 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
800 	 * which is what we want.
801 	 */
802 	mode++;
803 
804 	if ((mode & ~SHUTDOWN_MASK) || !mode)
805 		return -EINVAL;
806 
807 	/* If this is a STREAM socket and it is not connected then bail out
808 	 * immediately.  If it is a DGRAM socket then we must first kick the
809 	 * socket so that it wakes up from any sleeping calls, for example
810 	 * recv(), and then afterwards return the error.
811 	 */
812 
813 	sk = sock->sk;
814 	if (sock->state == SS_UNCONNECTED) {
815 		err = -ENOTCONN;
816 		if (sk->sk_type == SOCK_STREAM)
817 			return err;
818 	} else {
819 		sock->state = SS_DISCONNECTING;
820 		err = 0;
821 	}
822 
823 	/* Receive and send shutdowns are treated alike. */
824 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
825 	if (mode) {
826 		lock_sock(sk);
827 		sk->sk_shutdown |= mode;
828 		sk->sk_state_change(sk);
829 		release_sock(sk);
830 
831 		if (sk->sk_type == SOCK_STREAM) {
832 			sock_reset_flag(sk, SOCK_DONE);
833 			vsock_send_shutdown(sk, mode);
834 		}
835 	}
836 
837 	return err;
838 }
839 
840 static unsigned int vsock_poll(struct file *file, struct socket *sock,
841 			       poll_table *wait)
842 {
843 	struct sock *sk;
844 	unsigned int mask;
845 	struct vsock_sock *vsk;
846 
847 	sk = sock->sk;
848 	vsk = vsock_sk(sk);
849 
850 	poll_wait(file, sk_sleep(sk), wait);
851 	mask = 0;
852 
853 	if (sk->sk_err)
854 		/* Signify that there has been an error on this socket. */
855 		mask |= POLLERR;
856 
857 	/* INET sockets treat local write shutdown and peer write shutdown as a
858 	 * case of POLLHUP set.
859 	 */
860 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
861 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
862 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
863 		mask |= POLLHUP;
864 	}
865 
866 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
867 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
868 		mask |= POLLRDHUP;
869 	}
870 
871 	if (sock->type == SOCK_DGRAM) {
872 		/* For datagram sockets we can read if there is something in
873 		 * the queue and write as long as the socket isn't shutdown for
874 		 * sending.
875 		 */
876 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
877 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
878 			mask |= POLLIN | POLLRDNORM;
879 		}
880 
881 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
882 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
883 
884 	} else if (sock->type == SOCK_STREAM) {
885 		lock_sock(sk);
886 
887 		/* Listening sockets that have connections in their accept
888 		 * queue can be read.
889 		 */
890 		if (sk->sk_state == SS_LISTEN
891 		    && !vsock_is_accept_queue_empty(sk))
892 			mask |= POLLIN | POLLRDNORM;
893 
894 		/* If there is something in the queue then we can read. */
895 		if (transport->stream_is_active(vsk) &&
896 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
897 			bool data_ready_now = false;
898 			int ret = transport->notify_poll_in(
899 					vsk, 1, &data_ready_now);
900 			if (ret < 0) {
901 				mask |= POLLERR;
902 			} else {
903 				if (data_ready_now)
904 					mask |= POLLIN | POLLRDNORM;
905 
906 			}
907 		}
908 
909 		/* Sockets whose connections have been closed, reset, or
910 		 * terminated should also be considered read, and we check the
911 		 * shutdown flag for that.
912 		 */
913 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
914 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
915 			mask |= POLLIN | POLLRDNORM;
916 		}
917 
918 		/* Connected sockets that can produce data can be written. */
919 		if (sk->sk_state == SS_CONNECTED) {
920 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
921 				bool space_avail_now = false;
922 				int ret = transport->notify_poll_out(
923 						vsk, 1, &space_avail_now);
924 				if (ret < 0) {
925 					mask |= POLLERR;
926 				} else {
927 					if (space_avail_now)
928 						/* Remove POLLWRBAND since INET
929 						 * sockets are not setting it.
930 						 */
931 						mask |= POLLOUT | POLLWRNORM;
932 
933 				}
934 			}
935 		}
936 
937 		/* Simulate INET socket poll behaviors, which sets
938 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
939 		 * but local send is not shutdown.
940 		 */
941 		if (sk->sk_state == SS_UNCONNECTED) {
942 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
943 				mask |= POLLOUT | POLLWRNORM;
944 
945 		}
946 
947 		release_sock(sk);
948 	}
949 
950 	return mask;
951 }
952 
953 static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
954 			       struct msghdr *msg, size_t len)
955 {
956 	int err;
957 	struct sock *sk;
958 	struct vsock_sock *vsk;
959 	struct sockaddr_vm *remote_addr;
960 
961 	if (msg->msg_flags & MSG_OOB)
962 		return -EOPNOTSUPP;
963 
964 	/* For now, MSG_DONTWAIT is always assumed... */
965 	err = 0;
966 	sk = sock->sk;
967 	vsk = vsock_sk(sk);
968 
969 	lock_sock(sk);
970 
971 	err = vsock_auto_bind(vsk);
972 	if (err)
973 		goto out;
974 
975 
976 	/* If the provided message contains an address, use that.  Otherwise
977 	 * fall back on the socket's remote handle (if it has been connected).
978 	 */
979 	if (msg->msg_name &&
980 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
981 			    &remote_addr) == 0) {
982 		/* Ensure this address is of the right type and is a valid
983 		 * destination.
984 		 */
985 
986 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
987 			remote_addr->svm_cid = transport->get_local_cid();
988 
989 		if (!vsock_addr_bound(remote_addr)) {
990 			err = -EINVAL;
991 			goto out;
992 		}
993 	} else if (sock->state == SS_CONNECTED) {
994 		remote_addr = &vsk->remote_addr;
995 
996 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
997 			remote_addr->svm_cid = transport->get_local_cid();
998 
999 		/* XXX Should connect() or this function ensure remote_addr is
1000 		 * bound?
1001 		 */
1002 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1003 			err = -EINVAL;
1004 			goto out;
1005 		}
1006 	} else {
1007 		err = -EINVAL;
1008 		goto out;
1009 	}
1010 
1011 	if (!transport->dgram_allow(remote_addr->svm_cid,
1012 				    remote_addr->svm_port)) {
1013 		err = -EINVAL;
1014 		goto out;
1015 	}
1016 
1017 	err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len);
1018 
1019 out:
1020 	release_sock(sk);
1021 	return err;
1022 }
1023 
1024 static int vsock_dgram_connect(struct socket *sock,
1025 			       struct sockaddr *addr, int addr_len, int flags)
1026 {
1027 	int err;
1028 	struct sock *sk;
1029 	struct vsock_sock *vsk;
1030 	struct sockaddr_vm *remote_addr;
1031 
1032 	sk = sock->sk;
1033 	vsk = vsock_sk(sk);
1034 
1035 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1036 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1037 		lock_sock(sk);
1038 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1039 				VMADDR_PORT_ANY);
1040 		sock->state = SS_UNCONNECTED;
1041 		release_sock(sk);
1042 		return 0;
1043 	} else if (err != 0)
1044 		return -EINVAL;
1045 
1046 	lock_sock(sk);
1047 
1048 	err = vsock_auto_bind(vsk);
1049 	if (err)
1050 		goto out;
1051 
1052 	if (!transport->dgram_allow(remote_addr->svm_cid,
1053 				    remote_addr->svm_port)) {
1054 		err = -EINVAL;
1055 		goto out;
1056 	}
1057 
1058 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1059 	sock->state = SS_CONNECTED;
1060 
1061 out:
1062 	release_sock(sk);
1063 	return err;
1064 }
1065 
1066 static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1067 			       struct msghdr *msg, size_t len, int flags)
1068 {
1069 	return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1070 					flags);
1071 }
1072 
1073 static const struct proto_ops vsock_dgram_ops = {
1074 	.family = PF_VSOCK,
1075 	.owner = THIS_MODULE,
1076 	.release = vsock_release,
1077 	.bind = vsock_bind,
1078 	.connect = vsock_dgram_connect,
1079 	.socketpair = sock_no_socketpair,
1080 	.accept = sock_no_accept,
1081 	.getname = vsock_getname,
1082 	.poll = vsock_poll,
1083 	.ioctl = sock_no_ioctl,
1084 	.listen = sock_no_listen,
1085 	.shutdown = vsock_shutdown,
1086 	.setsockopt = sock_no_setsockopt,
1087 	.getsockopt = sock_no_getsockopt,
1088 	.sendmsg = vsock_dgram_sendmsg,
1089 	.recvmsg = vsock_dgram_recvmsg,
1090 	.mmap = sock_no_mmap,
1091 	.sendpage = sock_no_sendpage,
1092 };
1093 
1094 static void vsock_connect_timeout(struct work_struct *work)
1095 {
1096 	struct sock *sk;
1097 	struct vsock_sock *vsk;
1098 
1099 	vsk = container_of(work, struct vsock_sock, dwork.work);
1100 	sk = sk_vsock(vsk);
1101 
1102 	lock_sock(sk);
1103 	if (sk->sk_state == SS_CONNECTING &&
1104 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1105 		sk->sk_state = SS_UNCONNECTED;
1106 		sk->sk_err = ETIMEDOUT;
1107 		sk->sk_error_report(sk);
1108 	}
1109 	release_sock(sk);
1110 
1111 	sock_put(sk);
1112 }
1113 
1114 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1115 				int addr_len, int flags)
1116 {
1117 	int err;
1118 	struct sock *sk;
1119 	struct vsock_sock *vsk;
1120 	struct sockaddr_vm *remote_addr;
1121 	long timeout;
1122 	DEFINE_WAIT(wait);
1123 
1124 	err = 0;
1125 	sk = sock->sk;
1126 	vsk = vsock_sk(sk);
1127 
1128 	lock_sock(sk);
1129 
1130 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1131 	switch (sock->state) {
1132 	case SS_CONNECTED:
1133 		err = -EISCONN;
1134 		goto out;
1135 	case SS_DISCONNECTING:
1136 		err = -EINVAL;
1137 		goto out;
1138 	case SS_CONNECTING:
1139 		/* This continues on so we can move sock into the SS_CONNECTED
1140 		 * state once the connection has completed (at which point err
1141 		 * will be set to zero also).  Otherwise, we will either wait
1142 		 * for the connection or return -EALREADY should this be a
1143 		 * non-blocking call.
1144 		 */
1145 		err = -EALREADY;
1146 		break;
1147 	default:
1148 		if ((sk->sk_state == SS_LISTEN) ||
1149 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1150 			err = -EINVAL;
1151 			goto out;
1152 		}
1153 
1154 		/* The hypervisor and well-known contexts do not have socket
1155 		 * endpoints.
1156 		 */
1157 		if (!transport->stream_allow(remote_addr->svm_cid,
1158 					     remote_addr->svm_port)) {
1159 			err = -ENETUNREACH;
1160 			goto out;
1161 		}
1162 
1163 		/* Set the remote address that we are connecting to. */
1164 		memcpy(&vsk->remote_addr, remote_addr,
1165 		       sizeof(vsk->remote_addr));
1166 
1167 		err = vsock_auto_bind(vsk);
1168 		if (err)
1169 			goto out;
1170 
1171 		sk->sk_state = SS_CONNECTING;
1172 
1173 		err = transport->connect(vsk);
1174 		if (err < 0)
1175 			goto out;
1176 
1177 		/* Mark sock as connecting and set the error code to in
1178 		 * progress in case this is a non-blocking connect.
1179 		 */
1180 		sock->state = SS_CONNECTING;
1181 		err = -EINPROGRESS;
1182 	}
1183 
1184 	/* The receive path will handle all communication until we are able to
1185 	 * enter the connected state.  Here we wait for the connection to be
1186 	 * completed or a notification of an error.
1187 	 */
1188 	timeout = vsk->connect_timeout;
1189 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1190 
1191 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1192 		if (flags & O_NONBLOCK) {
1193 			/* If we're not going to block, we schedule a timeout
1194 			 * function to generate a timeout on the connection
1195 			 * attempt, in case the peer doesn't respond in a
1196 			 * timely manner. We hold on to the socket until the
1197 			 * timeout fires.
1198 			 */
1199 			sock_hold(sk);
1200 			INIT_DELAYED_WORK(&vsk->dwork,
1201 					  vsock_connect_timeout);
1202 			schedule_delayed_work(&vsk->dwork, timeout);
1203 
1204 			/* Skip ahead to preserve error code set above. */
1205 			goto out_wait;
1206 		}
1207 
1208 		release_sock(sk);
1209 		timeout = schedule_timeout(timeout);
1210 		lock_sock(sk);
1211 
1212 		if (signal_pending(current)) {
1213 			err = sock_intr_errno(timeout);
1214 			goto out_wait_error;
1215 		} else if (timeout == 0) {
1216 			err = -ETIMEDOUT;
1217 			goto out_wait_error;
1218 		}
1219 
1220 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1221 	}
1222 
1223 	if (sk->sk_err) {
1224 		err = -sk->sk_err;
1225 		goto out_wait_error;
1226 	} else
1227 		err = 0;
1228 
1229 out_wait:
1230 	finish_wait(sk_sleep(sk), &wait);
1231 out:
1232 	release_sock(sk);
1233 	return err;
1234 
1235 out_wait_error:
1236 	sk->sk_state = SS_UNCONNECTED;
1237 	sock->state = SS_UNCONNECTED;
1238 	goto out_wait;
1239 }
1240 
1241 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1242 {
1243 	struct sock *listener;
1244 	int err;
1245 	struct sock *connected;
1246 	struct vsock_sock *vconnected;
1247 	long timeout;
1248 	DEFINE_WAIT(wait);
1249 
1250 	err = 0;
1251 	listener = sock->sk;
1252 
1253 	lock_sock(listener);
1254 
1255 	if (sock->type != SOCK_STREAM) {
1256 		err = -EOPNOTSUPP;
1257 		goto out;
1258 	}
1259 
1260 	if (listener->sk_state != SS_LISTEN) {
1261 		err = -EINVAL;
1262 		goto out;
1263 	}
1264 
1265 	/* Wait for children sockets to appear; these are the new sockets
1266 	 * created upon connection establishment.
1267 	 */
1268 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1269 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1270 
1271 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1272 	       listener->sk_err == 0) {
1273 		release_sock(listener);
1274 		timeout = schedule_timeout(timeout);
1275 		lock_sock(listener);
1276 
1277 		if (signal_pending(current)) {
1278 			err = sock_intr_errno(timeout);
1279 			goto out_wait;
1280 		} else if (timeout == 0) {
1281 			err = -EAGAIN;
1282 			goto out_wait;
1283 		}
1284 
1285 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1286 	}
1287 
1288 	if (listener->sk_err)
1289 		err = -listener->sk_err;
1290 
1291 	if (connected) {
1292 		listener->sk_ack_backlog--;
1293 
1294 		lock_sock(connected);
1295 		vconnected = vsock_sk(connected);
1296 
1297 		/* If the listener socket has received an error, then we should
1298 		 * reject this socket and return.  Note that we simply mark the
1299 		 * socket rejected, drop our reference, and let the cleanup
1300 		 * function handle the cleanup; the fact that we found it in
1301 		 * the listener's accept queue guarantees that the cleanup
1302 		 * function hasn't run yet.
1303 		 */
1304 		if (err) {
1305 			vconnected->rejected = true;
1306 			release_sock(connected);
1307 			sock_put(connected);
1308 			goto out_wait;
1309 		}
1310 
1311 		newsock->state = SS_CONNECTED;
1312 		sock_graft(connected, newsock);
1313 		release_sock(connected);
1314 		sock_put(connected);
1315 	}
1316 
1317 out_wait:
1318 	finish_wait(sk_sleep(listener), &wait);
1319 out:
1320 	release_sock(listener);
1321 	return err;
1322 }
1323 
1324 static int vsock_listen(struct socket *sock, int backlog)
1325 {
1326 	int err;
1327 	struct sock *sk;
1328 	struct vsock_sock *vsk;
1329 
1330 	sk = sock->sk;
1331 
1332 	lock_sock(sk);
1333 
1334 	if (sock->type != SOCK_STREAM) {
1335 		err = -EOPNOTSUPP;
1336 		goto out;
1337 	}
1338 
1339 	if (sock->state != SS_UNCONNECTED) {
1340 		err = -EINVAL;
1341 		goto out;
1342 	}
1343 
1344 	vsk = vsock_sk(sk);
1345 
1346 	if (!vsock_addr_bound(&vsk->local_addr)) {
1347 		err = -EINVAL;
1348 		goto out;
1349 	}
1350 
1351 	sk->sk_max_ack_backlog = backlog;
1352 	sk->sk_state = SS_LISTEN;
1353 
1354 	err = 0;
1355 
1356 out:
1357 	release_sock(sk);
1358 	return err;
1359 }
1360 
1361 static int vsock_stream_setsockopt(struct socket *sock,
1362 				   int level,
1363 				   int optname,
1364 				   char __user *optval,
1365 				   unsigned int optlen)
1366 {
1367 	int err;
1368 	struct sock *sk;
1369 	struct vsock_sock *vsk;
1370 	u64 val;
1371 
1372 	if (level != AF_VSOCK)
1373 		return -ENOPROTOOPT;
1374 
1375 #define COPY_IN(_v)                                       \
1376 	do {						  \
1377 		if (optlen < sizeof(_v)) {		  \
1378 			err = -EINVAL;			  \
1379 			goto exit;			  \
1380 		}					  \
1381 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1382 			err = -EFAULT;					\
1383 			goto exit;					\
1384 		}							\
1385 	} while (0)
1386 
1387 	err = 0;
1388 	sk = sock->sk;
1389 	vsk = vsock_sk(sk);
1390 
1391 	lock_sock(sk);
1392 
1393 	switch (optname) {
1394 	case SO_VM_SOCKETS_BUFFER_SIZE:
1395 		COPY_IN(val);
1396 		transport->set_buffer_size(vsk, val);
1397 		break;
1398 
1399 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1400 		COPY_IN(val);
1401 		transport->set_max_buffer_size(vsk, val);
1402 		break;
1403 
1404 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1405 		COPY_IN(val);
1406 		transport->set_min_buffer_size(vsk, val);
1407 		break;
1408 
1409 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1410 		struct timeval tv;
1411 		COPY_IN(tv);
1412 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1413 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1414 			vsk->connect_timeout = tv.tv_sec * HZ +
1415 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1416 			if (vsk->connect_timeout == 0)
1417 				vsk->connect_timeout =
1418 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1419 
1420 		} else {
1421 			err = -ERANGE;
1422 		}
1423 		break;
1424 	}
1425 
1426 	default:
1427 		err = -ENOPROTOOPT;
1428 		break;
1429 	}
1430 
1431 #undef COPY_IN
1432 
1433 exit:
1434 	release_sock(sk);
1435 	return err;
1436 }
1437 
1438 static int vsock_stream_getsockopt(struct socket *sock,
1439 				   int level, int optname,
1440 				   char __user *optval,
1441 				   int __user *optlen)
1442 {
1443 	int err;
1444 	int len;
1445 	struct sock *sk;
1446 	struct vsock_sock *vsk;
1447 	u64 val;
1448 
1449 	if (level != AF_VSOCK)
1450 		return -ENOPROTOOPT;
1451 
1452 	err = get_user(len, optlen);
1453 	if (err != 0)
1454 		return err;
1455 
1456 #define COPY_OUT(_v)                            \
1457 	do {					\
1458 		if (len < sizeof(_v))		\
1459 			return -EINVAL;		\
1460 						\
1461 		len = sizeof(_v);		\
1462 		if (copy_to_user(optval, &_v, len) != 0)	\
1463 			return -EFAULT;				\
1464 								\
1465 	} while (0)
1466 
1467 	err = 0;
1468 	sk = sock->sk;
1469 	vsk = vsock_sk(sk);
1470 
1471 	switch (optname) {
1472 	case SO_VM_SOCKETS_BUFFER_SIZE:
1473 		val = transport->get_buffer_size(vsk);
1474 		COPY_OUT(val);
1475 		break;
1476 
1477 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1478 		val = transport->get_max_buffer_size(vsk);
1479 		COPY_OUT(val);
1480 		break;
1481 
1482 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1483 		val = transport->get_min_buffer_size(vsk);
1484 		COPY_OUT(val);
1485 		break;
1486 
1487 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1488 		struct timeval tv;
1489 		tv.tv_sec = vsk->connect_timeout / HZ;
1490 		tv.tv_usec =
1491 		    (vsk->connect_timeout -
1492 		     tv.tv_sec * HZ) * (1000000 / HZ);
1493 		COPY_OUT(tv);
1494 		break;
1495 	}
1496 	default:
1497 		return -ENOPROTOOPT;
1498 	}
1499 
1500 	err = put_user(len, optlen);
1501 	if (err != 0)
1502 		return -EFAULT;
1503 
1504 #undef COPY_OUT
1505 
1506 	return 0;
1507 }
1508 
1509 static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1510 				struct msghdr *msg, size_t len)
1511 {
1512 	struct sock *sk;
1513 	struct vsock_sock *vsk;
1514 	ssize_t total_written;
1515 	long timeout;
1516 	int err;
1517 	struct vsock_transport_send_notify_data send_data;
1518 
1519 	DEFINE_WAIT(wait);
1520 
1521 	sk = sock->sk;
1522 	vsk = vsock_sk(sk);
1523 	total_written = 0;
1524 	err = 0;
1525 
1526 	if (msg->msg_flags & MSG_OOB)
1527 		return -EOPNOTSUPP;
1528 
1529 	lock_sock(sk);
1530 
1531 	/* Callers should not provide a destination with stream sockets. */
1532 	if (msg->msg_namelen) {
1533 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1534 		goto out;
1535 	}
1536 
1537 	/* Send data only if both sides are not shutdown in the direction. */
1538 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1539 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1540 		err = -EPIPE;
1541 		goto out;
1542 	}
1543 
1544 	if (sk->sk_state != SS_CONNECTED ||
1545 	    !vsock_addr_bound(&vsk->local_addr)) {
1546 		err = -ENOTCONN;
1547 		goto out;
1548 	}
1549 
1550 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1551 		err = -EDESTADDRREQ;
1552 		goto out;
1553 	}
1554 
1555 	/* Wait for room in the produce queue to enqueue our user's data. */
1556 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1557 
1558 	err = transport->notify_send_init(vsk, &send_data);
1559 	if (err < 0)
1560 		goto out;
1561 
1562 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1563 
1564 	while (total_written < len) {
1565 		ssize_t written;
1566 
1567 		while (vsock_stream_has_space(vsk) == 0 &&
1568 		       sk->sk_err == 0 &&
1569 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1570 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1571 
1572 			/* Don't wait for non-blocking sockets. */
1573 			if (timeout == 0) {
1574 				err = -EAGAIN;
1575 				goto out_wait;
1576 			}
1577 
1578 			err = transport->notify_send_pre_block(vsk, &send_data);
1579 			if (err < 0)
1580 				goto out_wait;
1581 
1582 			release_sock(sk);
1583 			timeout = schedule_timeout(timeout);
1584 			lock_sock(sk);
1585 			if (signal_pending(current)) {
1586 				err = sock_intr_errno(timeout);
1587 				goto out_wait;
1588 			} else if (timeout == 0) {
1589 				err = -EAGAIN;
1590 				goto out_wait;
1591 			}
1592 
1593 			prepare_to_wait(sk_sleep(sk), &wait,
1594 					TASK_INTERRUPTIBLE);
1595 		}
1596 
1597 		/* These checks occur both as part of and after the loop
1598 		 * conditional since we need to check before and after
1599 		 * sleeping.
1600 		 */
1601 		if (sk->sk_err) {
1602 			err = -sk->sk_err;
1603 			goto out_wait;
1604 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1605 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1606 			err = -EPIPE;
1607 			goto out_wait;
1608 		}
1609 
1610 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1611 		if (err < 0)
1612 			goto out_wait;
1613 
1614 		/* Note that enqueue will only write as many bytes as are free
1615 		 * in the produce queue, so we don't need to ensure len is
1616 		 * smaller than the queue size.  It is the caller's
1617 		 * responsibility to check how many bytes we were able to send.
1618 		 */
1619 
1620 		written = transport->stream_enqueue(
1621 				vsk, msg->msg_iov,
1622 				len - total_written);
1623 		if (written < 0) {
1624 			err = -ENOMEM;
1625 			goto out_wait;
1626 		}
1627 
1628 		total_written += written;
1629 
1630 		err = transport->notify_send_post_enqueue(
1631 				vsk, written, &send_data);
1632 		if (err < 0)
1633 			goto out_wait;
1634 
1635 	}
1636 
1637 out_wait:
1638 	if (total_written > 0)
1639 		err = total_written;
1640 	finish_wait(sk_sleep(sk), &wait);
1641 out:
1642 	release_sock(sk);
1643 	return err;
1644 }
1645 
1646 
1647 static int
1648 vsock_stream_recvmsg(struct kiocb *kiocb,
1649 		     struct socket *sock,
1650 		     struct msghdr *msg, size_t len, int flags)
1651 {
1652 	struct sock *sk;
1653 	struct vsock_sock *vsk;
1654 	int err;
1655 	size_t target;
1656 	ssize_t copied;
1657 	long timeout;
1658 	struct vsock_transport_recv_notify_data recv_data;
1659 
1660 	DEFINE_WAIT(wait);
1661 
1662 	sk = sock->sk;
1663 	vsk = vsock_sk(sk);
1664 	err = 0;
1665 
1666 	msg->msg_namelen = 0;
1667 
1668 	lock_sock(sk);
1669 
1670 	if (sk->sk_state != SS_CONNECTED) {
1671 		/* Recvmsg is supposed to return 0 if a peer performs an
1672 		 * orderly shutdown. Differentiate between that case and when a
1673 		 * peer has not connected or a local shutdown occured with the
1674 		 * SOCK_DONE flag.
1675 		 */
1676 		if (sock_flag(sk, SOCK_DONE))
1677 			err = 0;
1678 		else
1679 			err = -ENOTCONN;
1680 
1681 		goto out;
1682 	}
1683 
1684 	if (flags & MSG_OOB) {
1685 		err = -EOPNOTSUPP;
1686 		goto out;
1687 	}
1688 
1689 	/* We don't check peer_shutdown flag here since peer may actually shut
1690 	 * down, but there can be data in the queue that a local socket can
1691 	 * receive.
1692 	 */
1693 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1694 		err = 0;
1695 		goto out;
1696 	}
1697 
1698 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1699 	 * is not an error.  We may as well bail out now.
1700 	 */
1701 	if (!len) {
1702 		err = 0;
1703 		goto out;
1704 	}
1705 
1706 	/* We must not copy less than target bytes into the user's buffer
1707 	 * before returning successfully, so we wait for the consume queue to
1708 	 * have that much data to consume before dequeueing.  Note that this
1709 	 * makes it impossible to handle cases where target is greater than the
1710 	 * queue size.
1711 	 */
1712 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1713 	if (target >= transport->stream_rcvhiwat(vsk)) {
1714 		err = -ENOMEM;
1715 		goto out;
1716 	}
1717 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1718 	copied = 0;
1719 
1720 	err = transport->notify_recv_init(vsk, target, &recv_data);
1721 	if (err < 0)
1722 		goto out;
1723 
1724 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1725 
1726 	while (1) {
1727 		s64 ready = vsock_stream_has_data(vsk);
1728 
1729 		if (ready < 0) {
1730 			/* Invalid queue pair content. XXX This should be
1731 			 * changed to a connection reset in a later change.
1732 			 */
1733 
1734 			err = -ENOMEM;
1735 			goto out_wait;
1736 		} else if (ready > 0) {
1737 			ssize_t read;
1738 
1739 			err = transport->notify_recv_pre_dequeue(
1740 					vsk, target, &recv_data);
1741 			if (err < 0)
1742 				break;
1743 
1744 			read = transport->stream_dequeue(
1745 					vsk, msg->msg_iov,
1746 					len - copied, flags);
1747 			if (read < 0) {
1748 				err = -ENOMEM;
1749 				break;
1750 			}
1751 
1752 			copied += read;
1753 
1754 			err = transport->notify_recv_post_dequeue(
1755 					vsk, target, read,
1756 					!(flags & MSG_PEEK), &recv_data);
1757 			if (err < 0)
1758 				goto out_wait;
1759 
1760 			if (read >= target || flags & MSG_PEEK)
1761 				break;
1762 
1763 			target -= read;
1764 		} else {
1765 			if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1766 			    || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1767 				break;
1768 			}
1769 			/* Don't wait for non-blocking sockets. */
1770 			if (timeout == 0) {
1771 				err = -EAGAIN;
1772 				break;
1773 			}
1774 
1775 			err = transport->notify_recv_pre_block(
1776 					vsk, target, &recv_data);
1777 			if (err < 0)
1778 				break;
1779 
1780 			release_sock(sk);
1781 			timeout = schedule_timeout(timeout);
1782 			lock_sock(sk);
1783 
1784 			if (signal_pending(current)) {
1785 				err = sock_intr_errno(timeout);
1786 				break;
1787 			} else if (timeout == 0) {
1788 				err = -EAGAIN;
1789 				break;
1790 			}
1791 
1792 			prepare_to_wait(sk_sleep(sk), &wait,
1793 					TASK_INTERRUPTIBLE);
1794 		}
1795 	}
1796 
1797 	if (sk->sk_err)
1798 		err = -sk->sk_err;
1799 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1800 		err = 0;
1801 
1802 	if (copied > 0) {
1803 		/* We only do these additional bookkeeping/notification steps
1804 		 * if we actually copied something out of the queue pair
1805 		 * instead of just peeking ahead.
1806 		 */
1807 
1808 		if (!(flags & MSG_PEEK)) {
1809 			/* If the other side has shutdown for sending and there
1810 			 * is nothing more to read, then modify the socket
1811 			 * state.
1812 			 */
1813 			if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1814 				if (vsock_stream_has_data(vsk) <= 0) {
1815 					sk->sk_state = SS_UNCONNECTED;
1816 					sock_set_flag(sk, SOCK_DONE);
1817 					sk->sk_state_change(sk);
1818 				}
1819 			}
1820 		}
1821 		err = copied;
1822 	}
1823 
1824 out_wait:
1825 	finish_wait(sk_sleep(sk), &wait);
1826 out:
1827 	release_sock(sk);
1828 	return err;
1829 }
1830 
1831 static const struct proto_ops vsock_stream_ops = {
1832 	.family = PF_VSOCK,
1833 	.owner = THIS_MODULE,
1834 	.release = vsock_release,
1835 	.bind = vsock_bind,
1836 	.connect = vsock_stream_connect,
1837 	.socketpair = sock_no_socketpair,
1838 	.accept = vsock_accept,
1839 	.getname = vsock_getname,
1840 	.poll = vsock_poll,
1841 	.ioctl = sock_no_ioctl,
1842 	.listen = vsock_listen,
1843 	.shutdown = vsock_shutdown,
1844 	.setsockopt = vsock_stream_setsockopt,
1845 	.getsockopt = vsock_stream_getsockopt,
1846 	.sendmsg = vsock_stream_sendmsg,
1847 	.recvmsg = vsock_stream_recvmsg,
1848 	.mmap = sock_no_mmap,
1849 	.sendpage = sock_no_sendpage,
1850 };
1851 
1852 static int vsock_create(struct net *net, struct socket *sock,
1853 			int protocol, int kern)
1854 {
1855 	if (!sock)
1856 		return -EINVAL;
1857 
1858 	if (protocol && protocol != PF_VSOCK)
1859 		return -EPROTONOSUPPORT;
1860 
1861 	switch (sock->type) {
1862 	case SOCK_DGRAM:
1863 		sock->ops = &vsock_dgram_ops;
1864 		break;
1865 	case SOCK_STREAM:
1866 		sock->ops = &vsock_stream_ops;
1867 		break;
1868 	default:
1869 		return -ESOCKTNOSUPPORT;
1870 	}
1871 
1872 	sock->state = SS_UNCONNECTED;
1873 
1874 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1875 }
1876 
1877 static const struct net_proto_family vsock_family_ops = {
1878 	.family = AF_VSOCK,
1879 	.create = vsock_create,
1880 	.owner = THIS_MODULE,
1881 };
1882 
1883 static long vsock_dev_do_ioctl(struct file *filp,
1884 			       unsigned int cmd, void __user *ptr)
1885 {
1886 	u32 __user *p = ptr;
1887 	int retval = 0;
1888 
1889 	switch (cmd) {
1890 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1891 		if (put_user(transport->get_local_cid(), p) != 0)
1892 			retval = -EFAULT;
1893 		break;
1894 
1895 	default:
1896 		pr_err("Unknown ioctl %d\n", cmd);
1897 		retval = -EINVAL;
1898 	}
1899 
1900 	return retval;
1901 }
1902 
1903 static long vsock_dev_ioctl(struct file *filp,
1904 			    unsigned int cmd, unsigned long arg)
1905 {
1906 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1907 }
1908 
1909 #ifdef CONFIG_COMPAT
1910 static long vsock_dev_compat_ioctl(struct file *filp,
1911 				   unsigned int cmd, unsigned long arg)
1912 {
1913 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1914 }
1915 #endif
1916 
1917 static const struct file_operations vsock_device_ops = {
1918 	.owner		= THIS_MODULE,
1919 	.unlocked_ioctl	= vsock_dev_ioctl,
1920 #ifdef CONFIG_COMPAT
1921 	.compat_ioctl	= vsock_dev_compat_ioctl,
1922 #endif
1923 	.open		= nonseekable_open,
1924 };
1925 
1926 static struct miscdevice vsock_device = {
1927 	.name		= "vsock",
1928 	.fops		= &vsock_device_ops,
1929 };
1930 
1931 static int __vsock_core_init(void)
1932 {
1933 	int err;
1934 
1935 	vsock_init_tables();
1936 
1937 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1938 	err = misc_register(&vsock_device);
1939 	if (err) {
1940 		pr_err("Failed to register misc device\n");
1941 		return -ENOENT;
1942 	}
1943 
1944 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1945 	if (err) {
1946 		pr_err("Cannot register vsock protocol\n");
1947 		goto err_misc_deregister;
1948 	}
1949 
1950 	err = sock_register(&vsock_family_ops);
1951 	if (err) {
1952 		pr_err("could not register af_vsock (%d) address family: %d\n",
1953 		       AF_VSOCK, err);
1954 		goto err_unregister_proto;
1955 	}
1956 
1957 	return 0;
1958 
1959 err_unregister_proto:
1960 	proto_unregister(&vsock_proto);
1961 err_misc_deregister:
1962 	misc_deregister(&vsock_device);
1963 	return err;
1964 }
1965 
1966 int vsock_core_init(const struct vsock_transport *t)
1967 {
1968 	int retval = mutex_lock_interruptible(&vsock_register_mutex);
1969 	if (retval)
1970 		return retval;
1971 
1972 	if (transport) {
1973 		retval = -EBUSY;
1974 		goto out;
1975 	}
1976 
1977 	transport = t;
1978 	retval = __vsock_core_init();
1979 	if (retval)
1980 		transport = NULL;
1981 
1982 out:
1983 	mutex_unlock(&vsock_register_mutex);
1984 	return retval;
1985 }
1986 EXPORT_SYMBOL_GPL(vsock_core_init);
1987 
1988 void vsock_core_exit(void)
1989 {
1990 	mutex_lock(&vsock_register_mutex);
1991 
1992 	misc_deregister(&vsock_device);
1993 	sock_unregister(AF_VSOCK);
1994 	proto_unregister(&vsock_proto);
1995 
1996 	/* We do not want the assignment below re-ordered. */
1997 	mb();
1998 	transport = NULL;
1999 
2000 	mutex_unlock(&vsock_register_mutex);
2001 }
2002 EXPORT_SYMBOL_GPL(vsock_core_exit);
2003 
2004 MODULE_AUTHOR("VMware, Inc.");
2005 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2006 MODULE_VERSION("1.0.0.0-k");
2007 MODULE_LICENSE("GPL v2");
2008