1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the VSOCK_SS_LISTEN state. When a 40 * connection request is received (the second kind of socket mentioned above), 41 * we create a new socket and refer to it as a pending socket. These pending 42 * sockets are placed on the pending connection list of the listener socket. 43 * When future packets are received for the address the listener socket is 44 * bound to, we check if the source of the packet is from one that has an 45 * existing pending connection. If it does, we process the packet for the 46 * pending socket. When that socket reaches the connected state, it is removed 47 * from the listener socket's pending list and enqueued in the listener 48 * socket's accept queue. Callers of accept(2) will accept connected sockets 49 * from the listener socket's accept queue. If the socket cannot be accepted 50 * for some reason then it is marked rejected. Once the connection is 51 * accepted, it is owned by the user process and the responsibility for cleanup 52 * falls with that user process. 53 * 54 * - It is possible that these pending sockets will never reach the connected 55 * state; in fact, we may never receive another packet after the connection 56 * request. Because of this, we must schedule a cleanup function to run in the 57 * future, after some amount of time passes where a connection should have been 58 * established. This function ensures that the socket is off all lists so it 59 * cannot be retrieved, then drops all references to the socket so it is cleaned 60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 61 * function will also cleanup rejected sockets, those that reach the connected 62 * state but leave it before they have been accepted. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 */ 78 79 #include <linux/types.h> 80 #include <linux/bitops.h> 81 #include <linux/cred.h> 82 #include <linux/init.h> 83 #include <linux/io.h> 84 #include <linux/kernel.h> 85 #include <linux/kmod.h> 86 #include <linux/list.h> 87 #include <linux/miscdevice.h> 88 #include <linux/module.h> 89 #include <linux/mutex.h> 90 #include <linux/net.h> 91 #include <linux/poll.h> 92 #include <linux/skbuff.h> 93 #include <linux/smp.h> 94 #include <linux/socket.h> 95 #include <linux/stddef.h> 96 #include <linux/unistd.h> 97 #include <linux/wait.h> 98 #include <linux/workqueue.h> 99 #include <net/sock.h> 100 #include <net/af_vsock.h> 101 102 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 103 static void vsock_sk_destruct(struct sock *sk); 104 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 105 106 /* Protocol family. */ 107 static struct proto vsock_proto = { 108 .name = "AF_VSOCK", 109 .owner = THIS_MODULE, 110 .obj_size = sizeof(struct vsock_sock), 111 }; 112 113 /* The default peer timeout indicates how long we will wait for a peer response 114 * to a control message. 115 */ 116 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 117 118 static const struct vsock_transport *transport; 119 static DEFINE_MUTEX(vsock_register_mutex); 120 121 /**** EXPORTS ****/ 122 123 /* Get the ID of the local context. This is transport dependent. */ 124 125 int vm_sockets_get_local_cid(void) 126 { 127 return transport->get_local_cid(); 128 } 129 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 130 131 /**** UTILS ****/ 132 133 /* Each bound VSocket is stored in the bind hash table and each connected 134 * VSocket is stored in the connected hash table. 135 * 136 * Unbound sockets are all put on the same list attached to the end of the hash 137 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 138 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 139 * represents the list that addr hashes to). 140 * 141 * Specifically, we initialize the vsock_bind_table array to a size of 142 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 143 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 144 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 145 * mods with VSOCK_HASH_SIZE to ensure this. 146 */ 147 #define VSOCK_HASH_SIZE 251 148 #define MAX_PORT_RETRIES 24 149 150 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 151 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 152 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 153 154 /* XXX This can probably be implemented in a better way. */ 155 #define VSOCK_CONN_HASH(src, dst) \ 156 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 157 #define vsock_connected_sockets(src, dst) \ 158 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 159 #define vsock_connected_sockets_vsk(vsk) \ 160 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 161 162 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 163 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 164 static DEFINE_SPINLOCK(vsock_table_lock); 165 166 /* Autobind this socket to the local address if necessary. */ 167 static int vsock_auto_bind(struct vsock_sock *vsk) 168 { 169 struct sock *sk = sk_vsock(vsk); 170 struct sockaddr_vm local_addr; 171 172 if (vsock_addr_bound(&vsk->local_addr)) 173 return 0; 174 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 175 return __vsock_bind(sk, &local_addr); 176 } 177 178 static void vsock_init_tables(void) 179 { 180 int i; 181 182 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 183 INIT_LIST_HEAD(&vsock_bind_table[i]); 184 185 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 186 INIT_LIST_HEAD(&vsock_connected_table[i]); 187 } 188 189 static void __vsock_insert_bound(struct list_head *list, 190 struct vsock_sock *vsk) 191 { 192 sock_hold(&vsk->sk); 193 list_add(&vsk->bound_table, list); 194 } 195 196 static void __vsock_insert_connected(struct list_head *list, 197 struct vsock_sock *vsk) 198 { 199 sock_hold(&vsk->sk); 200 list_add(&vsk->connected_table, list); 201 } 202 203 static void __vsock_remove_bound(struct vsock_sock *vsk) 204 { 205 list_del_init(&vsk->bound_table); 206 sock_put(&vsk->sk); 207 } 208 209 static void __vsock_remove_connected(struct vsock_sock *vsk) 210 { 211 list_del_init(&vsk->connected_table); 212 sock_put(&vsk->sk); 213 } 214 215 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 216 { 217 struct vsock_sock *vsk; 218 219 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 220 if (addr->svm_port == vsk->local_addr.svm_port) 221 return sk_vsock(vsk); 222 223 return NULL; 224 } 225 226 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 227 struct sockaddr_vm *dst) 228 { 229 struct vsock_sock *vsk; 230 231 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 232 connected_table) { 233 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 234 dst->svm_port == vsk->local_addr.svm_port) { 235 return sk_vsock(vsk); 236 } 237 } 238 239 return NULL; 240 } 241 242 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 243 { 244 return !list_empty(&vsk->bound_table); 245 } 246 247 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 248 { 249 return !list_empty(&vsk->connected_table); 250 } 251 252 static void vsock_insert_unbound(struct vsock_sock *vsk) 253 { 254 spin_lock_bh(&vsock_table_lock); 255 __vsock_insert_bound(vsock_unbound_sockets, vsk); 256 spin_unlock_bh(&vsock_table_lock); 257 } 258 259 void vsock_insert_connected(struct vsock_sock *vsk) 260 { 261 struct list_head *list = vsock_connected_sockets( 262 &vsk->remote_addr, &vsk->local_addr); 263 264 spin_lock_bh(&vsock_table_lock); 265 __vsock_insert_connected(list, vsk); 266 spin_unlock_bh(&vsock_table_lock); 267 } 268 EXPORT_SYMBOL_GPL(vsock_insert_connected); 269 270 void vsock_remove_bound(struct vsock_sock *vsk) 271 { 272 spin_lock_bh(&vsock_table_lock); 273 __vsock_remove_bound(vsk); 274 spin_unlock_bh(&vsock_table_lock); 275 } 276 EXPORT_SYMBOL_GPL(vsock_remove_bound); 277 278 void vsock_remove_connected(struct vsock_sock *vsk) 279 { 280 spin_lock_bh(&vsock_table_lock); 281 __vsock_remove_connected(vsk); 282 spin_unlock_bh(&vsock_table_lock); 283 } 284 EXPORT_SYMBOL_GPL(vsock_remove_connected); 285 286 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 287 { 288 struct sock *sk; 289 290 spin_lock_bh(&vsock_table_lock); 291 sk = __vsock_find_bound_socket(addr); 292 if (sk) 293 sock_hold(sk); 294 295 spin_unlock_bh(&vsock_table_lock); 296 297 return sk; 298 } 299 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 300 301 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 302 struct sockaddr_vm *dst) 303 { 304 struct sock *sk; 305 306 spin_lock_bh(&vsock_table_lock); 307 sk = __vsock_find_connected_socket(src, dst); 308 if (sk) 309 sock_hold(sk); 310 311 spin_unlock_bh(&vsock_table_lock); 312 313 return sk; 314 } 315 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 316 317 static bool vsock_in_bound_table(struct vsock_sock *vsk) 318 { 319 bool ret; 320 321 spin_lock_bh(&vsock_table_lock); 322 ret = __vsock_in_bound_table(vsk); 323 spin_unlock_bh(&vsock_table_lock); 324 325 return ret; 326 } 327 328 static bool vsock_in_connected_table(struct vsock_sock *vsk) 329 { 330 bool ret; 331 332 spin_lock_bh(&vsock_table_lock); 333 ret = __vsock_in_connected_table(vsk); 334 spin_unlock_bh(&vsock_table_lock); 335 336 return ret; 337 } 338 339 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 340 { 341 int i; 342 343 spin_lock_bh(&vsock_table_lock); 344 345 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 346 struct vsock_sock *vsk; 347 list_for_each_entry(vsk, &vsock_connected_table[i], 348 connected_table) 349 fn(sk_vsock(vsk)); 350 } 351 352 spin_unlock_bh(&vsock_table_lock); 353 } 354 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 355 356 void vsock_add_pending(struct sock *listener, struct sock *pending) 357 { 358 struct vsock_sock *vlistener; 359 struct vsock_sock *vpending; 360 361 vlistener = vsock_sk(listener); 362 vpending = vsock_sk(pending); 363 364 sock_hold(pending); 365 sock_hold(listener); 366 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 367 } 368 EXPORT_SYMBOL_GPL(vsock_add_pending); 369 370 void vsock_remove_pending(struct sock *listener, struct sock *pending) 371 { 372 struct vsock_sock *vpending = vsock_sk(pending); 373 374 list_del_init(&vpending->pending_links); 375 sock_put(listener); 376 sock_put(pending); 377 } 378 EXPORT_SYMBOL_GPL(vsock_remove_pending); 379 380 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 381 { 382 struct vsock_sock *vlistener; 383 struct vsock_sock *vconnected; 384 385 vlistener = vsock_sk(listener); 386 vconnected = vsock_sk(connected); 387 388 sock_hold(connected); 389 sock_hold(listener); 390 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 391 } 392 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 393 394 static struct sock *vsock_dequeue_accept(struct sock *listener) 395 { 396 struct vsock_sock *vlistener; 397 struct vsock_sock *vconnected; 398 399 vlistener = vsock_sk(listener); 400 401 if (list_empty(&vlistener->accept_queue)) 402 return NULL; 403 404 vconnected = list_entry(vlistener->accept_queue.next, 405 struct vsock_sock, accept_queue); 406 407 list_del_init(&vconnected->accept_queue); 408 sock_put(listener); 409 /* The caller will need a reference on the connected socket so we let 410 * it call sock_put(). 411 */ 412 413 return sk_vsock(vconnected); 414 } 415 416 static bool vsock_is_accept_queue_empty(struct sock *sk) 417 { 418 struct vsock_sock *vsk = vsock_sk(sk); 419 return list_empty(&vsk->accept_queue); 420 } 421 422 static bool vsock_is_pending(struct sock *sk) 423 { 424 struct vsock_sock *vsk = vsock_sk(sk); 425 return !list_empty(&vsk->pending_links); 426 } 427 428 static int vsock_send_shutdown(struct sock *sk, int mode) 429 { 430 return transport->shutdown(vsock_sk(sk), mode); 431 } 432 433 void vsock_pending_work(struct work_struct *work) 434 { 435 struct sock *sk; 436 struct sock *listener; 437 struct vsock_sock *vsk; 438 bool cleanup; 439 440 vsk = container_of(work, struct vsock_sock, dwork.work); 441 sk = sk_vsock(vsk); 442 listener = vsk->listener; 443 cleanup = true; 444 445 lock_sock(listener); 446 lock_sock(sk); 447 448 if (vsock_is_pending(sk)) { 449 vsock_remove_pending(listener, sk); 450 } else if (!vsk->rejected) { 451 /* We are not on the pending list and accept() did not reject 452 * us, so we must have been accepted by our user process. We 453 * just need to drop our references to the sockets and be on 454 * our way. 455 */ 456 cleanup = false; 457 goto out; 458 } 459 460 listener->sk_ack_backlog--; 461 462 /* We need to remove ourself from the global connected sockets list so 463 * incoming packets can't find this socket, and to reduce the reference 464 * count. 465 */ 466 if (vsock_in_connected_table(vsk)) 467 vsock_remove_connected(vsk); 468 469 sk->sk_state = SS_FREE; 470 471 out: 472 release_sock(sk); 473 release_sock(listener); 474 if (cleanup) 475 sock_put(sk); 476 477 sock_put(sk); 478 sock_put(listener); 479 } 480 EXPORT_SYMBOL_GPL(vsock_pending_work); 481 482 /**** SOCKET OPERATIONS ****/ 483 484 static int __vsock_bind_stream(struct vsock_sock *vsk, 485 struct sockaddr_vm *addr) 486 { 487 static u32 port = LAST_RESERVED_PORT + 1; 488 struct sockaddr_vm new_addr; 489 490 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 491 492 if (addr->svm_port == VMADDR_PORT_ANY) { 493 bool found = false; 494 unsigned int i; 495 496 for (i = 0; i < MAX_PORT_RETRIES; i++) { 497 if (port <= LAST_RESERVED_PORT) 498 port = LAST_RESERVED_PORT + 1; 499 500 new_addr.svm_port = port++; 501 502 if (!__vsock_find_bound_socket(&new_addr)) { 503 found = true; 504 break; 505 } 506 } 507 508 if (!found) 509 return -EADDRNOTAVAIL; 510 } else { 511 /* If port is in reserved range, ensure caller 512 * has necessary privileges. 513 */ 514 if (addr->svm_port <= LAST_RESERVED_PORT && 515 !capable(CAP_NET_BIND_SERVICE)) { 516 return -EACCES; 517 } 518 519 if (__vsock_find_bound_socket(&new_addr)) 520 return -EADDRINUSE; 521 } 522 523 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 524 525 /* Remove stream sockets from the unbound list and add them to the hash 526 * table for easy lookup by its address. The unbound list is simply an 527 * extra entry at the end of the hash table, a trick used by AF_UNIX. 528 */ 529 __vsock_remove_bound(vsk); 530 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 531 532 return 0; 533 } 534 535 static int __vsock_bind_dgram(struct vsock_sock *vsk, 536 struct sockaddr_vm *addr) 537 { 538 return transport->dgram_bind(vsk, addr); 539 } 540 541 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 542 { 543 struct vsock_sock *vsk = vsock_sk(sk); 544 u32 cid; 545 int retval; 546 547 /* First ensure this socket isn't already bound. */ 548 if (vsock_addr_bound(&vsk->local_addr)) 549 return -EINVAL; 550 551 /* Now bind to the provided address or select appropriate values if 552 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 553 * like AF_INET prevents binding to a non-local IP address (in most 554 * cases), we only allow binding to the local CID. 555 */ 556 cid = transport->get_local_cid(); 557 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 558 return -EADDRNOTAVAIL; 559 560 switch (sk->sk_socket->type) { 561 case SOCK_STREAM: 562 spin_lock_bh(&vsock_table_lock); 563 retval = __vsock_bind_stream(vsk, addr); 564 spin_unlock_bh(&vsock_table_lock); 565 break; 566 567 case SOCK_DGRAM: 568 retval = __vsock_bind_dgram(vsk, addr); 569 break; 570 571 default: 572 retval = -EINVAL; 573 break; 574 } 575 576 return retval; 577 } 578 579 struct sock *__vsock_create(struct net *net, 580 struct socket *sock, 581 struct sock *parent, 582 gfp_t priority, 583 unsigned short type, 584 int kern) 585 { 586 struct sock *sk; 587 struct vsock_sock *psk; 588 struct vsock_sock *vsk; 589 590 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 591 if (!sk) 592 return NULL; 593 594 sock_init_data(sock, sk); 595 596 /* sk->sk_type is normally set in sock_init_data, but only if sock is 597 * non-NULL. We make sure that our sockets always have a type by 598 * setting it here if needed. 599 */ 600 if (!sock) 601 sk->sk_type = type; 602 603 vsk = vsock_sk(sk); 604 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 605 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 606 607 sk->sk_destruct = vsock_sk_destruct; 608 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 609 sk->sk_state = 0; 610 sock_reset_flag(sk, SOCK_DONE); 611 612 INIT_LIST_HEAD(&vsk->bound_table); 613 INIT_LIST_HEAD(&vsk->connected_table); 614 vsk->listener = NULL; 615 INIT_LIST_HEAD(&vsk->pending_links); 616 INIT_LIST_HEAD(&vsk->accept_queue); 617 vsk->rejected = false; 618 vsk->sent_request = false; 619 vsk->ignore_connecting_rst = false; 620 vsk->peer_shutdown = 0; 621 622 psk = parent ? vsock_sk(parent) : NULL; 623 if (parent) { 624 vsk->trusted = psk->trusted; 625 vsk->owner = get_cred(psk->owner); 626 vsk->connect_timeout = psk->connect_timeout; 627 } else { 628 vsk->trusted = capable(CAP_NET_ADMIN); 629 vsk->owner = get_current_cred(); 630 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 631 } 632 633 if (transport->init(vsk, psk) < 0) { 634 sk_free(sk); 635 return NULL; 636 } 637 638 if (sock) 639 vsock_insert_unbound(vsk); 640 641 return sk; 642 } 643 EXPORT_SYMBOL_GPL(__vsock_create); 644 645 static void __vsock_release(struct sock *sk) 646 { 647 if (sk) { 648 struct sk_buff *skb; 649 struct sock *pending; 650 struct vsock_sock *vsk; 651 652 vsk = vsock_sk(sk); 653 pending = NULL; /* Compiler warning. */ 654 655 if (vsock_in_bound_table(vsk)) 656 vsock_remove_bound(vsk); 657 658 if (vsock_in_connected_table(vsk)) 659 vsock_remove_connected(vsk); 660 661 transport->release(vsk); 662 663 lock_sock(sk); 664 sock_orphan(sk); 665 sk->sk_shutdown = SHUTDOWN_MASK; 666 667 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 668 kfree_skb(skb); 669 670 /* Clean up any sockets that never were accepted. */ 671 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 672 __vsock_release(pending); 673 sock_put(pending); 674 } 675 676 release_sock(sk); 677 sock_put(sk); 678 } 679 } 680 681 static void vsock_sk_destruct(struct sock *sk) 682 { 683 struct vsock_sock *vsk = vsock_sk(sk); 684 685 transport->destruct(vsk); 686 687 /* When clearing these addresses, there's no need to set the family and 688 * possibly register the address family with the kernel. 689 */ 690 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 691 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 692 693 put_cred(vsk->owner); 694 } 695 696 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 697 { 698 int err; 699 700 err = sock_queue_rcv_skb(sk, skb); 701 if (err) 702 kfree_skb(skb); 703 704 return err; 705 } 706 707 s64 vsock_stream_has_data(struct vsock_sock *vsk) 708 { 709 return transport->stream_has_data(vsk); 710 } 711 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 712 713 s64 vsock_stream_has_space(struct vsock_sock *vsk) 714 { 715 return transport->stream_has_space(vsk); 716 } 717 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 718 719 static int vsock_release(struct socket *sock) 720 { 721 __vsock_release(sock->sk); 722 sock->sk = NULL; 723 sock->state = SS_FREE; 724 725 return 0; 726 } 727 728 static int 729 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 730 { 731 int err; 732 struct sock *sk; 733 struct sockaddr_vm *vm_addr; 734 735 sk = sock->sk; 736 737 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 738 return -EINVAL; 739 740 lock_sock(sk); 741 err = __vsock_bind(sk, vm_addr); 742 release_sock(sk); 743 744 return err; 745 } 746 747 static int vsock_getname(struct socket *sock, 748 struct sockaddr *addr, int *addr_len, int peer) 749 { 750 int err; 751 struct sock *sk; 752 struct vsock_sock *vsk; 753 struct sockaddr_vm *vm_addr; 754 755 sk = sock->sk; 756 vsk = vsock_sk(sk); 757 err = 0; 758 759 lock_sock(sk); 760 761 if (peer) { 762 if (sock->state != SS_CONNECTED) { 763 err = -ENOTCONN; 764 goto out; 765 } 766 vm_addr = &vsk->remote_addr; 767 } else { 768 vm_addr = &vsk->local_addr; 769 } 770 771 if (!vm_addr) { 772 err = -EINVAL; 773 goto out; 774 } 775 776 /* sys_getsockname() and sys_getpeername() pass us a 777 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 778 * that macro is defined in socket.c instead of .h, so we hardcode its 779 * value here. 780 */ 781 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 782 memcpy(addr, vm_addr, sizeof(*vm_addr)); 783 *addr_len = sizeof(*vm_addr); 784 785 out: 786 release_sock(sk); 787 return err; 788 } 789 790 static int vsock_shutdown(struct socket *sock, int mode) 791 { 792 int err; 793 struct sock *sk; 794 795 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 796 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 797 * here like the other address families do. Note also that the 798 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 799 * which is what we want. 800 */ 801 mode++; 802 803 if ((mode & ~SHUTDOWN_MASK) || !mode) 804 return -EINVAL; 805 806 /* If this is a STREAM socket and it is not connected then bail out 807 * immediately. If it is a DGRAM socket then we must first kick the 808 * socket so that it wakes up from any sleeping calls, for example 809 * recv(), and then afterwards return the error. 810 */ 811 812 sk = sock->sk; 813 if (sock->state == SS_UNCONNECTED) { 814 err = -ENOTCONN; 815 if (sk->sk_type == SOCK_STREAM) 816 return err; 817 } else { 818 sock->state = SS_DISCONNECTING; 819 err = 0; 820 } 821 822 /* Receive and send shutdowns are treated alike. */ 823 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 824 if (mode) { 825 lock_sock(sk); 826 sk->sk_shutdown |= mode; 827 sk->sk_state_change(sk); 828 release_sock(sk); 829 830 if (sk->sk_type == SOCK_STREAM) { 831 sock_reset_flag(sk, SOCK_DONE); 832 vsock_send_shutdown(sk, mode); 833 } 834 } 835 836 return err; 837 } 838 839 static unsigned int vsock_poll(struct file *file, struct socket *sock, 840 poll_table *wait) 841 { 842 struct sock *sk; 843 unsigned int mask; 844 struct vsock_sock *vsk; 845 846 sk = sock->sk; 847 vsk = vsock_sk(sk); 848 849 poll_wait(file, sk_sleep(sk), wait); 850 mask = 0; 851 852 if (sk->sk_err) 853 /* Signify that there has been an error on this socket. */ 854 mask |= POLLERR; 855 856 /* INET sockets treat local write shutdown and peer write shutdown as a 857 * case of POLLHUP set. 858 */ 859 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 860 ((sk->sk_shutdown & SEND_SHUTDOWN) && 861 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 862 mask |= POLLHUP; 863 } 864 865 if (sk->sk_shutdown & RCV_SHUTDOWN || 866 vsk->peer_shutdown & SEND_SHUTDOWN) { 867 mask |= POLLRDHUP; 868 } 869 870 if (sock->type == SOCK_DGRAM) { 871 /* For datagram sockets we can read if there is something in 872 * the queue and write as long as the socket isn't shutdown for 873 * sending. 874 */ 875 if (!skb_queue_empty(&sk->sk_receive_queue) || 876 (sk->sk_shutdown & RCV_SHUTDOWN)) { 877 mask |= POLLIN | POLLRDNORM; 878 } 879 880 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 881 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 882 883 } else if (sock->type == SOCK_STREAM) { 884 lock_sock(sk); 885 886 /* Listening sockets that have connections in their accept 887 * queue can be read. 888 */ 889 if (sk->sk_state == VSOCK_SS_LISTEN 890 && !vsock_is_accept_queue_empty(sk)) 891 mask |= POLLIN | POLLRDNORM; 892 893 /* If there is something in the queue then we can read. */ 894 if (transport->stream_is_active(vsk) && 895 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 896 bool data_ready_now = false; 897 int ret = transport->notify_poll_in( 898 vsk, 1, &data_ready_now); 899 if (ret < 0) { 900 mask |= POLLERR; 901 } else { 902 if (data_ready_now) 903 mask |= POLLIN | POLLRDNORM; 904 905 } 906 } 907 908 /* Sockets whose connections have been closed, reset, or 909 * terminated should also be considered read, and we check the 910 * shutdown flag for that. 911 */ 912 if (sk->sk_shutdown & RCV_SHUTDOWN || 913 vsk->peer_shutdown & SEND_SHUTDOWN) { 914 mask |= POLLIN | POLLRDNORM; 915 } 916 917 /* Connected sockets that can produce data can be written. */ 918 if (sk->sk_state == SS_CONNECTED) { 919 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 920 bool space_avail_now = false; 921 int ret = transport->notify_poll_out( 922 vsk, 1, &space_avail_now); 923 if (ret < 0) { 924 mask |= POLLERR; 925 } else { 926 if (space_avail_now) 927 /* Remove POLLWRBAND since INET 928 * sockets are not setting it. 929 */ 930 mask |= POLLOUT | POLLWRNORM; 931 932 } 933 } 934 } 935 936 /* Simulate INET socket poll behaviors, which sets 937 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 938 * but local send is not shutdown. 939 */ 940 if (sk->sk_state == SS_UNCONNECTED) { 941 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 942 mask |= POLLOUT | POLLWRNORM; 943 944 } 945 946 release_sock(sk); 947 } 948 949 return mask; 950 } 951 952 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 953 size_t len) 954 { 955 int err; 956 struct sock *sk; 957 struct vsock_sock *vsk; 958 struct sockaddr_vm *remote_addr; 959 960 if (msg->msg_flags & MSG_OOB) 961 return -EOPNOTSUPP; 962 963 /* For now, MSG_DONTWAIT is always assumed... */ 964 err = 0; 965 sk = sock->sk; 966 vsk = vsock_sk(sk); 967 968 lock_sock(sk); 969 970 err = vsock_auto_bind(vsk); 971 if (err) 972 goto out; 973 974 975 /* If the provided message contains an address, use that. Otherwise 976 * fall back on the socket's remote handle (if it has been connected). 977 */ 978 if (msg->msg_name && 979 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 980 &remote_addr) == 0) { 981 /* Ensure this address is of the right type and is a valid 982 * destination. 983 */ 984 985 if (remote_addr->svm_cid == VMADDR_CID_ANY) 986 remote_addr->svm_cid = transport->get_local_cid(); 987 988 if (!vsock_addr_bound(remote_addr)) { 989 err = -EINVAL; 990 goto out; 991 } 992 } else if (sock->state == SS_CONNECTED) { 993 remote_addr = &vsk->remote_addr; 994 995 if (remote_addr->svm_cid == VMADDR_CID_ANY) 996 remote_addr->svm_cid = transport->get_local_cid(); 997 998 /* XXX Should connect() or this function ensure remote_addr is 999 * bound? 1000 */ 1001 if (!vsock_addr_bound(&vsk->remote_addr)) { 1002 err = -EINVAL; 1003 goto out; 1004 } 1005 } else { 1006 err = -EINVAL; 1007 goto out; 1008 } 1009 1010 if (!transport->dgram_allow(remote_addr->svm_cid, 1011 remote_addr->svm_port)) { 1012 err = -EINVAL; 1013 goto out; 1014 } 1015 1016 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1017 1018 out: 1019 release_sock(sk); 1020 return err; 1021 } 1022 1023 static int vsock_dgram_connect(struct socket *sock, 1024 struct sockaddr *addr, int addr_len, int flags) 1025 { 1026 int err; 1027 struct sock *sk; 1028 struct vsock_sock *vsk; 1029 struct sockaddr_vm *remote_addr; 1030 1031 sk = sock->sk; 1032 vsk = vsock_sk(sk); 1033 1034 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1035 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1036 lock_sock(sk); 1037 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1038 VMADDR_PORT_ANY); 1039 sock->state = SS_UNCONNECTED; 1040 release_sock(sk); 1041 return 0; 1042 } else if (err != 0) 1043 return -EINVAL; 1044 1045 lock_sock(sk); 1046 1047 err = vsock_auto_bind(vsk); 1048 if (err) 1049 goto out; 1050 1051 if (!transport->dgram_allow(remote_addr->svm_cid, 1052 remote_addr->svm_port)) { 1053 err = -EINVAL; 1054 goto out; 1055 } 1056 1057 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1058 sock->state = SS_CONNECTED; 1059 1060 out: 1061 release_sock(sk); 1062 return err; 1063 } 1064 1065 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1066 size_t len, int flags) 1067 { 1068 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); 1069 } 1070 1071 static const struct proto_ops vsock_dgram_ops = { 1072 .family = PF_VSOCK, 1073 .owner = THIS_MODULE, 1074 .release = vsock_release, 1075 .bind = vsock_bind, 1076 .connect = vsock_dgram_connect, 1077 .socketpair = sock_no_socketpair, 1078 .accept = sock_no_accept, 1079 .getname = vsock_getname, 1080 .poll = vsock_poll, 1081 .ioctl = sock_no_ioctl, 1082 .listen = sock_no_listen, 1083 .shutdown = vsock_shutdown, 1084 .setsockopt = sock_no_setsockopt, 1085 .getsockopt = sock_no_getsockopt, 1086 .sendmsg = vsock_dgram_sendmsg, 1087 .recvmsg = vsock_dgram_recvmsg, 1088 .mmap = sock_no_mmap, 1089 .sendpage = sock_no_sendpage, 1090 }; 1091 1092 static void vsock_connect_timeout(struct work_struct *work) 1093 { 1094 struct sock *sk; 1095 struct vsock_sock *vsk; 1096 1097 vsk = container_of(work, struct vsock_sock, dwork.work); 1098 sk = sk_vsock(vsk); 1099 1100 lock_sock(sk); 1101 if (sk->sk_state == SS_CONNECTING && 1102 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1103 sk->sk_state = SS_UNCONNECTED; 1104 sk->sk_err = ETIMEDOUT; 1105 sk->sk_error_report(sk); 1106 } 1107 release_sock(sk); 1108 1109 sock_put(sk); 1110 } 1111 1112 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1113 int addr_len, int flags) 1114 { 1115 int err; 1116 struct sock *sk; 1117 struct vsock_sock *vsk; 1118 struct sockaddr_vm *remote_addr; 1119 long timeout; 1120 DEFINE_WAIT(wait); 1121 1122 err = 0; 1123 sk = sock->sk; 1124 vsk = vsock_sk(sk); 1125 1126 lock_sock(sk); 1127 1128 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1129 switch (sock->state) { 1130 case SS_CONNECTED: 1131 err = -EISCONN; 1132 goto out; 1133 case SS_DISCONNECTING: 1134 err = -EINVAL; 1135 goto out; 1136 case SS_CONNECTING: 1137 /* This continues on so we can move sock into the SS_CONNECTED 1138 * state once the connection has completed (at which point err 1139 * will be set to zero also). Otherwise, we will either wait 1140 * for the connection or return -EALREADY should this be a 1141 * non-blocking call. 1142 */ 1143 err = -EALREADY; 1144 break; 1145 default: 1146 if ((sk->sk_state == VSOCK_SS_LISTEN) || 1147 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1148 err = -EINVAL; 1149 goto out; 1150 } 1151 1152 /* The hypervisor and well-known contexts do not have socket 1153 * endpoints. 1154 */ 1155 if (!transport->stream_allow(remote_addr->svm_cid, 1156 remote_addr->svm_port)) { 1157 err = -ENETUNREACH; 1158 goto out; 1159 } 1160 1161 /* Set the remote address that we are connecting to. */ 1162 memcpy(&vsk->remote_addr, remote_addr, 1163 sizeof(vsk->remote_addr)); 1164 1165 err = vsock_auto_bind(vsk); 1166 if (err) 1167 goto out; 1168 1169 sk->sk_state = SS_CONNECTING; 1170 1171 err = transport->connect(vsk); 1172 if (err < 0) 1173 goto out; 1174 1175 /* Mark sock as connecting and set the error code to in 1176 * progress in case this is a non-blocking connect. 1177 */ 1178 sock->state = SS_CONNECTING; 1179 err = -EINPROGRESS; 1180 } 1181 1182 /* The receive path will handle all communication until we are able to 1183 * enter the connected state. Here we wait for the connection to be 1184 * completed or a notification of an error. 1185 */ 1186 timeout = vsk->connect_timeout; 1187 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1188 1189 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1190 if (flags & O_NONBLOCK) { 1191 /* If we're not going to block, we schedule a timeout 1192 * function to generate a timeout on the connection 1193 * attempt, in case the peer doesn't respond in a 1194 * timely manner. We hold on to the socket until the 1195 * timeout fires. 1196 */ 1197 sock_hold(sk); 1198 INIT_DELAYED_WORK(&vsk->dwork, 1199 vsock_connect_timeout); 1200 schedule_delayed_work(&vsk->dwork, timeout); 1201 1202 /* Skip ahead to preserve error code set above. */ 1203 goto out_wait; 1204 } 1205 1206 release_sock(sk); 1207 timeout = schedule_timeout(timeout); 1208 lock_sock(sk); 1209 1210 if (signal_pending(current)) { 1211 err = sock_intr_errno(timeout); 1212 sk->sk_state = SS_UNCONNECTED; 1213 sock->state = SS_UNCONNECTED; 1214 goto out_wait; 1215 } else if (timeout == 0) { 1216 err = -ETIMEDOUT; 1217 sk->sk_state = SS_UNCONNECTED; 1218 sock->state = SS_UNCONNECTED; 1219 goto out_wait; 1220 } 1221 1222 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1223 } 1224 1225 if (sk->sk_err) { 1226 err = -sk->sk_err; 1227 sk->sk_state = SS_UNCONNECTED; 1228 sock->state = SS_UNCONNECTED; 1229 } else { 1230 err = 0; 1231 } 1232 1233 out_wait: 1234 finish_wait(sk_sleep(sk), &wait); 1235 out: 1236 release_sock(sk); 1237 return err; 1238 } 1239 1240 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1241 { 1242 struct sock *listener; 1243 int err; 1244 struct sock *connected; 1245 struct vsock_sock *vconnected; 1246 long timeout; 1247 DEFINE_WAIT(wait); 1248 1249 err = 0; 1250 listener = sock->sk; 1251 1252 lock_sock(listener); 1253 1254 if (sock->type != SOCK_STREAM) { 1255 err = -EOPNOTSUPP; 1256 goto out; 1257 } 1258 1259 if (listener->sk_state != VSOCK_SS_LISTEN) { 1260 err = -EINVAL; 1261 goto out; 1262 } 1263 1264 /* Wait for children sockets to appear; these are the new sockets 1265 * created upon connection establishment. 1266 */ 1267 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1268 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1269 1270 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1271 listener->sk_err == 0) { 1272 release_sock(listener); 1273 timeout = schedule_timeout(timeout); 1274 finish_wait(sk_sleep(listener), &wait); 1275 lock_sock(listener); 1276 1277 if (signal_pending(current)) { 1278 err = sock_intr_errno(timeout); 1279 goto out; 1280 } else if (timeout == 0) { 1281 err = -EAGAIN; 1282 goto out; 1283 } 1284 1285 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1286 } 1287 finish_wait(sk_sleep(listener), &wait); 1288 1289 if (listener->sk_err) 1290 err = -listener->sk_err; 1291 1292 if (connected) { 1293 listener->sk_ack_backlog--; 1294 1295 lock_sock(connected); 1296 vconnected = vsock_sk(connected); 1297 1298 /* If the listener socket has received an error, then we should 1299 * reject this socket and return. Note that we simply mark the 1300 * socket rejected, drop our reference, and let the cleanup 1301 * function handle the cleanup; the fact that we found it in 1302 * the listener's accept queue guarantees that the cleanup 1303 * function hasn't run yet. 1304 */ 1305 if (err) { 1306 vconnected->rejected = true; 1307 } else { 1308 newsock->state = SS_CONNECTED; 1309 sock_graft(connected, newsock); 1310 } 1311 1312 release_sock(connected); 1313 sock_put(connected); 1314 } 1315 1316 out: 1317 release_sock(listener); 1318 return err; 1319 } 1320 1321 static int vsock_listen(struct socket *sock, int backlog) 1322 { 1323 int err; 1324 struct sock *sk; 1325 struct vsock_sock *vsk; 1326 1327 sk = sock->sk; 1328 1329 lock_sock(sk); 1330 1331 if (sock->type != SOCK_STREAM) { 1332 err = -EOPNOTSUPP; 1333 goto out; 1334 } 1335 1336 if (sock->state != SS_UNCONNECTED) { 1337 err = -EINVAL; 1338 goto out; 1339 } 1340 1341 vsk = vsock_sk(sk); 1342 1343 if (!vsock_addr_bound(&vsk->local_addr)) { 1344 err = -EINVAL; 1345 goto out; 1346 } 1347 1348 sk->sk_max_ack_backlog = backlog; 1349 sk->sk_state = VSOCK_SS_LISTEN; 1350 1351 err = 0; 1352 1353 out: 1354 release_sock(sk); 1355 return err; 1356 } 1357 1358 static int vsock_stream_setsockopt(struct socket *sock, 1359 int level, 1360 int optname, 1361 char __user *optval, 1362 unsigned int optlen) 1363 { 1364 int err; 1365 struct sock *sk; 1366 struct vsock_sock *vsk; 1367 u64 val; 1368 1369 if (level != AF_VSOCK) 1370 return -ENOPROTOOPT; 1371 1372 #define COPY_IN(_v) \ 1373 do { \ 1374 if (optlen < sizeof(_v)) { \ 1375 err = -EINVAL; \ 1376 goto exit; \ 1377 } \ 1378 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1379 err = -EFAULT; \ 1380 goto exit; \ 1381 } \ 1382 } while (0) 1383 1384 err = 0; 1385 sk = sock->sk; 1386 vsk = vsock_sk(sk); 1387 1388 lock_sock(sk); 1389 1390 switch (optname) { 1391 case SO_VM_SOCKETS_BUFFER_SIZE: 1392 COPY_IN(val); 1393 transport->set_buffer_size(vsk, val); 1394 break; 1395 1396 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1397 COPY_IN(val); 1398 transport->set_max_buffer_size(vsk, val); 1399 break; 1400 1401 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1402 COPY_IN(val); 1403 transport->set_min_buffer_size(vsk, val); 1404 break; 1405 1406 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1407 struct timeval tv; 1408 COPY_IN(tv); 1409 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1410 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1411 vsk->connect_timeout = tv.tv_sec * HZ + 1412 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1413 if (vsk->connect_timeout == 0) 1414 vsk->connect_timeout = 1415 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1416 1417 } else { 1418 err = -ERANGE; 1419 } 1420 break; 1421 } 1422 1423 default: 1424 err = -ENOPROTOOPT; 1425 break; 1426 } 1427 1428 #undef COPY_IN 1429 1430 exit: 1431 release_sock(sk); 1432 return err; 1433 } 1434 1435 static int vsock_stream_getsockopt(struct socket *sock, 1436 int level, int optname, 1437 char __user *optval, 1438 int __user *optlen) 1439 { 1440 int err; 1441 int len; 1442 struct sock *sk; 1443 struct vsock_sock *vsk; 1444 u64 val; 1445 1446 if (level != AF_VSOCK) 1447 return -ENOPROTOOPT; 1448 1449 err = get_user(len, optlen); 1450 if (err != 0) 1451 return err; 1452 1453 #define COPY_OUT(_v) \ 1454 do { \ 1455 if (len < sizeof(_v)) \ 1456 return -EINVAL; \ 1457 \ 1458 len = sizeof(_v); \ 1459 if (copy_to_user(optval, &_v, len) != 0) \ 1460 return -EFAULT; \ 1461 \ 1462 } while (0) 1463 1464 err = 0; 1465 sk = sock->sk; 1466 vsk = vsock_sk(sk); 1467 1468 switch (optname) { 1469 case SO_VM_SOCKETS_BUFFER_SIZE: 1470 val = transport->get_buffer_size(vsk); 1471 COPY_OUT(val); 1472 break; 1473 1474 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1475 val = transport->get_max_buffer_size(vsk); 1476 COPY_OUT(val); 1477 break; 1478 1479 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1480 val = transport->get_min_buffer_size(vsk); 1481 COPY_OUT(val); 1482 break; 1483 1484 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1485 struct timeval tv; 1486 tv.tv_sec = vsk->connect_timeout / HZ; 1487 tv.tv_usec = 1488 (vsk->connect_timeout - 1489 tv.tv_sec * HZ) * (1000000 / HZ); 1490 COPY_OUT(tv); 1491 break; 1492 } 1493 default: 1494 return -ENOPROTOOPT; 1495 } 1496 1497 err = put_user(len, optlen); 1498 if (err != 0) 1499 return -EFAULT; 1500 1501 #undef COPY_OUT 1502 1503 return 0; 1504 } 1505 1506 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, 1507 size_t len) 1508 { 1509 struct sock *sk; 1510 struct vsock_sock *vsk; 1511 ssize_t total_written; 1512 long timeout; 1513 int err; 1514 struct vsock_transport_send_notify_data send_data; 1515 1516 DEFINE_WAIT(wait); 1517 1518 sk = sock->sk; 1519 vsk = vsock_sk(sk); 1520 total_written = 0; 1521 err = 0; 1522 1523 if (msg->msg_flags & MSG_OOB) 1524 return -EOPNOTSUPP; 1525 1526 lock_sock(sk); 1527 1528 /* Callers should not provide a destination with stream sockets. */ 1529 if (msg->msg_namelen) { 1530 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1531 goto out; 1532 } 1533 1534 /* Send data only if both sides are not shutdown in the direction. */ 1535 if (sk->sk_shutdown & SEND_SHUTDOWN || 1536 vsk->peer_shutdown & RCV_SHUTDOWN) { 1537 err = -EPIPE; 1538 goto out; 1539 } 1540 1541 if (sk->sk_state != SS_CONNECTED || 1542 !vsock_addr_bound(&vsk->local_addr)) { 1543 err = -ENOTCONN; 1544 goto out; 1545 } 1546 1547 if (!vsock_addr_bound(&vsk->remote_addr)) { 1548 err = -EDESTADDRREQ; 1549 goto out; 1550 } 1551 1552 /* Wait for room in the produce queue to enqueue our user's data. */ 1553 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1554 1555 err = transport->notify_send_init(vsk, &send_data); 1556 if (err < 0) 1557 goto out; 1558 1559 1560 while (total_written < len) { 1561 ssize_t written; 1562 1563 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1564 while (vsock_stream_has_space(vsk) == 0 && 1565 sk->sk_err == 0 && 1566 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1567 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1568 1569 /* Don't wait for non-blocking sockets. */ 1570 if (timeout == 0) { 1571 err = -EAGAIN; 1572 finish_wait(sk_sleep(sk), &wait); 1573 goto out_err; 1574 } 1575 1576 err = transport->notify_send_pre_block(vsk, &send_data); 1577 if (err < 0) { 1578 finish_wait(sk_sleep(sk), &wait); 1579 goto out_err; 1580 } 1581 1582 release_sock(sk); 1583 timeout = schedule_timeout(timeout); 1584 lock_sock(sk); 1585 if (signal_pending(current)) { 1586 err = sock_intr_errno(timeout); 1587 finish_wait(sk_sleep(sk), &wait); 1588 goto out_err; 1589 } else if (timeout == 0) { 1590 err = -EAGAIN; 1591 finish_wait(sk_sleep(sk), &wait); 1592 goto out_err; 1593 } 1594 1595 prepare_to_wait(sk_sleep(sk), &wait, 1596 TASK_INTERRUPTIBLE); 1597 } 1598 finish_wait(sk_sleep(sk), &wait); 1599 1600 /* These checks occur both as part of and after the loop 1601 * conditional since we need to check before and after 1602 * sleeping. 1603 */ 1604 if (sk->sk_err) { 1605 err = -sk->sk_err; 1606 goto out_err; 1607 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1608 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1609 err = -EPIPE; 1610 goto out_err; 1611 } 1612 1613 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1614 if (err < 0) 1615 goto out_err; 1616 1617 /* Note that enqueue will only write as many bytes as are free 1618 * in the produce queue, so we don't need to ensure len is 1619 * smaller than the queue size. It is the caller's 1620 * responsibility to check how many bytes we were able to send. 1621 */ 1622 1623 written = transport->stream_enqueue( 1624 vsk, msg, 1625 len - total_written); 1626 if (written < 0) { 1627 err = -ENOMEM; 1628 goto out_err; 1629 } 1630 1631 total_written += written; 1632 1633 err = transport->notify_send_post_enqueue( 1634 vsk, written, &send_data); 1635 if (err < 0) 1636 goto out_err; 1637 1638 } 1639 1640 out_err: 1641 if (total_written > 0) 1642 err = total_written; 1643 out: 1644 release_sock(sk); 1645 return err; 1646 } 1647 1648 1649 static int 1650 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1651 int flags) 1652 { 1653 struct sock *sk; 1654 struct vsock_sock *vsk; 1655 int err; 1656 size_t target; 1657 ssize_t copied; 1658 long timeout; 1659 struct vsock_transport_recv_notify_data recv_data; 1660 1661 DEFINE_WAIT(wait); 1662 1663 sk = sock->sk; 1664 vsk = vsock_sk(sk); 1665 err = 0; 1666 1667 lock_sock(sk); 1668 1669 if (sk->sk_state != SS_CONNECTED) { 1670 /* Recvmsg is supposed to return 0 if a peer performs an 1671 * orderly shutdown. Differentiate between that case and when a 1672 * peer has not connected or a local shutdown occured with the 1673 * SOCK_DONE flag. 1674 */ 1675 if (sock_flag(sk, SOCK_DONE)) 1676 err = 0; 1677 else 1678 err = -ENOTCONN; 1679 1680 goto out; 1681 } 1682 1683 if (flags & MSG_OOB) { 1684 err = -EOPNOTSUPP; 1685 goto out; 1686 } 1687 1688 /* We don't check peer_shutdown flag here since peer may actually shut 1689 * down, but there can be data in the queue that a local socket can 1690 * receive. 1691 */ 1692 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1693 err = 0; 1694 goto out; 1695 } 1696 1697 /* It is valid on Linux to pass in a zero-length receive buffer. This 1698 * is not an error. We may as well bail out now. 1699 */ 1700 if (!len) { 1701 err = 0; 1702 goto out; 1703 } 1704 1705 /* We must not copy less than target bytes into the user's buffer 1706 * before returning successfully, so we wait for the consume queue to 1707 * have that much data to consume before dequeueing. Note that this 1708 * makes it impossible to handle cases where target is greater than the 1709 * queue size. 1710 */ 1711 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1712 if (target >= transport->stream_rcvhiwat(vsk)) { 1713 err = -ENOMEM; 1714 goto out; 1715 } 1716 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1717 copied = 0; 1718 1719 err = transport->notify_recv_init(vsk, target, &recv_data); 1720 if (err < 0) 1721 goto out; 1722 1723 1724 while (1) { 1725 s64 ready; 1726 1727 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1728 ready = vsock_stream_has_data(vsk); 1729 1730 if (ready == 0) { 1731 if (sk->sk_err != 0 || 1732 (sk->sk_shutdown & RCV_SHUTDOWN) || 1733 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1734 finish_wait(sk_sleep(sk), &wait); 1735 break; 1736 } 1737 /* Don't wait for non-blocking sockets. */ 1738 if (timeout == 0) { 1739 err = -EAGAIN; 1740 finish_wait(sk_sleep(sk), &wait); 1741 break; 1742 } 1743 1744 err = transport->notify_recv_pre_block( 1745 vsk, target, &recv_data); 1746 if (err < 0) { 1747 finish_wait(sk_sleep(sk), &wait); 1748 break; 1749 } 1750 release_sock(sk); 1751 timeout = schedule_timeout(timeout); 1752 lock_sock(sk); 1753 1754 if (signal_pending(current)) { 1755 err = sock_intr_errno(timeout); 1756 finish_wait(sk_sleep(sk), &wait); 1757 break; 1758 } else if (timeout == 0) { 1759 err = -EAGAIN; 1760 finish_wait(sk_sleep(sk), &wait); 1761 break; 1762 } 1763 } else { 1764 ssize_t read; 1765 1766 finish_wait(sk_sleep(sk), &wait); 1767 1768 if (ready < 0) { 1769 /* Invalid queue pair content. XXX This should 1770 * be changed to a connection reset in a later 1771 * change. 1772 */ 1773 1774 err = -ENOMEM; 1775 goto out; 1776 } 1777 1778 err = transport->notify_recv_pre_dequeue( 1779 vsk, target, &recv_data); 1780 if (err < 0) 1781 break; 1782 1783 read = transport->stream_dequeue( 1784 vsk, msg, 1785 len - copied, flags); 1786 if (read < 0) { 1787 err = -ENOMEM; 1788 break; 1789 } 1790 1791 copied += read; 1792 1793 err = transport->notify_recv_post_dequeue( 1794 vsk, target, read, 1795 !(flags & MSG_PEEK), &recv_data); 1796 if (err < 0) 1797 goto out; 1798 1799 if (read >= target || flags & MSG_PEEK) 1800 break; 1801 1802 target -= read; 1803 } 1804 } 1805 1806 if (sk->sk_err) 1807 err = -sk->sk_err; 1808 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1809 err = 0; 1810 1811 if (copied > 0) 1812 err = copied; 1813 1814 out: 1815 release_sock(sk); 1816 return err; 1817 } 1818 1819 static const struct proto_ops vsock_stream_ops = { 1820 .family = PF_VSOCK, 1821 .owner = THIS_MODULE, 1822 .release = vsock_release, 1823 .bind = vsock_bind, 1824 .connect = vsock_stream_connect, 1825 .socketpair = sock_no_socketpair, 1826 .accept = vsock_accept, 1827 .getname = vsock_getname, 1828 .poll = vsock_poll, 1829 .ioctl = sock_no_ioctl, 1830 .listen = vsock_listen, 1831 .shutdown = vsock_shutdown, 1832 .setsockopt = vsock_stream_setsockopt, 1833 .getsockopt = vsock_stream_getsockopt, 1834 .sendmsg = vsock_stream_sendmsg, 1835 .recvmsg = vsock_stream_recvmsg, 1836 .mmap = sock_no_mmap, 1837 .sendpage = sock_no_sendpage, 1838 }; 1839 1840 static int vsock_create(struct net *net, struct socket *sock, 1841 int protocol, int kern) 1842 { 1843 if (!sock) 1844 return -EINVAL; 1845 1846 if (protocol && protocol != PF_VSOCK) 1847 return -EPROTONOSUPPORT; 1848 1849 switch (sock->type) { 1850 case SOCK_DGRAM: 1851 sock->ops = &vsock_dgram_ops; 1852 break; 1853 case SOCK_STREAM: 1854 sock->ops = &vsock_stream_ops; 1855 break; 1856 default: 1857 return -ESOCKTNOSUPPORT; 1858 } 1859 1860 sock->state = SS_UNCONNECTED; 1861 1862 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; 1863 } 1864 1865 static const struct net_proto_family vsock_family_ops = { 1866 .family = AF_VSOCK, 1867 .create = vsock_create, 1868 .owner = THIS_MODULE, 1869 }; 1870 1871 static long vsock_dev_do_ioctl(struct file *filp, 1872 unsigned int cmd, void __user *ptr) 1873 { 1874 u32 __user *p = ptr; 1875 int retval = 0; 1876 1877 switch (cmd) { 1878 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1879 if (put_user(transport->get_local_cid(), p) != 0) 1880 retval = -EFAULT; 1881 break; 1882 1883 default: 1884 pr_err("Unknown ioctl %d\n", cmd); 1885 retval = -EINVAL; 1886 } 1887 1888 return retval; 1889 } 1890 1891 static long vsock_dev_ioctl(struct file *filp, 1892 unsigned int cmd, unsigned long arg) 1893 { 1894 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1895 } 1896 1897 #ifdef CONFIG_COMPAT 1898 static long vsock_dev_compat_ioctl(struct file *filp, 1899 unsigned int cmd, unsigned long arg) 1900 { 1901 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1902 } 1903 #endif 1904 1905 static const struct file_operations vsock_device_ops = { 1906 .owner = THIS_MODULE, 1907 .unlocked_ioctl = vsock_dev_ioctl, 1908 #ifdef CONFIG_COMPAT 1909 .compat_ioctl = vsock_dev_compat_ioctl, 1910 #endif 1911 .open = nonseekable_open, 1912 }; 1913 1914 static struct miscdevice vsock_device = { 1915 .name = "vsock", 1916 .fops = &vsock_device_ops, 1917 }; 1918 1919 int __vsock_core_init(const struct vsock_transport *t, struct module *owner) 1920 { 1921 int err = mutex_lock_interruptible(&vsock_register_mutex); 1922 1923 if (err) 1924 return err; 1925 1926 if (transport) { 1927 err = -EBUSY; 1928 goto err_busy; 1929 } 1930 1931 /* Transport must be the owner of the protocol so that it can't 1932 * unload while there are open sockets. 1933 */ 1934 vsock_proto.owner = owner; 1935 transport = t; 1936 1937 vsock_init_tables(); 1938 1939 vsock_device.minor = MISC_DYNAMIC_MINOR; 1940 err = misc_register(&vsock_device); 1941 if (err) { 1942 pr_err("Failed to register misc device\n"); 1943 goto err_reset_transport; 1944 } 1945 1946 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1947 if (err) { 1948 pr_err("Cannot register vsock protocol\n"); 1949 goto err_deregister_misc; 1950 } 1951 1952 err = sock_register(&vsock_family_ops); 1953 if (err) { 1954 pr_err("could not register af_vsock (%d) address family: %d\n", 1955 AF_VSOCK, err); 1956 goto err_unregister_proto; 1957 } 1958 1959 mutex_unlock(&vsock_register_mutex); 1960 return 0; 1961 1962 err_unregister_proto: 1963 proto_unregister(&vsock_proto); 1964 err_deregister_misc: 1965 misc_deregister(&vsock_device); 1966 err_reset_transport: 1967 transport = NULL; 1968 err_busy: 1969 mutex_unlock(&vsock_register_mutex); 1970 return err; 1971 } 1972 EXPORT_SYMBOL_GPL(__vsock_core_init); 1973 1974 void vsock_core_exit(void) 1975 { 1976 mutex_lock(&vsock_register_mutex); 1977 1978 misc_deregister(&vsock_device); 1979 sock_unregister(AF_VSOCK); 1980 proto_unregister(&vsock_proto); 1981 1982 /* We do not want the assignment below re-ordered. */ 1983 mb(); 1984 transport = NULL; 1985 1986 mutex_unlock(&vsock_register_mutex); 1987 } 1988 EXPORT_SYMBOL_GPL(vsock_core_exit); 1989 1990 MODULE_AUTHOR("VMware, Inc."); 1991 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 1992 MODULE_VERSION("1.0.1.0-k"); 1993 MODULE_LICENSE("GPL v2"); 1994