1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3: Garbage Collector For AF_UNIX sockets 4 * 5 * Garbage Collector: 6 * Copyright (C) Barak A. Pearlmutter. 7 * 8 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. 9 * If it doesn't work blame me, it worked when Barak sent it. 10 * 11 * Assumptions: 12 * 13 * - object w/ a bit 14 * - free list 15 * 16 * Current optimizations: 17 * 18 * - explicit stack instead of recursion 19 * - tail recurse on first born instead of immediate push/pop 20 * - we gather the stuff that should not be killed into tree 21 * and stack is just a path from root to the current pointer. 22 * 23 * Future optimizations: 24 * 25 * - don't just push entire root set; process in place 26 * 27 * Fixes: 28 * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. 29 * Cope with changing max_files. 30 * Al Viro 11 Oct 1998 31 * Graph may have cycles. That is, we can send the descriptor 32 * of foo to bar and vice versa. Current code chokes on that. 33 * Fix: move SCM_RIGHTS ones into the separate list and then 34 * skb_free() them all instead of doing explicit fput's. 35 * Another problem: since fput() may block somebody may 36 * create a new unix_socket when we are in the middle of sweep 37 * phase. Fix: revert the logic wrt MARKED. Mark everything 38 * upon the beginning and unmark non-junk ones. 39 * 40 * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS 41 * sent to connect()'ed but still not accept()'ed sockets. 42 * Fixed. Old code had slightly different problem here: 43 * extra fput() in situation when we passed the descriptor via 44 * such socket and closed it (descriptor). That would happen on 45 * each unix_gc() until the accept(). Since the struct file in 46 * question would go to the free list and might be reused... 47 * That might be the reason of random oopses on filp_close() 48 * in unrelated processes. 49 * 50 * AV 28 Feb 1999 51 * Kill the explicit allocation of stack. Now we keep the tree 52 * with root in dummy + pointer (gc_current) to one of the nodes. 53 * Stack is represented as path from gc_current to dummy. Unmark 54 * now means "add to tree". Push == "make it a son of gc_current". 55 * Pop == "move gc_current to parent". We keep only pointers to 56 * parents (->gc_tree). 57 * AV 1 Mar 1999 58 * Damn. Added missing check for ->dead in listen queues scanning. 59 * 60 * Miklos Szeredi 25 Jun 2007 61 * Reimplement with a cycle collecting algorithm. This should 62 * solve several problems with the previous code, like being racy 63 * wrt receive and holding up unrelated socket operations. 64 */ 65 66 #include <linux/fs.h> 67 #include <linux/list.h> 68 #include <linux/skbuff.h> 69 #include <linux/socket.h> 70 #include <linux/workqueue.h> 71 #include <net/af_unix.h> 72 #include <net/scm.h> 73 #include <net/tcp_states.h> 74 75 #include "af_unix.h" 76 77 struct unix_vertex { 78 struct list_head edges; 79 struct list_head entry; 80 struct list_head scc_entry; 81 unsigned long out_degree; 82 unsigned long index; 83 unsigned long scc_index; 84 }; 85 86 struct unix_edge { 87 struct unix_sock *predecessor; 88 struct unix_sock *successor; 89 struct list_head vertex_entry; 90 struct list_head stack_entry; 91 }; 92 93 struct unix_sock *unix_get_socket(struct file *filp) 94 { 95 struct inode *inode = file_inode(filp); 96 97 /* Socket ? */ 98 if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { 99 struct socket *sock = SOCKET_I(inode); 100 const struct proto_ops *ops; 101 struct sock *sk = sock->sk; 102 103 ops = READ_ONCE(sock->ops); 104 105 /* PF_UNIX ? */ 106 if (sk && ops && ops->family == PF_UNIX) 107 return unix_sk(sk); 108 } 109 110 return NULL; 111 } 112 113 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) 114 { 115 /* If an embryo socket has a fd, 116 * the listener indirectly holds the fd's refcnt. 117 */ 118 if (edge->successor->listener) 119 return unix_sk(edge->successor->listener)->vertex; 120 121 return edge->successor->vertex; 122 } 123 124 static bool unix_graph_maybe_cyclic; 125 static bool unix_graph_grouped; 126 127 static void unix_update_graph(struct unix_vertex *vertex) 128 { 129 /* If the receiver socket is not inflight, no cyclic 130 * reference could be formed. 131 */ 132 if (!vertex) 133 return; 134 135 unix_graph_maybe_cyclic = true; 136 unix_graph_grouped = false; 137 } 138 139 static LIST_HEAD(unix_unvisited_vertices); 140 141 enum unix_vertex_index { 142 UNIX_VERTEX_INDEX_MARK1, 143 UNIX_VERTEX_INDEX_MARK2, 144 UNIX_VERTEX_INDEX_START, 145 }; 146 147 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; 148 static unsigned long unix_vertex_max_scc_index = UNIX_VERTEX_INDEX_START; 149 150 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 151 { 152 struct unix_vertex *vertex = edge->predecessor->vertex; 153 154 if (!vertex) { 155 vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); 156 vertex->index = unix_vertex_unvisited_index; 157 vertex->scc_index = ++unix_vertex_max_scc_index; 158 vertex->out_degree = 0; 159 INIT_LIST_HEAD(&vertex->edges); 160 INIT_LIST_HEAD(&vertex->scc_entry); 161 162 list_move_tail(&vertex->entry, &unix_unvisited_vertices); 163 edge->predecessor->vertex = vertex; 164 } 165 166 vertex->out_degree++; 167 list_add_tail(&edge->vertex_entry, &vertex->edges); 168 169 unix_update_graph(unix_edge_successor(edge)); 170 } 171 172 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 173 { 174 struct unix_vertex *vertex = edge->predecessor->vertex; 175 176 if (!fpl->dead) 177 unix_update_graph(unix_edge_successor(edge)); 178 179 list_del(&edge->vertex_entry); 180 vertex->out_degree--; 181 182 if (!vertex->out_degree) { 183 edge->predecessor->vertex = NULL; 184 list_move_tail(&vertex->entry, &fpl->vertices); 185 } 186 } 187 188 static void unix_free_vertices(struct scm_fp_list *fpl) 189 { 190 struct unix_vertex *vertex, *next_vertex; 191 192 list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { 193 list_del(&vertex->entry); 194 kfree(vertex); 195 } 196 } 197 198 static DEFINE_SPINLOCK(unix_gc_lock); 199 unsigned int unix_tot_inflight; 200 201 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) 202 { 203 int i = 0, j = 0; 204 205 spin_lock(&unix_gc_lock); 206 207 if (!fpl->count_unix) 208 goto out; 209 210 do { 211 struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); 212 struct unix_edge *edge; 213 214 if (!inflight) 215 continue; 216 217 edge = fpl->edges + i++; 218 edge->predecessor = inflight; 219 edge->successor = receiver; 220 221 unix_add_edge(fpl, edge); 222 } while (i < fpl->count_unix); 223 224 receiver->scm_stat.nr_unix_fds += fpl->count_unix; 225 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); 226 out: 227 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); 228 229 spin_unlock(&unix_gc_lock); 230 231 fpl->inflight = true; 232 233 unix_free_vertices(fpl); 234 } 235 236 void unix_del_edges(struct scm_fp_list *fpl) 237 { 238 struct unix_sock *receiver; 239 int i = 0; 240 241 spin_lock(&unix_gc_lock); 242 243 if (!fpl->count_unix) 244 goto out; 245 246 do { 247 struct unix_edge *edge = fpl->edges + i++; 248 249 unix_del_edge(fpl, edge); 250 } while (i < fpl->count_unix); 251 252 if (!fpl->dead) { 253 receiver = fpl->edges[0].successor; 254 receiver->scm_stat.nr_unix_fds -= fpl->count_unix; 255 } 256 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); 257 out: 258 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); 259 260 spin_unlock(&unix_gc_lock); 261 262 fpl->inflight = false; 263 } 264 265 void unix_update_edges(struct unix_sock *receiver) 266 { 267 /* nr_unix_fds is only updated under unix_state_lock(). 268 * If it's 0 here, the embryo socket is not part of the 269 * inflight graph, and GC will not see it, so no lock needed. 270 */ 271 if (!receiver->scm_stat.nr_unix_fds) { 272 receiver->listener = NULL; 273 } else { 274 spin_lock(&unix_gc_lock); 275 unix_update_graph(unix_sk(receiver->listener)->vertex); 276 receiver->listener = NULL; 277 spin_unlock(&unix_gc_lock); 278 } 279 } 280 281 int unix_prepare_fpl(struct scm_fp_list *fpl) 282 { 283 struct unix_vertex *vertex; 284 int i; 285 286 if (!fpl->count_unix) 287 return 0; 288 289 for (i = 0; i < fpl->count_unix; i++) { 290 vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); 291 if (!vertex) 292 goto err; 293 294 list_add(&vertex->entry, &fpl->vertices); 295 } 296 297 fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), 298 GFP_KERNEL_ACCOUNT); 299 if (!fpl->edges) 300 goto err; 301 302 return 0; 303 304 err: 305 unix_free_vertices(fpl); 306 return -ENOMEM; 307 } 308 309 void unix_destroy_fpl(struct scm_fp_list *fpl) 310 { 311 if (fpl->inflight) 312 unix_del_edges(fpl); 313 314 kvfree(fpl->edges); 315 unix_free_vertices(fpl); 316 } 317 318 static bool unix_vertex_dead(struct unix_vertex *vertex) 319 { 320 struct unix_edge *edge; 321 struct unix_sock *u; 322 long total_ref; 323 324 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 325 struct unix_vertex *next_vertex = unix_edge_successor(edge); 326 327 /* The vertex's fd can be received by a non-inflight socket. */ 328 if (!next_vertex) 329 return false; 330 331 /* The vertex's fd can be received by an inflight socket in 332 * another SCC. 333 */ 334 if (next_vertex->scc_index != vertex->scc_index) 335 return false; 336 } 337 338 /* No receiver exists out of the same SCC. */ 339 340 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 341 u = edge->predecessor; 342 total_ref = file_count(u->sk.sk_socket->file); 343 344 /* If not close()d, total_ref > out_degree. */ 345 if (total_ref != vertex->out_degree) 346 return false; 347 348 return true; 349 } 350 351 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) 352 { 353 struct unix_vertex *vertex; 354 355 list_for_each_entry_reverse(vertex, scc, scc_entry) { 356 struct sk_buff_head *queue; 357 struct unix_edge *edge; 358 struct unix_sock *u; 359 360 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 361 u = edge->predecessor; 362 queue = &u->sk.sk_receive_queue; 363 364 spin_lock(&queue->lock); 365 366 if (u->sk.sk_state == TCP_LISTEN) { 367 struct sk_buff *skb; 368 369 skb_queue_walk(queue, skb) { 370 struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; 371 372 spin_lock(&embryo_queue->lock); 373 skb_queue_splice_init(embryo_queue, hitlist); 374 spin_unlock(&embryo_queue->lock); 375 } 376 } else { 377 skb_queue_splice_init(queue, hitlist); 378 } 379 380 spin_unlock(&queue->lock); 381 } 382 } 383 384 static bool unix_scc_cyclic(struct list_head *scc) 385 { 386 struct unix_vertex *vertex; 387 struct unix_edge *edge; 388 389 /* SCC containing multiple vertices ? */ 390 if (!list_is_singular(scc)) 391 return true; 392 393 vertex = list_first_entry(scc, typeof(*vertex), scc_entry); 394 395 /* Self-reference or a embryo-listener circle ? */ 396 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 397 if (unix_edge_successor(edge) == vertex) 398 return true; 399 } 400 401 return false; 402 } 403 404 static LIST_HEAD(unix_visited_vertices); 405 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; 406 407 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, 408 struct sk_buff_head *hitlist) 409 { 410 LIST_HEAD(vertex_stack); 411 struct unix_edge *edge; 412 LIST_HEAD(edge_stack); 413 414 next_vertex: 415 /* Push vertex to vertex_stack and mark it as on-stack 416 * (index >= UNIX_VERTEX_INDEX_START). 417 * The vertex will be popped when finalising SCC later. 418 */ 419 list_add(&vertex->scc_entry, &vertex_stack); 420 421 vertex->index = *last_index; 422 vertex->scc_index = *last_index; 423 (*last_index)++; 424 425 /* Explore neighbour vertices (receivers of the current vertex's fd). */ 426 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 427 struct unix_vertex *next_vertex = unix_edge_successor(edge); 428 429 if (!next_vertex) 430 continue; 431 432 if (next_vertex->index == unix_vertex_unvisited_index) { 433 /* Iterative deepening depth first search 434 * 435 * 1. Push a forward edge to edge_stack and set 436 * the successor to vertex for the next iteration. 437 */ 438 list_add(&edge->stack_entry, &edge_stack); 439 440 vertex = next_vertex; 441 goto next_vertex; 442 443 /* 2. Pop the edge directed to the current vertex 444 * and restore the ancestor for backtracking. 445 */ 446 prev_vertex: 447 edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); 448 list_del_init(&edge->stack_entry); 449 450 next_vertex = vertex; 451 vertex = edge->predecessor->vertex; 452 453 /* If the successor has a smaller scc_index, two vertices 454 * are in the same SCC, so propagate the smaller scc_index 455 * to skip SCC finalisation. 456 */ 457 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 458 } else if (next_vertex->index != unix_vertex_grouped_index) { 459 /* Loop detected by a back/cross edge. 460 * 461 * The successor is on vertex_stack, so two vertices are in 462 * the same SCC. If the successor has a smaller *scc_index*, 463 * propagate it to skip SCC finalisation. 464 */ 465 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 466 } else { 467 /* The successor was already grouped as another SCC */ 468 } 469 } 470 471 if (vertex->index == vertex->scc_index) { 472 struct unix_vertex *v; 473 struct list_head scc; 474 bool scc_dead = true; 475 476 /* SCC finalised. 477 * 478 * If the scc_index was not updated, all the vertices above on 479 * vertex_stack are in the same SCC. Group them using scc_entry. 480 */ 481 __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); 482 483 list_for_each_entry_reverse(v, &scc, scc_entry) { 484 /* Don't restart DFS from this vertex in unix_walk_scc(). */ 485 list_move_tail(&v->entry, &unix_visited_vertices); 486 487 /* Mark vertex as off-stack. */ 488 v->index = unix_vertex_grouped_index; 489 490 if (scc_dead) 491 scc_dead = unix_vertex_dead(v); 492 } 493 494 if (scc_dead) { 495 unix_collect_skb(&scc, hitlist); 496 } else { 497 if (unix_vertex_max_scc_index < vertex->scc_index) 498 unix_vertex_max_scc_index = vertex->scc_index; 499 500 if (!unix_graph_maybe_cyclic) 501 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 502 } 503 504 list_del(&scc); 505 } 506 507 /* Need backtracking ? */ 508 if (!list_empty(&edge_stack)) 509 goto prev_vertex; 510 } 511 512 static void unix_walk_scc(struct sk_buff_head *hitlist) 513 { 514 unsigned long last_index = UNIX_VERTEX_INDEX_START; 515 516 unix_graph_maybe_cyclic = false; 517 unix_vertex_max_scc_index = UNIX_VERTEX_INDEX_START; 518 519 /* Visit every vertex exactly once. 520 * __unix_walk_scc() moves visited vertices to unix_visited_vertices. 521 */ 522 while (!list_empty(&unix_unvisited_vertices)) { 523 struct unix_vertex *vertex; 524 525 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 526 __unix_walk_scc(vertex, &last_index, hitlist); 527 } 528 529 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 530 swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); 531 532 unix_graph_grouped = true; 533 } 534 535 static void unix_walk_scc_fast(struct sk_buff_head *hitlist) 536 { 537 unix_graph_maybe_cyclic = false; 538 539 while (!list_empty(&unix_unvisited_vertices)) { 540 struct unix_vertex *vertex; 541 struct list_head scc; 542 bool scc_dead = true; 543 544 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 545 list_add(&scc, &vertex->scc_entry); 546 547 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 548 list_move_tail(&vertex->entry, &unix_visited_vertices); 549 550 if (scc_dead) 551 scc_dead = unix_vertex_dead(vertex); 552 } 553 554 if (scc_dead) 555 unix_collect_skb(&scc, hitlist); 556 else if (!unix_graph_maybe_cyclic) 557 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 558 559 list_del(&scc); 560 } 561 562 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 563 } 564 565 static bool gc_in_progress; 566 567 static void __unix_gc(struct work_struct *work) 568 { 569 struct sk_buff_head hitlist; 570 struct sk_buff *skb; 571 572 spin_lock(&unix_gc_lock); 573 574 if (!unix_graph_maybe_cyclic) { 575 spin_unlock(&unix_gc_lock); 576 goto skip_gc; 577 } 578 579 __skb_queue_head_init(&hitlist); 580 581 if (unix_graph_grouped) 582 unix_walk_scc_fast(&hitlist); 583 else 584 unix_walk_scc(&hitlist); 585 586 spin_unlock(&unix_gc_lock); 587 588 skb_queue_walk(&hitlist, skb) { 589 if (UNIXCB(skb).fp) 590 UNIXCB(skb).fp->dead = true; 591 } 592 593 __skb_queue_purge_reason(&hitlist, SKB_DROP_REASON_SOCKET_CLOSE); 594 skip_gc: 595 WRITE_ONCE(gc_in_progress, false); 596 } 597 598 static DECLARE_WORK(unix_gc_work, __unix_gc); 599 600 void unix_gc(void) 601 { 602 WRITE_ONCE(gc_in_progress, true); 603 queue_work(system_dfl_wq, &unix_gc_work); 604 } 605 606 #define UNIX_INFLIGHT_TRIGGER_GC 16000 607 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) 608 609 void wait_for_unix_gc(struct scm_fp_list *fpl) 610 { 611 /* If number of inflight sockets is insane, 612 * force a garbage collect right now. 613 * 614 * Paired with the WRITE_ONCE() in unix_inflight(), 615 * unix_notinflight(), and __unix_gc(). 616 */ 617 if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && 618 !READ_ONCE(gc_in_progress)) 619 unix_gc(); 620 621 /* Penalise users who want to send AF_UNIX sockets 622 * but whose sockets have not been received yet. 623 */ 624 if (!fpl || !fpl->count_unix || 625 READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) 626 return; 627 628 if (READ_ONCE(gc_in_progress)) 629 flush_work(&unix_gc_work); 630 } 631