1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3: Garbage Collector For AF_UNIX sockets 4 * 5 * Garbage Collector: 6 * Copyright (C) Barak A. Pearlmutter. 7 * 8 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. 9 * If it doesn't work blame me, it worked when Barak sent it. 10 * 11 * Assumptions: 12 * 13 * - object w/ a bit 14 * - free list 15 * 16 * Current optimizations: 17 * 18 * - explicit stack instead of recursion 19 * - tail recurse on first born instead of immediate push/pop 20 * - we gather the stuff that should not be killed into tree 21 * and stack is just a path from root to the current pointer. 22 * 23 * Future optimizations: 24 * 25 * - don't just push entire root set; process in place 26 * 27 * Fixes: 28 * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. 29 * Cope with changing max_files. 30 * Al Viro 11 Oct 1998 31 * Graph may have cycles. That is, we can send the descriptor 32 * of foo to bar and vice versa. Current code chokes on that. 33 * Fix: move SCM_RIGHTS ones into the separate list and then 34 * skb_free() them all instead of doing explicit fput's. 35 * Another problem: since fput() may block somebody may 36 * create a new unix_socket when we are in the middle of sweep 37 * phase. Fix: revert the logic wrt MARKED. Mark everything 38 * upon the beginning and unmark non-junk ones. 39 * 40 * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS 41 * sent to connect()'ed but still not accept()'ed sockets. 42 * Fixed. Old code had slightly different problem here: 43 * extra fput() in situation when we passed the descriptor via 44 * such socket and closed it (descriptor). That would happen on 45 * each unix_gc() until the accept(). Since the struct file in 46 * question would go to the free list and might be reused... 47 * That might be the reason of random oopses on filp_close() 48 * in unrelated processes. 49 * 50 * AV 28 Feb 1999 51 * Kill the explicit allocation of stack. Now we keep the tree 52 * with root in dummy + pointer (gc_current) to one of the nodes. 53 * Stack is represented as path from gc_current to dummy. Unmark 54 * now means "add to tree". Push == "make it a son of gc_current". 55 * Pop == "move gc_current to parent". We keep only pointers to 56 * parents (->gc_tree). 57 * AV 1 Mar 1999 58 * Damn. Added missing check for ->dead in listen queues scanning. 59 * 60 * Miklos Szeredi 25 Jun 2007 61 * Reimplement with a cycle collecting algorithm. This should 62 * solve several problems with the previous code, like being racy 63 * wrt receive and holding up unrelated socket operations. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/string.h> 68 #include <linux/socket.h> 69 #include <linux/un.h> 70 #include <linux/net.h> 71 #include <linux/fs.h> 72 #include <linux/skbuff.h> 73 #include <linux/netdevice.h> 74 #include <linux/file.h> 75 #include <linux/proc_fs.h> 76 #include <linux/mutex.h> 77 #include <linux/wait.h> 78 79 #include <net/sock.h> 80 #include <net/af_unix.h> 81 #include <net/scm.h> 82 #include <net/tcp_states.h> 83 84 struct unix_sock *unix_get_socket(struct file *filp) 85 { 86 struct inode *inode = file_inode(filp); 87 88 /* Socket ? */ 89 if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { 90 struct socket *sock = SOCKET_I(inode); 91 const struct proto_ops *ops; 92 struct sock *sk = sock->sk; 93 94 ops = READ_ONCE(sock->ops); 95 96 /* PF_UNIX ? */ 97 if (sk && ops && ops->family == PF_UNIX) 98 return unix_sk(sk); 99 } 100 101 return NULL; 102 } 103 104 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) 105 { 106 /* If an embryo socket has a fd, 107 * the listener indirectly holds the fd's refcnt. 108 */ 109 if (edge->successor->listener) 110 return unix_sk(edge->successor->listener)->vertex; 111 112 return edge->successor->vertex; 113 } 114 115 static bool unix_graph_maybe_cyclic; 116 static bool unix_graph_grouped; 117 118 static void unix_update_graph(struct unix_vertex *vertex) 119 { 120 /* If the receiver socket is not inflight, no cyclic 121 * reference could be formed. 122 */ 123 if (!vertex) 124 return; 125 126 unix_graph_maybe_cyclic = true; 127 unix_graph_grouped = false; 128 } 129 130 static LIST_HEAD(unix_unvisited_vertices); 131 132 enum unix_vertex_index { 133 UNIX_VERTEX_INDEX_MARK1, 134 UNIX_VERTEX_INDEX_MARK2, 135 UNIX_VERTEX_INDEX_START, 136 }; 137 138 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; 139 140 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 141 { 142 struct unix_vertex *vertex = edge->predecessor->vertex; 143 144 if (!vertex) { 145 vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); 146 vertex->index = unix_vertex_unvisited_index; 147 vertex->out_degree = 0; 148 INIT_LIST_HEAD(&vertex->edges); 149 INIT_LIST_HEAD(&vertex->scc_entry); 150 151 list_move_tail(&vertex->entry, &unix_unvisited_vertices); 152 edge->predecessor->vertex = vertex; 153 } 154 155 vertex->out_degree++; 156 list_add_tail(&edge->vertex_entry, &vertex->edges); 157 158 unix_update_graph(unix_edge_successor(edge)); 159 } 160 161 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 162 { 163 struct unix_vertex *vertex = edge->predecessor->vertex; 164 165 if (!fpl->dead) 166 unix_update_graph(unix_edge_successor(edge)); 167 168 list_del(&edge->vertex_entry); 169 vertex->out_degree--; 170 171 if (!vertex->out_degree) { 172 edge->predecessor->vertex = NULL; 173 list_move_tail(&vertex->entry, &fpl->vertices); 174 } 175 } 176 177 static void unix_free_vertices(struct scm_fp_list *fpl) 178 { 179 struct unix_vertex *vertex, *next_vertex; 180 181 list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { 182 list_del(&vertex->entry); 183 kfree(vertex); 184 } 185 } 186 187 static DEFINE_SPINLOCK(unix_gc_lock); 188 unsigned int unix_tot_inflight; 189 190 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) 191 { 192 int i = 0, j = 0; 193 194 spin_lock(&unix_gc_lock); 195 196 if (!fpl->count_unix) 197 goto out; 198 199 do { 200 struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); 201 struct unix_edge *edge; 202 203 if (!inflight) 204 continue; 205 206 edge = fpl->edges + i++; 207 edge->predecessor = inflight; 208 edge->successor = receiver; 209 210 unix_add_edge(fpl, edge); 211 } while (i < fpl->count_unix); 212 213 receiver->scm_stat.nr_unix_fds += fpl->count_unix; 214 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); 215 out: 216 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); 217 218 spin_unlock(&unix_gc_lock); 219 220 fpl->inflight = true; 221 222 unix_free_vertices(fpl); 223 } 224 225 void unix_del_edges(struct scm_fp_list *fpl) 226 { 227 struct unix_sock *receiver; 228 int i = 0; 229 230 spin_lock(&unix_gc_lock); 231 232 if (!fpl->count_unix) 233 goto out; 234 235 do { 236 struct unix_edge *edge = fpl->edges + i++; 237 238 unix_del_edge(fpl, edge); 239 } while (i < fpl->count_unix); 240 241 if (!fpl->dead) { 242 receiver = fpl->edges[0].successor; 243 receiver->scm_stat.nr_unix_fds -= fpl->count_unix; 244 } 245 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); 246 out: 247 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); 248 249 spin_unlock(&unix_gc_lock); 250 251 fpl->inflight = false; 252 } 253 254 void unix_update_edges(struct unix_sock *receiver) 255 { 256 /* nr_unix_fds is only updated under unix_state_lock(). 257 * If it's 0 here, the embryo socket is not part of the 258 * inflight graph, and GC will not see it, so no lock needed. 259 */ 260 if (!receiver->scm_stat.nr_unix_fds) { 261 receiver->listener = NULL; 262 } else { 263 spin_lock(&unix_gc_lock); 264 unix_update_graph(unix_sk(receiver->listener)->vertex); 265 receiver->listener = NULL; 266 spin_unlock(&unix_gc_lock); 267 } 268 } 269 270 int unix_prepare_fpl(struct scm_fp_list *fpl) 271 { 272 struct unix_vertex *vertex; 273 int i; 274 275 if (!fpl->count_unix) 276 return 0; 277 278 for (i = 0; i < fpl->count_unix; i++) { 279 vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); 280 if (!vertex) 281 goto err; 282 283 list_add(&vertex->entry, &fpl->vertices); 284 } 285 286 fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), 287 GFP_KERNEL_ACCOUNT); 288 if (!fpl->edges) 289 goto err; 290 291 return 0; 292 293 err: 294 unix_free_vertices(fpl); 295 return -ENOMEM; 296 } 297 298 void unix_destroy_fpl(struct scm_fp_list *fpl) 299 { 300 if (fpl->inflight) 301 unix_del_edges(fpl); 302 303 kvfree(fpl->edges); 304 unix_free_vertices(fpl); 305 } 306 307 static bool unix_vertex_dead(struct unix_vertex *vertex) 308 { 309 struct unix_edge *edge; 310 struct unix_sock *u; 311 long total_ref; 312 313 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 314 struct unix_vertex *next_vertex = unix_edge_successor(edge); 315 316 /* The vertex's fd can be received by a non-inflight socket. */ 317 if (!next_vertex) 318 return false; 319 320 /* The vertex's fd can be received by an inflight socket in 321 * another SCC. 322 */ 323 if (next_vertex->scc_index != vertex->scc_index) 324 return false; 325 } 326 327 /* No receiver exists out of the same SCC. */ 328 329 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 330 u = edge->predecessor; 331 total_ref = file_count(u->sk.sk_socket->file); 332 333 /* If not close()d, total_ref > out_degree. */ 334 if (total_ref != vertex->out_degree) 335 return false; 336 337 return true; 338 } 339 340 enum unix_recv_queue_lock_class { 341 U_RECVQ_LOCK_NORMAL, 342 U_RECVQ_LOCK_EMBRYO, 343 }; 344 345 static void unix_collect_queue(struct unix_sock *u, struct sk_buff_head *hitlist) 346 { 347 skb_queue_splice_init(&u->sk.sk_receive_queue, hitlist); 348 349 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 350 if (u->oob_skb) { 351 WARN_ON_ONCE(skb_unref(u->oob_skb)); 352 u->oob_skb = NULL; 353 } 354 #endif 355 } 356 357 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) 358 { 359 struct unix_vertex *vertex; 360 361 list_for_each_entry_reverse(vertex, scc, scc_entry) { 362 struct sk_buff_head *queue; 363 struct unix_edge *edge; 364 struct unix_sock *u; 365 366 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 367 u = edge->predecessor; 368 queue = &u->sk.sk_receive_queue; 369 370 spin_lock(&queue->lock); 371 372 if (u->sk.sk_state == TCP_LISTEN) { 373 struct sk_buff *skb; 374 375 skb_queue_walk(queue, skb) { 376 struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; 377 378 /* listener -> embryo order, the inversion never happens. */ 379 spin_lock_nested(&embryo_queue->lock, U_RECVQ_LOCK_EMBRYO); 380 unix_collect_queue(unix_sk(skb->sk), hitlist); 381 spin_unlock(&embryo_queue->lock); 382 } 383 } else { 384 unix_collect_queue(u, hitlist); 385 } 386 387 spin_unlock(&queue->lock); 388 } 389 } 390 391 static bool unix_scc_cyclic(struct list_head *scc) 392 { 393 struct unix_vertex *vertex; 394 struct unix_edge *edge; 395 396 /* SCC containing multiple vertices ? */ 397 if (!list_is_singular(scc)) 398 return true; 399 400 vertex = list_first_entry(scc, typeof(*vertex), scc_entry); 401 402 /* Self-reference or a embryo-listener circle ? */ 403 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 404 if (unix_edge_successor(edge) == vertex) 405 return true; 406 } 407 408 return false; 409 } 410 411 static LIST_HEAD(unix_visited_vertices); 412 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; 413 414 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, 415 struct sk_buff_head *hitlist) 416 { 417 LIST_HEAD(vertex_stack); 418 struct unix_edge *edge; 419 LIST_HEAD(edge_stack); 420 421 next_vertex: 422 /* Push vertex to vertex_stack and mark it as on-stack 423 * (index >= UNIX_VERTEX_INDEX_START). 424 * The vertex will be popped when finalising SCC later. 425 */ 426 list_add(&vertex->scc_entry, &vertex_stack); 427 428 vertex->index = *last_index; 429 vertex->scc_index = *last_index; 430 (*last_index)++; 431 432 /* Explore neighbour vertices (receivers of the current vertex's fd). */ 433 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 434 struct unix_vertex *next_vertex = unix_edge_successor(edge); 435 436 if (!next_vertex) 437 continue; 438 439 if (next_vertex->index == unix_vertex_unvisited_index) { 440 /* Iterative deepening depth first search 441 * 442 * 1. Push a forward edge to edge_stack and set 443 * the successor to vertex for the next iteration. 444 */ 445 list_add(&edge->stack_entry, &edge_stack); 446 447 vertex = next_vertex; 448 goto next_vertex; 449 450 /* 2. Pop the edge directed to the current vertex 451 * and restore the ancestor for backtracking. 452 */ 453 prev_vertex: 454 edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); 455 list_del_init(&edge->stack_entry); 456 457 next_vertex = vertex; 458 vertex = edge->predecessor->vertex; 459 460 /* If the successor has a smaller scc_index, two vertices 461 * are in the same SCC, so propagate the smaller scc_index 462 * to skip SCC finalisation. 463 */ 464 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 465 } else if (next_vertex->index != unix_vertex_grouped_index) { 466 /* Loop detected by a back/cross edge. 467 * 468 * The successor is on vertex_stack, so two vertices are in 469 * the same SCC. If the successor has a smaller *scc_index*, 470 * propagate it to skip SCC finalisation. 471 */ 472 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 473 } else { 474 /* The successor was already grouped as another SCC */ 475 } 476 } 477 478 if (vertex->index == vertex->scc_index) { 479 struct list_head scc; 480 bool scc_dead = true; 481 482 /* SCC finalised. 483 * 484 * If the scc_index was not updated, all the vertices above on 485 * vertex_stack are in the same SCC. Group them using scc_entry. 486 */ 487 __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); 488 489 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 490 /* Don't restart DFS from this vertex in unix_walk_scc(). */ 491 list_move_tail(&vertex->entry, &unix_visited_vertices); 492 493 /* Mark vertex as off-stack. */ 494 vertex->index = unix_vertex_grouped_index; 495 496 if (scc_dead) 497 scc_dead = unix_vertex_dead(vertex); 498 } 499 500 if (scc_dead) 501 unix_collect_skb(&scc, hitlist); 502 else if (!unix_graph_maybe_cyclic) 503 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 504 505 list_del(&scc); 506 } 507 508 /* Need backtracking ? */ 509 if (!list_empty(&edge_stack)) 510 goto prev_vertex; 511 } 512 513 static void unix_walk_scc(struct sk_buff_head *hitlist) 514 { 515 unsigned long last_index = UNIX_VERTEX_INDEX_START; 516 517 unix_graph_maybe_cyclic = false; 518 519 /* Visit every vertex exactly once. 520 * __unix_walk_scc() moves visited vertices to unix_visited_vertices. 521 */ 522 while (!list_empty(&unix_unvisited_vertices)) { 523 struct unix_vertex *vertex; 524 525 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 526 __unix_walk_scc(vertex, &last_index, hitlist); 527 } 528 529 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 530 swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); 531 532 unix_graph_grouped = true; 533 } 534 535 static void unix_walk_scc_fast(struct sk_buff_head *hitlist) 536 { 537 unix_graph_maybe_cyclic = false; 538 539 while (!list_empty(&unix_unvisited_vertices)) { 540 struct unix_vertex *vertex; 541 struct list_head scc; 542 bool scc_dead = true; 543 544 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 545 list_add(&scc, &vertex->scc_entry); 546 547 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 548 list_move_tail(&vertex->entry, &unix_visited_vertices); 549 550 if (scc_dead) 551 scc_dead = unix_vertex_dead(vertex); 552 } 553 554 if (scc_dead) 555 unix_collect_skb(&scc, hitlist); 556 else if (!unix_graph_maybe_cyclic) 557 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 558 559 list_del(&scc); 560 } 561 562 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 563 } 564 565 static bool gc_in_progress; 566 567 static void __unix_gc(struct work_struct *work) 568 { 569 struct sk_buff_head hitlist; 570 struct sk_buff *skb; 571 572 spin_lock(&unix_gc_lock); 573 574 if (!unix_graph_maybe_cyclic) { 575 spin_unlock(&unix_gc_lock); 576 goto skip_gc; 577 } 578 579 __skb_queue_head_init(&hitlist); 580 581 if (unix_graph_grouped) 582 unix_walk_scc_fast(&hitlist); 583 else 584 unix_walk_scc(&hitlist); 585 586 spin_unlock(&unix_gc_lock); 587 588 skb_queue_walk(&hitlist, skb) { 589 if (UNIXCB(skb).fp) 590 UNIXCB(skb).fp->dead = true; 591 } 592 593 __skb_queue_purge(&hitlist); 594 skip_gc: 595 WRITE_ONCE(gc_in_progress, false); 596 } 597 598 static DECLARE_WORK(unix_gc_work, __unix_gc); 599 600 void unix_gc(void) 601 { 602 WRITE_ONCE(gc_in_progress, true); 603 queue_work(system_unbound_wq, &unix_gc_work); 604 } 605 606 #define UNIX_INFLIGHT_TRIGGER_GC 16000 607 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) 608 609 void wait_for_unix_gc(struct scm_fp_list *fpl) 610 { 611 /* If number of inflight sockets is insane, 612 * force a garbage collect right now. 613 * 614 * Paired with the WRITE_ONCE() in unix_inflight(), 615 * unix_notinflight(), and __unix_gc(). 616 */ 617 if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && 618 !READ_ONCE(gc_in_progress)) 619 unix_gc(); 620 621 /* Penalise users who want to send AF_UNIX sockets 622 * but whose sockets have not been received yet. 623 */ 624 if (!fpl || !fpl->count_unix || 625 READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) 626 return; 627 628 if (READ_ONCE(gc_in_progress)) 629 flush_work(&unix_gc_work); 630 } 631