xref: /linux/net/unix/garbage.c (revision bfdb01283ee8f2f3089656c3ff8f62bb072dabb2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET3:	Garbage Collector For AF_UNIX sockets
4  *
5  * Garbage Collector:
6  *	Copyright (C) Barak A. Pearlmutter.
7  *
8  * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9  * If it doesn't work blame me, it worked when Barak sent it.
10  *
11  * Assumptions:
12  *
13  *  - object w/ a bit
14  *  - free list
15  *
16  * Current optimizations:
17  *
18  *  - explicit stack instead of recursion
19  *  - tail recurse on first born instead of immediate push/pop
20  *  - we gather the stuff that should not be killed into tree
21  *    and stack is just a path from root to the current pointer.
22  *
23  *  Future optimizations:
24  *
25  *  - don't just push entire root set; process in place
26  *
27  *  Fixes:
28  *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29  *					Cope with changing max_files.
30  *	Al Viro		11 Oct 1998
31  *		Graph may have cycles. That is, we can send the descriptor
32  *		of foo to bar and vice versa. Current code chokes on that.
33  *		Fix: move SCM_RIGHTS ones into the separate list and then
34  *		skb_free() them all instead of doing explicit fput's.
35  *		Another problem: since fput() may block somebody may
36  *		create a new unix_socket when we are in the middle of sweep
37  *		phase. Fix: revert the logic wrt MARKED. Mark everything
38  *		upon the beginning and unmark non-junk ones.
39  *
40  *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41  *		sent to connect()'ed but still not accept()'ed sockets.
42  *		Fixed. Old code had slightly different problem here:
43  *		extra fput() in situation when we passed the descriptor via
44  *		such socket and closed it (descriptor). That would happen on
45  *		each unix_gc() until the accept(). Since the struct file in
46  *		question would go to the free list and might be reused...
47  *		That might be the reason of random oopses on filp_close()
48  *		in unrelated processes.
49  *
50  *	AV		28 Feb 1999
51  *		Kill the explicit allocation of stack. Now we keep the tree
52  *		with root in dummy + pointer (gc_current) to one of the nodes.
53  *		Stack is represented as path from gc_current to dummy. Unmark
54  *		now means "add to tree". Push == "make it a son of gc_current".
55  *		Pop == "move gc_current to parent". We keep only pointers to
56  *		parents (->gc_tree).
57  *	AV		1 Mar 1999
58  *		Damn. Added missing check for ->dead in listen queues scanning.
59  *
60  *	Miklos Szeredi 25 Jun 2007
61  *		Reimplement with a cycle collecting algorithm. This should
62  *		solve several problems with the previous code, like being racy
63  *		wrt receive and holding up unrelated socket operations.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/string.h>
68 #include <linux/socket.h>
69 #include <linux/un.h>
70 #include <linux/net.h>
71 #include <linux/fs.h>
72 #include <linux/skbuff.h>
73 #include <linux/netdevice.h>
74 #include <linux/file.h>
75 #include <linux/proc_fs.h>
76 #include <linux/mutex.h>
77 #include <linux/wait.h>
78 
79 #include <net/sock.h>
80 #include <net/af_unix.h>
81 #include <net/scm.h>
82 #include <net/tcp_states.h>
83 
84 struct unix_sock *unix_get_socket(struct file *filp)
85 {
86 	struct inode *inode = file_inode(filp);
87 
88 	/* Socket ? */
89 	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
90 		struct socket *sock = SOCKET_I(inode);
91 		const struct proto_ops *ops;
92 		struct sock *sk = sock->sk;
93 
94 		ops = READ_ONCE(sock->ops);
95 
96 		/* PF_UNIX ? */
97 		if (sk && ops && ops->family == PF_UNIX)
98 			return unix_sk(sk);
99 	}
100 
101 	return NULL;
102 }
103 
104 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
105 {
106 	/* If an embryo socket has a fd,
107 	 * the listener indirectly holds the fd's refcnt.
108 	 */
109 	if (edge->successor->listener)
110 		return unix_sk(edge->successor->listener)->vertex;
111 
112 	return edge->successor->vertex;
113 }
114 
115 static bool unix_graph_maybe_cyclic;
116 static bool unix_graph_grouped;
117 
118 static void unix_update_graph(struct unix_vertex *vertex)
119 {
120 	/* If the receiver socket is not inflight, no cyclic
121 	 * reference could be formed.
122 	 */
123 	if (!vertex)
124 		return;
125 
126 	unix_graph_maybe_cyclic = true;
127 	unix_graph_grouped = false;
128 }
129 
130 static LIST_HEAD(unix_unvisited_vertices);
131 
132 enum unix_vertex_index {
133 	UNIX_VERTEX_INDEX_MARK1,
134 	UNIX_VERTEX_INDEX_MARK2,
135 	UNIX_VERTEX_INDEX_START,
136 };
137 
138 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
139 
140 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
141 {
142 	struct unix_vertex *vertex = edge->predecessor->vertex;
143 
144 	if (!vertex) {
145 		vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
146 		vertex->index = unix_vertex_unvisited_index;
147 		vertex->out_degree = 0;
148 		INIT_LIST_HEAD(&vertex->edges);
149 		INIT_LIST_HEAD(&vertex->scc_entry);
150 
151 		list_move_tail(&vertex->entry, &unix_unvisited_vertices);
152 		edge->predecessor->vertex = vertex;
153 	}
154 
155 	vertex->out_degree++;
156 	list_add_tail(&edge->vertex_entry, &vertex->edges);
157 
158 	unix_update_graph(unix_edge_successor(edge));
159 }
160 
161 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
162 {
163 	struct unix_vertex *vertex = edge->predecessor->vertex;
164 
165 	unix_update_graph(unix_edge_successor(edge));
166 
167 	list_del(&edge->vertex_entry);
168 	vertex->out_degree--;
169 
170 	if (!vertex->out_degree) {
171 		edge->predecessor->vertex = NULL;
172 		list_move_tail(&vertex->entry, &fpl->vertices);
173 	}
174 }
175 
176 static void unix_free_vertices(struct scm_fp_list *fpl)
177 {
178 	struct unix_vertex *vertex, *next_vertex;
179 
180 	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
181 		list_del(&vertex->entry);
182 		kfree(vertex);
183 	}
184 }
185 
186 DEFINE_SPINLOCK(unix_gc_lock);
187 unsigned int unix_tot_inflight;
188 
189 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
190 {
191 	int i = 0, j = 0;
192 
193 	spin_lock(&unix_gc_lock);
194 
195 	if (!fpl->count_unix)
196 		goto out;
197 
198 	do {
199 		struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
200 		struct unix_edge *edge;
201 
202 		if (!inflight)
203 			continue;
204 
205 		edge = fpl->edges + i++;
206 		edge->predecessor = inflight;
207 		edge->successor = receiver;
208 
209 		unix_add_edge(fpl, edge);
210 	} while (i < fpl->count_unix);
211 
212 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
213 out:
214 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
215 
216 	spin_unlock(&unix_gc_lock);
217 
218 	fpl->inflight = true;
219 
220 	unix_free_vertices(fpl);
221 }
222 
223 void unix_del_edges(struct scm_fp_list *fpl)
224 {
225 	int i = 0;
226 
227 	spin_lock(&unix_gc_lock);
228 
229 	if (!fpl->count_unix)
230 		goto out;
231 
232 	do {
233 		struct unix_edge *edge = fpl->edges + i++;
234 
235 		unix_del_edge(fpl, edge);
236 	} while (i < fpl->count_unix);
237 
238 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
239 out:
240 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
241 
242 	spin_unlock(&unix_gc_lock);
243 
244 	fpl->inflight = false;
245 }
246 
247 void unix_update_edges(struct unix_sock *receiver)
248 {
249 	spin_lock(&unix_gc_lock);
250 	unix_update_graph(unix_sk(receiver->listener)->vertex);
251 	receiver->listener = NULL;
252 	spin_unlock(&unix_gc_lock);
253 }
254 
255 int unix_prepare_fpl(struct scm_fp_list *fpl)
256 {
257 	struct unix_vertex *vertex;
258 	int i;
259 
260 	if (!fpl->count_unix)
261 		return 0;
262 
263 	for (i = 0; i < fpl->count_unix; i++) {
264 		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
265 		if (!vertex)
266 			goto err;
267 
268 		list_add(&vertex->entry, &fpl->vertices);
269 	}
270 
271 	fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
272 				    GFP_KERNEL_ACCOUNT);
273 	if (!fpl->edges)
274 		goto err;
275 
276 	return 0;
277 
278 err:
279 	unix_free_vertices(fpl);
280 	return -ENOMEM;
281 }
282 
283 void unix_destroy_fpl(struct scm_fp_list *fpl)
284 {
285 	if (fpl->inflight)
286 		unix_del_edges(fpl);
287 
288 	kvfree(fpl->edges);
289 	unix_free_vertices(fpl);
290 }
291 
292 static bool unix_scc_cyclic(struct list_head *scc)
293 {
294 	struct unix_vertex *vertex;
295 	struct unix_edge *edge;
296 
297 	/* SCC containing multiple vertices ? */
298 	if (!list_is_singular(scc))
299 		return true;
300 
301 	vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
302 
303 	/* Self-reference or a embryo-listener circle ? */
304 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
305 		if (unix_edge_successor(edge) == vertex)
306 			return true;
307 	}
308 
309 	return false;
310 }
311 
312 static LIST_HEAD(unix_visited_vertices);
313 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
314 
315 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index)
316 {
317 	LIST_HEAD(vertex_stack);
318 	struct unix_edge *edge;
319 	LIST_HEAD(edge_stack);
320 
321 next_vertex:
322 	/* Push vertex to vertex_stack and mark it as on-stack
323 	 * (index >= UNIX_VERTEX_INDEX_START).
324 	 * The vertex will be popped when finalising SCC later.
325 	 */
326 	list_add(&vertex->scc_entry, &vertex_stack);
327 
328 	vertex->index = *last_index;
329 	vertex->scc_index = *last_index;
330 	(*last_index)++;
331 
332 	/* Explore neighbour vertices (receivers of the current vertex's fd). */
333 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
334 		struct unix_vertex *next_vertex = unix_edge_successor(edge);
335 
336 		if (!next_vertex)
337 			continue;
338 
339 		if (next_vertex->index == unix_vertex_unvisited_index) {
340 			/* Iterative deepening depth first search
341 			 *
342 			 *   1. Push a forward edge to edge_stack and set
343 			 *      the successor to vertex for the next iteration.
344 			 */
345 			list_add(&edge->stack_entry, &edge_stack);
346 
347 			vertex = next_vertex;
348 			goto next_vertex;
349 
350 			/*   2. Pop the edge directed to the current vertex
351 			 *      and restore the ancestor for backtracking.
352 			 */
353 prev_vertex:
354 			edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
355 			list_del_init(&edge->stack_entry);
356 
357 			next_vertex = vertex;
358 			vertex = edge->predecessor->vertex;
359 
360 			/* If the successor has a smaller scc_index, two vertices
361 			 * are in the same SCC, so propagate the smaller scc_index
362 			 * to skip SCC finalisation.
363 			 */
364 			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
365 		} else if (next_vertex->index != unix_vertex_grouped_index) {
366 			/* Loop detected by a back/cross edge.
367 			 *
368 			 * The successor is on vertex_stack, so two vertices are in
369 			 * the same SCC.  If the successor has a smaller *scc_index*,
370 			 * propagate it to skip SCC finalisation.
371 			 */
372 			vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
373 		} else {
374 			/* The successor was already grouped as another SCC */
375 		}
376 	}
377 
378 	if (vertex->index == vertex->scc_index) {
379 		struct list_head scc;
380 
381 		/* SCC finalised.
382 		 *
383 		 * If the scc_index was not updated, all the vertices above on
384 		 * vertex_stack are in the same SCC.  Group them using scc_entry.
385 		 */
386 		__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
387 
388 		list_for_each_entry_reverse(vertex, &scc, scc_entry) {
389 			/* Don't restart DFS from this vertex in unix_walk_scc(). */
390 			list_move_tail(&vertex->entry, &unix_visited_vertices);
391 
392 			/* Mark vertex as off-stack. */
393 			vertex->index = unix_vertex_grouped_index;
394 		}
395 
396 		if (!unix_graph_maybe_cyclic)
397 			unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
398 
399 		list_del(&scc);
400 	}
401 
402 	/* Need backtracking ? */
403 	if (!list_empty(&edge_stack))
404 		goto prev_vertex;
405 }
406 
407 static void unix_walk_scc(void)
408 {
409 	unsigned long last_index = UNIX_VERTEX_INDEX_START;
410 
411 	unix_graph_maybe_cyclic = false;
412 
413 	/* Visit every vertex exactly once.
414 	 * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
415 	 */
416 	while (!list_empty(&unix_unvisited_vertices)) {
417 		struct unix_vertex *vertex;
418 
419 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
420 		__unix_walk_scc(vertex, &last_index);
421 	}
422 
423 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
424 	swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
425 
426 	unix_graph_grouped = true;
427 }
428 
429 static void unix_walk_scc_fast(void)
430 {
431 	while (!list_empty(&unix_unvisited_vertices)) {
432 		struct unix_vertex *vertex;
433 		struct list_head scc;
434 
435 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
436 		list_add(&scc, &vertex->scc_entry);
437 
438 		list_for_each_entry_reverse(vertex, &scc, scc_entry)
439 			list_move_tail(&vertex->entry, &unix_visited_vertices);
440 
441 		list_del(&scc);
442 	}
443 
444 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
445 }
446 
447 static LIST_HEAD(gc_candidates);
448 static LIST_HEAD(gc_inflight_list);
449 
450 /* Keep the number of times in flight count for the file
451  * descriptor if it is for an AF_UNIX socket.
452  */
453 void unix_inflight(struct user_struct *user, struct file *filp)
454 {
455 	struct unix_sock *u = unix_get_socket(filp);
456 
457 	spin_lock(&unix_gc_lock);
458 
459 	if (u) {
460 		if (!u->inflight) {
461 			WARN_ON_ONCE(!list_empty(&u->link));
462 			list_add_tail(&u->link, &gc_inflight_list);
463 		} else {
464 			WARN_ON_ONCE(list_empty(&u->link));
465 		}
466 		u->inflight++;
467 	}
468 
469 	spin_unlock(&unix_gc_lock);
470 }
471 
472 void unix_notinflight(struct user_struct *user, struct file *filp)
473 {
474 	struct unix_sock *u = unix_get_socket(filp);
475 
476 	spin_lock(&unix_gc_lock);
477 
478 	if (u) {
479 		WARN_ON_ONCE(!u->inflight);
480 		WARN_ON_ONCE(list_empty(&u->link));
481 
482 		u->inflight--;
483 		if (!u->inflight)
484 			list_del_init(&u->link);
485 	}
486 
487 	spin_unlock(&unix_gc_lock);
488 }
489 
490 static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
491 			  struct sk_buff_head *hitlist)
492 {
493 	struct sk_buff *skb;
494 	struct sk_buff *next;
495 
496 	spin_lock(&x->sk_receive_queue.lock);
497 	skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
498 		/* Do we have file descriptors ? */
499 		if (UNIXCB(skb).fp) {
500 			bool hit = false;
501 			/* Process the descriptors of this socket */
502 			int nfd = UNIXCB(skb).fp->count;
503 			struct file **fp = UNIXCB(skb).fp->fp;
504 
505 			while (nfd--) {
506 				/* Get the socket the fd matches if it indeed does so */
507 				struct unix_sock *u = unix_get_socket(*fp++);
508 
509 				/* Ignore non-candidates, they could have been added
510 				 * to the queues after starting the garbage collection
511 				 */
512 				if (u && test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) {
513 					hit = true;
514 
515 					func(u);
516 				}
517 			}
518 			if (hit && hitlist != NULL) {
519 				__skb_unlink(skb, &x->sk_receive_queue);
520 				__skb_queue_tail(hitlist, skb);
521 			}
522 		}
523 	}
524 	spin_unlock(&x->sk_receive_queue.lock);
525 }
526 
527 static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
528 			  struct sk_buff_head *hitlist)
529 {
530 	if (x->sk_state != TCP_LISTEN) {
531 		scan_inflight(x, func, hitlist);
532 	} else {
533 		struct sk_buff *skb;
534 		struct sk_buff *next;
535 		struct unix_sock *u;
536 		LIST_HEAD(embryos);
537 
538 		/* For a listening socket collect the queued embryos
539 		 * and perform a scan on them as well.
540 		 */
541 		spin_lock(&x->sk_receive_queue.lock);
542 		skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
543 			u = unix_sk(skb->sk);
544 
545 			/* An embryo cannot be in-flight, so it's safe
546 			 * to use the list link.
547 			 */
548 			WARN_ON_ONCE(!list_empty(&u->link));
549 			list_add_tail(&u->link, &embryos);
550 		}
551 		spin_unlock(&x->sk_receive_queue.lock);
552 
553 		while (!list_empty(&embryos)) {
554 			u = list_entry(embryos.next, struct unix_sock, link);
555 			scan_inflight(&u->sk, func, hitlist);
556 			list_del_init(&u->link);
557 		}
558 	}
559 }
560 
561 static void dec_inflight(struct unix_sock *usk)
562 {
563 	usk->inflight--;
564 }
565 
566 static void inc_inflight(struct unix_sock *usk)
567 {
568 	usk->inflight++;
569 }
570 
571 static void inc_inflight_move_tail(struct unix_sock *u)
572 {
573 	u->inflight++;
574 
575 	/* If this still might be part of a cycle, move it to the end
576 	 * of the list, so that it's checked even if it was already
577 	 * passed over
578 	 */
579 	if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags))
580 		list_move_tail(&u->link, &gc_candidates);
581 }
582 
583 static bool gc_in_progress;
584 
585 static void __unix_gc(struct work_struct *work)
586 {
587 	struct sk_buff_head hitlist;
588 	struct unix_sock *u, *next;
589 	LIST_HEAD(not_cycle_list);
590 	struct list_head cursor;
591 
592 	spin_lock(&unix_gc_lock);
593 
594 	if (!unix_graph_maybe_cyclic)
595 		goto skip_gc;
596 
597 	if (unix_graph_grouped)
598 		unix_walk_scc_fast();
599 	else
600 		unix_walk_scc();
601 
602 	/* First, select candidates for garbage collection.  Only
603 	 * in-flight sockets are considered, and from those only ones
604 	 * which don't have any external reference.
605 	 *
606 	 * Holding unix_gc_lock will protect these candidates from
607 	 * being detached, and hence from gaining an external
608 	 * reference.  Since there are no possible receivers, all
609 	 * buffers currently on the candidates' queues stay there
610 	 * during the garbage collection.
611 	 *
612 	 * We also know that no new candidate can be added onto the
613 	 * receive queues.  Other, non candidate sockets _can_ be
614 	 * added to queue, so we must make sure only to touch
615 	 * candidates.
616 	 */
617 	list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
618 		long total_refs;
619 
620 		total_refs = file_count(u->sk.sk_socket->file);
621 
622 		WARN_ON_ONCE(!u->inflight);
623 		WARN_ON_ONCE(total_refs < u->inflight);
624 		if (total_refs == u->inflight) {
625 			list_move_tail(&u->link, &gc_candidates);
626 			__set_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
627 			__set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
628 		}
629 	}
630 
631 	/* Now remove all internal in-flight reference to children of
632 	 * the candidates.
633 	 */
634 	list_for_each_entry(u, &gc_candidates, link)
635 		scan_children(&u->sk, dec_inflight, NULL);
636 
637 	/* Restore the references for children of all candidates,
638 	 * which have remaining references.  Do this recursively, so
639 	 * only those remain, which form cyclic references.
640 	 *
641 	 * Use a "cursor" link, to make the list traversal safe, even
642 	 * though elements might be moved about.
643 	 */
644 	list_add(&cursor, &gc_candidates);
645 	while (cursor.next != &gc_candidates) {
646 		u = list_entry(cursor.next, struct unix_sock, link);
647 
648 		/* Move cursor to after the current position. */
649 		list_move(&cursor, &u->link);
650 
651 		if (u->inflight) {
652 			list_move_tail(&u->link, &not_cycle_list);
653 			__clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
654 			scan_children(&u->sk, inc_inflight_move_tail, NULL);
655 		}
656 	}
657 	list_del(&cursor);
658 
659 	/* Now gc_candidates contains only garbage.  Restore original
660 	 * inflight counters for these as well, and remove the skbuffs
661 	 * which are creating the cycle(s).
662 	 */
663 	skb_queue_head_init(&hitlist);
664 	list_for_each_entry(u, &gc_candidates, link) {
665 		scan_children(&u->sk, inc_inflight, &hitlist);
666 
667 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
668 		if (u->oob_skb) {
669 			kfree_skb(u->oob_skb);
670 			u->oob_skb = NULL;
671 		}
672 #endif
673 	}
674 
675 	/* not_cycle_list contains those sockets which do not make up a
676 	 * cycle.  Restore these to the inflight list.
677 	 */
678 	while (!list_empty(&not_cycle_list)) {
679 		u = list_entry(not_cycle_list.next, struct unix_sock, link);
680 		__clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
681 		list_move_tail(&u->link, &gc_inflight_list);
682 	}
683 
684 	spin_unlock(&unix_gc_lock);
685 
686 	/* Here we are. Hitlist is filled. Die. */
687 	__skb_queue_purge(&hitlist);
688 
689 	spin_lock(&unix_gc_lock);
690 
691 	/* All candidates should have been detached by now. */
692 	WARN_ON_ONCE(!list_empty(&gc_candidates));
693 skip_gc:
694 	/* Paired with READ_ONCE() in wait_for_unix_gc(). */
695 	WRITE_ONCE(gc_in_progress, false);
696 
697 	spin_unlock(&unix_gc_lock);
698 }
699 
700 static DECLARE_WORK(unix_gc_work, __unix_gc);
701 
702 void unix_gc(void)
703 {
704 	WRITE_ONCE(gc_in_progress, true);
705 	queue_work(system_unbound_wq, &unix_gc_work);
706 }
707 
708 #define UNIX_INFLIGHT_TRIGGER_GC 16000
709 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
710 
711 void wait_for_unix_gc(struct scm_fp_list *fpl)
712 {
713 	/* If number of inflight sockets is insane,
714 	 * force a garbage collect right now.
715 	 *
716 	 * Paired with the WRITE_ONCE() in unix_inflight(),
717 	 * unix_notinflight(), and __unix_gc().
718 	 */
719 	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
720 	    !READ_ONCE(gc_in_progress))
721 		unix_gc();
722 
723 	/* Penalise users who want to send AF_UNIX sockets
724 	 * but whose sockets have not been received yet.
725 	 */
726 	if (!fpl || !fpl->count_unix ||
727 	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
728 		return;
729 
730 	if (READ_ONCE(gc_in_progress))
731 		flush_work(&unix_gc_work);
732 }
733