xref: /linux/net/unix/garbage.c (revision ba31b4a4e1018f5844c6eb31734976e2184f2f9a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET3:	Garbage Collector For AF_UNIX sockets
4  *
5  * Garbage Collector:
6  *	Copyright (C) Barak A. Pearlmutter.
7  *
8  * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9  * If it doesn't work blame me, it worked when Barak sent it.
10  *
11  * Assumptions:
12  *
13  *  - object w/ a bit
14  *  - free list
15  *
16  * Current optimizations:
17  *
18  *  - explicit stack instead of recursion
19  *  - tail recurse on first born instead of immediate push/pop
20  *  - we gather the stuff that should not be killed into tree
21  *    and stack is just a path from root to the current pointer.
22  *
23  *  Future optimizations:
24  *
25  *  - don't just push entire root set; process in place
26  *
27  *  Fixes:
28  *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29  *					Cope with changing max_files.
30  *	Al Viro		11 Oct 1998
31  *		Graph may have cycles. That is, we can send the descriptor
32  *		of foo to bar and vice versa. Current code chokes on that.
33  *		Fix: move SCM_RIGHTS ones into the separate list and then
34  *		skb_free() them all instead of doing explicit fput's.
35  *		Another problem: since fput() may block somebody may
36  *		create a new unix_socket when we are in the middle of sweep
37  *		phase. Fix: revert the logic wrt MARKED. Mark everything
38  *		upon the beginning and unmark non-junk ones.
39  *
40  *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41  *		sent to connect()'ed but still not accept()'ed sockets.
42  *		Fixed. Old code had slightly different problem here:
43  *		extra fput() in situation when we passed the descriptor via
44  *		such socket and closed it (descriptor). That would happen on
45  *		each unix_gc() until the accept(). Since the struct file in
46  *		question would go to the free list and might be reused...
47  *		That might be the reason of random oopses on filp_close()
48  *		in unrelated processes.
49  *
50  *	AV		28 Feb 1999
51  *		Kill the explicit allocation of stack. Now we keep the tree
52  *		with root in dummy + pointer (gc_current) to one of the nodes.
53  *		Stack is represented as path from gc_current to dummy. Unmark
54  *		now means "add to tree". Push == "make it a son of gc_current".
55  *		Pop == "move gc_current to parent". We keep only pointers to
56  *		parents (->gc_tree).
57  *	AV		1 Mar 1999
58  *		Damn. Added missing check for ->dead in listen queues scanning.
59  *
60  *	Miklos Szeredi 25 Jun 2007
61  *		Reimplement with a cycle collecting algorithm. This should
62  *		solve several problems with the previous code, like being racy
63  *		wrt receive and holding up unrelated socket operations.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/string.h>
68 #include <linux/socket.h>
69 #include <linux/un.h>
70 #include <linux/net.h>
71 #include <linux/fs.h>
72 #include <linux/skbuff.h>
73 #include <linux/netdevice.h>
74 #include <linux/file.h>
75 #include <linux/proc_fs.h>
76 #include <linux/mutex.h>
77 #include <linux/wait.h>
78 
79 #include <net/sock.h>
80 #include <net/af_unix.h>
81 #include <net/scm.h>
82 #include <net/tcp_states.h>
83 
84 struct unix_sock *unix_get_socket(struct file *filp)
85 {
86 	struct inode *inode = file_inode(filp);
87 
88 	/* Socket ? */
89 	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
90 		struct socket *sock = SOCKET_I(inode);
91 		const struct proto_ops *ops;
92 		struct sock *sk = sock->sk;
93 
94 		ops = READ_ONCE(sock->ops);
95 
96 		/* PF_UNIX ? */
97 		if (sk && ops && ops->family == PF_UNIX)
98 			return unix_sk(sk);
99 	}
100 
101 	return NULL;
102 }
103 
104 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
105 {
106 	/* If an embryo socket has a fd,
107 	 * the listener indirectly holds the fd's refcnt.
108 	 */
109 	if (edge->successor->listener)
110 		return unix_sk(edge->successor->listener)->vertex;
111 
112 	return edge->successor->vertex;
113 }
114 
115 static LIST_HEAD(unix_unvisited_vertices);
116 
117 enum unix_vertex_index {
118 	UNIX_VERTEX_INDEX_MARK1,
119 	UNIX_VERTEX_INDEX_MARK2,
120 	UNIX_VERTEX_INDEX_START,
121 };
122 
123 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
124 
125 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
126 {
127 	struct unix_vertex *vertex = edge->predecessor->vertex;
128 
129 	if (!vertex) {
130 		vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
131 		vertex->index = unix_vertex_unvisited_index;
132 		vertex->out_degree = 0;
133 		INIT_LIST_HEAD(&vertex->edges);
134 
135 		list_move_tail(&vertex->entry, &unix_unvisited_vertices);
136 		edge->predecessor->vertex = vertex;
137 	}
138 
139 	vertex->out_degree++;
140 	list_add_tail(&edge->vertex_entry, &vertex->edges);
141 }
142 
143 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
144 {
145 	struct unix_vertex *vertex = edge->predecessor->vertex;
146 
147 	list_del(&edge->vertex_entry);
148 	vertex->out_degree--;
149 
150 	if (!vertex->out_degree) {
151 		edge->predecessor->vertex = NULL;
152 		list_move_tail(&vertex->entry, &fpl->vertices);
153 	}
154 }
155 
156 static void unix_free_vertices(struct scm_fp_list *fpl)
157 {
158 	struct unix_vertex *vertex, *next_vertex;
159 
160 	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
161 		list_del(&vertex->entry);
162 		kfree(vertex);
163 	}
164 }
165 
166 DEFINE_SPINLOCK(unix_gc_lock);
167 unsigned int unix_tot_inflight;
168 
169 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
170 {
171 	int i = 0, j = 0;
172 
173 	spin_lock(&unix_gc_lock);
174 
175 	if (!fpl->count_unix)
176 		goto out;
177 
178 	do {
179 		struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
180 		struct unix_edge *edge;
181 
182 		if (!inflight)
183 			continue;
184 
185 		edge = fpl->edges + i++;
186 		edge->predecessor = inflight;
187 		edge->successor = receiver;
188 
189 		unix_add_edge(fpl, edge);
190 	} while (i < fpl->count_unix);
191 
192 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
193 out:
194 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
195 
196 	spin_unlock(&unix_gc_lock);
197 
198 	fpl->inflight = true;
199 
200 	unix_free_vertices(fpl);
201 }
202 
203 void unix_del_edges(struct scm_fp_list *fpl)
204 {
205 	int i = 0;
206 
207 	spin_lock(&unix_gc_lock);
208 
209 	if (!fpl->count_unix)
210 		goto out;
211 
212 	do {
213 		struct unix_edge *edge = fpl->edges + i++;
214 
215 		unix_del_edge(fpl, edge);
216 	} while (i < fpl->count_unix);
217 
218 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
219 out:
220 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
221 
222 	spin_unlock(&unix_gc_lock);
223 
224 	fpl->inflight = false;
225 }
226 
227 void unix_update_edges(struct unix_sock *receiver)
228 {
229 	spin_lock(&unix_gc_lock);
230 	receiver->listener = NULL;
231 	spin_unlock(&unix_gc_lock);
232 }
233 
234 int unix_prepare_fpl(struct scm_fp_list *fpl)
235 {
236 	struct unix_vertex *vertex;
237 	int i;
238 
239 	if (!fpl->count_unix)
240 		return 0;
241 
242 	for (i = 0; i < fpl->count_unix; i++) {
243 		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
244 		if (!vertex)
245 			goto err;
246 
247 		list_add(&vertex->entry, &fpl->vertices);
248 	}
249 
250 	fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
251 				    GFP_KERNEL_ACCOUNT);
252 	if (!fpl->edges)
253 		goto err;
254 
255 	return 0;
256 
257 err:
258 	unix_free_vertices(fpl);
259 	return -ENOMEM;
260 }
261 
262 void unix_destroy_fpl(struct scm_fp_list *fpl)
263 {
264 	if (fpl->inflight)
265 		unix_del_edges(fpl);
266 
267 	kvfree(fpl->edges);
268 	unix_free_vertices(fpl);
269 }
270 
271 static LIST_HEAD(unix_visited_vertices);
272 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
273 
274 static void __unix_walk_scc(struct unix_vertex *vertex)
275 {
276 	unsigned long index = UNIX_VERTEX_INDEX_START;
277 	LIST_HEAD(vertex_stack);
278 	struct unix_edge *edge;
279 	LIST_HEAD(edge_stack);
280 
281 next_vertex:
282 	/* Push vertex to vertex_stack and mark it as on-stack
283 	 * (index >= UNIX_VERTEX_INDEX_START).
284 	 * The vertex will be popped when finalising SCC later.
285 	 */
286 	list_add(&vertex->scc_entry, &vertex_stack);
287 
288 	vertex->index = index;
289 	vertex->lowlink = index;
290 	index++;
291 
292 	/* Explore neighbour vertices (receivers of the current vertex's fd). */
293 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
294 		struct unix_vertex *next_vertex = unix_edge_successor(edge);
295 
296 		if (!next_vertex)
297 			continue;
298 
299 		if (next_vertex->index == unix_vertex_unvisited_index) {
300 			/* Iterative deepening depth first search
301 			 *
302 			 *   1. Push a forward edge to edge_stack and set
303 			 *      the successor to vertex for the next iteration.
304 			 */
305 			list_add(&edge->stack_entry, &edge_stack);
306 
307 			vertex = next_vertex;
308 			goto next_vertex;
309 
310 			/*   2. Pop the edge directed to the current vertex
311 			 *      and restore the ancestor for backtracking.
312 			 */
313 prev_vertex:
314 			edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
315 			list_del_init(&edge->stack_entry);
316 
317 			next_vertex = vertex;
318 			vertex = edge->predecessor->vertex;
319 
320 			/* If the successor has a smaller lowlink, two vertices
321 			 * are in the same SCC, so propagate the smaller lowlink
322 			 * to skip SCC finalisation.
323 			 */
324 			vertex->lowlink = min(vertex->lowlink, next_vertex->lowlink);
325 		} else if (next_vertex->index != unix_vertex_grouped_index) {
326 			/* Loop detected by a back/cross edge.
327 			 *
328 			 * The successor is on vertex_stack, so two vertices are
329 			 * in the same SCC.  If the successor has a smaller index,
330 			 * propagate it to skip SCC finalisation.
331 			 */
332 			vertex->lowlink = min(vertex->lowlink, next_vertex->index);
333 		} else {
334 			/* The successor was already grouped as another SCC */
335 		}
336 	}
337 
338 	if (vertex->index == vertex->lowlink) {
339 		struct list_head scc;
340 
341 		/* SCC finalised.
342 		 *
343 		 * If the lowlink was not updated, all the vertices above on
344 		 * vertex_stack are in the same SCC.  Group them using scc_entry.
345 		 */
346 		__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
347 
348 		list_for_each_entry_reverse(vertex, &scc, scc_entry) {
349 			/* Don't restart DFS from this vertex in unix_walk_scc(). */
350 			list_move_tail(&vertex->entry, &unix_visited_vertices);
351 
352 			/* Mark vertex as off-stack. */
353 			vertex->index = unix_vertex_grouped_index;
354 		}
355 
356 		list_del(&scc);
357 	}
358 
359 	/* Need backtracking ? */
360 	if (!list_empty(&edge_stack))
361 		goto prev_vertex;
362 }
363 
364 static void unix_walk_scc(void)
365 {
366 	/* Visit every vertex exactly once.
367 	 * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
368 	 */
369 	while (!list_empty(&unix_unvisited_vertices)) {
370 		struct unix_vertex *vertex;
371 
372 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
373 		__unix_walk_scc(vertex);
374 	}
375 
376 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
377 	swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
378 }
379 
380 static LIST_HEAD(gc_candidates);
381 static LIST_HEAD(gc_inflight_list);
382 
383 /* Keep the number of times in flight count for the file
384  * descriptor if it is for an AF_UNIX socket.
385  */
386 void unix_inflight(struct user_struct *user, struct file *filp)
387 {
388 	struct unix_sock *u = unix_get_socket(filp);
389 
390 	spin_lock(&unix_gc_lock);
391 
392 	if (u) {
393 		if (!u->inflight) {
394 			WARN_ON_ONCE(!list_empty(&u->link));
395 			list_add_tail(&u->link, &gc_inflight_list);
396 		} else {
397 			WARN_ON_ONCE(list_empty(&u->link));
398 		}
399 		u->inflight++;
400 	}
401 
402 	spin_unlock(&unix_gc_lock);
403 }
404 
405 void unix_notinflight(struct user_struct *user, struct file *filp)
406 {
407 	struct unix_sock *u = unix_get_socket(filp);
408 
409 	spin_lock(&unix_gc_lock);
410 
411 	if (u) {
412 		WARN_ON_ONCE(!u->inflight);
413 		WARN_ON_ONCE(list_empty(&u->link));
414 
415 		u->inflight--;
416 		if (!u->inflight)
417 			list_del_init(&u->link);
418 	}
419 
420 	spin_unlock(&unix_gc_lock);
421 }
422 
423 static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
424 			  struct sk_buff_head *hitlist)
425 {
426 	struct sk_buff *skb;
427 	struct sk_buff *next;
428 
429 	spin_lock(&x->sk_receive_queue.lock);
430 	skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
431 		/* Do we have file descriptors ? */
432 		if (UNIXCB(skb).fp) {
433 			bool hit = false;
434 			/* Process the descriptors of this socket */
435 			int nfd = UNIXCB(skb).fp->count;
436 			struct file **fp = UNIXCB(skb).fp->fp;
437 
438 			while (nfd--) {
439 				/* Get the socket the fd matches if it indeed does so */
440 				struct unix_sock *u = unix_get_socket(*fp++);
441 
442 				/* Ignore non-candidates, they could have been added
443 				 * to the queues after starting the garbage collection
444 				 */
445 				if (u && test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) {
446 					hit = true;
447 
448 					func(u);
449 				}
450 			}
451 			if (hit && hitlist != NULL) {
452 				__skb_unlink(skb, &x->sk_receive_queue);
453 				__skb_queue_tail(hitlist, skb);
454 			}
455 		}
456 	}
457 	spin_unlock(&x->sk_receive_queue.lock);
458 }
459 
460 static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
461 			  struct sk_buff_head *hitlist)
462 {
463 	if (x->sk_state != TCP_LISTEN) {
464 		scan_inflight(x, func, hitlist);
465 	} else {
466 		struct sk_buff *skb;
467 		struct sk_buff *next;
468 		struct unix_sock *u;
469 		LIST_HEAD(embryos);
470 
471 		/* For a listening socket collect the queued embryos
472 		 * and perform a scan on them as well.
473 		 */
474 		spin_lock(&x->sk_receive_queue.lock);
475 		skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
476 			u = unix_sk(skb->sk);
477 
478 			/* An embryo cannot be in-flight, so it's safe
479 			 * to use the list link.
480 			 */
481 			WARN_ON_ONCE(!list_empty(&u->link));
482 			list_add_tail(&u->link, &embryos);
483 		}
484 		spin_unlock(&x->sk_receive_queue.lock);
485 
486 		while (!list_empty(&embryos)) {
487 			u = list_entry(embryos.next, struct unix_sock, link);
488 			scan_inflight(&u->sk, func, hitlist);
489 			list_del_init(&u->link);
490 		}
491 	}
492 }
493 
494 static void dec_inflight(struct unix_sock *usk)
495 {
496 	usk->inflight--;
497 }
498 
499 static void inc_inflight(struct unix_sock *usk)
500 {
501 	usk->inflight++;
502 }
503 
504 static void inc_inflight_move_tail(struct unix_sock *u)
505 {
506 	u->inflight++;
507 
508 	/* If this still might be part of a cycle, move it to the end
509 	 * of the list, so that it's checked even if it was already
510 	 * passed over
511 	 */
512 	if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags))
513 		list_move_tail(&u->link, &gc_candidates);
514 }
515 
516 static bool gc_in_progress;
517 
518 static void __unix_gc(struct work_struct *work)
519 {
520 	struct sk_buff_head hitlist;
521 	struct unix_sock *u, *next;
522 	LIST_HEAD(not_cycle_list);
523 	struct list_head cursor;
524 
525 	spin_lock(&unix_gc_lock);
526 
527 	unix_walk_scc();
528 
529 	/* First, select candidates for garbage collection.  Only
530 	 * in-flight sockets are considered, and from those only ones
531 	 * which don't have any external reference.
532 	 *
533 	 * Holding unix_gc_lock will protect these candidates from
534 	 * being detached, and hence from gaining an external
535 	 * reference.  Since there are no possible receivers, all
536 	 * buffers currently on the candidates' queues stay there
537 	 * during the garbage collection.
538 	 *
539 	 * We also know that no new candidate can be added onto the
540 	 * receive queues.  Other, non candidate sockets _can_ be
541 	 * added to queue, so we must make sure only to touch
542 	 * candidates.
543 	 */
544 	list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
545 		long total_refs;
546 
547 		total_refs = file_count(u->sk.sk_socket->file);
548 
549 		WARN_ON_ONCE(!u->inflight);
550 		WARN_ON_ONCE(total_refs < u->inflight);
551 		if (total_refs == u->inflight) {
552 			list_move_tail(&u->link, &gc_candidates);
553 			__set_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
554 			__set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
555 		}
556 	}
557 
558 	/* Now remove all internal in-flight reference to children of
559 	 * the candidates.
560 	 */
561 	list_for_each_entry(u, &gc_candidates, link)
562 		scan_children(&u->sk, dec_inflight, NULL);
563 
564 	/* Restore the references for children of all candidates,
565 	 * which have remaining references.  Do this recursively, so
566 	 * only those remain, which form cyclic references.
567 	 *
568 	 * Use a "cursor" link, to make the list traversal safe, even
569 	 * though elements might be moved about.
570 	 */
571 	list_add(&cursor, &gc_candidates);
572 	while (cursor.next != &gc_candidates) {
573 		u = list_entry(cursor.next, struct unix_sock, link);
574 
575 		/* Move cursor to after the current position. */
576 		list_move(&cursor, &u->link);
577 
578 		if (u->inflight) {
579 			list_move_tail(&u->link, &not_cycle_list);
580 			__clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
581 			scan_children(&u->sk, inc_inflight_move_tail, NULL);
582 		}
583 	}
584 	list_del(&cursor);
585 
586 	/* Now gc_candidates contains only garbage.  Restore original
587 	 * inflight counters for these as well, and remove the skbuffs
588 	 * which are creating the cycle(s).
589 	 */
590 	skb_queue_head_init(&hitlist);
591 	list_for_each_entry(u, &gc_candidates, link) {
592 		scan_children(&u->sk, inc_inflight, &hitlist);
593 
594 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
595 		if (u->oob_skb) {
596 			kfree_skb(u->oob_skb);
597 			u->oob_skb = NULL;
598 		}
599 #endif
600 	}
601 
602 	/* not_cycle_list contains those sockets which do not make up a
603 	 * cycle.  Restore these to the inflight list.
604 	 */
605 	while (!list_empty(&not_cycle_list)) {
606 		u = list_entry(not_cycle_list.next, struct unix_sock, link);
607 		__clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
608 		list_move_tail(&u->link, &gc_inflight_list);
609 	}
610 
611 	spin_unlock(&unix_gc_lock);
612 
613 	/* Here we are. Hitlist is filled. Die. */
614 	__skb_queue_purge(&hitlist);
615 
616 	spin_lock(&unix_gc_lock);
617 
618 	/* All candidates should have been detached by now. */
619 	WARN_ON_ONCE(!list_empty(&gc_candidates));
620 
621 	/* Paired with READ_ONCE() in wait_for_unix_gc(). */
622 	WRITE_ONCE(gc_in_progress, false);
623 
624 	spin_unlock(&unix_gc_lock);
625 }
626 
627 static DECLARE_WORK(unix_gc_work, __unix_gc);
628 
629 void unix_gc(void)
630 {
631 	WRITE_ONCE(gc_in_progress, true);
632 	queue_work(system_unbound_wq, &unix_gc_work);
633 }
634 
635 #define UNIX_INFLIGHT_TRIGGER_GC 16000
636 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
637 
638 void wait_for_unix_gc(struct scm_fp_list *fpl)
639 {
640 	/* If number of inflight sockets is insane,
641 	 * force a garbage collect right now.
642 	 *
643 	 * Paired with the WRITE_ONCE() in unix_inflight(),
644 	 * unix_notinflight(), and __unix_gc().
645 	 */
646 	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
647 	    !READ_ONCE(gc_in_progress))
648 		unix_gc();
649 
650 	/* Penalise users who want to send AF_UNIX sockets
651 	 * but whose sockets have not been received yet.
652 	 */
653 	if (!fpl || !fpl->count_unix ||
654 	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
655 		return;
656 
657 	if (READ_ONCE(gc_in_progress))
658 		flush_work(&unix_gc_work);
659 }
660