1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3: Garbage Collector For AF_UNIX sockets 4 * 5 * Garbage Collector: 6 * Copyright (C) Barak A. Pearlmutter. 7 * 8 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. 9 * If it doesn't work blame me, it worked when Barak sent it. 10 * 11 * Assumptions: 12 * 13 * - object w/ a bit 14 * - free list 15 * 16 * Current optimizations: 17 * 18 * - explicit stack instead of recursion 19 * - tail recurse on first born instead of immediate push/pop 20 * - we gather the stuff that should not be killed into tree 21 * and stack is just a path from root to the current pointer. 22 * 23 * Future optimizations: 24 * 25 * - don't just push entire root set; process in place 26 * 27 * Fixes: 28 * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. 29 * Cope with changing max_files. 30 * Al Viro 11 Oct 1998 31 * Graph may have cycles. That is, we can send the descriptor 32 * of foo to bar and vice versa. Current code chokes on that. 33 * Fix: move SCM_RIGHTS ones into the separate list and then 34 * skb_free() them all instead of doing explicit fput's. 35 * Another problem: since fput() may block somebody may 36 * create a new unix_socket when we are in the middle of sweep 37 * phase. Fix: revert the logic wrt MARKED. Mark everything 38 * upon the beginning and unmark non-junk ones. 39 * 40 * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS 41 * sent to connect()'ed but still not accept()'ed sockets. 42 * Fixed. Old code had slightly different problem here: 43 * extra fput() in situation when we passed the descriptor via 44 * such socket and closed it (descriptor). That would happen on 45 * each unix_gc() until the accept(). Since the struct file in 46 * question would go to the free list and might be reused... 47 * That might be the reason of random oopses on filp_close() 48 * in unrelated processes. 49 * 50 * AV 28 Feb 1999 51 * Kill the explicit allocation of stack. Now we keep the tree 52 * with root in dummy + pointer (gc_current) to one of the nodes. 53 * Stack is represented as path from gc_current to dummy. Unmark 54 * now means "add to tree". Push == "make it a son of gc_current". 55 * Pop == "move gc_current to parent". We keep only pointers to 56 * parents (->gc_tree). 57 * AV 1 Mar 1999 58 * Damn. Added missing check for ->dead in listen queues scanning. 59 * 60 * Miklos Szeredi 25 Jun 2007 61 * Reimplement with a cycle collecting algorithm. This should 62 * solve several problems with the previous code, like being racy 63 * wrt receive and holding up unrelated socket operations. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/string.h> 68 #include <linux/socket.h> 69 #include <linux/un.h> 70 #include <linux/net.h> 71 #include <linux/fs.h> 72 #include <linux/skbuff.h> 73 #include <linux/netdevice.h> 74 #include <linux/file.h> 75 #include <linux/proc_fs.h> 76 #include <linux/mutex.h> 77 #include <linux/wait.h> 78 79 #include <net/sock.h> 80 #include <net/af_unix.h> 81 #include <net/scm.h> 82 #include <net/tcp_states.h> 83 84 struct unix_sock *unix_get_socket(struct file *filp) 85 { 86 struct inode *inode = file_inode(filp); 87 88 /* Socket ? */ 89 if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { 90 struct socket *sock = SOCKET_I(inode); 91 const struct proto_ops *ops; 92 struct sock *sk = sock->sk; 93 94 ops = READ_ONCE(sock->ops); 95 96 /* PF_UNIX ? */ 97 if (sk && ops && ops->family == PF_UNIX) 98 return unix_sk(sk); 99 } 100 101 return NULL; 102 } 103 104 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) 105 { 106 /* If an embryo socket has a fd, 107 * the listener indirectly holds the fd's refcnt. 108 */ 109 if (edge->successor->listener) 110 return unix_sk(edge->successor->listener)->vertex; 111 112 return edge->successor->vertex; 113 } 114 115 static bool unix_graph_maybe_cyclic; 116 static bool unix_graph_grouped; 117 118 static void unix_update_graph(struct unix_vertex *vertex) 119 { 120 /* If the receiver socket is not inflight, no cyclic 121 * reference could be formed. 122 */ 123 if (!vertex) 124 return; 125 126 unix_graph_maybe_cyclic = true; 127 unix_graph_grouped = false; 128 } 129 130 static LIST_HEAD(unix_unvisited_vertices); 131 132 enum unix_vertex_index { 133 UNIX_VERTEX_INDEX_MARK1, 134 UNIX_VERTEX_INDEX_MARK2, 135 UNIX_VERTEX_INDEX_START, 136 }; 137 138 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; 139 140 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 141 { 142 struct unix_vertex *vertex = edge->predecessor->vertex; 143 144 if (!vertex) { 145 vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); 146 vertex->index = unix_vertex_unvisited_index; 147 vertex->out_degree = 0; 148 INIT_LIST_HEAD(&vertex->edges); 149 INIT_LIST_HEAD(&vertex->scc_entry); 150 151 list_move_tail(&vertex->entry, &unix_unvisited_vertices); 152 edge->predecessor->vertex = vertex; 153 } 154 155 vertex->out_degree++; 156 list_add_tail(&edge->vertex_entry, &vertex->edges); 157 158 unix_update_graph(unix_edge_successor(edge)); 159 } 160 161 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 162 { 163 struct unix_vertex *vertex = edge->predecessor->vertex; 164 165 unix_update_graph(unix_edge_successor(edge)); 166 167 list_del(&edge->vertex_entry); 168 vertex->out_degree--; 169 170 if (!vertex->out_degree) { 171 edge->predecessor->vertex = NULL; 172 list_move_tail(&vertex->entry, &fpl->vertices); 173 } 174 } 175 176 static void unix_free_vertices(struct scm_fp_list *fpl) 177 { 178 struct unix_vertex *vertex, *next_vertex; 179 180 list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { 181 list_del(&vertex->entry); 182 kfree(vertex); 183 } 184 } 185 186 static DEFINE_SPINLOCK(unix_gc_lock); 187 unsigned int unix_tot_inflight; 188 189 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) 190 { 191 int i = 0, j = 0; 192 193 spin_lock(&unix_gc_lock); 194 195 if (!fpl->count_unix) 196 goto out; 197 198 do { 199 struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); 200 struct unix_edge *edge; 201 202 if (!inflight) 203 continue; 204 205 edge = fpl->edges + i++; 206 edge->predecessor = inflight; 207 edge->successor = receiver; 208 209 unix_add_edge(fpl, edge); 210 } while (i < fpl->count_unix); 211 212 receiver->scm_stat.nr_unix_fds += fpl->count_unix; 213 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); 214 out: 215 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); 216 217 spin_unlock(&unix_gc_lock); 218 219 fpl->inflight = true; 220 221 unix_free_vertices(fpl); 222 } 223 224 void unix_del_edges(struct scm_fp_list *fpl) 225 { 226 struct unix_sock *receiver; 227 int i = 0; 228 229 spin_lock(&unix_gc_lock); 230 231 if (!fpl->count_unix) 232 goto out; 233 234 do { 235 struct unix_edge *edge = fpl->edges + i++; 236 237 unix_del_edge(fpl, edge); 238 } while (i < fpl->count_unix); 239 240 receiver = fpl->edges[0].successor; 241 receiver->scm_stat.nr_unix_fds -= fpl->count_unix; 242 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); 243 out: 244 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); 245 246 spin_unlock(&unix_gc_lock); 247 248 fpl->inflight = false; 249 } 250 251 void unix_update_edges(struct unix_sock *receiver) 252 { 253 /* nr_unix_fds is only updated under unix_state_lock(). 254 * If it's 0 here, the embryo socket is not part of the 255 * inflight graph, and GC will not see it, so no lock needed. 256 */ 257 if (!receiver->scm_stat.nr_unix_fds) { 258 receiver->listener = NULL; 259 } else { 260 spin_lock(&unix_gc_lock); 261 unix_update_graph(unix_sk(receiver->listener)->vertex); 262 receiver->listener = NULL; 263 spin_unlock(&unix_gc_lock); 264 } 265 } 266 267 int unix_prepare_fpl(struct scm_fp_list *fpl) 268 { 269 struct unix_vertex *vertex; 270 int i; 271 272 if (!fpl->count_unix) 273 return 0; 274 275 for (i = 0; i < fpl->count_unix; i++) { 276 vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); 277 if (!vertex) 278 goto err; 279 280 list_add(&vertex->entry, &fpl->vertices); 281 } 282 283 fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), 284 GFP_KERNEL_ACCOUNT); 285 if (!fpl->edges) 286 goto err; 287 288 return 0; 289 290 err: 291 unix_free_vertices(fpl); 292 return -ENOMEM; 293 } 294 295 void unix_destroy_fpl(struct scm_fp_list *fpl) 296 { 297 if (fpl->inflight) 298 unix_del_edges(fpl); 299 300 kvfree(fpl->edges); 301 unix_free_vertices(fpl); 302 } 303 304 static bool unix_vertex_dead(struct unix_vertex *vertex) 305 { 306 struct unix_edge *edge; 307 struct unix_sock *u; 308 long total_ref; 309 310 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 311 struct unix_vertex *next_vertex = unix_edge_successor(edge); 312 313 /* The vertex's fd can be received by a non-inflight socket. */ 314 if (!next_vertex) 315 return false; 316 317 /* The vertex's fd can be received by an inflight socket in 318 * another SCC. 319 */ 320 if (next_vertex->scc_index != vertex->scc_index) 321 return false; 322 } 323 324 /* No receiver exists out of the same SCC. */ 325 326 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 327 u = edge->predecessor; 328 total_ref = file_count(u->sk.sk_socket->file); 329 330 /* If not close()d, total_ref > out_degree. */ 331 if (total_ref != vertex->out_degree) 332 return false; 333 334 return true; 335 } 336 337 enum unix_recv_queue_lock_class { 338 U_RECVQ_LOCK_NORMAL, 339 U_RECVQ_LOCK_EMBRYO, 340 }; 341 342 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) 343 { 344 struct unix_vertex *vertex; 345 346 list_for_each_entry_reverse(vertex, scc, scc_entry) { 347 struct sk_buff_head *queue; 348 struct unix_edge *edge; 349 struct unix_sock *u; 350 351 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 352 u = edge->predecessor; 353 queue = &u->sk.sk_receive_queue; 354 355 spin_lock(&queue->lock); 356 357 if (u->sk.sk_state == TCP_LISTEN) { 358 struct sk_buff *skb; 359 360 skb_queue_walk(queue, skb) { 361 struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; 362 363 /* listener -> embryo order, the inversion never happens. */ 364 spin_lock_nested(&embryo_queue->lock, U_RECVQ_LOCK_EMBRYO); 365 skb_queue_splice_init(embryo_queue, hitlist); 366 spin_unlock(&embryo_queue->lock); 367 } 368 } else { 369 skb_queue_splice_init(queue, hitlist); 370 371 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 372 if (u->oob_skb) { 373 kfree_skb(u->oob_skb); 374 u->oob_skb = NULL; 375 } 376 #endif 377 } 378 379 spin_unlock(&queue->lock); 380 } 381 } 382 383 static bool unix_scc_cyclic(struct list_head *scc) 384 { 385 struct unix_vertex *vertex; 386 struct unix_edge *edge; 387 388 /* SCC containing multiple vertices ? */ 389 if (!list_is_singular(scc)) 390 return true; 391 392 vertex = list_first_entry(scc, typeof(*vertex), scc_entry); 393 394 /* Self-reference or a embryo-listener circle ? */ 395 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 396 if (unix_edge_successor(edge) == vertex) 397 return true; 398 } 399 400 return false; 401 } 402 403 static LIST_HEAD(unix_visited_vertices); 404 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; 405 406 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, 407 struct sk_buff_head *hitlist) 408 { 409 LIST_HEAD(vertex_stack); 410 struct unix_edge *edge; 411 LIST_HEAD(edge_stack); 412 413 next_vertex: 414 /* Push vertex to vertex_stack and mark it as on-stack 415 * (index >= UNIX_VERTEX_INDEX_START). 416 * The vertex will be popped when finalising SCC later. 417 */ 418 list_add(&vertex->scc_entry, &vertex_stack); 419 420 vertex->index = *last_index; 421 vertex->scc_index = *last_index; 422 (*last_index)++; 423 424 /* Explore neighbour vertices (receivers of the current vertex's fd). */ 425 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 426 struct unix_vertex *next_vertex = unix_edge_successor(edge); 427 428 if (!next_vertex) 429 continue; 430 431 if (next_vertex->index == unix_vertex_unvisited_index) { 432 /* Iterative deepening depth first search 433 * 434 * 1. Push a forward edge to edge_stack and set 435 * the successor to vertex for the next iteration. 436 */ 437 list_add(&edge->stack_entry, &edge_stack); 438 439 vertex = next_vertex; 440 goto next_vertex; 441 442 /* 2. Pop the edge directed to the current vertex 443 * and restore the ancestor for backtracking. 444 */ 445 prev_vertex: 446 edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); 447 list_del_init(&edge->stack_entry); 448 449 next_vertex = vertex; 450 vertex = edge->predecessor->vertex; 451 452 /* If the successor has a smaller scc_index, two vertices 453 * are in the same SCC, so propagate the smaller scc_index 454 * to skip SCC finalisation. 455 */ 456 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 457 } else if (next_vertex->index != unix_vertex_grouped_index) { 458 /* Loop detected by a back/cross edge. 459 * 460 * The successor is on vertex_stack, so two vertices are in 461 * the same SCC. If the successor has a smaller *scc_index*, 462 * propagate it to skip SCC finalisation. 463 */ 464 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 465 } else { 466 /* The successor was already grouped as another SCC */ 467 } 468 } 469 470 if (vertex->index == vertex->scc_index) { 471 struct list_head scc; 472 bool scc_dead = true; 473 474 /* SCC finalised. 475 * 476 * If the scc_index was not updated, all the vertices above on 477 * vertex_stack are in the same SCC. Group them using scc_entry. 478 */ 479 __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); 480 481 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 482 /* Don't restart DFS from this vertex in unix_walk_scc(). */ 483 list_move_tail(&vertex->entry, &unix_visited_vertices); 484 485 /* Mark vertex as off-stack. */ 486 vertex->index = unix_vertex_grouped_index; 487 488 if (scc_dead) 489 scc_dead = unix_vertex_dead(vertex); 490 } 491 492 if (scc_dead) 493 unix_collect_skb(&scc, hitlist); 494 else if (!unix_graph_maybe_cyclic) 495 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 496 497 list_del(&scc); 498 } 499 500 /* Need backtracking ? */ 501 if (!list_empty(&edge_stack)) 502 goto prev_vertex; 503 } 504 505 static void unix_walk_scc(struct sk_buff_head *hitlist) 506 { 507 unsigned long last_index = UNIX_VERTEX_INDEX_START; 508 509 unix_graph_maybe_cyclic = false; 510 511 /* Visit every vertex exactly once. 512 * __unix_walk_scc() moves visited vertices to unix_visited_vertices. 513 */ 514 while (!list_empty(&unix_unvisited_vertices)) { 515 struct unix_vertex *vertex; 516 517 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 518 __unix_walk_scc(vertex, &last_index, hitlist); 519 } 520 521 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 522 swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); 523 524 unix_graph_grouped = true; 525 } 526 527 static void unix_walk_scc_fast(struct sk_buff_head *hitlist) 528 { 529 while (!list_empty(&unix_unvisited_vertices)) { 530 struct unix_vertex *vertex; 531 struct list_head scc; 532 bool scc_dead = true; 533 534 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 535 list_add(&scc, &vertex->scc_entry); 536 537 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 538 list_move_tail(&vertex->entry, &unix_visited_vertices); 539 540 if (scc_dead) 541 scc_dead = unix_vertex_dead(vertex); 542 } 543 544 if (scc_dead) 545 unix_collect_skb(&scc, hitlist); 546 547 list_del(&scc); 548 } 549 550 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 551 } 552 553 static bool gc_in_progress; 554 555 static void __unix_gc(struct work_struct *work) 556 { 557 struct sk_buff_head hitlist; 558 559 spin_lock(&unix_gc_lock); 560 561 if (!unix_graph_maybe_cyclic) { 562 spin_unlock(&unix_gc_lock); 563 goto skip_gc; 564 } 565 566 __skb_queue_head_init(&hitlist); 567 568 if (unix_graph_grouped) 569 unix_walk_scc_fast(&hitlist); 570 else 571 unix_walk_scc(&hitlist); 572 573 spin_unlock(&unix_gc_lock); 574 575 __skb_queue_purge(&hitlist); 576 skip_gc: 577 WRITE_ONCE(gc_in_progress, false); 578 } 579 580 static DECLARE_WORK(unix_gc_work, __unix_gc); 581 582 void unix_gc(void) 583 { 584 WRITE_ONCE(gc_in_progress, true); 585 queue_work(system_unbound_wq, &unix_gc_work); 586 } 587 588 #define UNIX_INFLIGHT_TRIGGER_GC 16000 589 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) 590 591 void wait_for_unix_gc(struct scm_fp_list *fpl) 592 { 593 /* If number of inflight sockets is insane, 594 * force a garbage collect right now. 595 * 596 * Paired with the WRITE_ONCE() in unix_inflight(), 597 * unix_notinflight(), and __unix_gc(). 598 */ 599 if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && 600 !READ_ONCE(gc_in_progress)) 601 unix_gc(); 602 603 /* Penalise users who want to send AF_UNIX sockets 604 * but whose sockets have not been received yet. 605 */ 606 if (!fpl || !fpl->count_unix || 607 READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) 608 return; 609 610 if (READ_ONCE(gc_in_progress)) 611 flush_work(&unix_gc_work); 612 } 613