1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3: Garbage Collector For AF_UNIX sockets 4 * 5 * Garbage Collector: 6 * Copyright (C) Barak A. Pearlmutter. 7 * 8 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. 9 * If it doesn't work blame me, it worked when Barak sent it. 10 * 11 * Assumptions: 12 * 13 * - object w/ a bit 14 * - free list 15 * 16 * Current optimizations: 17 * 18 * - explicit stack instead of recursion 19 * - tail recurse on first born instead of immediate push/pop 20 * - we gather the stuff that should not be killed into tree 21 * and stack is just a path from root to the current pointer. 22 * 23 * Future optimizations: 24 * 25 * - don't just push entire root set; process in place 26 * 27 * Fixes: 28 * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. 29 * Cope with changing max_files. 30 * Al Viro 11 Oct 1998 31 * Graph may have cycles. That is, we can send the descriptor 32 * of foo to bar and vice versa. Current code chokes on that. 33 * Fix: move SCM_RIGHTS ones into the separate list and then 34 * skb_free() them all instead of doing explicit fput's. 35 * Another problem: since fput() may block somebody may 36 * create a new unix_socket when we are in the middle of sweep 37 * phase. Fix: revert the logic wrt MARKED. Mark everything 38 * upon the beginning and unmark non-junk ones. 39 * 40 * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS 41 * sent to connect()'ed but still not accept()'ed sockets. 42 * Fixed. Old code had slightly different problem here: 43 * extra fput() in situation when we passed the descriptor via 44 * such socket and closed it (descriptor). That would happen on 45 * each unix_gc() until the accept(). Since the struct file in 46 * question would go to the free list and might be reused... 47 * That might be the reason of random oopses on filp_close() 48 * in unrelated processes. 49 * 50 * AV 28 Feb 1999 51 * Kill the explicit allocation of stack. Now we keep the tree 52 * with root in dummy + pointer (gc_current) to one of the nodes. 53 * Stack is represented as path from gc_current to dummy. Unmark 54 * now means "add to tree". Push == "make it a son of gc_current". 55 * Pop == "move gc_current to parent". We keep only pointers to 56 * parents (->gc_tree). 57 * AV 1 Mar 1999 58 * Damn. Added missing check for ->dead in listen queues scanning. 59 * 60 * Miklos Szeredi 25 Jun 2007 61 * Reimplement with a cycle collecting algorithm. This should 62 * solve several problems with the previous code, like being racy 63 * wrt receive and holding up unrelated socket operations. 64 */ 65 66 #include <linux/fs.h> 67 #include <linux/list.h> 68 #include <linux/skbuff.h> 69 #include <linux/socket.h> 70 #include <linux/workqueue.h> 71 #include <net/af_unix.h> 72 #include <net/scm.h> 73 #include <net/tcp_states.h> 74 75 #include "af_unix.h" 76 77 struct unix_vertex { 78 struct list_head edges; 79 struct list_head entry; 80 struct list_head scc_entry; 81 unsigned long out_degree; 82 unsigned long index; 83 unsigned long scc_index; 84 }; 85 86 struct unix_edge { 87 struct unix_sock *predecessor; 88 struct unix_sock *successor; 89 struct list_head vertex_entry; 90 struct list_head stack_entry; 91 }; 92 93 struct unix_sock *unix_get_socket(struct file *filp) 94 { 95 struct inode *inode = file_inode(filp); 96 97 /* Socket ? */ 98 if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { 99 struct socket *sock = SOCKET_I(inode); 100 const struct proto_ops *ops; 101 struct sock *sk = sock->sk; 102 103 ops = READ_ONCE(sock->ops); 104 105 /* PF_UNIX ? */ 106 if (sk && ops && ops->family == PF_UNIX) 107 return unix_sk(sk); 108 } 109 110 return NULL; 111 } 112 113 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) 114 { 115 /* If an embryo socket has a fd, 116 * the listener indirectly holds the fd's refcnt. 117 */ 118 if (edge->successor->listener) 119 return unix_sk(edge->successor->listener)->vertex; 120 121 return edge->successor->vertex; 122 } 123 124 static bool unix_graph_maybe_cyclic; 125 static bool unix_graph_grouped; 126 127 static void unix_update_graph(struct unix_vertex *vertex) 128 { 129 /* If the receiver socket is not inflight, no cyclic 130 * reference could be formed. 131 */ 132 if (!vertex) 133 return; 134 135 unix_graph_maybe_cyclic = true; 136 unix_graph_grouped = false; 137 } 138 139 static LIST_HEAD(unix_unvisited_vertices); 140 141 enum unix_vertex_index { 142 UNIX_VERTEX_INDEX_MARK1, 143 UNIX_VERTEX_INDEX_MARK2, 144 UNIX_VERTEX_INDEX_START, 145 }; 146 147 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; 148 149 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 150 { 151 struct unix_vertex *vertex = edge->predecessor->vertex; 152 153 if (!vertex) { 154 vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); 155 vertex->index = unix_vertex_unvisited_index; 156 vertex->out_degree = 0; 157 INIT_LIST_HEAD(&vertex->edges); 158 INIT_LIST_HEAD(&vertex->scc_entry); 159 160 list_move_tail(&vertex->entry, &unix_unvisited_vertices); 161 edge->predecessor->vertex = vertex; 162 } 163 164 vertex->out_degree++; 165 list_add_tail(&edge->vertex_entry, &vertex->edges); 166 167 unix_update_graph(unix_edge_successor(edge)); 168 } 169 170 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 171 { 172 struct unix_vertex *vertex = edge->predecessor->vertex; 173 174 if (!fpl->dead) 175 unix_update_graph(unix_edge_successor(edge)); 176 177 list_del(&edge->vertex_entry); 178 vertex->out_degree--; 179 180 if (!vertex->out_degree) { 181 edge->predecessor->vertex = NULL; 182 list_move_tail(&vertex->entry, &fpl->vertices); 183 } 184 } 185 186 static void unix_free_vertices(struct scm_fp_list *fpl) 187 { 188 struct unix_vertex *vertex, *next_vertex; 189 190 list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { 191 list_del(&vertex->entry); 192 kfree(vertex); 193 } 194 } 195 196 static DEFINE_SPINLOCK(unix_gc_lock); 197 unsigned int unix_tot_inflight; 198 199 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) 200 { 201 int i = 0, j = 0; 202 203 spin_lock(&unix_gc_lock); 204 205 if (!fpl->count_unix) 206 goto out; 207 208 do { 209 struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); 210 struct unix_edge *edge; 211 212 if (!inflight) 213 continue; 214 215 edge = fpl->edges + i++; 216 edge->predecessor = inflight; 217 edge->successor = receiver; 218 219 unix_add_edge(fpl, edge); 220 } while (i < fpl->count_unix); 221 222 receiver->scm_stat.nr_unix_fds += fpl->count_unix; 223 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); 224 out: 225 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); 226 227 spin_unlock(&unix_gc_lock); 228 229 fpl->inflight = true; 230 231 unix_free_vertices(fpl); 232 } 233 234 void unix_del_edges(struct scm_fp_list *fpl) 235 { 236 struct unix_sock *receiver; 237 int i = 0; 238 239 spin_lock(&unix_gc_lock); 240 241 if (!fpl->count_unix) 242 goto out; 243 244 do { 245 struct unix_edge *edge = fpl->edges + i++; 246 247 unix_del_edge(fpl, edge); 248 } while (i < fpl->count_unix); 249 250 if (!fpl->dead) { 251 receiver = fpl->edges[0].successor; 252 receiver->scm_stat.nr_unix_fds -= fpl->count_unix; 253 } 254 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); 255 out: 256 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); 257 258 spin_unlock(&unix_gc_lock); 259 260 fpl->inflight = false; 261 } 262 263 void unix_update_edges(struct unix_sock *receiver) 264 { 265 /* nr_unix_fds is only updated under unix_state_lock(). 266 * If it's 0 here, the embryo socket is not part of the 267 * inflight graph, and GC will not see it, so no lock needed. 268 */ 269 if (!receiver->scm_stat.nr_unix_fds) { 270 receiver->listener = NULL; 271 } else { 272 spin_lock(&unix_gc_lock); 273 unix_update_graph(unix_sk(receiver->listener)->vertex); 274 receiver->listener = NULL; 275 spin_unlock(&unix_gc_lock); 276 } 277 } 278 279 int unix_prepare_fpl(struct scm_fp_list *fpl) 280 { 281 struct unix_vertex *vertex; 282 int i; 283 284 if (!fpl->count_unix) 285 return 0; 286 287 for (i = 0; i < fpl->count_unix; i++) { 288 vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); 289 if (!vertex) 290 goto err; 291 292 list_add(&vertex->entry, &fpl->vertices); 293 } 294 295 fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), 296 GFP_KERNEL_ACCOUNT); 297 if (!fpl->edges) 298 goto err; 299 300 return 0; 301 302 err: 303 unix_free_vertices(fpl); 304 return -ENOMEM; 305 } 306 307 void unix_destroy_fpl(struct scm_fp_list *fpl) 308 { 309 if (fpl->inflight) 310 unix_del_edges(fpl); 311 312 kvfree(fpl->edges); 313 unix_free_vertices(fpl); 314 } 315 316 static bool unix_vertex_dead(struct unix_vertex *vertex) 317 { 318 struct unix_edge *edge; 319 struct unix_sock *u; 320 long total_ref; 321 322 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 323 struct unix_vertex *next_vertex = unix_edge_successor(edge); 324 325 /* The vertex's fd can be received by a non-inflight socket. */ 326 if (!next_vertex) 327 return false; 328 329 /* The vertex's fd can be received by an inflight socket in 330 * another SCC. 331 */ 332 if (next_vertex->scc_index != vertex->scc_index) 333 return false; 334 } 335 336 /* No receiver exists out of the same SCC. */ 337 338 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 339 u = edge->predecessor; 340 total_ref = file_count(u->sk.sk_socket->file); 341 342 /* If not close()d, total_ref > out_degree. */ 343 if (total_ref != vertex->out_degree) 344 return false; 345 346 return true; 347 } 348 349 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) 350 { 351 struct unix_vertex *vertex; 352 353 list_for_each_entry_reverse(vertex, scc, scc_entry) { 354 struct sk_buff_head *queue; 355 struct unix_edge *edge; 356 struct unix_sock *u; 357 358 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 359 u = edge->predecessor; 360 queue = &u->sk.sk_receive_queue; 361 362 spin_lock(&queue->lock); 363 364 if (u->sk.sk_state == TCP_LISTEN) { 365 struct sk_buff *skb; 366 367 skb_queue_walk(queue, skb) { 368 struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; 369 370 spin_lock(&embryo_queue->lock); 371 skb_queue_splice_init(embryo_queue, hitlist); 372 spin_unlock(&embryo_queue->lock); 373 } 374 } else { 375 skb_queue_splice_init(queue, hitlist); 376 } 377 378 spin_unlock(&queue->lock); 379 } 380 } 381 382 static bool unix_scc_cyclic(struct list_head *scc) 383 { 384 struct unix_vertex *vertex; 385 struct unix_edge *edge; 386 387 /* SCC containing multiple vertices ? */ 388 if (!list_is_singular(scc)) 389 return true; 390 391 vertex = list_first_entry(scc, typeof(*vertex), scc_entry); 392 393 /* Self-reference or a embryo-listener circle ? */ 394 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 395 if (unix_edge_successor(edge) == vertex) 396 return true; 397 } 398 399 return false; 400 } 401 402 static LIST_HEAD(unix_visited_vertices); 403 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; 404 405 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, 406 struct sk_buff_head *hitlist) 407 { 408 LIST_HEAD(vertex_stack); 409 struct unix_edge *edge; 410 LIST_HEAD(edge_stack); 411 412 next_vertex: 413 /* Push vertex to vertex_stack and mark it as on-stack 414 * (index >= UNIX_VERTEX_INDEX_START). 415 * The vertex will be popped when finalising SCC later. 416 */ 417 list_add(&vertex->scc_entry, &vertex_stack); 418 419 vertex->index = *last_index; 420 vertex->scc_index = *last_index; 421 (*last_index)++; 422 423 /* Explore neighbour vertices (receivers of the current vertex's fd). */ 424 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 425 struct unix_vertex *next_vertex = unix_edge_successor(edge); 426 427 if (!next_vertex) 428 continue; 429 430 if (next_vertex->index == unix_vertex_unvisited_index) { 431 /* Iterative deepening depth first search 432 * 433 * 1. Push a forward edge to edge_stack and set 434 * the successor to vertex for the next iteration. 435 */ 436 list_add(&edge->stack_entry, &edge_stack); 437 438 vertex = next_vertex; 439 goto next_vertex; 440 441 /* 2. Pop the edge directed to the current vertex 442 * and restore the ancestor for backtracking. 443 */ 444 prev_vertex: 445 edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); 446 list_del_init(&edge->stack_entry); 447 448 next_vertex = vertex; 449 vertex = edge->predecessor->vertex; 450 451 /* If the successor has a smaller scc_index, two vertices 452 * are in the same SCC, so propagate the smaller scc_index 453 * to skip SCC finalisation. 454 */ 455 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 456 } else if (next_vertex->index != unix_vertex_grouped_index) { 457 /* Loop detected by a back/cross edge. 458 * 459 * The successor is on vertex_stack, so two vertices are in 460 * the same SCC. If the successor has a smaller *scc_index*, 461 * propagate it to skip SCC finalisation. 462 */ 463 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 464 } else { 465 /* The successor was already grouped as another SCC */ 466 } 467 } 468 469 if (vertex->index == vertex->scc_index) { 470 struct unix_vertex *v; 471 struct list_head scc; 472 bool scc_dead = true; 473 474 /* SCC finalised. 475 * 476 * If the scc_index was not updated, all the vertices above on 477 * vertex_stack are in the same SCC. Group them using scc_entry. 478 */ 479 __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); 480 481 list_for_each_entry_reverse(v, &scc, scc_entry) { 482 /* Don't restart DFS from this vertex in unix_walk_scc(). */ 483 list_move_tail(&v->entry, &unix_visited_vertices); 484 485 /* Mark vertex as off-stack. */ 486 v->index = unix_vertex_grouped_index; 487 488 if (scc_dead) 489 scc_dead = unix_vertex_dead(v); 490 } 491 492 if (scc_dead) 493 unix_collect_skb(&scc, hitlist); 494 else if (!unix_graph_maybe_cyclic) 495 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 496 497 list_del(&scc); 498 } 499 500 /* Need backtracking ? */ 501 if (!list_empty(&edge_stack)) 502 goto prev_vertex; 503 } 504 505 static void unix_walk_scc(struct sk_buff_head *hitlist) 506 { 507 unsigned long last_index = UNIX_VERTEX_INDEX_START; 508 509 unix_graph_maybe_cyclic = false; 510 511 /* Visit every vertex exactly once. 512 * __unix_walk_scc() moves visited vertices to unix_visited_vertices. 513 */ 514 while (!list_empty(&unix_unvisited_vertices)) { 515 struct unix_vertex *vertex; 516 517 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 518 __unix_walk_scc(vertex, &last_index, hitlist); 519 } 520 521 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 522 swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); 523 524 unix_graph_grouped = true; 525 } 526 527 static void unix_walk_scc_fast(struct sk_buff_head *hitlist) 528 { 529 unix_graph_maybe_cyclic = false; 530 531 while (!list_empty(&unix_unvisited_vertices)) { 532 struct unix_vertex *vertex; 533 struct list_head scc; 534 bool scc_dead = true; 535 536 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 537 list_add(&scc, &vertex->scc_entry); 538 539 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 540 list_move_tail(&vertex->entry, &unix_visited_vertices); 541 542 if (scc_dead) 543 scc_dead = unix_vertex_dead(vertex); 544 } 545 546 if (scc_dead) 547 unix_collect_skb(&scc, hitlist); 548 else if (!unix_graph_maybe_cyclic) 549 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 550 551 list_del(&scc); 552 } 553 554 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 555 } 556 557 static bool gc_in_progress; 558 559 static void __unix_gc(struct work_struct *work) 560 { 561 struct sk_buff_head hitlist; 562 struct sk_buff *skb; 563 564 spin_lock(&unix_gc_lock); 565 566 if (!unix_graph_maybe_cyclic) { 567 spin_unlock(&unix_gc_lock); 568 goto skip_gc; 569 } 570 571 __skb_queue_head_init(&hitlist); 572 573 if (unix_graph_grouped) 574 unix_walk_scc_fast(&hitlist); 575 else 576 unix_walk_scc(&hitlist); 577 578 spin_unlock(&unix_gc_lock); 579 580 skb_queue_walk(&hitlist, skb) { 581 if (UNIXCB(skb).fp) 582 UNIXCB(skb).fp->dead = true; 583 } 584 585 __skb_queue_purge_reason(&hitlist, SKB_DROP_REASON_SOCKET_CLOSE); 586 skip_gc: 587 WRITE_ONCE(gc_in_progress, false); 588 } 589 590 static DECLARE_WORK(unix_gc_work, __unix_gc); 591 592 void unix_gc(void) 593 { 594 WRITE_ONCE(gc_in_progress, true); 595 queue_work(system_unbound_wq, &unix_gc_work); 596 } 597 598 #define UNIX_INFLIGHT_TRIGGER_GC 16000 599 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) 600 601 void wait_for_unix_gc(struct scm_fp_list *fpl) 602 { 603 /* If number of inflight sockets is insane, 604 * force a garbage collect right now. 605 * 606 * Paired with the WRITE_ONCE() in unix_inflight(), 607 * unix_notinflight(), and __unix_gc(). 608 */ 609 if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && 610 !READ_ONCE(gc_in_progress)) 611 unix_gc(); 612 613 /* Penalise users who want to send AF_UNIX sockets 614 * but whose sockets have not been received yet. 615 */ 616 if (!fpl || !fpl->count_unix || 617 READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) 618 return; 619 620 if (READ_ONCE(gc_in_progress)) 621 flush_work(&unix_gc_work); 622 } 623