xref: /linux/net/unix/garbage.c (revision 6ba76fd2848e107594ea4f03b737230f74bc23ea)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET3:	Garbage Collector For AF_UNIX sockets
4  *
5  * Garbage Collector:
6  *	Copyright (C) Barak A. Pearlmutter.
7  *
8  * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9  * If it doesn't work blame me, it worked when Barak sent it.
10  *
11  * Assumptions:
12  *
13  *  - object w/ a bit
14  *  - free list
15  *
16  * Current optimizations:
17  *
18  *  - explicit stack instead of recursion
19  *  - tail recurse on first born instead of immediate push/pop
20  *  - we gather the stuff that should not be killed into tree
21  *    and stack is just a path from root to the current pointer.
22  *
23  *  Future optimizations:
24  *
25  *  - don't just push entire root set; process in place
26  *
27  *  Fixes:
28  *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29  *					Cope with changing max_files.
30  *	Al Viro		11 Oct 1998
31  *		Graph may have cycles. That is, we can send the descriptor
32  *		of foo to bar and vice versa. Current code chokes on that.
33  *		Fix: move SCM_RIGHTS ones into the separate list and then
34  *		skb_free() them all instead of doing explicit fput's.
35  *		Another problem: since fput() may block somebody may
36  *		create a new unix_socket when we are in the middle of sweep
37  *		phase. Fix: revert the logic wrt MARKED. Mark everything
38  *		upon the beginning and unmark non-junk ones.
39  *
40  *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41  *		sent to connect()'ed but still not accept()'ed sockets.
42  *		Fixed. Old code had slightly different problem here:
43  *		extra fput() in situation when we passed the descriptor via
44  *		such socket and closed it (descriptor). That would happen on
45  *		each unix_gc() until the accept(). Since the struct file in
46  *		question would go to the free list and might be reused...
47  *		That might be the reason of random oopses on filp_close()
48  *		in unrelated processes.
49  *
50  *	AV		28 Feb 1999
51  *		Kill the explicit allocation of stack. Now we keep the tree
52  *		with root in dummy + pointer (gc_current) to one of the nodes.
53  *		Stack is represented as path from gc_current to dummy. Unmark
54  *		now means "add to tree". Push == "make it a son of gc_current".
55  *		Pop == "move gc_current to parent". We keep only pointers to
56  *		parents (->gc_tree).
57  *	AV		1 Mar 1999
58  *		Damn. Added missing check for ->dead in listen queues scanning.
59  *
60  *	Miklos Szeredi 25 Jun 2007
61  *		Reimplement with a cycle collecting algorithm. This should
62  *		solve several problems with the previous code, like being racy
63  *		wrt receive and holding up unrelated socket operations.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/string.h>
68 #include <linux/socket.h>
69 #include <linux/un.h>
70 #include <linux/net.h>
71 #include <linux/fs.h>
72 #include <linux/skbuff.h>
73 #include <linux/netdevice.h>
74 #include <linux/file.h>
75 #include <linux/proc_fs.h>
76 #include <linux/mutex.h>
77 #include <linux/wait.h>
78 
79 #include <net/sock.h>
80 #include <net/af_unix.h>
81 #include <net/scm.h>
82 #include <net/tcp_states.h>
83 
84 struct unix_sock *unix_get_socket(struct file *filp)
85 {
86 	struct inode *inode = file_inode(filp);
87 
88 	/* Socket ? */
89 	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
90 		struct socket *sock = SOCKET_I(inode);
91 		const struct proto_ops *ops;
92 		struct sock *sk = sock->sk;
93 
94 		ops = READ_ONCE(sock->ops);
95 
96 		/* PF_UNIX ? */
97 		if (sk && ops && ops->family == PF_UNIX)
98 			return unix_sk(sk);
99 	}
100 
101 	return NULL;
102 }
103 
104 static LIST_HEAD(unix_unvisited_vertices);
105 
106 enum unix_vertex_index {
107 	UNIX_VERTEX_INDEX_UNVISITED,
108 	UNIX_VERTEX_INDEX_START,
109 };
110 
111 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
112 {
113 	struct unix_vertex *vertex = edge->predecessor->vertex;
114 
115 	if (!vertex) {
116 		vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
117 		vertex->out_degree = 0;
118 		INIT_LIST_HEAD(&vertex->edges);
119 
120 		list_move_tail(&vertex->entry, &unix_unvisited_vertices);
121 		edge->predecessor->vertex = vertex;
122 	}
123 
124 	vertex->out_degree++;
125 	list_add_tail(&edge->vertex_entry, &vertex->edges);
126 }
127 
128 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
129 {
130 	struct unix_vertex *vertex = edge->predecessor->vertex;
131 
132 	list_del(&edge->vertex_entry);
133 	vertex->out_degree--;
134 
135 	if (!vertex->out_degree) {
136 		edge->predecessor->vertex = NULL;
137 		list_move_tail(&vertex->entry, &fpl->vertices);
138 	}
139 }
140 
141 static void unix_free_vertices(struct scm_fp_list *fpl)
142 {
143 	struct unix_vertex *vertex, *next_vertex;
144 
145 	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
146 		list_del(&vertex->entry);
147 		kfree(vertex);
148 	}
149 }
150 
151 DEFINE_SPINLOCK(unix_gc_lock);
152 unsigned int unix_tot_inflight;
153 
154 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
155 {
156 	int i = 0, j = 0;
157 
158 	spin_lock(&unix_gc_lock);
159 
160 	if (!fpl->count_unix)
161 		goto out;
162 
163 	do {
164 		struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
165 		struct unix_edge *edge;
166 
167 		if (!inflight)
168 			continue;
169 
170 		edge = fpl->edges + i++;
171 		edge->predecessor = inflight;
172 		edge->successor = receiver;
173 
174 		unix_add_edge(fpl, edge);
175 	} while (i < fpl->count_unix);
176 
177 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
178 out:
179 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
180 
181 	spin_unlock(&unix_gc_lock);
182 
183 	fpl->inflight = true;
184 
185 	unix_free_vertices(fpl);
186 }
187 
188 void unix_del_edges(struct scm_fp_list *fpl)
189 {
190 	int i = 0;
191 
192 	spin_lock(&unix_gc_lock);
193 
194 	if (!fpl->count_unix)
195 		goto out;
196 
197 	do {
198 		struct unix_edge *edge = fpl->edges + i++;
199 
200 		unix_del_edge(fpl, edge);
201 	} while (i < fpl->count_unix);
202 
203 	WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
204 out:
205 	WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
206 
207 	spin_unlock(&unix_gc_lock);
208 
209 	fpl->inflight = false;
210 }
211 
212 int unix_prepare_fpl(struct scm_fp_list *fpl)
213 {
214 	struct unix_vertex *vertex;
215 	int i;
216 
217 	if (!fpl->count_unix)
218 		return 0;
219 
220 	for (i = 0; i < fpl->count_unix; i++) {
221 		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
222 		if (!vertex)
223 			goto err;
224 
225 		list_add(&vertex->entry, &fpl->vertices);
226 	}
227 
228 	fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
229 				    GFP_KERNEL_ACCOUNT);
230 	if (!fpl->edges)
231 		goto err;
232 
233 	return 0;
234 
235 err:
236 	unix_free_vertices(fpl);
237 	return -ENOMEM;
238 }
239 
240 void unix_destroy_fpl(struct scm_fp_list *fpl)
241 {
242 	if (fpl->inflight)
243 		unix_del_edges(fpl);
244 
245 	kvfree(fpl->edges);
246 	unix_free_vertices(fpl);
247 }
248 
249 static LIST_HEAD(unix_visited_vertices);
250 
251 static void __unix_walk_scc(struct unix_vertex *vertex)
252 {
253 	unsigned long index = UNIX_VERTEX_INDEX_START;
254 	struct unix_edge *edge;
255 	LIST_HEAD(edge_stack);
256 
257 next_vertex:
258 	vertex->index = index;
259 	index++;
260 
261 	/* Explore neighbour vertices (receivers of the current vertex's fd). */
262 	list_for_each_entry(edge, &vertex->edges, vertex_entry) {
263 		struct unix_vertex *next_vertex = edge->successor->vertex;
264 
265 		if (!next_vertex)
266 			continue;
267 
268 		if (next_vertex->index == UNIX_VERTEX_INDEX_UNVISITED) {
269 			/* Iterative deepening depth first search
270 			 *
271 			 *   1. Push a forward edge to edge_stack and set
272 			 *      the successor to vertex for the next iteration.
273 			 */
274 			list_add(&edge->stack_entry, &edge_stack);
275 
276 			vertex = next_vertex;
277 			goto next_vertex;
278 
279 			/*   2. Pop the edge directed to the current vertex
280 			 *      and restore the ancestor for backtracking.
281 			 */
282 prev_vertex:
283 			edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
284 			list_del_init(&edge->stack_entry);
285 
286 			vertex = edge->predecessor->vertex;
287 		}
288 	}
289 
290 	/* Don't restart DFS from this vertex in unix_walk_scc(). */
291 	list_move_tail(&vertex->entry, &unix_visited_vertices);
292 
293 	/* Need backtracking ? */
294 	if (!list_empty(&edge_stack))
295 		goto prev_vertex;
296 }
297 
298 static void unix_walk_scc(void)
299 {
300 	struct unix_vertex *vertex;
301 
302 	list_for_each_entry(vertex, &unix_unvisited_vertices, entry)
303 		vertex->index = UNIX_VERTEX_INDEX_UNVISITED;
304 
305 	/* Visit every vertex exactly once.
306 	 * __unix_walk_scc() moves visited vertices to unix_visited_vertices.
307 	 */
308 	while (!list_empty(&unix_unvisited_vertices)) {
309 		vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
310 		__unix_walk_scc(vertex);
311 	}
312 
313 	list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
314 }
315 
316 static LIST_HEAD(gc_candidates);
317 static LIST_HEAD(gc_inflight_list);
318 
319 /* Keep the number of times in flight count for the file
320  * descriptor if it is for an AF_UNIX socket.
321  */
322 void unix_inflight(struct user_struct *user, struct file *filp)
323 {
324 	struct unix_sock *u = unix_get_socket(filp);
325 
326 	spin_lock(&unix_gc_lock);
327 
328 	if (u) {
329 		if (!u->inflight) {
330 			WARN_ON_ONCE(!list_empty(&u->link));
331 			list_add_tail(&u->link, &gc_inflight_list);
332 		} else {
333 			WARN_ON_ONCE(list_empty(&u->link));
334 		}
335 		u->inflight++;
336 	}
337 
338 	spin_unlock(&unix_gc_lock);
339 }
340 
341 void unix_notinflight(struct user_struct *user, struct file *filp)
342 {
343 	struct unix_sock *u = unix_get_socket(filp);
344 
345 	spin_lock(&unix_gc_lock);
346 
347 	if (u) {
348 		WARN_ON_ONCE(!u->inflight);
349 		WARN_ON_ONCE(list_empty(&u->link));
350 
351 		u->inflight--;
352 		if (!u->inflight)
353 			list_del_init(&u->link);
354 	}
355 
356 	spin_unlock(&unix_gc_lock);
357 }
358 
359 static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
360 			  struct sk_buff_head *hitlist)
361 {
362 	struct sk_buff *skb;
363 	struct sk_buff *next;
364 
365 	spin_lock(&x->sk_receive_queue.lock);
366 	skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
367 		/* Do we have file descriptors ? */
368 		if (UNIXCB(skb).fp) {
369 			bool hit = false;
370 			/* Process the descriptors of this socket */
371 			int nfd = UNIXCB(skb).fp->count;
372 			struct file **fp = UNIXCB(skb).fp->fp;
373 
374 			while (nfd--) {
375 				/* Get the socket the fd matches if it indeed does so */
376 				struct unix_sock *u = unix_get_socket(*fp++);
377 
378 				/* Ignore non-candidates, they could have been added
379 				 * to the queues after starting the garbage collection
380 				 */
381 				if (u && test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) {
382 					hit = true;
383 
384 					func(u);
385 				}
386 			}
387 			if (hit && hitlist != NULL) {
388 				__skb_unlink(skb, &x->sk_receive_queue);
389 				__skb_queue_tail(hitlist, skb);
390 			}
391 		}
392 	}
393 	spin_unlock(&x->sk_receive_queue.lock);
394 }
395 
396 static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
397 			  struct sk_buff_head *hitlist)
398 {
399 	if (x->sk_state != TCP_LISTEN) {
400 		scan_inflight(x, func, hitlist);
401 	} else {
402 		struct sk_buff *skb;
403 		struct sk_buff *next;
404 		struct unix_sock *u;
405 		LIST_HEAD(embryos);
406 
407 		/* For a listening socket collect the queued embryos
408 		 * and perform a scan on them as well.
409 		 */
410 		spin_lock(&x->sk_receive_queue.lock);
411 		skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
412 			u = unix_sk(skb->sk);
413 
414 			/* An embryo cannot be in-flight, so it's safe
415 			 * to use the list link.
416 			 */
417 			WARN_ON_ONCE(!list_empty(&u->link));
418 			list_add_tail(&u->link, &embryos);
419 		}
420 		spin_unlock(&x->sk_receive_queue.lock);
421 
422 		while (!list_empty(&embryos)) {
423 			u = list_entry(embryos.next, struct unix_sock, link);
424 			scan_inflight(&u->sk, func, hitlist);
425 			list_del_init(&u->link);
426 		}
427 	}
428 }
429 
430 static void dec_inflight(struct unix_sock *usk)
431 {
432 	usk->inflight--;
433 }
434 
435 static void inc_inflight(struct unix_sock *usk)
436 {
437 	usk->inflight++;
438 }
439 
440 static void inc_inflight_move_tail(struct unix_sock *u)
441 {
442 	u->inflight++;
443 
444 	/* If this still might be part of a cycle, move it to the end
445 	 * of the list, so that it's checked even if it was already
446 	 * passed over
447 	 */
448 	if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags))
449 		list_move_tail(&u->link, &gc_candidates);
450 }
451 
452 static bool gc_in_progress;
453 
454 static void __unix_gc(struct work_struct *work)
455 {
456 	struct sk_buff_head hitlist;
457 	struct unix_sock *u, *next;
458 	LIST_HEAD(not_cycle_list);
459 	struct list_head cursor;
460 
461 	spin_lock(&unix_gc_lock);
462 
463 	unix_walk_scc();
464 
465 	/* First, select candidates for garbage collection.  Only
466 	 * in-flight sockets are considered, and from those only ones
467 	 * which don't have any external reference.
468 	 *
469 	 * Holding unix_gc_lock will protect these candidates from
470 	 * being detached, and hence from gaining an external
471 	 * reference.  Since there are no possible receivers, all
472 	 * buffers currently on the candidates' queues stay there
473 	 * during the garbage collection.
474 	 *
475 	 * We also know that no new candidate can be added onto the
476 	 * receive queues.  Other, non candidate sockets _can_ be
477 	 * added to queue, so we must make sure only to touch
478 	 * candidates.
479 	 */
480 	list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
481 		long total_refs;
482 
483 		total_refs = file_count(u->sk.sk_socket->file);
484 
485 		WARN_ON_ONCE(!u->inflight);
486 		WARN_ON_ONCE(total_refs < u->inflight);
487 		if (total_refs == u->inflight) {
488 			list_move_tail(&u->link, &gc_candidates);
489 			__set_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
490 			__set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
491 		}
492 	}
493 
494 	/* Now remove all internal in-flight reference to children of
495 	 * the candidates.
496 	 */
497 	list_for_each_entry(u, &gc_candidates, link)
498 		scan_children(&u->sk, dec_inflight, NULL);
499 
500 	/* Restore the references for children of all candidates,
501 	 * which have remaining references.  Do this recursively, so
502 	 * only those remain, which form cyclic references.
503 	 *
504 	 * Use a "cursor" link, to make the list traversal safe, even
505 	 * though elements might be moved about.
506 	 */
507 	list_add(&cursor, &gc_candidates);
508 	while (cursor.next != &gc_candidates) {
509 		u = list_entry(cursor.next, struct unix_sock, link);
510 
511 		/* Move cursor to after the current position. */
512 		list_move(&cursor, &u->link);
513 
514 		if (u->inflight) {
515 			list_move_tail(&u->link, &not_cycle_list);
516 			__clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
517 			scan_children(&u->sk, inc_inflight_move_tail, NULL);
518 		}
519 	}
520 	list_del(&cursor);
521 
522 	/* Now gc_candidates contains only garbage.  Restore original
523 	 * inflight counters for these as well, and remove the skbuffs
524 	 * which are creating the cycle(s).
525 	 */
526 	skb_queue_head_init(&hitlist);
527 	list_for_each_entry(u, &gc_candidates, link) {
528 		scan_children(&u->sk, inc_inflight, &hitlist);
529 
530 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
531 		if (u->oob_skb) {
532 			kfree_skb(u->oob_skb);
533 			u->oob_skb = NULL;
534 		}
535 #endif
536 	}
537 
538 	/* not_cycle_list contains those sockets which do not make up a
539 	 * cycle.  Restore these to the inflight list.
540 	 */
541 	while (!list_empty(&not_cycle_list)) {
542 		u = list_entry(not_cycle_list.next, struct unix_sock, link);
543 		__clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
544 		list_move_tail(&u->link, &gc_inflight_list);
545 	}
546 
547 	spin_unlock(&unix_gc_lock);
548 
549 	/* Here we are. Hitlist is filled. Die. */
550 	__skb_queue_purge(&hitlist);
551 
552 	spin_lock(&unix_gc_lock);
553 
554 	/* All candidates should have been detached by now. */
555 	WARN_ON_ONCE(!list_empty(&gc_candidates));
556 
557 	/* Paired with READ_ONCE() in wait_for_unix_gc(). */
558 	WRITE_ONCE(gc_in_progress, false);
559 
560 	spin_unlock(&unix_gc_lock);
561 }
562 
563 static DECLARE_WORK(unix_gc_work, __unix_gc);
564 
565 void unix_gc(void)
566 {
567 	WRITE_ONCE(gc_in_progress, true);
568 	queue_work(system_unbound_wq, &unix_gc_work);
569 }
570 
571 #define UNIX_INFLIGHT_TRIGGER_GC 16000
572 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
573 
574 void wait_for_unix_gc(struct scm_fp_list *fpl)
575 {
576 	/* If number of inflight sockets is insane,
577 	 * force a garbage collect right now.
578 	 *
579 	 * Paired with the WRITE_ONCE() in unix_inflight(),
580 	 * unix_notinflight(), and __unix_gc().
581 	 */
582 	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
583 	    !READ_ONCE(gc_in_progress))
584 		unix_gc();
585 
586 	/* Penalise users who want to send AF_UNIX sockets
587 	 * but whose sockets have not been received yet.
588 	 */
589 	if (!fpl || !fpl->count_unix ||
590 	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
591 		return;
592 
593 	if (READ_ONCE(gc_in_progress))
594 		flush_work(&unix_gc_work);
595 }
596