1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3: Garbage Collector For AF_UNIX sockets 4 * 5 * Garbage Collector: 6 * Copyright (C) Barak A. Pearlmutter. 7 * 8 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. 9 * If it doesn't work blame me, it worked when Barak sent it. 10 * 11 * Assumptions: 12 * 13 * - object w/ a bit 14 * - free list 15 * 16 * Current optimizations: 17 * 18 * - explicit stack instead of recursion 19 * - tail recurse on first born instead of immediate push/pop 20 * - we gather the stuff that should not be killed into tree 21 * and stack is just a path from root to the current pointer. 22 * 23 * Future optimizations: 24 * 25 * - don't just push entire root set; process in place 26 * 27 * Fixes: 28 * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. 29 * Cope with changing max_files. 30 * Al Viro 11 Oct 1998 31 * Graph may have cycles. That is, we can send the descriptor 32 * of foo to bar and vice versa. Current code chokes on that. 33 * Fix: move SCM_RIGHTS ones into the separate list and then 34 * skb_free() them all instead of doing explicit fput's. 35 * Another problem: since fput() may block somebody may 36 * create a new unix_socket when we are in the middle of sweep 37 * phase. Fix: revert the logic wrt MARKED. Mark everything 38 * upon the beginning and unmark non-junk ones. 39 * 40 * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS 41 * sent to connect()'ed but still not accept()'ed sockets. 42 * Fixed. Old code had slightly different problem here: 43 * extra fput() in situation when we passed the descriptor via 44 * such socket and closed it (descriptor). That would happen on 45 * each unix_gc() until the accept(). Since the struct file in 46 * question would go to the free list and might be reused... 47 * That might be the reason of random oopses on filp_close() 48 * in unrelated processes. 49 * 50 * AV 28 Feb 1999 51 * Kill the explicit allocation of stack. Now we keep the tree 52 * with root in dummy + pointer (gc_current) to one of the nodes. 53 * Stack is represented as path from gc_current to dummy. Unmark 54 * now means "add to tree". Push == "make it a son of gc_current". 55 * Pop == "move gc_current to parent". We keep only pointers to 56 * parents (->gc_tree). 57 * AV 1 Mar 1999 58 * Damn. Added missing check for ->dead in listen queues scanning. 59 * 60 * Miklos Szeredi 25 Jun 2007 61 * Reimplement with a cycle collecting algorithm. This should 62 * solve several problems with the previous code, like being racy 63 * wrt receive and holding up unrelated socket operations. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/string.h> 68 #include <linux/socket.h> 69 #include <linux/un.h> 70 #include <linux/net.h> 71 #include <linux/fs.h> 72 #include <linux/skbuff.h> 73 #include <linux/netdevice.h> 74 #include <linux/file.h> 75 #include <linux/proc_fs.h> 76 #include <linux/mutex.h> 77 #include <linux/wait.h> 78 79 #include <net/sock.h> 80 #include <net/af_unix.h> 81 #include <net/scm.h> 82 #include <net/tcp_states.h> 83 84 struct unix_sock *unix_get_socket(struct file *filp) 85 { 86 struct inode *inode = file_inode(filp); 87 88 /* Socket ? */ 89 if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { 90 struct socket *sock = SOCKET_I(inode); 91 const struct proto_ops *ops; 92 struct sock *sk = sock->sk; 93 94 ops = READ_ONCE(sock->ops); 95 96 /* PF_UNIX ? */ 97 if (sk && ops && ops->family == PF_UNIX) 98 return unix_sk(sk); 99 } 100 101 return NULL; 102 } 103 104 static LIST_HEAD(unix_unvisited_vertices); 105 106 enum unix_vertex_index { 107 UNIX_VERTEX_INDEX_UNVISITED, 108 UNIX_VERTEX_INDEX_START, 109 }; 110 111 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 112 { 113 struct unix_vertex *vertex = edge->predecessor->vertex; 114 115 if (!vertex) { 116 vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); 117 vertex->out_degree = 0; 118 INIT_LIST_HEAD(&vertex->edges); 119 120 list_move_tail(&vertex->entry, &unix_unvisited_vertices); 121 edge->predecessor->vertex = vertex; 122 } 123 124 vertex->out_degree++; 125 list_add_tail(&edge->vertex_entry, &vertex->edges); 126 } 127 128 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 129 { 130 struct unix_vertex *vertex = edge->predecessor->vertex; 131 132 list_del(&edge->vertex_entry); 133 vertex->out_degree--; 134 135 if (!vertex->out_degree) { 136 edge->predecessor->vertex = NULL; 137 list_move_tail(&vertex->entry, &fpl->vertices); 138 } 139 } 140 141 static void unix_free_vertices(struct scm_fp_list *fpl) 142 { 143 struct unix_vertex *vertex, *next_vertex; 144 145 list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { 146 list_del(&vertex->entry); 147 kfree(vertex); 148 } 149 } 150 151 DEFINE_SPINLOCK(unix_gc_lock); 152 unsigned int unix_tot_inflight; 153 154 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) 155 { 156 int i = 0, j = 0; 157 158 spin_lock(&unix_gc_lock); 159 160 if (!fpl->count_unix) 161 goto out; 162 163 do { 164 struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); 165 struct unix_edge *edge; 166 167 if (!inflight) 168 continue; 169 170 edge = fpl->edges + i++; 171 edge->predecessor = inflight; 172 edge->successor = receiver; 173 174 unix_add_edge(fpl, edge); 175 } while (i < fpl->count_unix); 176 177 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); 178 out: 179 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); 180 181 spin_unlock(&unix_gc_lock); 182 183 fpl->inflight = true; 184 185 unix_free_vertices(fpl); 186 } 187 188 void unix_del_edges(struct scm_fp_list *fpl) 189 { 190 int i = 0; 191 192 spin_lock(&unix_gc_lock); 193 194 if (!fpl->count_unix) 195 goto out; 196 197 do { 198 struct unix_edge *edge = fpl->edges + i++; 199 200 unix_del_edge(fpl, edge); 201 } while (i < fpl->count_unix); 202 203 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); 204 out: 205 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); 206 207 spin_unlock(&unix_gc_lock); 208 209 fpl->inflight = false; 210 } 211 212 int unix_prepare_fpl(struct scm_fp_list *fpl) 213 { 214 struct unix_vertex *vertex; 215 int i; 216 217 if (!fpl->count_unix) 218 return 0; 219 220 for (i = 0; i < fpl->count_unix; i++) { 221 vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); 222 if (!vertex) 223 goto err; 224 225 list_add(&vertex->entry, &fpl->vertices); 226 } 227 228 fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), 229 GFP_KERNEL_ACCOUNT); 230 if (!fpl->edges) 231 goto err; 232 233 return 0; 234 235 err: 236 unix_free_vertices(fpl); 237 return -ENOMEM; 238 } 239 240 void unix_destroy_fpl(struct scm_fp_list *fpl) 241 { 242 if (fpl->inflight) 243 unix_del_edges(fpl); 244 245 kvfree(fpl->edges); 246 unix_free_vertices(fpl); 247 } 248 249 static LIST_HEAD(unix_visited_vertices); 250 251 static void __unix_walk_scc(struct unix_vertex *vertex) 252 { 253 unsigned long index = UNIX_VERTEX_INDEX_START; 254 LIST_HEAD(vertex_stack); 255 struct unix_edge *edge; 256 LIST_HEAD(edge_stack); 257 258 next_vertex: 259 /* Push vertex to vertex_stack. 260 * The vertex will be popped when finalising SCC later. 261 */ 262 vertex->on_stack = true; 263 list_add(&vertex->scc_entry, &vertex_stack); 264 265 vertex->index = index; 266 vertex->lowlink = index; 267 index++; 268 269 /* Explore neighbour vertices (receivers of the current vertex's fd). */ 270 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 271 struct unix_vertex *next_vertex = edge->successor->vertex; 272 273 if (!next_vertex) 274 continue; 275 276 if (next_vertex->index == UNIX_VERTEX_INDEX_UNVISITED) { 277 /* Iterative deepening depth first search 278 * 279 * 1. Push a forward edge to edge_stack and set 280 * the successor to vertex for the next iteration. 281 */ 282 list_add(&edge->stack_entry, &edge_stack); 283 284 vertex = next_vertex; 285 goto next_vertex; 286 287 /* 2. Pop the edge directed to the current vertex 288 * and restore the ancestor for backtracking. 289 */ 290 prev_vertex: 291 edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); 292 list_del_init(&edge->stack_entry); 293 294 next_vertex = vertex; 295 vertex = edge->predecessor->vertex; 296 297 /* If the successor has a smaller lowlink, two vertices 298 * are in the same SCC, so propagate the smaller lowlink 299 * to skip SCC finalisation. 300 */ 301 vertex->lowlink = min(vertex->lowlink, next_vertex->lowlink); 302 } else if (next_vertex->on_stack) { 303 /* Loop detected by a back/cross edge. 304 * 305 * The successor is on vertex_stack, so two vertices are 306 * in the same SCC. If the successor has a smaller index, 307 * propagate it to skip SCC finalisation. 308 */ 309 vertex->lowlink = min(vertex->lowlink, next_vertex->index); 310 } else { 311 /* The successor was already grouped as another SCC */ 312 } 313 } 314 315 if (vertex->index == vertex->lowlink) { 316 struct list_head scc; 317 318 /* SCC finalised. 319 * 320 * If the lowlink was not updated, all the vertices above on 321 * vertex_stack are in the same SCC. Group them using scc_entry. 322 */ 323 __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); 324 325 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 326 /* Don't restart DFS from this vertex in unix_walk_scc(). */ 327 list_move_tail(&vertex->entry, &unix_visited_vertices); 328 329 vertex->on_stack = false; 330 } 331 332 list_del(&scc); 333 } 334 335 /* Need backtracking ? */ 336 if (!list_empty(&edge_stack)) 337 goto prev_vertex; 338 } 339 340 static void unix_walk_scc(void) 341 { 342 struct unix_vertex *vertex; 343 344 list_for_each_entry(vertex, &unix_unvisited_vertices, entry) 345 vertex->index = UNIX_VERTEX_INDEX_UNVISITED; 346 347 /* Visit every vertex exactly once. 348 * __unix_walk_scc() moves visited vertices to unix_visited_vertices. 349 */ 350 while (!list_empty(&unix_unvisited_vertices)) { 351 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 352 __unix_walk_scc(vertex); 353 } 354 355 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 356 } 357 358 static LIST_HEAD(gc_candidates); 359 static LIST_HEAD(gc_inflight_list); 360 361 /* Keep the number of times in flight count for the file 362 * descriptor if it is for an AF_UNIX socket. 363 */ 364 void unix_inflight(struct user_struct *user, struct file *filp) 365 { 366 struct unix_sock *u = unix_get_socket(filp); 367 368 spin_lock(&unix_gc_lock); 369 370 if (u) { 371 if (!u->inflight) { 372 WARN_ON_ONCE(!list_empty(&u->link)); 373 list_add_tail(&u->link, &gc_inflight_list); 374 } else { 375 WARN_ON_ONCE(list_empty(&u->link)); 376 } 377 u->inflight++; 378 } 379 380 spin_unlock(&unix_gc_lock); 381 } 382 383 void unix_notinflight(struct user_struct *user, struct file *filp) 384 { 385 struct unix_sock *u = unix_get_socket(filp); 386 387 spin_lock(&unix_gc_lock); 388 389 if (u) { 390 WARN_ON_ONCE(!u->inflight); 391 WARN_ON_ONCE(list_empty(&u->link)); 392 393 u->inflight--; 394 if (!u->inflight) 395 list_del_init(&u->link); 396 } 397 398 spin_unlock(&unix_gc_lock); 399 } 400 401 static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *), 402 struct sk_buff_head *hitlist) 403 { 404 struct sk_buff *skb; 405 struct sk_buff *next; 406 407 spin_lock(&x->sk_receive_queue.lock); 408 skb_queue_walk_safe(&x->sk_receive_queue, skb, next) { 409 /* Do we have file descriptors ? */ 410 if (UNIXCB(skb).fp) { 411 bool hit = false; 412 /* Process the descriptors of this socket */ 413 int nfd = UNIXCB(skb).fp->count; 414 struct file **fp = UNIXCB(skb).fp->fp; 415 416 while (nfd--) { 417 /* Get the socket the fd matches if it indeed does so */ 418 struct unix_sock *u = unix_get_socket(*fp++); 419 420 /* Ignore non-candidates, they could have been added 421 * to the queues after starting the garbage collection 422 */ 423 if (u && test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) { 424 hit = true; 425 426 func(u); 427 } 428 } 429 if (hit && hitlist != NULL) { 430 __skb_unlink(skb, &x->sk_receive_queue); 431 __skb_queue_tail(hitlist, skb); 432 } 433 } 434 } 435 spin_unlock(&x->sk_receive_queue.lock); 436 } 437 438 static void scan_children(struct sock *x, void (*func)(struct unix_sock *), 439 struct sk_buff_head *hitlist) 440 { 441 if (x->sk_state != TCP_LISTEN) { 442 scan_inflight(x, func, hitlist); 443 } else { 444 struct sk_buff *skb; 445 struct sk_buff *next; 446 struct unix_sock *u; 447 LIST_HEAD(embryos); 448 449 /* For a listening socket collect the queued embryos 450 * and perform a scan on them as well. 451 */ 452 spin_lock(&x->sk_receive_queue.lock); 453 skb_queue_walk_safe(&x->sk_receive_queue, skb, next) { 454 u = unix_sk(skb->sk); 455 456 /* An embryo cannot be in-flight, so it's safe 457 * to use the list link. 458 */ 459 WARN_ON_ONCE(!list_empty(&u->link)); 460 list_add_tail(&u->link, &embryos); 461 } 462 spin_unlock(&x->sk_receive_queue.lock); 463 464 while (!list_empty(&embryos)) { 465 u = list_entry(embryos.next, struct unix_sock, link); 466 scan_inflight(&u->sk, func, hitlist); 467 list_del_init(&u->link); 468 } 469 } 470 } 471 472 static void dec_inflight(struct unix_sock *usk) 473 { 474 usk->inflight--; 475 } 476 477 static void inc_inflight(struct unix_sock *usk) 478 { 479 usk->inflight++; 480 } 481 482 static void inc_inflight_move_tail(struct unix_sock *u) 483 { 484 u->inflight++; 485 486 /* If this still might be part of a cycle, move it to the end 487 * of the list, so that it's checked even if it was already 488 * passed over 489 */ 490 if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags)) 491 list_move_tail(&u->link, &gc_candidates); 492 } 493 494 static bool gc_in_progress; 495 496 static void __unix_gc(struct work_struct *work) 497 { 498 struct sk_buff_head hitlist; 499 struct unix_sock *u, *next; 500 LIST_HEAD(not_cycle_list); 501 struct list_head cursor; 502 503 spin_lock(&unix_gc_lock); 504 505 unix_walk_scc(); 506 507 /* First, select candidates for garbage collection. Only 508 * in-flight sockets are considered, and from those only ones 509 * which don't have any external reference. 510 * 511 * Holding unix_gc_lock will protect these candidates from 512 * being detached, and hence from gaining an external 513 * reference. Since there are no possible receivers, all 514 * buffers currently on the candidates' queues stay there 515 * during the garbage collection. 516 * 517 * We also know that no new candidate can be added onto the 518 * receive queues. Other, non candidate sockets _can_ be 519 * added to queue, so we must make sure only to touch 520 * candidates. 521 */ 522 list_for_each_entry_safe(u, next, &gc_inflight_list, link) { 523 long total_refs; 524 525 total_refs = file_count(u->sk.sk_socket->file); 526 527 WARN_ON_ONCE(!u->inflight); 528 WARN_ON_ONCE(total_refs < u->inflight); 529 if (total_refs == u->inflight) { 530 list_move_tail(&u->link, &gc_candidates); 531 __set_bit(UNIX_GC_CANDIDATE, &u->gc_flags); 532 __set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags); 533 } 534 } 535 536 /* Now remove all internal in-flight reference to children of 537 * the candidates. 538 */ 539 list_for_each_entry(u, &gc_candidates, link) 540 scan_children(&u->sk, dec_inflight, NULL); 541 542 /* Restore the references for children of all candidates, 543 * which have remaining references. Do this recursively, so 544 * only those remain, which form cyclic references. 545 * 546 * Use a "cursor" link, to make the list traversal safe, even 547 * though elements might be moved about. 548 */ 549 list_add(&cursor, &gc_candidates); 550 while (cursor.next != &gc_candidates) { 551 u = list_entry(cursor.next, struct unix_sock, link); 552 553 /* Move cursor to after the current position. */ 554 list_move(&cursor, &u->link); 555 556 if (u->inflight) { 557 list_move_tail(&u->link, ¬_cycle_list); 558 __clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags); 559 scan_children(&u->sk, inc_inflight_move_tail, NULL); 560 } 561 } 562 list_del(&cursor); 563 564 /* Now gc_candidates contains only garbage. Restore original 565 * inflight counters for these as well, and remove the skbuffs 566 * which are creating the cycle(s). 567 */ 568 skb_queue_head_init(&hitlist); 569 list_for_each_entry(u, &gc_candidates, link) { 570 scan_children(&u->sk, inc_inflight, &hitlist); 571 572 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 573 if (u->oob_skb) { 574 kfree_skb(u->oob_skb); 575 u->oob_skb = NULL; 576 } 577 #endif 578 } 579 580 /* not_cycle_list contains those sockets which do not make up a 581 * cycle. Restore these to the inflight list. 582 */ 583 while (!list_empty(¬_cycle_list)) { 584 u = list_entry(not_cycle_list.next, struct unix_sock, link); 585 __clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags); 586 list_move_tail(&u->link, &gc_inflight_list); 587 } 588 589 spin_unlock(&unix_gc_lock); 590 591 /* Here we are. Hitlist is filled. Die. */ 592 __skb_queue_purge(&hitlist); 593 594 spin_lock(&unix_gc_lock); 595 596 /* All candidates should have been detached by now. */ 597 WARN_ON_ONCE(!list_empty(&gc_candidates)); 598 599 /* Paired with READ_ONCE() in wait_for_unix_gc(). */ 600 WRITE_ONCE(gc_in_progress, false); 601 602 spin_unlock(&unix_gc_lock); 603 } 604 605 static DECLARE_WORK(unix_gc_work, __unix_gc); 606 607 void unix_gc(void) 608 { 609 WRITE_ONCE(gc_in_progress, true); 610 queue_work(system_unbound_wq, &unix_gc_work); 611 } 612 613 #define UNIX_INFLIGHT_TRIGGER_GC 16000 614 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) 615 616 void wait_for_unix_gc(struct scm_fp_list *fpl) 617 { 618 /* If number of inflight sockets is insane, 619 * force a garbage collect right now. 620 * 621 * Paired with the WRITE_ONCE() in unix_inflight(), 622 * unix_notinflight(), and __unix_gc(). 623 */ 624 if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && 625 !READ_ONCE(gc_in_progress)) 626 unix_gc(); 627 628 /* Penalise users who want to send AF_UNIX sockets 629 * but whose sockets have not been received yet. 630 */ 631 if (!fpl || !fpl->count_unix || 632 READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) 633 return; 634 635 if (READ_ONCE(gc_in_progress)) 636 flush_work(&unix_gc_work); 637 } 638