1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3: Garbage Collector For AF_UNIX sockets 4 * 5 * Garbage Collector: 6 * Copyright (C) Barak A. Pearlmutter. 7 * 8 * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem. 9 * If it doesn't work blame me, it worked when Barak sent it. 10 * 11 * Assumptions: 12 * 13 * - object w/ a bit 14 * - free list 15 * 16 * Current optimizations: 17 * 18 * - explicit stack instead of recursion 19 * - tail recurse on first born instead of immediate push/pop 20 * - we gather the stuff that should not be killed into tree 21 * and stack is just a path from root to the current pointer. 22 * 23 * Future optimizations: 24 * 25 * - don't just push entire root set; process in place 26 * 27 * Fixes: 28 * Alan Cox 07 Sept 1997 Vmalloc internal stack as needed. 29 * Cope with changing max_files. 30 * Al Viro 11 Oct 1998 31 * Graph may have cycles. That is, we can send the descriptor 32 * of foo to bar and vice versa. Current code chokes on that. 33 * Fix: move SCM_RIGHTS ones into the separate list and then 34 * skb_free() them all instead of doing explicit fput's. 35 * Another problem: since fput() may block somebody may 36 * create a new unix_socket when we are in the middle of sweep 37 * phase. Fix: revert the logic wrt MARKED. Mark everything 38 * upon the beginning and unmark non-junk ones. 39 * 40 * [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS 41 * sent to connect()'ed but still not accept()'ed sockets. 42 * Fixed. Old code had slightly different problem here: 43 * extra fput() in situation when we passed the descriptor via 44 * such socket and closed it (descriptor). That would happen on 45 * each unix_gc() until the accept(). Since the struct file in 46 * question would go to the free list and might be reused... 47 * That might be the reason of random oopses on filp_close() 48 * in unrelated processes. 49 * 50 * AV 28 Feb 1999 51 * Kill the explicit allocation of stack. Now we keep the tree 52 * with root in dummy + pointer (gc_current) to one of the nodes. 53 * Stack is represented as path from gc_current to dummy. Unmark 54 * now means "add to tree". Push == "make it a son of gc_current". 55 * Pop == "move gc_current to parent". We keep only pointers to 56 * parents (->gc_tree). 57 * AV 1 Mar 1999 58 * Damn. Added missing check for ->dead in listen queues scanning. 59 * 60 * Miklos Szeredi 25 Jun 2007 61 * Reimplement with a cycle collecting algorithm. This should 62 * solve several problems with the previous code, like being racy 63 * wrt receive and holding up unrelated socket operations. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/string.h> 68 #include <linux/socket.h> 69 #include <linux/un.h> 70 #include <linux/net.h> 71 #include <linux/fs.h> 72 #include <linux/skbuff.h> 73 #include <linux/netdevice.h> 74 #include <linux/file.h> 75 #include <linux/proc_fs.h> 76 #include <linux/mutex.h> 77 #include <linux/wait.h> 78 79 #include <net/sock.h> 80 #include <net/af_unix.h> 81 #include <net/scm.h> 82 #include <net/tcp_states.h> 83 84 struct unix_sock *unix_get_socket(struct file *filp) 85 { 86 struct inode *inode = file_inode(filp); 87 88 /* Socket ? */ 89 if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { 90 struct socket *sock = SOCKET_I(inode); 91 const struct proto_ops *ops; 92 struct sock *sk = sock->sk; 93 94 ops = READ_ONCE(sock->ops); 95 96 /* PF_UNIX ? */ 97 if (sk && ops && ops->family == PF_UNIX) 98 return unix_sk(sk); 99 } 100 101 return NULL; 102 } 103 104 static struct unix_vertex *unix_edge_successor(struct unix_edge *edge) 105 { 106 /* If an embryo socket has a fd, 107 * the listener indirectly holds the fd's refcnt. 108 */ 109 if (edge->successor->listener) 110 return unix_sk(edge->successor->listener)->vertex; 111 112 return edge->successor->vertex; 113 } 114 115 static bool unix_graph_maybe_cyclic; 116 static bool unix_graph_grouped; 117 118 static void unix_update_graph(struct unix_vertex *vertex) 119 { 120 /* If the receiver socket is not inflight, no cyclic 121 * reference could be formed. 122 */ 123 if (!vertex) 124 return; 125 126 unix_graph_maybe_cyclic = true; 127 unix_graph_grouped = false; 128 } 129 130 static LIST_HEAD(unix_unvisited_vertices); 131 132 enum unix_vertex_index { 133 UNIX_VERTEX_INDEX_MARK1, 134 UNIX_VERTEX_INDEX_MARK2, 135 UNIX_VERTEX_INDEX_START, 136 }; 137 138 static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1; 139 140 static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 141 { 142 struct unix_vertex *vertex = edge->predecessor->vertex; 143 144 if (!vertex) { 145 vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry); 146 vertex->index = unix_vertex_unvisited_index; 147 vertex->out_degree = 0; 148 INIT_LIST_HEAD(&vertex->edges); 149 INIT_LIST_HEAD(&vertex->scc_entry); 150 151 list_move_tail(&vertex->entry, &unix_unvisited_vertices); 152 edge->predecessor->vertex = vertex; 153 } 154 155 vertex->out_degree++; 156 list_add_tail(&edge->vertex_entry, &vertex->edges); 157 158 unix_update_graph(unix_edge_successor(edge)); 159 } 160 161 static bool gc_in_progress; 162 163 static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge) 164 { 165 struct unix_vertex *vertex = edge->predecessor->vertex; 166 167 if (!gc_in_progress) 168 unix_update_graph(unix_edge_successor(edge)); 169 170 list_del(&edge->vertex_entry); 171 vertex->out_degree--; 172 173 if (!vertex->out_degree) { 174 edge->predecessor->vertex = NULL; 175 list_move_tail(&vertex->entry, &fpl->vertices); 176 } 177 } 178 179 static void unix_free_vertices(struct scm_fp_list *fpl) 180 { 181 struct unix_vertex *vertex, *next_vertex; 182 183 list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) { 184 list_del(&vertex->entry); 185 kfree(vertex); 186 } 187 } 188 189 static DEFINE_SPINLOCK(unix_gc_lock); 190 unsigned int unix_tot_inflight; 191 192 void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver) 193 { 194 int i = 0, j = 0; 195 196 spin_lock(&unix_gc_lock); 197 198 if (!fpl->count_unix) 199 goto out; 200 201 do { 202 struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]); 203 struct unix_edge *edge; 204 205 if (!inflight) 206 continue; 207 208 edge = fpl->edges + i++; 209 edge->predecessor = inflight; 210 edge->successor = receiver; 211 212 unix_add_edge(fpl, edge); 213 } while (i < fpl->count_unix); 214 215 receiver->scm_stat.nr_unix_fds += fpl->count_unix; 216 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix); 217 out: 218 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count); 219 220 spin_unlock(&unix_gc_lock); 221 222 fpl->inflight = true; 223 224 unix_free_vertices(fpl); 225 } 226 227 void unix_del_edges(struct scm_fp_list *fpl) 228 { 229 struct unix_sock *receiver; 230 int i = 0; 231 232 spin_lock(&unix_gc_lock); 233 234 if (!fpl->count_unix) 235 goto out; 236 237 do { 238 struct unix_edge *edge = fpl->edges + i++; 239 240 unix_del_edge(fpl, edge); 241 } while (i < fpl->count_unix); 242 243 if (!gc_in_progress) { 244 receiver = fpl->edges[0].successor; 245 receiver->scm_stat.nr_unix_fds -= fpl->count_unix; 246 } 247 WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix); 248 out: 249 WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count); 250 251 spin_unlock(&unix_gc_lock); 252 253 fpl->inflight = false; 254 } 255 256 void unix_update_edges(struct unix_sock *receiver) 257 { 258 /* nr_unix_fds is only updated under unix_state_lock(). 259 * If it's 0 here, the embryo socket is not part of the 260 * inflight graph, and GC will not see it, so no lock needed. 261 */ 262 if (!receiver->scm_stat.nr_unix_fds) { 263 receiver->listener = NULL; 264 } else { 265 spin_lock(&unix_gc_lock); 266 unix_update_graph(unix_sk(receiver->listener)->vertex); 267 receiver->listener = NULL; 268 spin_unlock(&unix_gc_lock); 269 } 270 } 271 272 int unix_prepare_fpl(struct scm_fp_list *fpl) 273 { 274 struct unix_vertex *vertex; 275 int i; 276 277 if (!fpl->count_unix) 278 return 0; 279 280 for (i = 0; i < fpl->count_unix; i++) { 281 vertex = kmalloc(sizeof(*vertex), GFP_KERNEL); 282 if (!vertex) 283 goto err; 284 285 list_add(&vertex->entry, &fpl->vertices); 286 } 287 288 fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges), 289 GFP_KERNEL_ACCOUNT); 290 if (!fpl->edges) 291 goto err; 292 293 return 0; 294 295 err: 296 unix_free_vertices(fpl); 297 return -ENOMEM; 298 } 299 300 void unix_destroy_fpl(struct scm_fp_list *fpl) 301 { 302 if (fpl->inflight) 303 unix_del_edges(fpl); 304 305 kvfree(fpl->edges); 306 unix_free_vertices(fpl); 307 } 308 309 static bool unix_vertex_dead(struct unix_vertex *vertex) 310 { 311 struct unix_edge *edge; 312 struct unix_sock *u; 313 long total_ref; 314 315 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 316 struct unix_vertex *next_vertex = unix_edge_successor(edge); 317 318 /* The vertex's fd can be received by a non-inflight socket. */ 319 if (!next_vertex) 320 return false; 321 322 /* The vertex's fd can be received by an inflight socket in 323 * another SCC. 324 */ 325 if (next_vertex->scc_index != vertex->scc_index) 326 return false; 327 } 328 329 /* No receiver exists out of the same SCC. */ 330 331 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 332 u = edge->predecessor; 333 total_ref = file_count(u->sk.sk_socket->file); 334 335 /* If not close()d, total_ref > out_degree. */ 336 if (total_ref != vertex->out_degree) 337 return false; 338 339 return true; 340 } 341 342 enum unix_recv_queue_lock_class { 343 U_RECVQ_LOCK_NORMAL, 344 U_RECVQ_LOCK_EMBRYO, 345 }; 346 347 static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist) 348 { 349 struct unix_vertex *vertex; 350 351 list_for_each_entry_reverse(vertex, scc, scc_entry) { 352 struct sk_buff_head *queue; 353 struct unix_edge *edge; 354 struct unix_sock *u; 355 356 edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry); 357 u = edge->predecessor; 358 queue = &u->sk.sk_receive_queue; 359 360 spin_lock(&queue->lock); 361 362 if (u->sk.sk_state == TCP_LISTEN) { 363 struct sk_buff *skb; 364 365 skb_queue_walk(queue, skb) { 366 struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue; 367 368 /* listener -> embryo order, the inversion never happens. */ 369 spin_lock_nested(&embryo_queue->lock, U_RECVQ_LOCK_EMBRYO); 370 skb_queue_splice_init(embryo_queue, hitlist); 371 spin_unlock(&embryo_queue->lock); 372 } 373 } else { 374 skb_queue_splice_init(queue, hitlist); 375 376 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 377 if (u->oob_skb) { 378 kfree_skb(u->oob_skb); 379 u->oob_skb = NULL; 380 } 381 #endif 382 } 383 384 spin_unlock(&queue->lock); 385 } 386 } 387 388 static bool unix_scc_cyclic(struct list_head *scc) 389 { 390 struct unix_vertex *vertex; 391 struct unix_edge *edge; 392 393 /* SCC containing multiple vertices ? */ 394 if (!list_is_singular(scc)) 395 return true; 396 397 vertex = list_first_entry(scc, typeof(*vertex), scc_entry); 398 399 /* Self-reference or a embryo-listener circle ? */ 400 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 401 if (unix_edge_successor(edge) == vertex) 402 return true; 403 } 404 405 return false; 406 } 407 408 static LIST_HEAD(unix_visited_vertices); 409 static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2; 410 411 static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index, 412 struct sk_buff_head *hitlist) 413 { 414 LIST_HEAD(vertex_stack); 415 struct unix_edge *edge; 416 LIST_HEAD(edge_stack); 417 418 next_vertex: 419 /* Push vertex to vertex_stack and mark it as on-stack 420 * (index >= UNIX_VERTEX_INDEX_START). 421 * The vertex will be popped when finalising SCC later. 422 */ 423 list_add(&vertex->scc_entry, &vertex_stack); 424 425 vertex->index = *last_index; 426 vertex->scc_index = *last_index; 427 (*last_index)++; 428 429 /* Explore neighbour vertices (receivers of the current vertex's fd). */ 430 list_for_each_entry(edge, &vertex->edges, vertex_entry) { 431 struct unix_vertex *next_vertex = unix_edge_successor(edge); 432 433 if (!next_vertex) 434 continue; 435 436 if (next_vertex->index == unix_vertex_unvisited_index) { 437 /* Iterative deepening depth first search 438 * 439 * 1. Push a forward edge to edge_stack and set 440 * the successor to vertex for the next iteration. 441 */ 442 list_add(&edge->stack_entry, &edge_stack); 443 444 vertex = next_vertex; 445 goto next_vertex; 446 447 /* 2. Pop the edge directed to the current vertex 448 * and restore the ancestor for backtracking. 449 */ 450 prev_vertex: 451 edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry); 452 list_del_init(&edge->stack_entry); 453 454 next_vertex = vertex; 455 vertex = edge->predecessor->vertex; 456 457 /* If the successor has a smaller scc_index, two vertices 458 * are in the same SCC, so propagate the smaller scc_index 459 * to skip SCC finalisation. 460 */ 461 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 462 } else if (next_vertex->index != unix_vertex_grouped_index) { 463 /* Loop detected by a back/cross edge. 464 * 465 * The successor is on vertex_stack, so two vertices are in 466 * the same SCC. If the successor has a smaller *scc_index*, 467 * propagate it to skip SCC finalisation. 468 */ 469 vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index); 470 } else { 471 /* The successor was already grouped as another SCC */ 472 } 473 } 474 475 if (vertex->index == vertex->scc_index) { 476 struct list_head scc; 477 bool scc_dead = true; 478 479 /* SCC finalised. 480 * 481 * If the scc_index was not updated, all the vertices above on 482 * vertex_stack are in the same SCC. Group them using scc_entry. 483 */ 484 __list_cut_position(&scc, &vertex_stack, &vertex->scc_entry); 485 486 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 487 /* Don't restart DFS from this vertex in unix_walk_scc(). */ 488 list_move_tail(&vertex->entry, &unix_visited_vertices); 489 490 /* Mark vertex as off-stack. */ 491 vertex->index = unix_vertex_grouped_index; 492 493 if (scc_dead) 494 scc_dead = unix_vertex_dead(vertex); 495 } 496 497 if (scc_dead) 498 unix_collect_skb(&scc, hitlist); 499 else if (!unix_graph_maybe_cyclic) 500 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 501 502 list_del(&scc); 503 } 504 505 /* Need backtracking ? */ 506 if (!list_empty(&edge_stack)) 507 goto prev_vertex; 508 } 509 510 static void unix_walk_scc(struct sk_buff_head *hitlist) 511 { 512 unsigned long last_index = UNIX_VERTEX_INDEX_START; 513 514 unix_graph_maybe_cyclic = false; 515 516 /* Visit every vertex exactly once. 517 * __unix_walk_scc() moves visited vertices to unix_visited_vertices. 518 */ 519 while (!list_empty(&unix_unvisited_vertices)) { 520 struct unix_vertex *vertex; 521 522 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 523 __unix_walk_scc(vertex, &last_index, hitlist); 524 } 525 526 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 527 swap(unix_vertex_unvisited_index, unix_vertex_grouped_index); 528 529 unix_graph_grouped = true; 530 } 531 532 static void unix_walk_scc_fast(struct sk_buff_head *hitlist) 533 { 534 unix_graph_maybe_cyclic = false; 535 536 while (!list_empty(&unix_unvisited_vertices)) { 537 struct unix_vertex *vertex; 538 struct list_head scc; 539 bool scc_dead = true; 540 541 vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry); 542 list_add(&scc, &vertex->scc_entry); 543 544 list_for_each_entry_reverse(vertex, &scc, scc_entry) { 545 list_move_tail(&vertex->entry, &unix_visited_vertices); 546 547 if (scc_dead) 548 scc_dead = unix_vertex_dead(vertex); 549 } 550 551 if (scc_dead) 552 unix_collect_skb(&scc, hitlist); 553 else if (!unix_graph_maybe_cyclic) 554 unix_graph_maybe_cyclic = unix_scc_cyclic(&scc); 555 556 list_del(&scc); 557 } 558 559 list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices); 560 } 561 562 static void __unix_gc(struct work_struct *work) 563 { 564 struct sk_buff_head hitlist; 565 566 spin_lock(&unix_gc_lock); 567 568 if (!unix_graph_maybe_cyclic) { 569 spin_unlock(&unix_gc_lock); 570 goto skip_gc; 571 } 572 573 __skb_queue_head_init(&hitlist); 574 575 if (unix_graph_grouped) 576 unix_walk_scc_fast(&hitlist); 577 else 578 unix_walk_scc(&hitlist); 579 580 spin_unlock(&unix_gc_lock); 581 582 __skb_queue_purge(&hitlist); 583 skip_gc: 584 WRITE_ONCE(gc_in_progress, false); 585 } 586 587 static DECLARE_WORK(unix_gc_work, __unix_gc); 588 589 void unix_gc(void) 590 { 591 WRITE_ONCE(gc_in_progress, true); 592 queue_work(system_unbound_wq, &unix_gc_work); 593 } 594 595 #define UNIX_INFLIGHT_TRIGGER_GC 16000 596 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8) 597 598 void wait_for_unix_gc(struct scm_fp_list *fpl) 599 { 600 /* If number of inflight sockets is insane, 601 * force a garbage collect right now. 602 * 603 * Paired with the WRITE_ONCE() in unix_inflight(), 604 * unix_notinflight(), and __unix_gc(). 605 */ 606 if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC && 607 !READ_ONCE(gc_in_progress)) 608 unix_gc(); 609 610 /* Penalise users who want to send AF_UNIX sockets 611 * but whose sockets have not been received yet. 612 */ 613 if (!fpl || !fpl->count_unix || 614 READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER) 615 return; 616 617 if (READ_ONCE(gc_in_progress)) 618 flush_work(&unix_gc_work); 619 } 620