xref: /linux/net/unix/garbage.c (revision 1fbfdfaa590248c1d86407f578e40e5c65136330)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET3:	Garbage Collector For AF_UNIX sockets
4  *
5  * Garbage Collector:
6  *	Copyright (C) Barak A. Pearlmutter.
7  *
8  * Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
9  * If it doesn't work blame me, it worked when Barak sent it.
10  *
11  * Assumptions:
12  *
13  *  - object w/ a bit
14  *  - free list
15  *
16  * Current optimizations:
17  *
18  *  - explicit stack instead of recursion
19  *  - tail recurse on first born instead of immediate push/pop
20  *  - we gather the stuff that should not be killed into tree
21  *    and stack is just a path from root to the current pointer.
22  *
23  *  Future optimizations:
24  *
25  *  - don't just push entire root set; process in place
26  *
27  *  Fixes:
28  *	Alan Cox	07 Sept	1997	Vmalloc internal stack as needed.
29  *					Cope with changing max_files.
30  *	Al Viro		11 Oct 1998
31  *		Graph may have cycles. That is, we can send the descriptor
32  *		of foo to bar and vice versa. Current code chokes on that.
33  *		Fix: move SCM_RIGHTS ones into the separate list and then
34  *		skb_free() them all instead of doing explicit fput's.
35  *		Another problem: since fput() may block somebody may
36  *		create a new unix_socket when we are in the middle of sweep
37  *		phase. Fix: revert the logic wrt MARKED. Mark everything
38  *		upon the beginning and unmark non-junk ones.
39  *
40  *		[12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
41  *		sent to connect()'ed but still not accept()'ed sockets.
42  *		Fixed. Old code had slightly different problem here:
43  *		extra fput() in situation when we passed the descriptor via
44  *		such socket and closed it (descriptor). That would happen on
45  *		each unix_gc() until the accept(). Since the struct file in
46  *		question would go to the free list and might be reused...
47  *		That might be the reason of random oopses on filp_close()
48  *		in unrelated processes.
49  *
50  *	AV		28 Feb 1999
51  *		Kill the explicit allocation of stack. Now we keep the tree
52  *		with root in dummy + pointer (gc_current) to one of the nodes.
53  *		Stack is represented as path from gc_current to dummy. Unmark
54  *		now means "add to tree". Push == "make it a son of gc_current".
55  *		Pop == "move gc_current to parent". We keep only pointers to
56  *		parents (->gc_tree).
57  *	AV		1 Mar 1999
58  *		Damn. Added missing check for ->dead in listen queues scanning.
59  *
60  *	Miklos Szeredi 25 Jun 2007
61  *		Reimplement with a cycle collecting algorithm. This should
62  *		solve several problems with the previous code, like being racy
63  *		wrt receive and holding up unrelated socket operations.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/string.h>
68 #include <linux/socket.h>
69 #include <linux/un.h>
70 #include <linux/net.h>
71 #include <linux/fs.h>
72 #include <linux/skbuff.h>
73 #include <linux/netdevice.h>
74 #include <linux/file.h>
75 #include <linux/proc_fs.h>
76 #include <linux/mutex.h>
77 #include <linux/wait.h>
78 
79 #include <net/sock.h>
80 #include <net/af_unix.h>
81 #include <net/scm.h>
82 #include <net/tcp_states.h>
83 
84 struct unix_sock *unix_get_socket(struct file *filp)
85 {
86 	struct inode *inode = file_inode(filp);
87 
88 	/* Socket ? */
89 	if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
90 		struct socket *sock = SOCKET_I(inode);
91 		const struct proto_ops *ops;
92 		struct sock *sk = sock->sk;
93 
94 		ops = READ_ONCE(sock->ops);
95 
96 		/* PF_UNIX ? */
97 		if (sk && ops && ops->family == PF_UNIX)
98 			return unix_sk(sk);
99 	}
100 
101 	return NULL;
102 }
103 
104 static void unix_free_vertices(struct scm_fp_list *fpl)
105 {
106 	struct unix_vertex *vertex, *next_vertex;
107 
108 	list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
109 		list_del(&vertex->entry);
110 		kfree(vertex);
111 	}
112 }
113 
114 int unix_prepare_fpl(struct scm_fp_list *fpl)
115 {
116 	struct unix_vertex *vertex;
117 	int i;
118 
119 	if (!fpl->count_unix)
120 		return 0;
121 
122 	for (i = 0; i < fpl->count_unix; i++) {
123 		vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
124 		if (!vertex)
125 			goto err;
126 
127 		list_add(&vertex->entry, &fpl->vertices);
128 	}
129 
130 	return 0;
131 
132 err:
133 	unix_free_vertices(fpl);
134 	return -ENOMEM;
135 }
136 
137 void unix_destroy_fpl(struct scm_fp_list *fpl)
138 {
139 	unix_free_vertices(fpl);
140 }
141 
142 DEFINE_SPINLOCK(unix_gc_lock);
143 unsigned int unix_tot_inflight;
144 static LIST_HEAD(gc_candidates);
145 static LIST_HEAD(gc_inflight_list);
146 
147 /* Keep the number of times in flight count for the file
148  * descriptor if it is for an AF_UNIX socket.
149  */
150 void unix_inflight(struct user_struct *user, struct file *filp)
151 {
152 	struct unix_sock *u = unix_get_socket(filp);
153 
154 	spin_lock(&unix_gc_lock);
155 
156 	if (u) {
157 		if (!u->inflight) {
158 			WARN_ON_ONCE(!list_empty(&u->link));
159 			list_add_tail(&u->link, &gc_inflight_list);
160 		} else {
161 			WARN_ON_ONCE(list_empty(&u->link));
162 		}
163 		u->inflight++;
164 
165 		/* Paired with READ_ONCE() in wait_for_unix_gc() */
166 		WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + 1);
167 	}
168 
169 	WRITE_ONCE(user->unix_inflight, user->unix_inflight + 1);
170 
171 	spin_unlock(&unix_gc_lock);
172 }
173 
174 void unix_notinflight(struct user_struct *user, struct file *filp)
175 {
176 	struct unix_sock *u = unix_get_socket(filp);
177 
178 	spin_lock(&unix_gc_lock);
179 
180 	if (u) {
181 		WARN_ON_ONCE(!u->inflight);
182 		WARN_ON_ONCE(list_empty(&u->link));
183 
184 		u->inflight--;
185 		if (!u->inflight)
186 			list_del_init(&u->link);
187 
188 		/* Paired with READ_ONCE() in wait_for_unix_gc() */
189 		WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - 1);
190 	}
191 
192 	WRITE_ONCE(user->unix_inflight, user->unix_inflight - 1);
193 
194 	spin_unlock(&unix_gc_lock);
195 }
196 
197 static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
198 			  struct sk_buff_head *hitlist)
199 {
200 	struct sk_buff *skb;
201 	struct sk_buff *next;
202 
203 	spin_lock(&x->sk_receive_queue.lock);
204 	skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
205 		/* Do we have file descriptors ? */
206 		if (UNIXCB(skb).fp) {
207 			bool hit = false;
208 			/* Process the descriptors of this socket */
209 			int nfd = UNIXCB(skb).fp->count;
210 			struct file **fp = UNIXCB(skb).fp->fp;
211 
212 			while (nfd--) {
213 				/* Get the socket the fd matches if it indeed does so */
214 				struct unix_sock *u = unix_get_socket(*fp++);
215 
216 				/* Ignore non-candidates, they could have been added
217 				 * to the queues after starting the garbage collection
218 				 */
219 				if (u && test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) {
220 					hit = true;
221 
222 					func(u);
223 				}
224 			}
225 			if (hit && hitlist != NULL) {
226 				__skb_unlink(skb, &x->sk_receive_queue);
227 				__skb_queue_tail(hitlist, skb);
228 			}
229 		}
230 	}
231 	spin_unlock(&x->sk_receive_queue.lock);
232 }
233 
234 static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
235 			  struct sk_buff_head *hitlist)
236 {
237 	if (x->sk_state != TCP_LISTEN) {
238 		scan_inflight(x, func, hitlist);
239 	} else {
240 		struct sk_buff *skb;
241 		struct sk_buff *next;
242 		struct unix_sock *u;
243 		LIST_HEAD(embryos);
244 
245 		/* For a listening socket collect the queued embryos
246 		 * and perform a scan on them as well.
247 		 */
248 		spin_lock(&x->sk_receive_queue.lock);
249 		skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
250 			u = unix_sk(skb->sk);
251 
252 			/* An embryo cannot be in-flight, so it's safe
253 			 * to use the list link.
254 			 */
255 			WARN_ON_ONCE(!list_empty(&u->link));
256 			list_add_tail(&u->link, &embryos);
257 		}
258 		spin_unlock(&x->sk_receive_queue.lock);
259 
260 		while (!list_empty(&embryos)) {
261 			u = list_entry(embryos.next, struct unix_sock, link);
262 			scan_inflight(&u->sk, func, hitlist);
263 			list_del_init(&u->link);
264 		}
265 	}
266 }
267 
268 static void dec_inflight(struct unix_sock *usk)
269 {
270 	usk->inflight--;
271 }
272 
273 static void inc_inflight(struct unix_sock *usk)
274 {
275 	usk->inflight++;
276 }
277 
278 static void inc_inflight_move_tail(struct unix_sock *u)
279 {
280 	u->inflight++;
281 
282 	/* If this still might be part of a cycle, move it to the end
283 	 * of the list, so that it's checked even if it was already
284 	 * passed over
285 	 */
286 	if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags))
287 		list_move_tail(&u->link, &gc_candidates);
288 }
289 
290 static bool gc_in_progress;
291 
292 static void __unix_gc(struct work_struct *work)
293 {
294 	struct sk_buff_head hitlist;
295 	struct unix_sock *u, *next;
296 	LIST_HEAD(not_cycle_list);
297 	struct list_head cursor;
298 
299 	spin_lock(&unix_gc_lock);
300 
301 	/* First, select candidates for garbage collection.  Only
302 	 * in-flight sockets are considered, and from those only ones
303 	 * which don't have any external reference.
304 	 *
305 	 * Holding unix_gc_lock will protect these candidates from
306 	 * being detached, and hence from gaining an external
307 	 * reference.  Since there are no possible receivers, all
308 	 * buffers currently on the candidates' queues stay there
309 	 * during the garbage collection.
310 	 *
311 	 * We also know that no new candidate can be added onto the
312 	 * receive queues.  Other, non candidate sockets _can_ be
313 	 * added to queue, so we must make sure only to touch
314 	 * candidates.
315 	 */
316 	list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
317 		long total_refs;
318 
319 		total_refs = file_count(u->sk.sk_socket->file);
320 
321 		WARN_ON_ONCE(!u->inflight);
322 		WARN_ON_ONCE(total_refs < u->inflight);
323 		if (total_refs == u->inflight) {
324 			list_move_tail(&u->link, &gc_candidates);
325 			__set_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
326 			__set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
327 		}
328 	}
329 
330 	/* Now remove all internal in-flight reference to children of
331 	 * the candidates.
332 	 */
333 	list_for_each_entry(u, &gc_candidates, link)
334 		scan_children(&u->sk, dec_inflight, NULL);
335 
336 	/* Restore the references for children of all candidates,
337 	 * which have remaining references.  Do this recursively, so
338 	 * only those remain, which form cyclic references.
339 	 *
340 	 * Use a "cursor" link, to make the list traversal safe, even
341 	 * though elements might be moved about.
342 	 */
343 	list_add(&cursor, &gc_candidates);
344 	while (cursor.next != &gc_candidates) {
345 		u = list_entry(cursor.next, struct unix_sock, link);
346 
347 		/* Move cursor to after the current position. */
348 		list_move(&cursor, &u->link);
349 
350 		if (u->inflight) {
351 			list_move_tail(&u->link, &not_cycle_list);
352 			__clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
353 			scan_children(&u->sk, inc_inflight_move_tail, NULL);
354 		}
355 	}
356 	list_del(&cursor);
357 
358 	/* Now gc_candidates contains only garbage.  Restore original
359 	 * inflight counters for these as well, and remove the skbuffs
360 	 * which are creating the cycle(s).
361 	 */
362 	skb_queue_head_init(&hitlist);
363 	list_for_each_entry(u, &gc_candidates, link) {
364 		scan_children(&u->sk, inc_inflight, &hitlist);
365 
366 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
367 		if (u->oob_skb) {
368 			kfree_skb(u->oob_skb);
369 			u->oob_skb = NULL;
370 		}
371 #endif
372 	}
373 
374 	/* not_cycle_list contains those sockets which do not make up a
375 	 * cycle.  Restore these to the inflight list.
376 	 */
377 	while (!list_empty(&not_cycle_list)) {
378 		u = list_entry(not_cycle_list.next, struct unix_sock, link);
379 		__clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
380 		list_move_tail(&u->link, &gc_inflight_list);
381 	}
382 
383 	spin_unlock(&unix_gc_lock);
384 
385 	/* Here we are. Hitlist is filled. Die. */
386 	__skb_queue_purge(&hitlist);
387 
388 	spin_lock(&unix_gc_lock);
389 
390 	/* All candidates should have been detached by now. */
391 	WARN_ON_ONCE(!list_empty(&gc_candidates));
392 
393 	/* Paired with READ_ONCE() in wait_for_unix_gc(). */
394 	WRITE_ONCE(gc_in_progress, false);
395 
396 	spin_unlock(&unix_gc_lock);
397 }
398 
399 static DECLARE_WORK(unix_gc_work, __unix_gc);
400 
401 void unix_gc(void)
402 {
403 	WRITE_ONCE(gc_in_progress, true);
404 	queue_work(system_unbound_wq, &unix_gc_work);
405 }
406 
407 #define UNIX_INFLIGHT_TRIGGER_GC 16000
408 #define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
409 
410 void wait_for_unix_gc(struct scm_fp_list *fpl)
411 {
412 	/* If number of inflight sockets is insane,
413 	 * force a garbage collect right now.
414 	 *
415 	 * Paired with the WRITE_ONCE() in unix_inflight(),
416 	 * unix_notinflight(), and __unix_gc().
417 	 */
418 	if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
419 	    !READ_ONCE(gc_in_progress))
420 		unix_gc();
421 
422 	/* Penalise users who want to send AF_UNIX sockets
423 	 * but whose sockets have not been received yet.
424 	 */
425 	if (!fpl || !fpl->count_unix ||
426 	    READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
427 		return;
428 
429 	if (READ_ONCE(gc_in_progress))
430 		flush_work(&unix_gc_work);
431 }
432