1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/splice.h> 116 #include <linux/freezer.h> 117 #include <linux/file.h> 118 #include <linux/btf_ids.h> 119 #include <linux/bpf-cgroup.h> 120 121 static atomic_long_t unix_nr_socks; 122 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 123 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 124 125 /* SMP locking strategy: 126 * hash table is protected with spinlock. 127 * each socket state is protected by separate spinlock. 128 */ 129 130 static unsigned int unix_unbound_hash(struct sock *sk) 131 { 132 unsigned long hash = (unsigned long)sk; 133 134 hash ^= hash >> 16; 135 hash ^= hash >> 8; 136 hash ^= sk->sk_type; 137 138 return hash & UNIX_HASH_MOD; 139 } 140 141 static unsigned int unix_bsd_hash(struct inode *i) 142 { 143 return i->i_ino & UNIX_HASH_MOD; 144 } 145 146 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 147 int addr_len, int type) 148 { 149 __wsum csum = csum_partial(sunaddr, addr_len, 0); 150 unsigned int hash; 151 152 hash = (__force unsigned int)csum_fold(csum); 153 hash ^= hash >> 8; 154 hash ^= type; 155 156 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 157 } 158 159 static void unix_table_double_lock(struct net *net, 160 unsigned int hash1, unsigned int hash2) 161 { 162 if (hash1 == hash2) { 163 spin_lock(&net->unx.table.locks[hash1]); 164 return; 165 } 166 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&net->unx.table.locks[hash1]); 171 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(struct net *net, 175 unsigned int hash1, unsigned int hash2) 176 { 177 if (hash1 == hash2) { 178 spin_unlock(&net->unx.table.locks[hash1]); 179 return; 180 } 181 182 spin_unlock(&net->unx.table.locks[hash1]); 183 spin_unlock(&net->unx.table.locks[hash2]); 184 } 185 186 #ifdef CONFIG_SECURITY_NETWORK 187 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 188 { 189 UNIXCB(skb).secid = scm->secid; 190 } 191 192 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 193 { 194 scm->secid = UNIXCB(skb).secid; 195 } 196 197 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 198 { 199 return (scm->secid == UNIXCB(skb).secid); 200 } 201 #else 202 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 203 { } 204 205 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 206 { } 207 208 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 209 { 210 return true; 211 } 212 #endif /* CONFIG_SECURITY_NETWORK */ 213 214 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 215 { 216 return unix_peer(osk) == sk; 217 } 218 219 static inline int unix_may_send(struct sock *sk, struct sock *osk) 220 { 221 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 222 } 223 224 static inline int unix_recvq_full(const struct sock *sk) 225 { 226 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 227 } 228 229 static inline int unix_recvq_full_lockless(const struct sock *sk) 230 { 231 return skb_queue_len_lockless(&sk->sk_receive_queue) > 232 READ_ONCE(sk->sk_max_ack_backlog); 233 } 234 235 struct sock *unix_peer_get(struct sock *s) 236 { 237 struct sock *peer; 238 239 unix_state_lock(s); 240 peer = unix_peer(s); 241 if (peer) 242 sock_hold(peer); 243 unix_state_unlock(s); 244 return peer; 245 } 246 EXPORT_SYMBOL_GPL(unix_peer_get); 247 248 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 249 int addr_len) 250 { 251 struct unix_address *addr; 252 253 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 254 if (!addr) 255 return NULL; 256 257 refcount_set(&addr->refcnt, 1); 258 addr->len = addr_len; 259 memcpy(addr->name, sunaddr, addr_len); 260 261 return addr; 262 } 263 264 static inline void unix_release_addr(struct unix_address *addr) 265 { 266 if (refcount_dec_and_test(&addr->refcnt)) 267 kfree(addr); 268 } 269 270 /* 271 * Check unix socket name: 272 * - should be not zero length. 273 * - if started by not zero, should be NULL terminated (FS object) 274 * - if started by zero, it is abstract name. 275 */ 276 277 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 278 { 279 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 280 addr_len > sizeof(*sunaddr)) 281 return -EINVAL; 282 283 if (sunaddr->sun_family != AF_UNIX) 284 return -EINVAL; 285 286 return 0; 287 } 288 289 static int unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 290 { 291 struct sockaddr_storage *addr = (struct sockaddr_storage *)sunaddr; 292 short offset = offsetof(struct sockaddr_storage, __data); 293 294 BUILD_BUG_ON(offset != offsetof(struct sockaddr_un, sun_path)); 295 296 /* This may look like an off by one error but it is a bit more 297 * subtle. 108 is the longest valid AF_UNIX path for a binding. 298 * sun_path[108] doesn't as such exist. However in kernel space 299 * we are guaranteed that it is a valid memory location in our 300 * kernel address buffer because syscall functions always pass 301 * a pointer of struct sockaddr_storage which has a bigger buffer 302 * than 108. Also, we must terminate sun_path for strlen() in 303 * getname_kernel(). 304 */ 305 addr->__data[addr_len - offset] = 0; 306 307 /* Don't pass sunaddr->sun_path to strlen(). Otherwise, 108 will 308 * cause panic if CONFIG_FORTIFY_SOURCE=y. Let __fortify_strlen() 309 * know the actual buffer. 310 */ 311 return strlen(addr->__data) + offset + 1; 312 } 313 314 static void __unix_remove_socket(struct sock *sk) 315 { 316 sk_del_node_init(sk); 317 } 318 319 static void __unix_insert_socket(struct net *net, struct sock *sk) 320 { 321 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 322 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 323 } 324 325 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 326 struct unix_address *addr, unsigned int hash) 327 { 328 __unix_remove_socket(sk); 329 smp_store_release(&unix_sk(sk)->addr, addr); 330 331 sk->sk_hash = hash; 332 __unix_insert_socket(net, sk); 333 } 334 335 static void unix_remove_socket(struct net *net, struct sock *sk) 336 { 337 spin_lock(&net->unx.table.locks[sk->sk_hash]); 338 __unix_remove_socket(sk); 339 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 340 } 341 342 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 343 { 344 spin_lock(&net->unx.table.locks[sk->sk_hash]); 345 __unix_insert_socket(net, sk); 346 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 347 } 348 349 static void unix_insert_bsd_socket(struct sock *sk) 350 { 351 spin_lock(&bsd_socket_locks[sk->sk_hash]); 352 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 353 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 354 } 355 356 static void unix_remove_bsd_socket(struct sock *sk) 357 { 358 if (!hlist_unhashed(&sk->sk_bind_node)) { 359 spin_lock(&bsd_socket_locks[sk->sk_hash]); 360 __sk_del_bind_node(sk); 361 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 362 363 sk_node_init(&sk->sk_bind_node); 364 } 365 } 366 367 static struct sock *__unix_find_socket_byname(struct net *net, 368 struct sockaddr_un *sunname, 369 int len, unsigned int hash) 370 { 371 struct sock *s; 372 373 sk_for_each(s, &net->unx.table.buckets[hash]) { 374 struct unix_sock *u = unix_sk(s); 375 376 if (u->addr->len == len && 377 !memcmp(u->addr->name, sunname, len)) 378 return s; 379 } 380 return NULL; 381 } 382 383 static inline struct sock *unix_find_socket_byname(struct net *net, 384 struct sockaddr_un *sunname, 385 int len, unsigned int hash) 386 { 387 struct sock *s; 388 389 spin_lock(&net->unx.table.locks[hash]); 390 s = __unix_find_socket_byname(net, sunname, len, hash); 391 if (s) 392 sock_hold(s); 393 spin_unlock(&net->unx.table.locks[hash]); 394 return s; 395 } 396 397 static struct sock *unix_find_socket_byinode(struct inode *i) 398 { 399 unsigned int hash = unix_bsd_hash(i); 400 struct sock *s; 401 402 spin_lock(&bsd_socket_locks[hash]); 403 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 404 struct dentry *dentry = unix_sk(s)->path.dentry; 405 406 if (dentry && d_backing_inode(dentry) == i) { 407 sock_hold(s); 408 spin_unlock(&bsd_socket_locks[hash]); 409 return s; 410 } 411 } 412 spin_unlock(&bsd_socket_locks[hash]); 413 return NULL; 414 } 415 416 /* Support code for asymmetrically connected dgram sockets 417 * 418 * If a datagram socket is connected to a socket not itself connected 419 * to the first socket (eg, /dev/log), clients may only enqueue more 420 * messages if the present receive queue of the server socket is not 421 * "too large". This means there's a second writeability condition 422 * poll and sendmsg need to test. The dgram recv code will do a wake 423 * up on the peer_wait wait queue of a socket upon reception of a 424 * datagram which needs to be propagated to sleeping would-be writers 425 * since these might not have sent anything so far. This can't be 426 * accomplished via poll_wait because the lifetime of the server 427 * socket might be less than that of its clients if these break their 428 * association with it or if the server socket is closed while clients 429 * are still connected to it and there's no way to inform "a polling 430 * implementation" that it should let go of a certain wait queue 431 * 432 * In order to propagate a wake up, a wait_queue_entry_t of the client 433 * socket is enqueued on the peer_wait queue of the server socket 434 * whose wake function does a wake_up on the ordinary client socket 435 * wait queue. This connection is established whenever a write (or 436 * poll for write) hit the flow control condition and broken when the 437 * association to the server socket is dissolved or after a wake up 438 * was relayed. 439 */ 440 441 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 442 void *key) 443 { 444 struct unix_sock *u; 445 wait_queue_head_t *u_sleep; 446 447 u = container_of(q, struct unix_sock, peer_wake); 448 449 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 450 q); 451 u->peer_wake.private = NULL; 452 453 /* relaying can only happen while the wq still exists */ 454 u_sleep = sk_sleep(&u->sk); 455 if (u_sleep) 456 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 457 458 return 0; 459 } 460 461 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 462 { 463 struct unix_sock *u, *u_other; 464 int rc; 465 466 u = unix_sk(sk); 467 u_other = unix_sk(other); 468 rc = 0; 469 spin_lock(&u_other->peer_wait.lock); 470 471 if (!u->peer_wake.private) { 472 u->peer_wake.private = other; 473 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 474 475 rc = 1; 476 } 477 478 spin_unlock(&u_other->peer_wait.lock); 479 return rc; 480 } 481 482 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 483 struct sock *other) 484 { 485 struct unix_sock *u, *u_other; 486 487 u = unix_sk(sk); 488 u_other = unix_sk(other); 489 spin_lock(&u_other->peer_wait.lock); 490 491 if (u->peer_wake.private == other) { 492 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 493 u->peer_wake.private = NULL; 494 } 495 496 spin_unlock(&u_other->peer_wait.lock); 497 } 498 499 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 500 struct sock *other) 501 { 502 unix_dgram_peer_wake_disconnect(sk, other); 503 wake_up_interruptible_poll(sk_sleep(sk), 504 EPOLLOUT | 505 EPOLLWRNORM | 506 EPOLLWRBAND); 507 } 508 509 /* preconditions: 510 * - unix_peer(sk) == other 511 * - association is stable 512 */ 513 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 514 { 515 int connected; 516 517 connected = unix_dgram_peer_wake_connect(sk, other); 518 519 /* If other is SOCK_DEAD, we want to make sure we signal 520 * POLLOUT, such that a subsequent write() can get a 521 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 522 * to other and its full, we will hang waiting for POLLOUT. 523 */ 524 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 525 return 1; 526 527 if (connected) 528 unix_dgram_peer_wake_disconnect(sk, other); 529 530 return 0; 531 } 532 533 static int unix_writable(const struct sock *sk) 534 { 535 return sk->sk_state != TCP_LISTEN && 536 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 537 } 538 539 static void unix_write_space(struct sock *sk) 540 { 541 struct socket_wq *wq; 542 543 rcu_read_lock(); 544 if (unix_writable(sk)) { 545 wq = rcu_dereference(sk->sk_wq); 546 if (skwq_has_sleeper(wq)) 547 wake_up_interruptible_sync_poll(&wq->wait, 548 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 549 sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT); 550 } 551 rcu_read_unlock(); 552 } 553 554 /* When dgram socket disconnects (or changes its peer), we clear its receive 555 * queue of packets arrived from previous peer. First, it allows to do 556 * flow control based only on wmem_alloc; second, sk connected to peer 557 * may receive messages only from that peer. */ 558 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 559 { 560 if (!skb_queue_empty(&sk->sk_receive_queue)) { 561 skb_queue_purge(&sk->sk_receive_queue); 562 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 563 564 /* If one link of bidirectional dgram pipe is disconnected, 565 * we signal error. Messages are lost. Do not make this, 566 * when peer was not connected to us. 567 */ 568 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 569 WRITE_ONCE(other->sk_err, ECONNRESET); 570 sk_error_report(other); 571 } 572 } 573 other->sk_state = TCP_CLOSE; 574 } 575 576 static void unix_sock_destructor(struct sock *sk) 577 { 578 struct unix_sock *u = unix_sk(sk); 579 580 skb_queue_purge(&sk->sk_receive_queue); 581 582 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 583 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 584 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 585 if (!sock_flag(sk, SOCK_DEAD)) { 586 pr_info("Attempt to release alive unix socket: %p\n", sk); 587 return; 588 } 589 590 if (u->addr) 591 unix_release_addr(u->addr); 592 593 atomic_long_dec(&unix_nr_socks); 594 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 595 #ifdef UNIX_REFCNT_DEBUG 596 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 597 atomic_long_read(&unix_nr_socks)); 598 #endif 599 } 600 601 static void unix_release_sock(struct sock *sk, int embrion) 602 { 603 struct unix_sock *u = unix_sk(sk); 604 struct sock *skpair; 605 struct sk_buff *skb; 606 struct path path; 607 int state; 608 609 unix_remove_socket(sock_net(sk), sk); 610 unix_remove_bsd_socket(sk); 611 612 /* Clear state */ 613 unix_state_lock(sk); 614 sock_orphan(sk); 615 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 616 path = u->path; 617 u->path.dentry = NULL; 618 u->path.mnt = NULL; 619 state = sk->sk_state; 620 sk->sk_state = TCP_CLOSE; 621 622 skpair = unix_peer(sk); 623 unix_peer(sk) = NULL; 624 625 unix_state_unlock(sk); 626 627 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 628 if (u->oob_skb) { 629 kfree_skb(u->oob_skb); 630 u->oob_skb = NULL; 631 } 632 #endif 633 634 wake_up_interruptible_all(&u->peer_wait); 635 636 if (skpair != NULL) { 637 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 638 unix_state_lock(skpair); 639 /* No more writes */ 640 WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK); 641 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 642 WRITE_ONCE(skpair->sk_err, ECONNRESET); 643 unix_state_unlock(skpair); 644 skpair->sk_state_change(skpair); 645 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 646 } 647 648 unix_dgram_peer_wake_disconnect(sk, skpair); 649 sock_put(skpair); /* It may now die */ 650 } 651 652 /* Try to flush out this socket. Throw out buffers at least */ 653 654 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 655 if (state == TCP_LISTEN) 656 unix_release_sock(skb->sk, 1); 657 /* passed fds are erased in the kfree_skb hook */ 658 UNIXCB(skb).consumed = skb->len; 659 kfree_skb(skb); 660 } 661 662 if (path.dentry) 663 path_put(&path); 664 665 sock_put(sk); 666 667 /* ---- Socket is dead now and most probably destroyed ---- */ 668 669 /* 670 * Fixme: BSD difference: In BSD all sockets connected to us get 671 * ECONNRESET and we die on the spot. In Linux we behave 672 * like files and pipes do and wait for the last 673 * dereference. 674 * 675 * Can't we simply set sock->err? 676 * 677 * What the above comment does talk about? --ANK(980817) 678 */ 679 680 if (READ_ONCE(unix_tot_inflight)) 681 unix_gc(); /* Garbage collect fds */ 682 } 683 684 static void init_peercred(struct sock *sk) 685 { 686 const struct cred *old_cred; 687 struct pid *old_pid; 688 689 spin_lock(&sk->sk_peer_lock); 690 old_pid = sk->sk_peer_pid; 691 old_cred = sk->sk_peer_cred; 692 sk->sk_peer_pid = get_pid(task_tgid(current)); 693 sk->sk_peer_cred = get_current_cred(); 694 spin_unlock(&sk->sk_peer_lock); 695 696 put_pid(old_pid); 697 put_cred(old_cred); 698 } 699 700 static void copy_peercred(struct sock *sk, struct sock *peersk) 701 { 702 const struct cred *old_cred; 703 struct pid *old_pid; 704 705 if (sk < peersk) { 706 spin_lock(&sk->sk_peer_lock); 707 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 708 } else { 709 spin_lock(&peersk->sk_peer_lock); 710 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 711 } 712 old_pid = sk->sk_peer_pid; 713 old_cred = sk->sk_peer_cred; 714 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 715 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 716 717 spin_unlock(&sk->sk_peer_lock); 718 spin_unlock(&peersk->sk_peer_lock); 719 720 put_pid(old_pid); 721 put_cred(old_cred); 722 } 723 724 static int unix_listen(struct socket *sock, int backlog) 725 { 726 int err; 727 struct sock *sk = sock->sk; 728 struct unix_sock *u = unix_sk(sk); 729 730 err = -EOPNOTSUPP; 731 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 732 goto out; /* Only stream/seqpacket sockets accept */ 733 err = -EINVAL; 734 if (!u->addr) 735 goto out; /* No listens on an unbound socket */ 736 unix_state_lock(sk); 737 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 738 goto out_unlock; 739 if (backlog > sk->sk_max_ack_backlog) 740 wake_up_interruptible_all(&u->peer_wait); 741 sk->sk_max_ack_backlog = backlog; 742 sk->sk_state = TCP_LISTEN; 743 /* set credentials so connect can copy them */ 744 init_peercred(sk); 745 err = 0; 746 747 out_unlock: 748 unix_state_unlock(sk); 749 out: 750 return err; 751 } 752 753 static int unix_release(struct socket *); 754 static int unix_bind(struct socket *, struct sockaddr *, int); 755 static int unix_stream_connect(struct socket *, struct sockaddr *, 756 int addr_len, int flags); 757 static int unix_socketpair(struct socket *, struct socket *); 758 static int unix_accept(struct socket *, struct socket *, struct proto_accept_arg *arg); 759 static int unix_getname(struct socket *, struct sockaddr *, int); 760 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 761 static __poll_t unix_dgram_poll(struct file *, struct socket *, 762 poll_table *); 763 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 764 #ifdef CONFIG_COMPAT 765 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 766 #endif 767 static int unix_shutdown(struct socket *, int); 768 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 769 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 770 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 771 struct pipe_inode_info *, size_t size, 772 unsigned int flags); 773 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 774 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 775 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 776 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 777 static int unix_dgram_connect(struct socket *, struct sockaddr *, 778 int, int); 779 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 780 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 781 int); 782 783 #ifdef CONFIG_PROC_FS 784 static int unix_count_nr_fds(struct sock *sk) 785 { 786 struct sk_buff *skb; 787 struct unix_sock *u; 788 int nr_fds = 0; 789 790 spin_lock(&sk->sk_receive_queue.lock); 791 skb = skb_peek(&sk->sk_receive_queue); 792 while (skb) { 793 u = unix_sk(skb->sk); 794 nr_fds += atomic_read(&u->scm_stat.nr_fds); 795 skb = skb_peek_next(skb, &sk->sk_receive_queue); 796 } 797 spin_unlock(&sk->sk_receive_queue.lock); 798 799 return nr_fds; 800 } 801 802 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 803 { 804 struct sock *sk = sock->sk; 805 unsigned char s_state; 806 struct unix_sock *u; 807 int nr_fds = 0; 808 809 if (sk) { 810 s_state = READ_ONCE(sk->sk_state); 811 u = unix_sk(sk); 812 813 /* SOCK_STREAM and SOCK_SEQPACKET sockets never change their 814 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN. 815 * SOCK_DGRAM is ordinary. So, no lock is needed. 816 */ 817 if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED) 818 nr_fds = atomic_read(&u->scm_stat.nr_fds); 819 else if (s_state == TCP_LISTEN) 820 nr_fds = unix_count_nr_fds(sk); 821 822 seq_printf(m, "scm_fds: %u\n", nr_fds); 823 } 824 } 825 #else 826 #define unix_show_fdinfo NULL 827 #endif 828 829 static const struct proto_ops unix_stream_ops = { 830 .family = PF_UNIX, 831 .owner = THIS_MODULE, 832 .release = unix_release, 833 .bind = unix_bind, 834 .connect = unix_stream_connect, 835 .socketpair = unix_socketpair, 836 .accept = unix_accept, 837 .getname = unix_getname, 838 .poll = unix_poll, 839 .ioctl = unix_ioctl, 840 #ifdef CONFIG_COMPAT 841 .compat_ioctl = unix_compat_ioctl, 842 #endif 843 .listen = unix_listen, 844 .shutdown = unix_shutdown, 845 .sendmsg = unix_stream_sendmsg, 846 .recvmsg = unix_stream_recvmsg, 847 .read_skb = unix_stream_read_skb, 848 .mmap = sock_no_mmap, 849 .splice_read = unix_stream_splice_read, 850 .set_peek_off = sk_set_peek_off, 851 .show_fdinfo = unix_show_fdinfo, 852 }; 853 854 static const struct proto_ops unix_dgram_ops = { 855 .family = PF_UNIX, 856 .owner = THIS_MODULE, 857 .release = unix_release, 858 .bind = unix_bind, 859 .connect = unix_dgram_connect, 860 .socketpair = unix_socketpair, 861 .accept = sock_no_accept, 862 .getname = unix_getname, 863 .poll = unix_dgram_poll, 864 .ioctl = unix_ioctl, 865 #ifdef CONFIG_COMPAT 866 .compat_ioctl = unix_compat_ioctl, 867 #endif 868 .listen = sock_no_listen, 869 .shutdown = unix_shutdown, 870 .sendmsg = unix_dgram_sendmsg, 871 .read_skb = unix_read_skb, 872 .recvmsg = unix_dgram_recvmsg, 873 .mmap = sock_no_mmap, 874 .set_peek_off = sk_set_peek_off, 875 .show_fdinfo = unix_show_fdinfo, 876 }; 877 878 static const struct proto_ops unix_seqpacket_ops = { 879 .family = PF_UNIX, 880 .owner = THIS_MODULE, 881 .release = unix_release, 882 .bind = unix_bind, 883 .connect = unix_stream_connect, 884 .socketpair = unix_socketpair, 885 .accept = unix_accept, 886 .getname = unix_getname, 887 .poll = unix_dgram_poll, 888 .ioctl = unix_ioctl, 889 #ifdef CONFIG_COMPAT 890 .compat_ioctl = unix_compat_ioctl, 891 #endif 892 .listen = unix_listen, 893 .shutdown = unix_shutdown, 894 .sendmsg = unix_seqpacket_sendmsg, 895 .recvmsg = unix_seqpacket_recvmsg, 896 .mmap = sock_no_mmap, 897 .set_peek_off = sk_set_peek_off, 898 .show_fdinfo = unix_show_fdinfo, 899 }; 900 901 static void unix_close(struct sock *sk, long timeout) 902 { 903 /* Nothing to do here, unix socket does not need a ->close(). 904 * This is merely for sockmap. 905 */ 906 } 907 908 static void unix_unhash(struct sock *sk) 909 { 910 /* Nothing to do here, unix socket does not need a ->unhash(). 911 * This is merely for sockmap. 912 */ 913 } 914 915 static bool unix_bpf_bypass_getsockopt(int level, int optname) 916 { 917 if (level == SOL_SOCKET) { 918 switch (optname) { 919 case SO_PEERPIDFD: 920 return true; 921 default: 922 return false; 923 } 924 } 925 926 return false; 927 } 928 929 struct proto unix_dgram_proto = { 930 .name = "UNIX", 931 .owner = THIS_MODULE, 932 .obj_size = sizeof(struct unix_sock), 933 .close = unix_close, 934 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 935 #ifdef CONFIG_BPF_SYSCALL 936 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 937 #endif 938 }; 939 940 struct proto unix_stream_proto = { 941 .name = "UNIX-STREAM", 942 .owner = THIS_MODULE, 943 .obj_size = sizeof(struct unix_sock), 944 .close = unix_close, 945 .unhash = unix_unhash, 946 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 947 #ifdef CONFIG_BPF_SYSCALL 948 .psock_update_sk_prot = unix_stream_bpf_update_proto, 949 #endif 950 }; 951 952 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 953 { 954 struct unix_sock *u; 955 struct sock *sk; 956 int err; 957 958 atomic_long_inc(&unix_nr_socks); 959 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 960 err = -ENFILE; 961 goto err; 962 } 963 964 if (type == SOCK_STREAM) 965 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 966 else /*dgram and seqpacket */ 967 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 968 969 if (!sk) { 970 err = -ENOMEM; 971 goto err; 972 } 973 974 sock_init_data(sock, sk); 975 976 sk->sk_hash = unix_unbound_hash(sk); 977 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 978 sk->sk_write_space = unix_write_space; 979 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 980 sk->sk_destruct = unix_sock_destructor; 981 u = unix_sk(sk); 982 u->listener = NULL; 983 u->vertex = NULL; 984 u->path.dentry = NULL; 985 u->path.mnt = NULL; 986 spin_lock_init(&u->lock); 987 mutex_init(&u->iolock); /* single task reading lock */ 988 mutex_init(&u->bindlock); /* single task binding lock */ 989 init_waitqueue_head(&u->peer_wait); 990 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 991 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 992 unix_insert_unbound_socket(net, sk); 993 994 sock_prot_inuse_add(net, sk->sk_prot, 1); 995 996 return sk; 997 998 err: 999 atomic_long_dec(&unix_nr_socks); 1000 return ERR_PTR(err); 1001 } 1002 1003 static int unix_create(struct net *net, struct socket *sock, int protocol, 1004 int kern) 1005 { 1006 struct sock *sk; 1007 1008 if (protocol && protocol != PF_UNIX) 1009 return -EPROTONOSUPPORT; 1010 1011 sock->state = SS_UNCONNECTED; 1012 1013 switch (sock->type) { 1014 case SOCK_STREAM: 1015 sock->ops = &unix_stream_ops; 1016 break; 1017 /* 1018 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1019 * nothing uses it. 1020 */ 1021 case SOCK_RAW: 1022 sock->type = SOCK_DGRAM; 1023 fallthrough; 1024 case SOCK_DGRAM: 1025 sock->ops = &unix_dgram_ops; 1026 break; 1027 case SOCK_SEQPACKET: 1028 sock->ops = &unix_seqpacket_ops; 1029 break; 1030 default: 1031 return -ESOCKTNOSUPPORT; 1032 } 1033 1034 sk = unix_create1(net, sock, kern, sock->type); 1035 if (IS_ERR(sk)) 1036 return PTR_ERR(sk); 1037 1038 return 0; 1039 } 1040 1041 static int unix_release(struct socket *sock) 1042 { 1043 struct sock *sk = sock->sk; 1044 1045 if (!sk) 1046 return 0; 1047 1048 sk->sk_prot->close(sk, 0); 1049 unix_release_sock(sk, 0); 1050 sock->sk = NULL; 1051 1052 return 0; 1053 } 1054 1055 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1056 int type) 1057 { 1058 struct inode *inode; 1059 struct path path; 1060 struct sock *sk; 1061 int err; 1062 1063 unix_mkname_bsd(sunaddr, addr_len); 1064 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1065 if (err) 1066 goto fail; 1067 1068 err = path_permission(&path, MAY_WRITE); 1069 if (err) 1070 goto path_put; 1071 1072 err = -ECONNREFUSED; 1073 inode = d_backing_inode(path.dentry); 1074 if (!S_ISSOCK(inode->i_mode)) 1075 goto path_put; 1076 1077 sk = unix_find_socket_byinode(inode); 1078 if (!sk) 1079 goto path_put; 1080 1081 err = -EPROTOTYPE; 1082 if (sk->sk_type == type) 1083 touch_atime(&path); 1084 else 1085 goto sock_put; 1086 1087 path_put(&path); 1088 1089 return sk; 1090 1091 sock_put: 1092 sock_put(sk); 1093 path_put: 1094 path_put(&path); 1095 fail: 1096 return ERR_PTR(err); 1097 } 1098 1099 static struct sock *unix_find_abstract(struct net *net, 1100 struct sockaddr_un *sunaddr, 1101 int addr_len, int type) 1102 { 1103 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1104 struct dentry *dentry; 1105 struct sock *sk; 1106 1107 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1108 if (!sk) 1109 return ERR_PTR(-ECONNREFUSED); 1110 1111 dentry = unix_sk(sk)->path.dentry; 1112 if (dentry) 1113 touch_atime(&unix_sk(sk)->path); 1114 1115 return sk; 1116 } 1117 1118 static struct sock *unix_find_other(struct net *net, 1119 struct sockaddr_un *sunaddr, 1120 int addr_len, int type) 1121 { 1122 struct sock *sk; 1123 1124 if (sunaddr->sun_path[0]) 1125 sk = unix_find_bsd(sunaddr, addr_len, type); 1126 else 1127 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1128 1129 return sk; 1130 } 1131 1132 static int unix_autobind(struct sock *sk) 1133 { 1134 unsigned int new_hash, old_hash = sk->sk_hash; 1135 struct unix_sock *u = unix_sk(sk); 1136 struct net *net = sock_net(sk); 1137 struct unix_address *addr; 1138 u32 lastnum, ordernum; 1139 int err; 1140 1141 err = mutex_lock_interruptible(&u->bindlock); 1142 if (err) 1143 return err; 1144 1145 if (u->addr) 1146 goto out; 1147 1148 err = -ENOMEM; 1149 addr = kzalloc(sizeof(*addr) + 1150 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1151 if (!addr) 1152 goto out; 1153 1154 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1155 addr->name->sun_family = AF_UNIX; 1156 refcount_set(&addr->refcnt, 1); 1157 1158 ordernum = get_random_u32(); 1159 lastnum = ordernum & 0xFFFFF; 1160 retry: 1161 ordernum = (ordernum + 1) & 0xFFFFF; 1162 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1163 1164 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1165 unix_table_double_lock(net, old_hash, new_hash); 1166 1167 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1168 unix_table_double_unlock(net, old_hash, new_hash); 1169 1170 /* __unix_find_socket_byname() may take long time if many names 1171 * are already in use. 1172 */ 1173 cond_resched(); 1174 1175 if (ordernum == lastnum) { 1176 /* Give up if all names seems to be in use. */ 1177 err = -ENOSPC; 1178 unix_release_addr(addr); 1179 goto out; 1180 } 1181 1182 goto retry; 1183 } 1184 1185 __unix_set_addr_hash(net, sk, addr, new_hash); 1186 unix_table_double_unlock(net, old_hash, new_hash); 1187 err = 0; 1188 1189 out: mutex_unlock(&u->bindlock); 1190 return err; 1191 } 1192 1193 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1194 int addr_len) 1195 { 1196 umode_t mode = S_IFSOCK | 1197 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1198 unsigned int new_hash, old_hash = sk->sk_hash; 1199 struct unix_sock *u = unix_sk(sk); 1200 struct net *net = sock_net(sk); 1201 struct mnt_idmap *idmap; 1202 struct unix_address *addr; 1203 struct dentry *dentry; 1204 struct path parent; 1205 int err; 1206 1207 addr_len = unix_mkname_bsd(sunaddr, addr_len); 1208 addr = unix_create_addr(sunaddr, addr_len); 1209 if (!addr) 1210 return -ENOMEM; 1211 1212 /* 1213 * Get the parent directory, calculate the hash for last 1214 * component. 1215 */ 1216 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1217 if (IS_ERR(dentry)) { 1218 err = PTR_ERR(dentry); 1219 goto out; 1220 } 1221 1222 /* 1223 * All right, let's create it. 1224 */ 1225 idmap = mnt_idmap(parent.mnt); 1226 err = security_path_mknod(&parent, dentry, mode, 0); 1227 if (!err) 1228 err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0); 1229 if (err) 1230 goto out_path; 1231 err = mutex_lock_interruptible(&u->bindlock); 1232 if (err) 1233 goto out_unlink; 1234 if (u->addr) 1235 goto out_unlock; 1236 1237 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1238 unix_table_double_lock(net, old_hash, new_hash); 1239 u->path.mnt = mntget(parent.mnt); 1240 u->path.dentry = dget(dentry); 1241 __unix_set_addr_hash(net, sk, addr, new_hash); 1242 unix_table_double_unlock(net, old_hash, new_hash); 1243 unix_insert_bsd_socket(sk); 1244 mutex_unlock(&u->bindlock); 1245 done_path_create(&parent, dentry); 1246 return 0; 1247 1248 out_unlock: 1249 mutex_unlock(&u->bindlock); 1250 err = -EINVAL; 1251 out_unlink: 1252 /* failed after successful mknod? unlink what we'd created... */ 1253 vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL); 1254 out_path: 1255 done_path_create(&parent, dentry); 1256 out: 1257 unix_release_addr(addr); 1258 return err == -EEXIST ? -EADDRINUSE : err; 1259 } 1260 1261 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1262 int addr_len) 1263 { 1264 unsigned int new_hash, old_hash = sk->sk_hash; 1265 struct unix_sock *u = unix_sk(sk); 1266 struct net *net = sock_net(sk); 1267 struct unix_address *addr; 1268 int err; 1269 1270 addr = unix_create_addr(sunaddr, addr_len); 1271 if (!addr) 1272 return -ENOMEM; 1273 1274 err = mutex_lock_interruptible(&u->bindlock); 1275 if (err) 1276 goto out; 1277 1278 if (u->addr) { 1279 err = -EINVAL; 1280 goto out_mutex; 1281 } 1282 1283 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1284 unix_table_double_lock(net, old_hash, new_hash); 1285 1286 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1287 goto out_spin; 1288 1289 __unix_set_addr_hash(net, sk, addr, new_hash); 1290 unix_table_double_unlock(net, old_hash, new_hash); 1291 mutex_unlock(&u->bindlock); 1292 return 0; 1293 1294 out_spin: 1295 unix_table_double_unlock(net, old_hash, new_hash); 1296 err = -EADDRINUSE; 1297 out_mutex: 1298 mutex_unlock(&u->bindlock); 1299 out: 1300 unix_release_addr(addr); 1301 return err; 1302 } 1303 1304 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1305 { 1306 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1307 struct sock *sk = sock->sk; 1308 int err; 1309 1310 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1311 sunaddr->sun_family == AF_UNIX) 1312 return unix_autobind(sk); 1313 1314 err = unix_validate_addr(sunaddr, addr_len); 1315 if (err) 1316 return err; 1317 1318 if (sunaddr->sun_path[0]) 1319 err = unix_bind_bsd(sk, sunaddr, addr_len); 1320 else 1321 err = unix_bind_abstract(sk, sunaddr, addr_len); 1322 1323 return err; 1324 } 1325 1326 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1327 { 1328 if (unlikely(sk1 == sk2) || !sk2) { 1329 unix_state_lock(sk1); 1330 return; 1331 } 1332 if (sk1 > sk2) 1333 swap(sk1, sk2); 1334 1335 unix_state_lock(sk1); 1336 unix_state_lock_nested(sk2, U_LOCK_SECOND); 1337 } 1338 1339 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1340 { 1341 if (unlikely(sk1 == sk2) || !sk2) { 1342 unix_state_unlock(sk1); 1343 return; 1344 } 1345 unix_state_unlock(sk1); 1346 unix_state_unlock(sk2); 1347 } 1348 1349 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1350 int alen, int flags) 1351 { 1352 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1353 struct sock *sk = sock->sk; 1354 struct sock *other; 1355 int err; 1356 1357 err = -EINVAL; 1358 if (alen < offsetofend(struct sockaddr, sa_family)) 1359 goto out; 1360 1361 if (addr->sa_family != AF_UNSPEC) { 1362 err = unix_validate_addr(sunaddr, alen); 1363 if (err) 1364 goto out; 1365 1366 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, addr, &alen); 1367 if (err) 1368 goto out; 1369 1370 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1371 test_bit(SOCK_PASSPIDFD, &sock->flags)) && 1372 !unix_sk(sk)->addr) { 1373 err = unix_autobind(sk); 1374 if (err) 1375 goto out; 1376 } 1377 1378 restart: 1379 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1380 if (IS_ERR(other)) { 1381 err = PTR_ERR(other); 1382 goto out; 1383 } 1384 1385 unix_state_double_lock(sk, other); 1386 1387 /* Apparently VFS overslept socket death. Retry. */ 1388 if (sock_flag(other, SOCK_DEAD)) { 1389 unix_state_double_unlock(sk, other); 1390 sock_put(other); 1391 goto restart; 1392 } 1393 1394 err = -EPERM; 1395 if (!unix_may_send(sk, other)) 1396 goto out_unlock; 1397 1398 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1399 if (err) 1400 goto out_unlock; 1401 1402 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1403 } else { 1404 /* 1405 * 1003.1g breaking connected state with AF_UNSPEC 1406 */ 1407 other = NULL; 1408 unix_state_double_lock(sk, other); 1409 } 1410 1411 /* 1412 * If it was connected, reconnect. 1413 */ 1414 if (unix_peer(sk)) { 1415 struct sock *old_peer = unix_peer(sk); 1416 1417 unix_peer(sk) = other; 1418 if (!other) 1419 sk->sk_state = TCP_CLOSE; 1420 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1421 1422 unix_state_double_unlock(sk, other); 1423 1424 if (other != old_peer) 1425 unix_dgram_disconnected(sk, old_peer); 1426 sock_put(old_peer); 1427 } else { 1428 unix_peer(sk) = other; 1429 unix_state_double_unlock(sk, other); 1430 } 1431 1432 return 0; 1433 1434 out_unlock: 1435 unix_state_double_unlock(sk, other); 1436 sock_put(other); 1437 out: 1438 return err; 1439 } 1440 1441 static long unix_wait_for_peer(struct sock *other, long timeo) 1442 __releases(&unix_sk(other)->lock) 1443 { 1444 struct unix_sock *u = unix_sk(other); 1445 int sched; 1446 DEFINE_WAIT(wait); 1447 1448 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1449 1450 sched = !sock_flag(other, SOCK_DEAD) && 1451 !(other->sk_shutdown & RCV_SHUTDOWN) && 1452 unix_recvq_full_lockless(other); 1453 1454 unix_state_unlock(other); 1455 1456 if (sched) 1457 timeo = schedule_timeout(timeo); 1458 1459 finish_wait(&u->peer_wait, &wait); 1460 return timeo; 1461 } 1462 1463 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1464 int addr_len, int flags) 1465 { 1466 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1467 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1468 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1469 struct net *net = sock_net(sk); 1470 struct sk_buff *skb = NULL; 1471 long timeo; 1472 int err; 1473 int st; 1474 1475 err = unix_validate_addr(sunaddr, addr_len); 1476 if (err) 1477 goto out; 1478 1479 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, uaddr, &addr_len); 1480 if (err) 1481 goto out; 1482 1483 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1484 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1485 err = unix_autobind(sk); 1486 if (err) 1487 goto out; 1488 } 1489 1490 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1491 1492 /* First of all allocate resources. 1493 If we will make it after state is locked, 1494 we will have to recheck all again in any case. 1495 */ 1496 1497 /* create new sock for complete connection */ 1498 newsk = unix_create1(net, NULL, 0, sock->type); 1499 if (IS_ERR(newsk)) { 1500 err = PTR_ERR(newsk); 1501 newsk = NULL; 1502 goto out; 1503 } 1504 1505 err = -ENOMEM; 1506 1507 /* Allocate skb for sending to listening sock */ 1508 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1509 if (skb == NULL) 1510 goto out; 1511 1512 restart: 1513 /* Find listening sock. */ 1514 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1515 if (IS_ERR(other)) { 1516 err = PTR_ERR(other); 1517 other = NULL; 1518 goto out; 1519 } 1520 1521 /* Latch state of peer */ 1522 unix_state_lock(other); 1523 1524 /* Apparently VFS overslept socket death. Retry. */ 1525 if (sock_flag(other, SOCK_DEAD)) { 1526 unix_state_unlock(other); 1527 sock_put(other); 1528 goto restart; 1529 } 1530 1531 err = -ECONNREFUSED; 1532 if (other->sk_state != TCP_LISTEN) 1533 goto out_unlock; 1534 if (other->sk_shutdown & RCV_SHUTDOWN) 1535 goto out_unlock; 1536 1537 if (unix_recvq_full(other)) { 1538 err = -EAGAIN; 1539 if (!timeo) 1540 goto out_unlock; 1541 1542 timeo = unix_wait_for_peer(other, timeo); 1543 1544 err = sock_intr_errno(timeo); 1545 if (signal_pending(current)) 1546 goto out; 1547 sock_put(other); 1548 goto restart; 1549 } 1550 1551 /* Latch our state. 1552 1553 It is tricky place. We need to grab our state lock and cannot 1554 drop lock on peer. It is dangerous because deadlock is 1555 possible. Connect to self case and simultaneous 1556 attempt to connect are eliminated by checking socket 1557 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1558 check this before attempt to grab lock. 1559 1560 Well, and we have to recheck the state after socket locked. 1561 */ 1562 st = sk->sk_state; 1563 1564 switch (st) { 1565 case TCP_CLOSE: 1566 /* This is ok... continue with connect */ 1567 break; 1568 case TCP_ESTABLISHED: 1569 /* Socket is already connected */ 1570 err = -EISCONN; 1571 goto out_unlock; 1572 default: 1573 err = -EINVAL; 1574 goto out_unlock; 1575 } 1576 1577 unix_state_lock_nested(sk, U_LOCK_SECOND); 1578 1579 if (sk->sk_state != st) { 1580 unix_state_unlock(sk); 1581 unix_state_unlock(other); 1582 sock_put(other); 1583 goto restart; 1584 } 1585 1586 err = security_unix_stream_connect(sk, other, newsk); 1587 if (err) { 1588 unix_state_unlock(sk); 1589 goto out_unlock; 1590 } 1591 1592 /* The way is open! Fastly set all the necessary fields... */ 1593 1594 sock_hold(sk); 1595 unix_peer(newsk) = sk; 1596 newsk->sk_state = TCP_ESTABLISHED; 1597 newsk->sk_type = sk->sk_type; 1598 init_peercred(newsk); 1599 newu = unix_sk(newsk); 1600 newu->listener = other; 1601 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1602 otheru = unix_sk(other); 1603 1604 /* copy address information from listening to new sock 1605 * 1606 * The contents of *(otheru->addr) and otheru->path 1607 * are seen fully set up here, since we have found 1608 * otheru in hash under its lock. Insertion into the 1609 * hash chain we'd found it in had been done in an 1610 * earlier critical area protected by the chain's lock, 1611 * the same one where we'd set *(otheru->addr) contents, 1612 * as well as otheru->path and otheru->addr itself. 1613 * 1614 * Using smp_store_release() here to set newu->addr 1615 * is enough to make those stores, as well as stores 1616 * to newu->path visible to anyone who gets newu->addr 1617 * by smp_load_acquire(). IOW, the same warranties 1618 * as for unix_sock instances bound in unix_bind() or 1619 * in unix_autobind(). 1620 */ 1621 if (otheru->path.dentry) { 1622 path_get(&otheru->path); 1623 newu->path = otheru->path; 1624 } 1625 refcount_inc(&otheru->addr->refcnt); 1626 smp_store_release(&newu->addr, otheru->addr); 1627 1628 /* Set credentials */ 1629 copy_peercred(sk, other); 1630 1631 sock->state = SS_CONNECTED; 1632 sk->sk_state = TCP_ESTABLISHED; 1633 sock_hold(newsk); 1634 1635 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1636 unix_peer(sk) = newsk; 1637 1638 unix_state_unlock(sk); 1639 1640 /* take ten and send info to listening sock */ 1641 spin_lock(&other->sk_receive_queue.lock); 1642 __skb_queue_tail(&other->sk_receive_queue, skb); 1643 spin_unlock(&other->sk_receive_queue.lock); 1644 unix_state_unlock(other); 1645 other->sk_data_ready(other); 1646 sock_put(other); 1647 return 0; 1648 1649 out_unlock: 1650 if (other) 1651 unix_state_unlock(other); 1652 1653 out: 1654 kfree_skb(skb); 1655 if (newsk) 1656 unix_release_sock(newsk, 0); 1657 if (other) 1658 sock_put(other); 1659 return err; 1660 } 1661 1662 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1663 { 1664 struct sock *ska = socka->sk, *skb = sockb->sk; 1665 1666 /* Join our sockets back to back */ 1667 sock_hold(ska); 1668 sock_hold(skb); 1669 unix_peer(ska) = skb; 1670 unix_peer(skb) = ska; 1671 init_peercred(ska); 1672 init_peercred(skb); 1673 1674 ska->sk_state = TCP_ESTABLISHED; 1675 skb->sk_state = TCP_ESTABLISHED; 1676 socka->state = SS_CONNECTED; 1677 sockb->state = SS_CONNECTED; 1678 return 0; 1679 } 1680 1681 static void unix_sock_inherit_flags(const struct socket *old, 1682 struct socket *new) 1683 { 1684 if (test_bit(SOCK_PASSCRED, &old->flags)) 1685 set_bit(SOCK_PASSCRED, &new->flags); 1686 if (test_bit(SOCK_PASSPIDFD, &old->flags)) 1687 set_bit(SOCK_PASSPIDFD, &new->flags); 1688 if (test_bit(SOCK_PASSSEC, &old->flags)) 1689 set_bit(SOCK_PASSSEC, &new->flags); 1690 } 1691 1692 static int unix_accept(struct socket *sock, struct socket *newsock, 1693 struct proto_accept_arg *arg) 1694 { 1695 struct sock *sk = sock->sk; 1696 struct sk_buff *skb; 1697 struct sock *tsk; 1698 1699 arg->err = -EOPNOTSUPP; 1700 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1701 goto out; 1702 1703 arg->err = -EINVAL; 1704 if (sk->sk_state != TCP_LISTEN) 1705 goto out; 1706 1707 /* If socket state is TCP_LISTEN it cannot change (for now...), 1708 * so that no locks are necessary. 1709 */ 1710 1711 skb = skb_recv_datagram(sk, (arg->flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1712 &arg->err); 1713 if (!skb) { 1714 /* This means receive shutdown. */ 1715 if (arg->err == 0) 1716 arg->err = -EINVAL; 1717 goto out; 1718 } 1719 1720 tsk = skb->sk; 1721 skb_free_datagram(sk, skb); 1722 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1723 1724 /* attach accepted sock to socket */ 1725 unix_state_lock(tsk); 1726 unix_update_edges(unix_sk(tsk)); 1727 newsock->state = SS_CONNECTED; 1728 unix_sock_inherit_flags(sock, newsock); 1729 sock_graft(tsk, newsock); 1730 unix_state_unlock(tsk); 1731 return 0; 1732 1733 out: 1734 return arg->err; 1735 } 1736 1737 1738 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1739 { 1740 struct sock *sk = sock->sk; 1741 struct unix_address *addr; 1742 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1743 int err = 0; 1744 1745 if (peer) { 1746 sk = unix_peer_get(sk); 1747 1748 err = -ENOTCONN; 1749 if (!sk) 1750 goto out; 1751 err = 0; 1752 } else { 1753 sock_hold(sk); 1754 } 1755 1756 addr = smp_load_acquire(&unix_sk(sk)->addr); 1757 if (!addr) { 1758 sunaddr->sun_family = AF_UNIX; 1759 sunaddr->sun_path[0] = 0; 1760 err = offsetof(struct sockaddr_un, sun_path); 1761 } else { 1762 err = addr->len; 1763 memcpy(sunaddr, addr->name, addr->len); 1764 1765 if (peer) 1766 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1767 CGROUP_UNIX_GETPEERNAME); 1768 else 1769 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1770 CGROUP_UNIX_GETSOCKNAME); 1771 } 1772 sock_put(sk); 1773 out: 1774 return err; 1775 } 1776 1777 /* The "user->unix_inflight" variable is protected by the garbage 1778 * collection lock, and we just read it locklessly here. If you go 1779 * over the limit, there might be a tiny race in actually noticing 1780 * it across threads. Tough. 1781 */ 1782 static inline bool too_many_unix_fds(struct task_struct *p) 1783 { 1784 struct user_struct *user = current_user(); 1785 1786 if (unlikely(READ_ONCE(user->unix_inflight) > task_rlimit(p, RLIMIT_NOFILE))) 1787 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 1788 return false; 1789 } 1790 1791 static int unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) 1792 { 1793 if (too_many_unix_fds(current)) 1794 return -ETOOMANYREFS; 1795 1796 UNIXCB(skb).fp = scm->fp; 1797 scm->fp = NULL; 1798 1799 if (unix_prepare_fpl(UNIXCB(skb).fp)) 1800 return -ENOMEM; 1801 1802 return 0; 1803 } 1804 1805 static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb) 1806 { 1807 scm->fp = UNIXCB(skb).fp; 1808 UNIXCB(skb).fp = NULL; 1809 1810 unix_destroy_fpl(scm->fp); 1811 } 1812 1813 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1814 { 1815 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1816 } 1817 1818 static void unix_destruct_scm(struct sk_buff *skb) 1819 { 1820 struct scm_cookie scm; 1821 1822 memset(&scm, 0, sizeof(scm)); 1823 scm.pid = UNIXCB(skb).pid; 1824 if (UNIXCB(skb).fp) 1825 unix_detach_fds(&scm, skb); 1826 1827 /* Alas, it calls VFS */ 1828 /* So fscking what? fput() had been SMP-safe since the last Summer */ 1829 scm_destroy(&scm); 1830 sock_wfree(skb); 1831 } 1832 1833 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1834 { 1835 int err = 0; 1836 1837 UNIXCB(skb).pid = get_pid(scm->pid); 1838 UNIXCB(skb).uid = scm->creds.uid; 1839 UNIXCB(skb).gid = scm->creds.gid; 1840 UNIXCB(skb).fp = NULL; 1841 unix_get_secdata(scm, skb); 1842 if (scm->fp && send_fds) 1843 err = unix_attach_fds(scm, skb); 1844 1845 skb->destructor = unix_destruct_scm; 1846 return err; 1847 } 1848 1849 static bool unix_passcred_enabled(const struct socket *sock, 1850 const struct sock *other) 1851 { 1852 return test_bit(SOCK_PASSCRED, &sock->flags) || 1853 test_bit(SOCK_PASSPIDFD, &sock->flags) || 1854 !other->sk_socket || 1855 test_bit(SOCK_PASSCRED, &other->sk_socket->flags) || 1856 test_bit(SOCK_PASSPIDFD, &other->sk_socket->flags); 1857 } 1858 1859 /* 1860 * Some apps rely on write() giving SCM_CREDENTIALS 1861 * We include credentials if source or destination socket 1862 * asserted SOCK_PASSCRED. 1863 */ 1864 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1865 const struct sock *other) 1866 { 1867 if (UNIXCB(skb).pid) 1868 return; 1869 if (unix_passcred_enabled(sock, other)) { 1870 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1871 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1872 } 1873 } 1874 1875 static bool unix_skb_scm_eq(struct sk_buff *skb, 1876 struct scm_cookie *scm) 1877 { 1878 return UNIXCB(skb).pid == scm->pid && 1879 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1880 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1881 unix_secdata_eq(scm, skb); 1882 } 1883 1884 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1885 { 1886 struct scm_fp_list *fp = UNIXCB(skb).fp; 1887 struct unix_sock *u = unix_sk(sk); 1888 1889 if (unlikely(fp && fp->count)) { 1890 atomic_add(fp->count, &u->scm_stat.nr_fds); 1891 unix_add_edges(fp, u); 1892 } 1893 } 1894 1895 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1896 { 1897 struct scm_fp_list *fp = UNIXCB(skb).fp; 1898 struct unix_sock *u = unix_sk(sk); 1899 1900 if (unlikely(fp && fp->count)) { 1901 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1902 unix_del_edges(fp); 1903 } 1904 } 1905 1906 /* 1907 * Send AF_UNIX data. 1908 */ 1909 1910 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1911 size_t len) 1912 { 1913 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1914 struct sock *sk = sock->sk, *other = NULL; 1915 struct unix_sock *u = unix_sk(sk); 1916 struct scm_cookie scm; 1917 struct sk_buff *skb; 1918 int data_len = 0; 1919 int sk_locked; 1920 long timeo; 1921 int err; 1922 1923 err = scm_send(sock, msg, &scm, false); 1924 if (err < 0) 1925 return err; 1926 1927 wait_for_unix_gc(scm.fp); 1928 1929 err = -EOPNOTSUPP; 1930 if (msg->msg_flags&MSG_OOB) 1931 goto out; 1932 1933 if (msg->msg_namelen) { 1934 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1935 if (err) 1936 goto out; 1937 1938 err = BPF_CGROUP_RUN_PROG_UNIX_SENDMSG_LOCK(sk, 1939 msg->msg_name, 1940 &msg->msg_namelen, 1941 NULL); 1942 if (err) 1943 goto out; 1944 } else { 1945 sunaddr = NULL; 1946 err = -ENOTCONN; 1947 other = unix_peer_get(sk); 1948 if (!other) 1949 goto out; 1950 } 1951 1952 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1953 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1954 err = unix_autobind(sk); 1955 if (err) 1956 goto out; 1957 } 1958 1959 err = -EMSGSIZE; 1960 if (len > sk->sk_sndbuf - 32) 1961 goto out; 1962 1963 if (len > SKB_MAX_ALLOC) { 1964 data_len = min_t(size_t, 1965 len - SKB_MAX_ALLOC, 1966 MAX_SKB_FRAGS * PAGE_SIZE); 1967 data_len = PAGE_ALIGN(data_len); 1968 1969 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1970 } 1971 1972 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1973 msg->msg_flags & MSG_DONTWAIT, &err, 1974 PAGE_ALLOC_COSTLY_ORDER); 1975 if (skb == NULL) 1976 goto out; 1977 1978 err = unix_scm_to_skb(&scm, skb, true); 1979 if (err < 0) 1980 goto out_free; 1981 1982 skb_put(skb, len - data_len); 1983 skb->data_len = data_len; 1984 skb->len = len; 1985 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1986 if (err) 1987 goto out_free; 1988 1989 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1990 1991 restart: 1992 if (!other) { 1993 err = -ECONNRESET; 1994 if (sunaddr == NULL) 1995 goto out_free; 1996 1997 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 1998 sk->sk_type); 1999 if (IS_ERR(other)) { 2000 err = PTR_ERR(other); 2001 other = NULL; 2002 goto out_free; 2003 } 2004 } 2005 2006 if (sk_filter(other, skb) < 0) { 2007 /* Toss the packet but do not return any error to the sender */ 2008 err = len; 2009 goto out_free; 2010 } 2011 2012 sk_locked = 0; 2013 unix_state_lock(other); 2014 restart_locked: 2015 err = -EPERM; 2016 if (!unix_may_send(sk, other)) 2017 goto out_unlock; 2018 2019 if (unlikely(sock_flag(other, SOCK_DEAD))) { 2020 /* 2021 * Check with 1003.1g - what should 2022 * datagram error 2023 */ 2024 unix_state_unlock(other); 2025 sock_put(other); 2026 2027 if (!sk_locked) 2028 unix_state_lock(sk); 2029 2030 err = 0; 2031 if (sk->sk_type == SOCK_SEQPACKET) { 2032 /* We are here only when racing with unix_release_sock() 2033 * is clearing @other. Never change state to TCP_CLOSE 2034 * unlike SOCK_DGRAM wants. 2035 */ 2036 unix_state_unlock(sk); 2037 err = -EPIPE; 2038 } else if (unix_peer(sk) == other) { 2039 unix_peer(sk) = NULL; 2040 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 2041 2042 sk->sk_state = TCP_CLOSE; 2043 unix_state_unlock(sk); 2044 2045 unix_dgram_disconnected(sk, other); 2046 sock_put(other); 2047 err = -ECONNREFUSED; 2048 } else { 2049 unix_state_unlock(sk); 2050 } 2051 2052 other = NULL; 2053 if (err) 2054 goto out_free; 2055 goto restart; 2056 } 2057 2058 err = -EPIPE; 2059 if (other->sk_shutdown & RCV_SHUTDOWN) 2060 goto out_unlock; 2061 2062 if (sk->sk_type != SOCK_SEQPACKET) { 2063 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2064 if (err) 2065 goto out_unlock; 2066 } 2067 2068 /* other == sk && unix_peer(other) != sk if 2069 * - unix_peer(sk) == NULL, destination address bound to sk 2070 * - unix_peer(sk) == sk by time of get but disconnected before lock 2071 */ 2072 if (other != sk && 2073 unlikely(unix_peer(other) != sk && 2074 unix_recvq_full_lockless(other))) { 2075 if (timeo) { 2076 timeo = unix_wait_for_peer(other, timeo); 2077 2078 err = sock_intr_errno(timeo); 2079 if (signal_pending(current)) 2080 goto out_free; 2081 2082 goto restart; 2083 } 2084 2085 if (!sk_locked) { 2086 unix_state_unlock(other); 2087 unix_state_double_lock(sk, other); 2088 } 2089 2090 if (unix_peer(sk) != other || 2091 unix_dgram_peer_wake_me(sk, other)) { 2092 err = -EAGAIN; 2093 sk_locked = 1; 2094 goto out_unlock; 2095 } 2096 2097 if (!sk_locked) { 2098 sk_locked = 1; 2099 goto restart_locked; 2100 } 2101 } 2102 2103 if (unlikely(sk_locked)) 2104 unix_state_unlock(sk); 2105 2106 if (sock_flag(other, SOCK_RCVTSTAMP)) 2107 __net_timestamp(skb); 2108 maybe_add_creds(skb, sock, other); 2109 scm_stat_add(other, skb); 2110 skb_queue_tail(&other->sk_receive_queue, skb); 2111 unix_state_unlock(other); 2112 other->sk_data_ready(other); 2113 sock_put(other); 2114 scm_destroy(&scm); 2115 return len; 2116 2117 out_unlock: 2118 if (sk_locked) 2119 unix_state_unlock(sk); 2120 unix_state_unlock(other); 2121 out_free: 2122 kfree_skb(skb); 2123 out: 2124 if (other) 2125 sock_put(other); 2126 scm_destroy(&scm); 2127 return err; 2128 } 2129 2130 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2131 * bytes, and a minimum of a full page. 2132 */ 2133 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2134 2135 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2136 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other, 2137 struct scm_cookie *scm, bool fds_sent) 2138 { 2139 struct unix_sock *ousk = unix_sk(other); 2140 struct sk_buff *skb; 2141 int err = 0; 2142 2143 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2144 2145 if (!skb) 2146 return err; 2147 2148 err = unix_scm_to_skb(scm, skb, !fds_sent); 2149 if (err < 0) { 2150 kfree_skb(skb); 2151 return err; 2152 } 2153 skb_put(skb, 1); 2154 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2155 2156 if (err) { 2157 kfree_skb(skb); 2158 return err; 2159 } 2160 2161 unix_state_lock(other); 2162 2163 if (sock_flag(other, SOCK_DEAD) || 2164 (other->sk_shutdown & RCV_SHUTDOWN)) { 2165 unix_state_unlock(other); 2166 kfree_skb(skb); 2167 return -EPIPE; 2168 } 2169 2170 maybe_add_creds(skb, sock, other); 2171 skb_get(skb); 2172 2173 if (ousk->oob_skb) 2174 consume_skb(ousk->oob_skb); 2175 2176 WRITE_ONCE(ousk->oob_skb, skb); 2177 2178 scm_stat_add(other, skb); 2179 skb_queue_tail(&other->sk_receive_queue, skb); 2180 sk_send_sigurg(other); 2181 unix_state_unlock(other); 2182 other->sk_data_ready(other); 2183 2184 return err; 2185 } 2186 #endif 2187 2188 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2189 size_t len) 2190 { 2191 struct sock *sk = sock->sk; 2192 struct sock *other = NULL; 2193 int err, size; 2194 struct sk_buff *skb; 2195 int sent = 0; 2196 struct scm_cookie scm; 2197 bool fds_sent = false; 2198 int data_len; 2199 2200 err = scm_send(sock, msg, &scm, false); 2201 if (err < 0) 2202 return err; 2203 2204 wait_for_unix_gc(scm.fp); 2205 2206 err = -EOPNOTSUPP; 2207 if (msg->msg_flags & MSG_OOB) { 2208 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2209 if (len) 2210 len--; 2211 else 2212 #endif 2213 goto out_err; 2214 } 2215 2216 if (msg->msg_namelen) { 2217 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2218 goto out_err; 2219 } else { 2220 err = -ENOTCONN; 2221 other = unix_peer(sk); 2222 if (!other) 2223 goto out_err; 2224 } 2225 2226 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2227 goto pipe_err; 2228 2229 while (sent < len) { 2230 size = len - sent; 2231 2232 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2233 skb = sock_alloc_send_pskb(sk, 0, 0, 2234 msg->msg_flags & MSG_DONTWAIT, 2235 &err, 0); 2236 } else { 2237 /* Keep two messages in the pipe so it schedules better */ 2238 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2239 2240 /* allow fallback to order-0 allocations */ 2241 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2242 2243 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2244 2245 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2246 2247 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2248 msg->msg_flags & MSG_DONTWAIT, &err, 2249 get_order(UNIX_SKB_FRAGS_SZ)); 2250 } 2251 if (!skb) 2252 goto out_err; 2253 2254 /* Only send the fds in the first buffer */ 2255 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2256 if (err < 0) { 2257 kfree_skb(skb); 2258 goto out_err; 2259 } 2260 fds_sent = true; 2261 2262 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2263 err = skb_splice_from_iter(skb, &msg->msg_iter, size, 2264 sk->sk_allocation); 2265 if (err < 0) { 2266 kfree_skb(skb); 2267 goto out_err; 2268 } 2269 size = err; 2270 refcount_add(size, &sk->sk_wmem_alloc); 2271 } else { 2272 skb_put(skb, size - data_len); 2273 skb->data_len = data_len; 2274 skb->len = size; 2275 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2276 if (err) { 2277 kfree_skb(skb); 2278 goto out_err; 2279 } 2280 } 2281 2282 unix_state_lock(other); 2283 2284 if (sock_flag(other, SOCK_DEAD) || 2285 (other->sk_shutdown & RCV_SHUTDOWN)) 2286 goto pipe_err_free; 2287 2288 maybe_add_creds(skb, sock, other); 2289 scm_stat_add(other, skb); 2290 skb_queue_tail(&other->sk_receive_queue, skb); 2291 unix_state_unlock(other); 2292 other->sk_data_ready(other); 2293 sent += size; 2294 } 2295 2296 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2297 if (msg->msg_flags & MSG_OOB) { 2298 err = queue_oob(sock, msg, other, &scm, fds_sent); 2299 if (err) 2300 goto out_err; 2301 sent++; 2302 } 2303 #endif 2304 2305 scm_destroy(&scm); 2306 2307 return sent; 2308 2309 pipe_err_free: 2310 unix_state_unlock(other); 2311 kfree_skb(skb); 2312 pipe_err: 2313 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2314 send_sig(SIGPIPE, current, 0); 2315 err = -EPIPE; 2316 out_err: 2317 scm_destroy(&scm); 2318 return sent ? : err; 2319 } 2320 2321 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2322 size_t len) 2323 { 2324 int err; 2325 struct sock *sk = sock->sk; 2326 2327 err = sock_error(sk); 2328 if (err) 2329 return err; 2330 2331 if (sk->sk_state != TCP_ESTABLISHED) 2332 return -ENOTCONN; 2333 2334 if (msg->msg_namelen) 2335 msg->msg_namelen = 0; 2336 2337 return unix_dgram_sendmsg(sock, msg, len); 2338 } 2339 2340 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2341 size_t size, int flags) 2342 { 2343 struct sock *sk = sock->sk; 2344 2345 if (sk->sk_state != TCP_ESTABLISHED) 2346 return -ENOTCONN; 2347 2348 return unix_dgram_recvmsg(sock, msg, size, flags); 2349 } 2350 2351 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2352 { 2353 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2354 2355 if (addr) { 2356 msg->msg_namelen = addr->len; 2357 memcpy(msg->msg_name, addr->name, addr->len); 2358 } 2359 } 2360 2361 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2362 int flags) 2363 { 2364 struct scm_cookie scm; 2365 struct socket *sock = sk->sk_socket; 2366 struct unix_sock *u = unix_sk(sk); 2367 struct sk_buff *skb, *last; 2368 long timeo; 2369 int skip; 2370 int err; 2371 2372 err = -EOPNOTSUPP; 2373 if (flags&MSG_OOB) 2374 goto out; 2375 2376 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2377 2378 do { 2379 mutex_lock(&u->iolock); 2380 2381 skip = sk_peek_offset(sk, flags); 2382 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2383 &skip, &err, &last); 2384 if (skb) { 2385 if (!(flags & MSG_PEEK)) 2386 scm_stat_del(sk, skb); 2387 break; 2388 } 2389 2390 mutex_unlock(&u->iolock); 2391 2392 if (err != -EAGAIN) 2393 break; 2394 } while (timeo && 2395 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2396 &err, &timeo, last)); 2397 2398 if (!skb) { /* implies iolock unlocked */ 2399 unix_state_lock(sk); 2400 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2401 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2402 (sk->sk_shutdown & RCV_SHUTDOWN)) 2403 err = 0; 2404 unix_state_unlock(sk); 2405 goto out; 2406 } 2407 2408 if (wq_has_sleeper(&u->peer_wait)) 2409 wake_up_interruptible_sync_poll(&u->peer_wait, 2410 EPOLLOUT | EPOLLWRNORM | 2411 EPOLLWRBAND); 2412 2413 if (msg->msg_name) { 2414 unix_copy_addr(msg, skb->sk); 2415 2416 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2417 msg->msg_name, 2418 &msg->msg_namelen); 2419 } 2420 2421 if (size > skb->len - skip) 2422 size = skb->len - skip; 2423 else if (size < skb->len - skip) 2424 msg->msg_flags |= MSG_TRUNC; 2425 2426 err = skb_copy_datagram_msg(skb, skip, msg, size); 2427 if (err) 2428 goto out_free; 2429 2430 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2431 __sock_recv_timestamp(msg, sk, skb); 2432 2433 memset(&scm, 0, sizeof(scm)); 2434 2435 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2436 unix_set_secdata(&scm, skb); 2437 2438 if (!(flags & MSG_PEEK)) { 2439 if (UNIXCB(skb).fp) 2440 unix_detach_fds(&scm, skb); 2441 2442 sk_peek_offset_bwd(sk, skb->len); 2443 } else { 2444 /* It is questionable: on PEEK we could: 2445 - do not return fds - good, but too simple 8) 2446 - return fds, and do not return them on read (old strategy, 2447 apparently wrong) 2448 - clone fds (I chose it for now, it is the most universal 2449 solution) 2450 2451 POSIX 1003.1g does not actually define this clearly 2452 at all. POSIX 1003.1g doesn't define a lot of things 2453 clearly however! 2454 2455 */ 2456 2457 sk_peek_offset_fwd(sk, size); 2458 2459 if (UNIXCB(skb).fp) 2460 unix_peek_fds(&scm, skb); 2461 } 2462 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2463 2464 scm_recv_unix(sock, msg, &scm, flags); 2465 2466 out_free: 2467 skb_free_datagram(sk, skb); 2468 mutex_unlock(&u->iolock); 2469 out: 2470 return err; 2471 } 2472 2473 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2474 int flags) 2475 { 2476 struct sock *sk = sock->sk; 2477 2478 #ifdef CONFIG_BPF_SYSCALL 2479 const struct proto *prot = READ_ONCE(sk->sk_prot); 2480 2481 if (prot != &unix_dgram_proto) 2482 return prot->recvmsg(sk, msg, size, flags, NULL); 2483 #endif 2484 return __unix_dgram_recvmsg(sk, msg, size, flags); 2485 } 2486 2487 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2488 { 2489 struct unix_sock *u = unix_sk(sk); 2490 struct sk_buff *skb; 2491 int err; 2492 2493 mutex_lock(&u->iolock); 2494 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2495 mutex_unlock(&u->iolock); 2496 if (!skb) 2497 return err; 2498 2499 return recv_actor(sk, skb); 2500 } 2501 2502 /* 2503 * Sleep until more data has arrived. But check for races.. 2504 */ 2505 static long unix_stream_data_wait(struct sock *sk, long timeo, 2506 struct sk_buff *last, unsigned int last_len, 2507 bool freezable) 2508 { 2509 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2510 struct sk_buff *tail; 2511 DEFINE_WAIT(wait); 2512 2513 unix_state_lock(sk); 2514 2515 for (;;) { 2516 prepare_to_wait(sk_sleep(sk), &wait, state); 2517 2518 tail = skb_peek_tail(&sk->sk_receive_queue); 2519 if (tail != last || 2520 (tail && tail->len != last_len) || 2521 sk->sk_err || 2522 (sk->sk_shutdown & RCV_SHUTDOWN) || 2523 signal_pending(current) || 2524 !timeo) 2525 break; 2526 2527 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2528 unix_state_unlock(sk); 2529 timeo = schedule_timeout(timeo); 2530 unix_state_lock(sk); 2531 2532 if (sock_flag(sk, SOCK_DEAD)) 2533 break; 2534 2535 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2536 } 2537 2538 finish_wait(sk_sleep(sk), &wait); 2539 unix_state_unlock(sk); 2540 return timeo; 2541 } 2542 2543 static unsigned int unix_skb_len(const struct sk_buff *skb) 2544 { 2545 return skb->len - UNIXCB(skb).consumed; 2546 } 2547 2548 struct unix_stream_read_state { 2549 int (*recv_actor)(struct sk_buff *, int, int, 2550 struct unix_stream_read_state *); 2551 struct socket *socket; 2552 struct msghdr *msg; 2553 struct pipe_inode_info *pipe; 2554 size_t size; 2555 int flags; 2556 unsigned int splice_flags; 2557 }; 2558 2559 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2560 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2561 { 2562 struct socket *sock = state->socket; 2563 struct sock *sk = sock->sk; 2564 struct unix_sock *u = unix_sk(sk); 2565 int chunk = 1; 2566 struct sk_buff *oob_skb; 2567 2568 mutex_lock(&u->iolock); 2569 unix_state_lock(sk); 2570 2571 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2572 unix_state_unlock(sk); 2573 mutex_unlock(&u->iolock); 2574 return -EINVAL; 2575 } 2576 2577 oob_skb = u->oob_skb; 2578 2579 if (!(state->flags & MSG_PEEK)) 2580 WRITE_ONCE(u->oob_skb, NULL); 2581 else 2582 skb_get(oob_skb); 2583 unix_state_unlock(sk); 2584 2585 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2586 2587 if (!(state->flags & MSG_PEEK)) 2588 UNIXCB(oob_skb).consumed += 1; 2589 2590 consume_skb(oob_skb); 2591 2592 mutex_unlock(&u->iolock); 2593 2594 if (chunk < 0) 2595 return -EFAULT; 2596 2597 state->msg->msg_flags |= MSG_OOB; 2598 return 1; 2599 } 2600 2601 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2602 int flags, int copied) 2603 { 2604 struct unix_sock *u = unix_sk(sk); 2605 2606 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2607 skb_unlink(skb, &sk->sk_receive_queue); 2608 consume_skb(skb); 2609 skb = NULL; 2610 } else { 2611 if (skb == u->oob_skb) { 2612 if (copied) { 2613 skb = NULL; 2614 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2615 if (!(flags & MSG_PEEK)) { 2616 WRITE_ONCE(u->oob_skb, NULL); 2617 consume_skb(skb); 2618 } 2619 } else if (flags & MSG_PEEK) { 2620 skb = NULL; 2621 } else { 2622 skb_unlink(skb, &sk->sk_receive_queue); 2623 WRITE_ONCE(u->oob_skb, NULL); 2624 if (!WARN_ON_ONCE(skb_unref(skb))) 2625 kfree_skb(skb); 2626 skb = skb_peek(&sk->sk_receive_queue); 2627 } 2628 } 2629 } 2630 return skb; 2631 } 2632 #endif 2633 2634 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2635 { 2636 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2637 return -ENOTCONN; 2638 2639 return unix_read_skb(sk, recv_actor); 2640 } 2641 2642 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2643 bool freezable) 2644 { 2645 struct scm_cookie scm; 2646 struct socket *sock = state->socket; 2647 struct sock *sk = sock->sk; 2648 struct unix_sock *u = unix_sk(sk); 2649 int copied = 0; 2650 int flags = state->flags; 2651 int noblock = flags & MSG_DONTWAIT; 2652 bool check_creds = false; 2653 int target; 2654 int err = 0; 2655 long timeo; 2656 int skip; 2657 size_t size = state->size; 2658 unsigned int last_len; 2659 2660 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2661 err = -EINVAL; 2662 goto out; 2663 } 2664 2665 if (unlikely(flags & MSG_OOB)) { 2666 err = -EOPNOTSUPP; 2667 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2668 err = unix_stream_recv_urg(state); 2669 #endif 2670 goto out; 2671 } 2672 2673 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2674 timeo = sock_rcvtimeo(sk, noblock); 2675 2676 memset(&scm, 0, sizeof(scm)); 2677 2678 /* Lock the socket to prevent queue disordering 2679 * while sleeps in memcpy_tomsg 2680 */ 2681 mutex_lock(&u->iolock); 2682 2683 skip = max(sk_peek_offset(sk, flags), 0); 2684 2685 do { 2686 int chunk; 2687 bool drop_skb; 2688 struct sk_buff *skb, *last; 2689 2690 redo: 2691 unix_state_lock(sk); 2692 if (sock_flag(sk, SOCK_DEAD)) { 2693 err = -ECONNRESET; 2694 goto unlock; 2695 } 2696 last = skb = skb_peek(&sk->sk_receive_queue); 2697 last_len = last ? last->len : 0; 2698 2699 again: 2700 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2701 if (skb) { 2702 skb = manage_oob(skb, sk, flags, copied); 2703 if (!skb && copied) { 2704 unix_state_unlock(sk); 2705 break; 2706 } 2707 } 2708 #endif 2709 if (skb == NULL) { 2710 if (copied >= target) 2711 goto unlock; 2712 2713 /* 2714 * POSIX 1003.1g mandates this order. 2715 */ 2716 2717 err = sock_error(sk); 2718 if (err) 2719 goto unlock; 2720 if (sk->sk_shutdown & RCV_SHUTDOWN) 2721 goto unlock; 2722 2723 unix_state_unlock(sk); 2724 if (!timeo) { 2725 err = -EAGAIN; 2726 break; 2727 } 2728 2729 mutex_unlock(&u->iolock); 2730 2731 timeo = unix_stream_data_wait(sk, timeo, last, 2732 last_len, freezable); 2733 2734 if (signal_pending(current)) { 2735 err = sock_intr_errno(timeo); 2736 scm_destroy(&scm); 2737 goto out; 2738 } 2739 2740 mutex_lock(&u->iolock); 2741 goto redo; 2742 unlock: 2743 unix_state_unlock(sk); 2744 break; 2745 } 2746 2747 while (skip >= unix_skb_len(skb)) { 2748 skip -= unix_skb_len(skb); 2749 last = skb; 2750 last_len = skb->len; 2751 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2752 if (!skb) 2753 goto again; 2754 } 2755 2756 unix_state_unlock(sk); 2757 2758 if (check_creds) { 2759 /* Never glue messages from different writers */ 2760 if (!unix_skb_scm_eq(skb, &scm)) 2761 break; 2762 } else if (test_bit(SOCK_PASSCRED, &sock->flags) || 2763 test_bit(SOCK_PASSPIDFD, &sock->flags)) { 2764 /* Copy credentials */ 2765 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2766 unix_set_secdata(&scm, skb); 2767 check_creds = true; 2768 } 2769 2770 /* Copy address just once */ 2771 if (state->msg && state->msg->msg_name) { 2772 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2773 state->msg->msg_name); 2774 unix_copy_addr(state->msg, skb->sk); 2775 2776 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2777 state->msg->msg_name, 2778 &state->msg->msg_namelen); 2779 2780 sunaddr = NULL; 2781 } 2782 2783 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2784 skb_get(skb); 2785 chunk = state->recv_actor(skb, skip, chunk, state); 2786 drop_skb = !unix_skb_len(skb); 2787 /* skb is only safe to use if !drop_skb */ 2788 consume_skb(skb); 2789 if (chunk < 0) { 2790 if (copied == 0) 2791 copied = -EFAULT; 2792 break; 2793 } 2794 copied += chunk; 2795 size -= chunk; 2796 2797 if (drop_skb) { 2798 /* the skb was touched by a concurrent reader; 2799 * we should not expect anything from this skb 2800 * anymore and assume it invalid - we can be 2801 * sure it was dropped from the socket queue 2802 * 2803 * let's report a short read 2804 */ 2805 err = 0; 2806 break; 2807 } 2808 2809 /* Mark read part of skb as used */ 2810 if (!(flags & MSG_PEEK)) { 2811 UNIXCB(skb).consumed += chunk; 2812 2813 sk_peek_offset_bwd(sk, chunk); 2814 2815 if (UNIXCB(skb).fp) { 2816 scm_stat_del(sk, skb); 2817 unix_detach_fds(&scm, skb); 2818 } 2819 2820 if (unix_skb_len(skb)) 2821 break; 2822 2823 skb_unlink(skb, &sk->sk_receive_queue); 2824 consume_skb(skb); 2825 2826 if (scm.fp) 2827 break; 2828 } else { 2829 /* It is questionable, see note in unix_dgram_recvmsg. 2830 */ 2831 if (UNIXCB(skb).fp) 2832 unix_peek_fds(&scm, skb); 2833 2834 sk_peek_offset_fwd(sk, chunk); 2835 2836 if (UNIXCB(skb).fp) 2837 break; 2838 2839 skip = 0; 2840 last = skb; 2841 last_len = skb->len; 2842 unix_state_lock(sk); 2843 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2844 if (skb) 2845 goto again; 2846 unix_state_unlock(sk); 2847 break; 2848 } 2849 } while (size); 2850 2851 mutex_unlock(&u->iolock); 2852 if (state->msg) 2853 scm_recv_unix(sock, state->msg, &scm, flags); 2854 else 2855 scm_destroy(&scm); 2856 out: 2857 return copied ? : err; 2858 } 2859 2860 static int unix_stream_read_actor(struct sk_buff *skb, 2861 int skip, int chunk, 2862 struct unix_stream_read_state *state) 2863 { 2864 int ret; 2865 2866 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2867 state->msg, chunk); 2868 return ret ?: chunk; 2869 } 2870 2871 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2872 size_t size, int flags) 2873 { 2874 struct unix_stream_read_state state = { 2875 .recv_actor = unix_stream_read_actor, 2876 .socket = sk->sk_socket, 2877 .msg = msg, 2878 .size = size, 2879 .flags = flags 2880 }; 2881 2882 return unix_stream_read_generic(&state, true); 2883 } 2884 2885 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2886 size_t size, int flags) 2887 { 2888 struct unix_stream_read_state state = { 2889 .recv_actor = unix_stream_read_actor, 2890 .socket = sock, 2891 .msg = msg, 2892 .size = size, 2893 .flags = flags 2894 }; 2895 2896 #ifdef CONFIG_BPF_SYSCALL 2897 struct sock *sk = sock->sk; 2898 const struct proto *prot = READ_ONCE(sk->sk_prot); 2899 2900 if (prot != &unix_stream_proto) 2901 return prot->recvmsg(sk, msg, size, flags, NULL); 2902 #endif 2903 return unix_stream_read_generic(&state, true); 2904 } 2905 2906 static int unix_stream_splice_actor(struct sk_buff *skb, 2907 int skip, int chunk, 2908 struct unix_stream_read_state *state) 2909 { 2910 return skb_splice_bits(skb, state->socket->sk, 2911 UNIXCB(skb).consumed + skip, 2912 state->pipe, chunk, state->splice_flags); 2913 } 2914 2915 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2916 struct pipe_inode_info *pipe, 2917 size_t size, unsigned int flags) 2918 { 2919 struct unix_stream_read_state state = { 2920 .recv_actor = unix_stream_splice_actor, 2921 .socket = sock, 2922 .pipe = pipe, 2923 .size = size, 2924 .splice_flags = flags, 2925 }; 2926 2927 if (unlikely(*ppos)) 2928 return -ESPIPE; 2929 2930 if (sock->file->f_flags & O_NONBLOCK || 2931 flags & SPLICE_F_NONBLOCK) 2932 state.flags = MSG_DONTWAIT; 2933 2934 return unix_stream_read_generic(&state, false); 2935 } 2936 2937 static int unix_shutdown(struct socket *sock, int mode) 2938 { 2939 struct sock *sk = sock->sk; 2940 struct sock *other; 2941 2942 if (mode < SHUT_RD || mode > SHUT_RDWR) 2943 return -EINVAL; 2944 /* This maps: 2945 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2946 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2947 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2948 */ 2949 ++mode; 2950 2951 unix_state_lock(sk); 2952 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode); 2953 other = unix_peer(sk); 2954 if (other) 2955 sock_hold(other); 2956 unix_state_unlock(sk); 2957 sk->sk_state_change(sk); 2958 2959 if (other && 2960 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2961 2962 int peer_mode = 0; 2963 const struct proto *prot = READ_ONCE(other->sk_prot); 2964 2965 if (prot->unhash) 2966 prot->unhash(other); 2967 if (mode&RCV_SHUTDOWN) 2968 peer_mode |= SEND_SHUTDOWN; 2969 if (mode&SEND_SHUTDOWN) 2970 peer_mode |= RCV_SHUTDOWN; 2971 unix_state_lock(other); 2972 WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode); 2973 unix_state_unlock(other); 2974 other->sk_state_change(other); 2975 if (peer_mode == SHUTDOWN_MASK) 2976 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2977 else if (peer_mode & RCV_SHUTDOWN) 2978 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2979 } 2980 if (other) 2981 sock_put(other); 2982 2983 return 0; 2984 } 2985 2986 long unix_inq_len(struct sock *sk) 2987 { 2988 struct sk_buff *skb; 2989 long amount = 0; 2990 2991 if (sk->sk_state == TCP_LISTEN) 2992 return -EINVAL; 2993 2994 spin_lock(&sk->sk_receive_queue.lock); 2995 if (sk->sk_type == SOCK_STREAM || 2996 sk->sk_type == SOCK_SEQPACKET) { 2997 skb_queue_walk(&sk->sk_receive_queue, skb) 2998 amount += unix_skb_len(skb); 2999 } else { 3000 skb = skb_peek(&sk->sk_receive_queue); 3001 if (skb) 3002 amount = skb->len; 3003 } 3004 spin_unlock(&sk->sk_receive_queue.lock); 3005 3006 return amount; 3007 } 3008 EXPORT_SYMBOL_GPL(unix_inq_len); 3009 3010 long unix_outq_len(struct sock *sk) 3011 { 3012 return sk_wmem_alloc_get(sk); 3013 } 3014 EXPORT_SYMBOL_GPL(unix_outq_len); 3015 3016 static int unix_open_file(struct sock *sk) 3017 { 3018 struct path path; 3019 struct file *f; 3020 int fd; 3021 3022 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3023 return -EPERM; 3024 3025 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3026 return -ENOENT; 3027 3028 path = unix_sk(sk)->path; 3029 if (!path.dentry) 3030 return -ENOENT; 3031 3032 path_get(&path); 3033 3034 fd = get_unused_fd_flags(O_CLOEXEC); 3035 if (fd < 0) 3036 goto out; 3037 3038 f = dentry_open(&path, O_PATH, current_cred()); 3039 if (IS_ERR(f)) { 3040 put_unused_fd(fd); 3041 fd = PTR_ERR(f); 3042 goto out; 3043 } 3044 3045 fd_install(fd, f); 3046 out: 3047 path_put(&path); 3048 3049 return fd; 3050 } 3051 3052 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3053 { 3054 struct sock *sk = sock->sk; 3055 long amount = 0; 3056 int err; 3057 3058 switch (cmd) { 3059 case SIOCOUTQ: 3060 amount = unix_outq_len(sk); 3061 err = put_user(amount, (int __user *)arg); 3062 break; 3063 case SIOCINQ: 3064 amount = unix_inq_len(sk); 3065 if (amount < 0) 3066 err = amount; 3067 else 3068 err = put_user(amount, (int __user *)arg); 3069 break; 3070 case SIOCUNIXFILE: 3071 err = unix_open_file(sk); 3072 break; 3073 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3074 case SIOCATMARK: 3075 { 3076 struct sk_buff *skb; 3077 int answ = 0; 3078 3079 skb = skb_peek(&sk->sk_receive_queue); 3080 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3081 answ = 1; 3082 err = put_user(answ, (int __user *)arg); 3083 } 3084 break; 3085 #endif 3086 default: 3087 err = -ENOIOCTLCMD; 3088 break; 3089 } 3090 return err; 3091 } 3092 3093 #ifdef CONFIG_COMPAT 3094 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3095 { 3096 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3097 } 3098 #endif 3099 3100 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3101 { 3102 struct sock *sk = sock->sk; 3103 __poll_t mask; 3104 u8 shutdown; 3105 3106 sock_poll_wait(file, sock, wait); 3107 mask = 0; 3108 shutdown = READ_ONCE(sk->sk_shutdown); 3109 3110 /* exceptional events? */ 3111 if (READ_ONCE(sk->sk_err)) 3112 mask |= EPOLLERR; 3113 if (shutdown == SHUTDOWN_MASK) 3114 mask |= EPOLLHUP; 3115 if (shutdown & RCV_SHUTDOWN) 3116 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3117 3118 /* readable? */ 3119 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3120 mask |= EPOLLIN | EPOLLRDNORM; 3121 if (sk_is_readable(sk)) 3122 mask |= EPOLLIN | EPOLLRDNORM; 3123 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3124 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3125 mask |= EPOLLPRI; 3126 #endif 3127 3128 /* Connection-based need to check for termination and startup */ 3129 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3130 sk->sk_state == TCP_CLOSE) 3131 mask |= EPOLLHUP; 3132 3133 /* 3134 * we set writable also when the other side has shut down the 3135 * connection. This prevents stuck sockets. 3136 */ 3137 if (unix_writable(sk)) 3138 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3139 3140 return mask; 3141 } 3142 3143 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3144 poll_table *wait) 3145 { 3146 struct sock *sk = sock->sk, *other; 3147 unsigned int writable; 3148 __poll_t mask; 3149 u8 shutdown; 3150 3151 sock_poll_wait(file, sock, wait); 3152 mask = 0; 3153 shutdown = READ_ONCE(sk->sk_shutdown); 3154 3155 /* exceptional events? */ 3156 if (READ_ONCE(sk->sk_err) || 3157 !skb_queue_empty_lockless(&sk->sk_error_queue)) 3158 mask |= EPOLLERR | 3159 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3160 3161 if (shutdown & RCV_SHUTDOWN) 3162 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3163 if (shutdown == SHUTDOWN_MASK) 3164 mask |= EPOLLHUP; 3165 3166 /* readable? */ 3167 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3168 mask |= EPOLLIN | EPOLLRDNORM; 3169 if (sk_is_readable(sk)) 3170 mask |= EPOLLIN | EPOLLRDNORM; 3171 3172 /* Connection-based need to check for termination and startup */ 3173 if (sk->sk_type == SOCK_SEQPACKET) { 3174 if (sk->sk_state == TCP_CLOSE) 3175 mask |= EPOLLHUP; 3176 /* connection hasn't started yet? */ 3177 if (sk->sk_state == TCP_SYN_SENT) 3178 return mask; 3179 } 3180 3181 /* No write status requested, avoid expensive OUT tests. */ 3182 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3183 return mask; 3184 3185 writable = unix_writable(sk); 3186 if (writable) { 3187 unix_state_lock(sk); 3188 3189 other = unix_peer(sk); 3190 if (other && unix_peer(other) != sk && 3191 unix_recvq_full_lockless(other) && 3192 unix_dgram_peer_wake_me(sk, other)) 3193 writable = 0; 3194 3195 unix_state_unlock(sk); 3196 } 3197 3198 if (writable) 3199 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3200 else 3201 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3202 3203 return mask; 3204 } 3205 3206 #ifdef CONFIG_PROC_FS 3207 3208 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3209 3210 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3211 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3212 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3213 3214 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3215 { 3216 unsigned long offset = get_offset(*pos); 3217 unsigned long bucket = get_bucket(*pos); 3218 unsigned long count = 0; 3219 struct sock *sk; 3220 3221 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3222 sk; sk = sk_next(sk)) { 3223 if (++count == offset) 3224 break; 3225 } 3226 3227 return sk; 3228 } 3229 3230 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3231 { 3232 unsigned long bucket = get_bucket(*pos); 3233 struct net *net = seq_file_net(seq); 3234 struct sock *sk; 3235 3236 while (bucket < UNIX_HASH_SIZE) { 3237 spin_lock(&net->unx.table.locks[bucket]); 3238 3239 sk = unix_from_bucket(seq, pos); 3240 if (sk) 3241 return sk; 3242 3243 spin_unlock(&net->unx.table.locks[bucket]); 3244 3245 *pos = set_bucket_offset(++bucket, 1); 3246 } 3247 3248 return NULL; 3249 } 3250 3251 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3252 loff_t *pos) 3253 { 3254 unsigned long bucket = get_bucket(*pos); 3255 3256 sk = sk_next(sk); 3257 if (sk) 3258 return sk; 3259 3260 3261 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3262 3263 *pos = set_bucket_offset(++bucket, 1); 3264 3265 return unix_get_first(seq, pos); 3266 } 3267 3268 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3269 { 3270 if (!*pos) 3271 return SEQ_START_TOKEN; 3272 3273 return unix_get_first(seq, pos); 3274 } 3275 3276 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3277 { 3278 ++*pos; 3279 3280 if (v == SEQ_START_TOKEN) 3281 return unix_get_first(seq, pos); 3282 3283 return unix_get_next(seq, v, pos); 3284 } 3285 3286 static void unix_seq_stop(struct seq_file *seq, void *v) 3287 { 3288 struct sock *sk = v; 3289 3290 if (sk) 3291 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3292 } 3293 3294 static int unix_seq_show(struct seq_file *seq, void *v) 3295 { 3296 3297 if (v == SEQ_START_TOKEN) 3298 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3299 "Inode Path\n"); 3300 else { 3301 struct sock *s = v; 3302 struct unix_sock *u = unix_sk(s); 3303 unix_state_lock(s); 3304 3305 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3306 s, 3307 refcount_read(&s->sk_refcnt), 3308 0, 3309 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3310 s->sk_type, 3311 s->sk_socket ? 3312 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3313 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3314 sock_i_ino(s)); 3315 3316 if (u->addr) { // under a hash table lock here 3317 int i, len; 3318 seq_putc(seq, ' '); 3319 3320 i = 0; 3321 len = u->addr->len - 3322 offsetof(struct sockaddr_un, sun_path); 3323 if (u->addr->name->sun_path[0]) { 3324 len--; 3325 } else { 3326 seq_putc(seq, '@'); 3327 i++; 3328 } 3329 for ( ; i < len; i++) 3330 seq_putc(seq, u->addr->name->sun_path[i] ?: 3331 '@'); 3332 } 3333 unix_state_unlock(s); 3334 seq_putc(seq, '\n'); 3335 } 3336 3337 return 0; 3338 } 3339 3340 static const struct seq_operations unix_seq_ops = { 3341 .start = unix_seq_start, 3342 .next = unix_seq_next, 3343 .stop = unix_seq_stop, 3344 .show = unix_seq_show, 3345 }; 3346 3347 #ifdef CONFIG_BPF_SYSCALL 3348 struct bpf_unix_iter_state { 3349 struct seq_net_private p; 3350 unsigned int cur_sk; 3351 unsigned int end_sk; 3352 unsigned int max_sk; 3353 struct sock **batch; 3354 bool st_bucket_done; 3355 }; 3356 3357 struct bpf_iter__unix { 3358 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3359 __bpf_md_ptr(struct unix_sock *, unix_sk); 3360 uid_t uid __aligned(8); 3361 }; 3362 3363 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3364 struct unix_sock *unix_sk, uid_t uid) 3365 { 3366 struct bpf_iter__unix ctx; 3367 3368 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3369 ctx.meta = meta; 3370 ctx.unix_sk = unix_sk; 3371 ctx.uid = uid; 3372 return bpf_iter_run_prog(prog, &ctx); 3373 } 3374 3375 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3376 3377 { 3378 struct bpf_unix_iter_state *iter = seq->private; 3379 unsigned int expected = 1; 3380 struct sock *sk; 3381 3382 sock_hold(start_sk); 3383 iter->batch[iter->end_sk++] = start_sk; 3384 3385 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3386 if (iter->end_sk < iter->max_sk) { 3387 sock_hold(sk); 3388 iter->batch[iter->end_sk++] = sk; 3389 } 3390 3391 expected++; 3392 } 3393 3394 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3395 3396 return expected; 3397 } 3398 3399 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3400 { 3401 while (iter->cur_sk < iter->end_sk) 3402 sock_put(iter->batch[iter->cur_sk++]); 3403 } 3404 3405 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3406 unsigned int new_batch_sz) 3407 { 3408 struct sock **new_batch; 3409 3410 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3411 GFP_USER | __GFP_NOWARN); 3412 if (!new_batch) 3413 return -ENOMEM; 3414 3415 bpf_iter_unix_put_batch(iter); 3416 kvfree(iter->batch); 3417 iter->batch = new_batch; 3418 iter->max_sk = new_batch_sz; 3419 3420 return 0; 3421 } 3422 3423 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3424 loff_t *pos) 3425 { 3426 struct bpf_unix_iter_state *iter = seq->private; 3427 unsigned int expected; 3428 bool resized = false; 3429 struct sock *sk; 3430 3431 if (iter->st_bucket_done) 3432 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3433 3434 again: 3435 /* Get a new batch */ 3436 iter->cur_sk = 0; 3437 iter->end_sk = 0; 3438 3439 sk = unix_get_first(seq, pos); 3440 if (!sk) 3441 return NULL; /* Done */ 3442 3443 expected = bpf_iter_unix_hold_batch(seq, sk); 3444 3445 if (iter->end_sk == expected) { 3446 iter->st_bucket_done = true; 3447 return sk; 3448 } 3449 3450 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3451 resized = true; 3452 goto again; 3453 } 3454 3455 return sk; 3456 } 3457 3458 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3459 { 3460 if (!*pos) 3461 return SEQ_START_TOKEN; 3462 3463 /* bpf iter does not support lseek, so it always 3464 * continue from where it was stop()-ped. 3465 */ 3466 return bpf_iter_unix_batch(seq, pos); 3467 } 3468 3469 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3470 { 3471 struct bpf_unix_iter_state *iter = seq->private; 3472 struct sock *sk; 3473 3474 /* Whenever seq_next() is called, the iter->cur_sk is 3475 * done with seq_show(), so advance to the next sk in 3476 * the batch. 3477 */ 3478 if (iter->cur_sk < iter->end_sk) 3479 sock_put(iter->batch[iter->cur_sk++]); 3480 3481 ++*pos; 3482 3483 if (iter->cur_sk < iter->end_sk) 3484 sk = iter->batch[iter->cur_sk]; 3485 else 3486 sk = bpf_iter_unix_batch(seq, pos); 3487 3488 return sk; 3489 } 3490 3491 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3492 { 3493 struct bpf_iter_meta meta; 3494 struct bpf_prog *prog; 3495 struct sock *sk = v; 3496 uid_t uid; 3497 bool slow; 3498 int ret; 3499 3500 if (v == SEQ_START_TOKEN) 3501 return 0; 3502 3503 slow = lock_sock_fast(sk); 3504 3505 if (unlikely(sk_unhashed(sk))) { 3506 ret = SEQ_SKIP; 3507 goto unlock; 3508 } 3509 3510 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3511 meta.seq = seq; 3512 prog = bpf_iter_get_info(&meta, false); 3513 ret = unix_prog_seq_show(prog, &meta, v, uid); 3514 unlock: 3515 unlock_sock_fast(sk, slow); 3516 return ret; 3517 } 3518 3519 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3520 { 3521 struct bpf_unix_iter_state *iter = seq->private; 3522 struct bpf_iter_meta meta; 3523 struct bpf_prog *prog; 3524 3525 if (!v) { 3526 meta.seq = seq; 3527 prog = bpf_iter_get_info(&meta, true); 3528 if (prog) 3529 (void)unix_prog_seq_show(prog, &meta, v, 0); 3530 } 3531 3532 if (iter->cur_sk < iter->end_sk) 3533 bpf_iter_unix_put_batch(iter); 3534 } 3535 3536 static const struct seq_operations bpf_iter_unix_seq_ops = { 3537 .start = bpf_iter_unix_seq_start, 3538 .next = bpf_iter_unix_seq_next, 3539 .stop = bpf_iter_unix_seq_stop, 3540 .show = bpf_iter_unix_seq_show, 3541 }; 3542 #endif 3543 #endif 3544 3545 static const struct net_proto_family unix_family_ops = { 3546 .family = PF_UNIX, 3547 .create = unix_create, 3548 .owner = THIS_MODULE, 3549 }; 3550 3551 3552 static int __net_init unix_net_init(struct net *net) 3553 { 3554 int i; 3555 3556 net->unx.sysctl_max_dgram_qlen = 10; 3557 if (unix_sysctl_register(net)) 3558 goto out; 3559 3560 #ifdef CONFIG_PROC_FS 3561 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3562 sizeof(struct seq_net_private))) 3563 goto err_sysctl; 3564 #endif 3565 3566 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3567 sizeof(spinlock_t), GFP_KERNEL); 3568 if (!net->unx.table.locks) 3569 goto err_proc; 3570 3571 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3572 sizeof(struct hlist_head), 3573 GFP_KERNEL); 3574 if (!net->unx.table.buckets) 3575 goto free_locks; 3576 3577 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3578 spin_lock_init(&net->unx.table.locks[i]); 3579 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3580 } 3581 3582 return 0; 3583 3584 free_locks: 3585 kvfree(net->unx.table.locks); 3586 err_proc: 3587 #ifdef CONFIG_PROC_FS 3588 remove_proc_entry("unix", net->proc_net); 3589 err_sysctl: 3590 #endif 3591 unix_sysctl_unregister(net); 3592 out: 3593 return -ENOMEM; 3594 } 3595 3596 static void __net_exit unix_net_exit(struct net *net) 3597 { 3598 kvfree(net->unx.table.buckets); 3599 kvfree(net->unx.table.locks); 3600 unix_sysctl_unregister(net); 3601 remove_proc_entry("unix", net->proc_net); 3602 } 3603 3604 static struct pernet_operations unix_net_ops = { 3605 .init = unix_net_init, 3606 .exit = unix_net_exit, 3607 }; 3608 3609 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3610 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3611 struct unix_sock *unix_sk, uid_t uid) 3612 3613 #define INIT_BATCH_SZ 16 3614 3615 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3616 { 3617 struct bpf_unix_iter_state *iter = priv_data; 3618 int err; 3619 3620 err = bpf_iter_init_seq_net(priv_data, aux); 3621 if (err) 3622 return err; 3623 3624 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3625 if (err) { 3626 bpf_iter_fini_seq_net(priv_data); 3627 return err; 3628 } 3629 3630 return 0; 3631 } 3632 3633 static void bpf_iter_fini_unix(void *priv_data) 3634 { 3635 struct bpf_unix_iter_state *iter = priv_data; 3636 3637 bpf_iter_fini_seq_net(priv_data); 3638 kvfree(iter->batch); 3639 } 3640 3641 static const struct bpf_iter_seq_info unix_seq_info = { 3642 .seq_ops = &bpf_iter_unix_seq_ops, 3643 .init_seq_private = bpf_iter_init_unix, 3644 .fini_seq_private = bpf_iter_fini_unix, 3645 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3646 }; 3647 3648 static const struct bpf_func_proto * 3649 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3650 const struct bpf_prog *prog) 3651 { 3652 switch (func_id) { 3653 case BPF_FUNC_setsockopt: 3654 return &bpf_sk_setsockopt_proto; 3655 case BPF_FUNC_getsockopt: 3656 return &bpf_sk_getsockopt_proto; 3657 default: 3658 return NULL; 3659 } 3660 } 3661 3662 static struct bpf_iter_reg unix_reg_info = { 3663 .target = "unix", 3664 .ctx_arg_info_size = 1, 3665 .ctx_arg_info = { 3666 { offsetof(struct bpf_iter__unix, unix_sk), 3667 PTR_TO_BTF_ID_OR_NULL }, 3668 }, 3669 .get_func_proto = bpf_iter_unix_get_func_proto, 3670 .seq_info = &unix_seq_info, 3671 }; 3672 3673 static void __init bpf_iter_register(void) 3674 { 3675 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3676 if (bpf_iter_reg_target(&unix_reg_info)) 3677 pr_warn("Warning: could not register bpf iterator unix\n"); 3678 } 3679 #endif 3680 3681 static int __init af_unix_init(void) 3682 { 3683 int i, rc = -1; 3684 3685 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3686 3687 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3688 spin_lock_init(&bsd_socket_locks[i]); 3689 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3690 } 3691 3692 rc = proto_register(&unix_dgram_proto, 1); 3693 if (rc != 0) { 3694 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3695 goto out; 3696 } 3697 3698 rc = proto_register(&unix_stream_proto, 1); 3699 if (rc != 0) { 3700 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3701 proto_unregister(&unix_dgram_proto); 3702 goto out; 3703 } 3704 3705 sock_register(&unix_family_ops); 3706 register_pernet_subsys(&unix_net_ops); 3707 unix_bpf_build_proto(); 3708 3709 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3710 bpf_iter_register(); 3711 #endif 3712 3713 out: 3714 return rc; 3715 } 3716 3717 /* Later than subsys_initcall() because we depend on stuff initialised there */ 3718 fs_initcall(af_unix_init); 3719