1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/splice.h> 116 #include <linux/freezer.h> 117 #include <linux/file.h> 118 #include <linux/btf_ids.h> 119 #include <linux/bpf-cgroup.h> 120 121 #include "scm.h" 122 123 static atomic_long_t unix_nr_socks; 124 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 125 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 126 127 /* SMP locking strategy: 128 * hash table is protected with spinlock. 129 * each socket state is protected by separate spinlock. 130 */ 131 132 static unsigned int unix_unbound_hash(struct sock *sk) 133 { 134 unsigned long hash = (unsigned long)sk; 135 136 hash ^= hash >> 16; 137 hash ^= hash >> 8; 138 hash ^= sk->sk_type; 139 140 return hash & UNIX_HASH_MOD; 141 } 142 143 static unsigned int unix_bsd_hash(struct inode *i) 144 { 145 return i->i_ino & UNIX_HASH_MOD; 146 } 147 148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 149 int addr_len, int type) 150 { 151 __wsum csum = csum_partial(sunaddr, addr_len, 0); 152 unsigned int hash; 153 154 hash = (__force unsigned int)csum_fold(csum); 155 hash ^= hash >> 8; 156 hash ^= type; 157 158 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 159 } 160 161 static void unix_table_double_lock(struct net *net, 162 unsigned int hash1, unsigned int hash2) 163 { 164 if (hash1 == hash2) { 165 spin_lock(&net->unx.table.locks[hash1]); 166 return; 167 } 168 169 if (hash1 > hash2) 170 swap(hash1, hash2); 171 172 spin_lock(&net->unx.table.locks[hash1]); 173 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 174 } 175 176 static void unix_table_double_unlock(struct net *net, 177 unsigned int hash1, unsigned int hash2) 178 { 179 if (hash1 == hash2) { 180 spin_unlock(&net->unx.table.locks[hash1]); 181 return; 182 } 183 184 spin_unlock(&net->unx.table.locks[hash1]); 185 spin_unlock(&net->unx.table.locks[hash2]); 186 } 187 188 #ifdef CONFIG_SECURITY_NETWORK 189 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 190 { 191 UNIXCB(skb).secid = scm->secid; 192 } 193 194 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 195 { 196 scm->secid = UNIXCB(skb).secid; 197 } 198 199 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 200 { 201 return (scm->secid == UNIXCB(skb).secid); 202 } 203 #else 204 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 205 { } 206 207 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 208 { } 209 210 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 211 { 212 return true; 213 } 214 #endif /* CONFIG_SECURITY_NETWORK */ 215 216 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 217 { 218 return unix_peer(osk) == sk; 219 } 220 221 static inline int unix_may_send(struct sock *sk, struct sock *osk) 222 { 223 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 224 } 225 226 static inline int unix_recvq_full(const struct sock *sk) 227 { 228 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 229 } 230 231 static inline int unix_recvq_full_lockless(const struct sock *sk) 232 { 233 return skb_queue_len_lockless(&sk->sk_receive_queue) > 234 READ_ONCE(sk->sk_max_ack_backlog); 235 } 236 237 struct sock *unix_peer_get(struct sock *s) 238 { 239 struct sock *peer; 240 241 unix_state_lock(s); 242 peer = unix_peer(s); 243 if (peer) 244 sock_hold(peer); 245 unix_state_unlock(s); 246 return peer; 247 } 248 EXPORT_SYMBOL_GPL(unix_peer_get); 249 250 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 251 int addr_len) 252 { 253 struct unix_address *addr; 254 255 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 256 if (!addr) 257 return NULL; 258 259 refcount_set(&addr->refcnt, 1); 260 addr->len = addr_len; 261 memcpy(addr->name, sunaddr, addr_len); 262 263 return addr; 264 } 265 266 static inline void unix_release_addr(struct unix_address *addr) 267 { 268 if (refcount_dec_and_test(&addr->refcnt)) 269 kfree(addr); 270 } 271 272 /* 273 * Check unix socket name: 274 * - should be not zero length. 275 * - if started by not zero, should be NULL terminated (FS object) 276 * - if started by zero, it is abstract name. 277 */ 278 279 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 280 { 281 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 282 addr_len > sizeof(*sunaddr)) 283 return -EINVAL; 284 285 if (sunaddr->sun_family != AF_UNIX) 286 return -EINVAL; 287 288 return 0; 289 } 290 291 static int unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 292 { 293 struct sockaddr_storage *addr = (struct sockaddr_storage *)sunaddr; 294 short offset = offsetof(struct sockaddr_storage, __data); 295 296 BUILD_BUG_ON(offset != offsetof(struct sockaddr_un, sun_path)); 297 298 /* This may look like an off by one error but it is a bit more 299 * subtle. 108 is the longest valid AF_UNIX path for a binding. 300 * sun_path[108] doesn't as such exist. However in kernel space 301 * we are guaranteed that it is a valid memory location in our 302 * kernel address buffer because syscall functions always pass 303 * a pointer of struct sockaddr_storage which has a bigger buffer 304 * than 108. Also, we must terminate sun_path for strlen() in 305 * getname_kernel(). 306 */ 307 addr->__data[addr_len - offset] = 0; 308 309 /* Don't pass sunaddr->sun_path to strlen(). Otherwise, 108 will 310 * cause panic if CONFIG_FORTIFY_SOURCE=y. Let __fortify_strlen() 311 * know the actual buffer. 312 */ 313 return strlen(addr->__data) + offset + 1; 314 } 315 316 static void __unix_remove_socket(struct sock *sk) 317 { 318 sk_del_node_init(sk); 319 } 320 321 static void __unix_insert_socket(struct net *net, struct sock *sk) 322 { 323 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 324 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 325 } 326 327 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 328 struct unix_address *addr, unsigned int hash) 329 { 330 __unix_remove_socket(sk); 331 smp_store_release(&unix_sk(sk)->addr, addr); 332 333 sk->sk_hash = hash; 334 __unix_insert_socket(net, sk); 335 } 336 337 static void unix_remove_socket(struct net *net, struct sock *sk) 338 { 339 spin_lock(&net->unx.table.locks[sk->sk_hash]); 340 __unix_remove_socket(sk); 341 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 342 } 343 344 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 345 { 346 spin_lock(&net->unx.table.locks[sk->sk_hash]); 347 __unix_insert_socket(net, sk); 348 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 349 } 350 351 static void unix_insert_bsd_socket(struct sock *sk) 352 { 353 spin_lock(&bsd_socket_locks[sk->sk_hash]); 354 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 355 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 356 } 357 358 static void unix_remove_bsd_socket(struct sock *sk) 359 { 360 if (!hlist_unhashed(&sk->sk_bind_node)) { 361 spin_lock(&bsd_socket_locks[sk->sk_hash]); 362 __sk_del_bind_node(sk); 363 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 364 365 sk_node_init(&sk->sk_bind_node); 366 } 367 } 368 369 static struct sock *__unix_find_socket_byname(struct net *net, 370 struct sockaddr_un *sunname, 371 int len, unsigned int hash) 372 { 373 struct sock *s; 374 375 sk_for_each(s, &net->unx.table.buckets[hash]) { 376 struct unix_sock *u = unix_sk(s); 377 378 if (u->addr->len == len && 379 !memcmp(u->addr->name, sunname, len)) 380 return s; 381 } 382 return NULL; 383 } 384 385 static inline struct sock *unix_find_socket_byname(struct net *net, 386 struct sockaddr_un *sunname, 387 int len, unsigned int hash) 388 { 389 struct sock *s; 390 391 spin_lock(&net->unx.table.locks[hash]); 392 s = __unix_find_socket_byname(net, sunname, len, hash); 393 if (s) 394 sock_hold(s); 395 spin_unlock(&net->unx.table.locks[hash]); 396 return s; 397 } 398 399 static struct sock *unix_find_socket_byinode(struct inode *i) 400 { 401 unsigned int hash = unix_bsd_hash(i); 402 struct sock *s; 403 404 spin_lock(&bsd_socket_locks[hash]); 405 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 406 struct dentry *dentry = unix_sk(s)->path.dentry; 407 408 if (dentry && d_backing_inode(dentry) == i) { 409 sock_hold(s); 410 spin_unlock(&bsd_socket_locks[hash]); 411 return s; 412 } 413 } 414 spin_unlock(&bsd_socket_locks[hash]); 415 return NULL; 416 } 417 418 /* Support code for asymmetrically connected dgram sockets 419 * 420 * If a datagram socket is connected to a socket not itself connected 421 * to the first socket (eg, /dev/log), clients may only enqueue more 422 * messages if the present receive queue of the server socket is not 423 * "too large". This means there's a second writeability condition 424 * poll and sendmsg need to test. The dgram recv code will do a wake 425 * up on the peer_wait wait queue of a socket upon reception of a 426 * datagram which needs to be propagated to sleeping would-be writers 427 * since these might not have sent anything so far. This can't be 428 * accomplished via poll_wait because the lifetime of the server 429 * socket might be less than that of its clients if these break their 430 * association with it or if the server socket is closed while clients 431 * are still connected to it and there's no way to inform "a polling 432 * implementation" that it should let go of a certain wait queue 433 * 434 * In order to propagate a wake up, a wait_queue_entry_t of the client 435 * socket is enqueued on the peer_wait queue of the server socket 436 * whose wake function does a wake_up on the ordinary client socket 437 * wait queue. This connection is established whenever a write (or 438 * poll for write) hit the flow control condition and broken when the 439 * association to the server socket is dissolved or after a wake up 440 * was relayed. 441 */ 442 443 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 444 void *key) 445 { 446 struct unix_sock *u; 447 wait_queue_head_t *u_sleep; 448 449 u = container_of(q, struct unix_sock, peer_wake); 450 451 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 452 q); 453 u->peer_wake.private = NULL; 454 455 /* relaying can only happen while the wq still exists */ 456 u_sleep = sk_sleep(&u->sk); 457 if (u_sleep) 458 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 459 460 return 0; 461 } 462 463 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 464 { 465 struct unix_sock *u, *u_other; 466 int rc; 467 468 u = unix_sk(sk); 469 u_other = unix_sk(other); 470 rc = 0; 471 spin_lock(&u_other->peer_wait.lock); 472 473 if (!u->peer_wake.private) { 474 u->peer_wake.private = other; 475 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 476 477 rc = 1; 478 } 479 480 spin_unlock(&u_other->peer_wait.lock); 481 return rc; 482 } 483 484 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 485 struct sock *other) 486 { 487 struct unix_sock *u, *u_other; 488 489 u = unix_sk(sk); 490 u_other = unix_sk(other); 491 spin_lock(&u_other->peer_wait.lock); 492 493 if (u->peer_wake.private == other) { 494 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 495 u->peer_wake.private = NULL; 496 } 497 498 spin_unlock(&u_other->peer_wait.lock); 499 } 500 501 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 502 struct sock *other) 503 { 504 unix_dgram_peer_wake_disconnect(sk, other); 505 wake_up_interruptible_poll(sk_sleep(sk), 506 EPOLLOUT | 507 EPOLLWRNORM | 508 EPOLLWRBAND); 509 } 510 511 /* preconditions: 512 * - unix_peer(sk) == other 513 * - association is stable 514 */ 515 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 516 { 517 int connected; 518 519 connected = unix_dgram_peer_wake_connect(sk, other); 520 521 /* If other is SOCK_DEAD, we want to make sure we signal 522 * POLLOUT, such that a subsequent write() can get a 523 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 524 * to other and its full, we will hang waiting for POLLOUT. 525 */ 526 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 527 return 1; 528 529 if (connected) 530 unix_dgram_peer_wake_disconnect(sk, other); 531 532 return 0; 533 } 534 535 static int unix_writable(const struct sock *sk) 536 { 537 return sk->sk_state != TCP_LISTEN && 538 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 539 } 540 541 static void unix_write_space(struct sock *sk) 542 { 543 struct socket_wq *wq; 544 545 rcu_read_lock(); 546 if (unix_writable(sk)) { 547 wq = rcu_dereference(sk->sk_wq); 548 if (skwq_has_sleeper(wq)) 549 wake_up_interruptible_sync_poll(&wq->wait, 550 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 551 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 552 } 553 rcu_read_unlock(); 554 } 555 556 /* When dgram socket disconnects (or changes its peer), we clear its receive 557 * queue of packets arrived from previous peer. First, it allows to do 558 * flow control based only on wmem_alloc; second, sk connected to peer 559 * may receive messages only from that peer. */ 560 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 561 { 562 if (!skb_queue_empty(&sk->sk_receive_queue)) { 563 skb_queue_purge(&sk->sk_receive_queue); 564 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 565 566 /* If one link of bidirectional dgram pipe is disconnected, 567 * we signal error. Messages are lost. Do not make this, 568 * when peer was not connected to us. 569 */ 570 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 571 WRITE_ONCE(other->sk_err, ECONNRESET); 572 sk_error_report(other); 573 } 574 } 575 other->sk_state = TCP_CLOSE; 576 } 577 578 static void unix_sock_destructor(struct sock *sk) 579 { 580 struct unix_sock *u = unix_sk(sk); 581 582 skb_queue_purge(&sk->sk_receive_queue); 583 584 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 585 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 586 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 587 if (!sock_flag(sk, SOCK_DEAD)) { 588 pr_info("Attempt to release alive unix socket: %p\n", sk); 589 return; 590 } 591 592 if (u->addr) 593 unix_release_addr(u->addr); 594 595 atomic_long_dec(&unix_nr_socks); 596 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 597 #ifdef UNIX_REFCNT_DEBUG 598 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 599 atomic_long_read(&unix_nr_socks)); 600 #endif 601 } 602 603 static void unix_release_sock(struct sock *sk, int embrion) 604 { 605 struct unix_sock *u = unix_sk(sk); 606 struct sock *skpair; 607 struct sk_buff *skb; 608 struct path path; 609 int state; 610 611 unix_remove_socket(sock_net(sk), sk); 612 unix_remove_bsd_socket(sk); 613 614 /* Clear state */ 615 unix_state_lock(sk); 616 sock_orphan(sk); 617 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 618 path = u->path; 619 u->path.dentry = NULL; 620 u->path.mnt = NULL; 621 state = sk->sk_state; 622 sk->sk_state = TCP_CLOSE; 623 624 skpair = unix_peer(sk); 625 unix_peer(sk) = NULL; 626 627 unix_state_unlock(sk); 628 629 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 630 if (u->oob_skb) { 631 kfree_skb(u->oob_skb); 632 u->oob_skb = NULL; 633 } 634 #endif 635 636 wake_up_interruptible_all(&u->peer_wait); 637 638 if (skpair != NULL) { 639 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 640 unix_state_lock(skpair); 641 /* No more writes */ 642 WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK); 643 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 644 WRITE_ONCE(skpair->sk_err, ECONNRESET); 645 unix_state_unlock(skpair); 646 skpair->sk_state_change(skpair); 647 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 648 } 649 650 unix_dgram_peer_wake_disconnect(sk, skpair); 651 sock_put(skpair); /* It may now die */ 652 } 653 654 /* Try to flush out this socket. Throw out buffers at least */ 655 656 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 657 if (state == TCP_LISTEN) 658 unix_release_sock(skb->sk, 1); 659 /* passed fds are erased in the kfree_skb hook */ 660 UNIXCB(skb).consumed = skb->len; 661 kfree_skb(skb); 662 } 663 664 if (path.dentry) 665 path_put(&path); 666 667 sock_put(sk); 668 669 /* ---- Socket is dead now and most probably destroyed ---- */ 670 671 /* 672 * Fixme: BSD difference: In BSD all sockets connected to us get 673 * ECONNRESET and we die on the spot. In Linux we behave 674 * like files and pipes do and wait for the last 675 * dereference. 676 * 677 * Can't we simply set sock->err? 678 * 679 * What the above comment does talk about? --ANK(980817) 680 */ 681 682 if (READ_ONCE(unix_tot_inflight)) 683 unix_gc(); /* Garbage collect fds */ 684 } 685 686 static void init_peercred(struct sock *sk) 687 { 688 const struct cred *old_cred; 689 struct pid *old_pid; 690 691 spin_lock(&sk->sk_peer_lock); 692 old_pid = sk->sk_peer_pid; 693 old_cred = sk->sk_peer_cred; 694 sk->sk_peer_pid = get_pid(task_tgid(current)); 695 sk->sk_peer_cred = get_current_cred(); 696 spin_unlock(&sk->sk_peer_lock); 697 698 put_pid(old_pid); 699 put_cred(old_cred); 700 } 701 702 static void copy_peercred(struct sock *sk, struct sock *peersk) 703 { 704 const struct cred *old_cred; 705 struct pid *old_pid; 706 707 if (sk < peersk) { 708 spin_lock(&sk->sk_peer_lock); 709 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 710 } else { 711 spin_lock(&peersk->sk_peer_lock); 712 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 713 } 714 old_pid = sk->sk_peer_pid; 715 old_cred = sk->sk_peer_cred; 716 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 717 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 718 719 spin_unlock(&sk->sk_peer_lock); 720 spin_unlock(&peersk->sk_peer_lock); 721 722 put_pid(old_pid); 723 put_cred(old_cred); 724 } 725 726 static int unix_listen(struct socket *sock, int backlog) 727 { 728 int err; 729 struct sock *sk = sock->sk; 730 struct unix_sock *u = unix_sk(sk); 731 732 err = -EOPNOTSUPP; 733 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 734 goto out; /* Only stream/seqpacket sockets accept */ 735 err = -EINVAL; 736 if (!u->addr) 737 goto out; /* No listens on an unbound socket */ 738 unix_state_lock(sk); 739 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 740 goto out_unlock; 741 if (backlog > sk->sk_max_ack_backlog) 742 wake_up_interruptible_all(&u->peer_wait); 743 sk->sk_max_ack_backlog = backlog; 744 sk->sk_state = TCP_LISTEN; 745 /* set credentials so connect can copy them */ 746 init_peercred(sk); 747 err = 0; 748 749 out_unlock: 750 unix_state_unlock(sk); 751 out: 752 return err; 753 } 754 755 static int unix_release(struct socket *); 756 static int unix_bind(struct socket *, struct sockaddr *, int); 757 static int unix_stream_connect(struct socket *, struct sockaddr *, 758 int addr_len, int flags); 759 static int unix_socketpair(struct socket *, struct socket *); 760 static int unix_accept(struct socket *, struct socket *, int, bool); 761 static int unix_getname(struct socket *, struct sockaddr *, int); 762 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 763 static __poll_t unix_dgram_poll(struct file *, struct socket *, 764 poll_table *); 765 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 766 #ifdef CONFIG_COMPAT 767 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 768 #endif 769 static int unix_shutdown(struct socket *, int); 770 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 771 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 772 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 773 struct pipe_inode_info *, size_t size, 774 unsigned int flags); 775 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 776 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 777 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 778 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 779 static int unix_dgram_connect(struct socket *, struct sockaddr *, 780 int, int); 781 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 782 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 783 int); 784 785 #ifdef CONFIG_PROC_FS 786 static int unix_count_nr_fds(struct sock *sk) 787 { 788 struct sk_buff *skb; 789 struct unix_sock *u; 790 int nr_fds = 0; 791 792 spin_lock(&sk->sk_receive_queue.lock); 793 skb = skb_peek(&sk->sk_receive_queue); 794 while (skb) { 795 u = unix_sk(skb->sk); 796 nr_fds += atomic_read(&u->scm_stat.nr_fds); 797 skb = skb_peek_next(skb, &sk->sk_receive_queue); 798 } 799 spin_unlock(&sk->sk_receive_queue.lock); 800 801 return nr_fds; 802 } 803 804 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 805 { 806 struct sock *sk = sock->sk; 807 unsigned char s_state; 808 struct unix_sock *u; 809 int nr_fds = 0; 810 811 if (sk) { 812 s_state = READ_ONCE(sk->sk_state); 813 u = unix_sk(sk); 814 815 /* SOCK_STREAM and SOCK_SEQPACKET sockets never change their 816 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN. 817 * SOCK_DGRAM is ordinary. So, no lock is needed. 818 */ 819 if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED) 820 nr_fds = atomic_read(&u->scm_stat.nr_fds); 821 else if (s_state == TCP_LISTEN) 822 nr_fds = unix_count_nr_fds(sk); 823 824 seq_printf(m, "scm_fds: %u\n", nr_fds); 825 } 826 } 827 #else 828 #define unix_show_fdinfo NULL 829 #endif 830 831 static const struct proto_ops unix_stream_ops = { 832 .family = PF_UNIX, 833 .owner = THIS_MODULE, 834 .release = unix_release, 835 .bind = unix_bind, 836 .connect = unix_stream_connect, 837 .socketpair = unix_socketpair, 838 .accept = unix_accept, 839 .getname = unix_getname, 840 .poll = unix_poll, 841 .ioctl = unix_ioctl, 842 #ifdef CONFIG_COMPAT 843 .compat_ioctl = unix_compat_ioctl, 844 #endif 845 .listen = unix_listen, 846 .shutdown = unix_shutdown, 847 .sendmsg = unix_stream_sendmsg, 848 .recvmsg = unix_stream_recvmsg, 849 .read_skb = unix_stream_read_skb, 850 .mmap = sock_no_mmap, 851 .splice_read = unix_stream_splice_read, 852 .set_peek_off = sk_set_peek_off, 853 .show_fdinfo = unix_show_fdinfo, 854 }; 855 856 static const struct proto_ops unix_dgram_ops = { 857 .family = PF_UNIX, 858 .owner = THIS_MODULE, 859 .release = unix_release, 860 .bind = unix_bind, 861 .connect = unix_dgram_connect, 862 .socketpair = unix_socketpair, 863 .accept = sock_no_accept, 864 .getname = unix_getname, 865 .poll = unix_dgram_poll, 866 .ioctl = unix_ioctl, 867 #ifdef CONFIG_COMPAT 868 .compat_ioctl = unix_compat_ioctl, 869 #endif 870 .listen = sock_no_listen, 871 .shutdown = unix_shutdown, 872 .sendmsg = unix_dgram_sendmsg, 873 .read_skb = unix_read_skb, 874 .recvmsg = unix_dgram_recvmsg, 875 .mmap = sock_no_mmap, 876 .set_peek_off = sk_set_peek_off, 877 .show_fdinfo = unix_show_fdinfo, 878 }; 879 880 static const struct proto_ops unix_seqpacket_ops = { 881 .family = PF_UNIX, 882 .owner = THIS_MODULE, 883 .release = unix_release, 884 .bind = unix_bind, 885 .connect = unix_stream_connect, 886 .socketpair = unix_socketpair, 887 .accept = unix_accept, 888 .getname = unix_getname, 889 .poll = unix_dgram_poll, 890 .ioctl = unix_ioctl, 891 #ifdef CONFIG_COMPAT 892 .compat_ioctl = unix_compat_ioctl, 893 #endif 894 .listen = unix_listen, 895 .shutdown = unix_shutdown, 896 .sendmsg = unix_seqpacket_sendmsg, 897 .recvmsg = unix_seqpacket_recvmsg, 898 .mmap = sock_no_mmap, 899 .set_peek_off = sk_set_peek_off, 900 .show_fdinfo = unix_show_fdinfo, 901 }; 902 903 static void unix_close(struct sock *sk, long timeout) 904 { 905 /* Nothing to do here, unix socket does not need a ->close(). 906 * This is merely for sockmap. 907 */ 908 } 909 910 static void unix_unhash(struct sock *sk) 911 { 912 /* Nothing to do here, unix socket does not need a ->unhash(). 913 * This is merely for sockmap. 914 */ 915 } 916 917 static bool unix_bpf_bypass_getsockopt(int level, int optname) 918 { 919 if (level == SOL_SOCKET) { 920 switch (optname) { 921 case SO_PEERPIDFD: 922 return true; 923 default: 924 return false; 925 } 926 } 927 928 return false; 929 } 930 931 struct proto unix_dgram_proto = { 932 .name = "UNIX", 933 .owner = THIS_MODULE, 934 .obj_size = sizeof(struct unix_sock), 935 .close = unix_close, 936 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 937 #ifdef CONFIG_BPF_SYSCALL 938 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 939 #endif 940 }; 941 942 struct proto unix_stream_proto = { 943 .name = "UNIX-STREAM", 944 .owner = THIS_MODULE, 945 .obj_size = sizeof(struct unix_sock), 946 .close = unix_close, 947 .unhash = unix_unhash, 948 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 949 #ifdef CONFIG_BPF_SYSCALL 950 .psock_update_sk_prot = unix_stream_bpf_update_proto, 951 #endif 952 }; 953 954 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 955 { 956 struct unix_sock *u; 957 struct sock *sk; 958 int err; 959 960 atomic_long_inc(&unix_nr_socks); 961 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 962 err = -ENFILE; 963 goto err; 964 } 965 966 if (type == SOCK_STREAM) 967 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 968 else /*dgram and seqpacket */ 969 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 970 971 if (!sk) { 972 err = -ENOMEM; 973 goto err; 974 } 975 976 sock_init_data(sock, sk); 977 978 sk->sk_hash = unix_unbound_hash(sk); 979 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 980 sk->sk_write_space = unix_write_space; 981 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 982 sk->sk_destruct = unix_sock_destructor; 983 u = unix_sk(sk); 984 u->path.dentry = NULL; 985 u->path.mnt = NULL; 986 spin_lock_init(&u->lock); 987 atomic_long_set(&u->inflight, 0); 988 INIT_LIST_HEAD(&u->link); 989 mutex_init(&u->iolock); /* single task reading lock */ 990 mutex_init(&u->bindlock); /* single task binding lock */ 991 init_waitqueue_head(&u->peer_wait); 992 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 993 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 994 unix_insert_unbound_socket(net, sk); 995 996 sock_prot_inuse_add(net, sk->sk_prot, 1); 997 998 return sk; 999 1000 err: 1001 atomic_long_dec(&unix_nr_socks); 1002 return ERR_PTR(err); 1003 } 1004 1005 static int unix_create(struct net *net, struct socket *sock, int protocol, 1006 int kern) 1007 { 1008 struct sock *sk; 1009 1010 if (protocol && protocol != PF_UNIX) 1011 return -EPROTONOSUPPORT; 1012 1013 sock->state = SS_UNCONNECTED; 1014 1015 switch (sock->type) { 1016 case SOCK_STREAM: 1017 sock->ops = &unix_stream_ops; 1018 break; 1019 /* 1020 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1021 * nothing uses it. 1022 */ 1023 case SOCK_RAW: 1024 sock->type = SOCK_DGRAM; 1025 fallthrough; 1026 case SOCK_DGRAM: 1027 sock->ops = &unix_dgram_ops; 1028 break; 1029 case SOCK_SEQPACKET: 1030 sock->ops = &unix_seqpacket_ops; 1031 break; 1032 default: 1033 return -ESOCKTNOSUPPORT; 1034 } 1035 1036 sk = unix_create1(net, sock, kern, sock->type); 1037 if (IS_ERR(sk)) 1038 return PTR_ERR(sk); 1039 1040 return 0; 1041 } 1042 1043 static int unix_release(struct socket *sock) 1044 { 1045 struct sock *sk = sock->sk; 1046 1047 if (!sk) 1048 return 0; 1049 1050 sk->sk_prot->close(sk, 0); 1051 unix_release_sock(sk, 0); 1052 sock->sk = NULL; 1053 1054 return 0; 1055 } 1056 1057 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1058 int type) 1059 { 1060 struct inode *inode; 1061 struct path path; 1062 struct sock *sk; 1063 int err; 1064 1065 unix_mkname_bsd(sunaddr, addr_len); 1066 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1067 if (err) 1068 goto fail; 1069 1070 err = path_permission(&path, MAY_WRITE); 1071 if (err) 1072 goto path_put; 1073 1074 err = -ECONNREFUSED; 1075 inode = d_backing_inode(path.dentry); 1076 if (!S_ISSOCK(inode->i_mode)) 1077 goto path_put; 1078 1079 sk = unix_find_socket_byinode(inode); 1080 if (!sk) 1081 goto path_put; 1082 1083 err = -EPROTOTYPE; 1084 if (sk->sk_type == type) 1085 touch_atime(&path); 1086 else 1087 goto sock_put; 1088 1089 path_put(&path); 1090 1091 return sk; 1092 1093 sock_put: 1094 sock_put(sk); 1095 path_put: 1096 path_put(&path); 1097 fail: 1098 return ERR_PTR(err); 1099 } 1100 1101 static struct sock *unix_find_abstract(struct net *net, 1102 struct sockaddr_un *sunaddr, 1103 int addr_len, int type) 1104 { 1105 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1106 struct dentry *dentry; 1107 struct sock *sk; 1108 1109 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1110 if (!sk) 1111 return ERR_PTR(-ECONNREFUSED); 1112 1113 dentry = unix_sk(sk)->path.dentry; 1114 if (dentry) 1115 touch_atime(&unix_sk(sk)->path); 1116 1117 return sk; 1118 } 1119 1120 static struct sock *unix_find_other(struct net *net, 1121 struct sockaddr_un *sunaddr, 1122 int addr_len, int type) 1123 { 1124 struct sock *sk; 1125 1126 if (sunaddr->sun_path[0]) 1127 sk = unix_find_bsd(sunaddr, addr_len, type); 1128 else 1129 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1130 1131 return sk; 1132 } 1133 1134 static int unix_autobind(struct sock *sk) 1135 { 1136 unsigned int new_hash, old_hash = sk->sk_hash; 1137 struct unix_sock *u = unix_sk(sk); 1138 struct net *net = sock_net(sk); 1139 struct unix_address *addr; 1140 u32 lastnum, ordernum; 1141 int err; 1142 1143 err = mutex_lock_interruptible(&u->bindlock); 1144 if (err) 1145 return err; 1146 1147 if (u->addr) 1148 goto out; 1149 1150 err = -ENOMEM; 1151 addr = kzalloc(sizeof(*addr) + 1152 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1153 if (!addr) 1154 goto out; 1155 1156 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1157 addr->name->sun_family = AF_UNIX; 1158 refcount_set(&addr->refcnt, 1); 1159 1160 ordernum = get_random_u32(); 1161 lastnum = ordernum & 0xFFFFF; 1162 retry: 1163 ordernum = (ordernum + 1) & 0xFFFFF; 1164 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1165 1166 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1167 unix_table_double_lock(net, old_hash, new_hash); 1168 1169 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1170 unix_table_double_unlock(net, old_hash, new_hash); 1171 1172 /* __unix_find_socket_byname() may take long time if many names 1173 * are already in use. 1174 */ 1175 cond_resched(); 1176 1177 if (ordernum == lastnum) { 1178 /* Give up if all names seems to be in use. */ 1179 err = -ENOSPC; 1180 unix_release_addr(addr); 1181 goto out; 1182 } 1183 1184 goto retry; 1185 } 1186 1187 __unix_set_addr_hash(net, sk, addr, new_hash); 1188 unix_table_double_unlock(net, old_hash, new_hash); 1189 err = 0; 1190 1191 out: mutex_unlock(&u->bindlock); 1192 return err; 1193 } 1194 1195 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1196 int addr_len) 1197 { 1198 umode_t mode = S_IFSOCK | 1199 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1200 unsigned int new_hash, old_hash = sk->sk_hash; 1201 struct unix_sock *u = unix_sk(sk); 1202 struct net *net = sock_net(sk); 1203 struct mnt_idmap *idmap; 1204 struct unix_address *addr; 1205 struct dentry *dentry; 1206 struct path parent; 1207 int err; 1208 1209 addr_len = unix_mkname_bsd(sunaddr, addr_len); 1210 addr = unix_create_addr(sunaddr, addr_len); 1211 if (!addr) 1212 return -ENOMEM; 1213 1214 /* 1215 * Get the parent directory, calculate the hash for last 1216 * component. 1217 */ 1218 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1219 if (IS_ERR(dentry)) { 1220 err = PTR_ERR(dentry); 1221 goto out; 1222 } 1223 1224 /* 1225 * All right, let's create it. 1226 */ 1227 idmap = mnt_idmap(parent.mnt); 1228 err = security_path_mknod(&parent, dentry, mode, 0); 1229 if (!err) 1230 err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0); 1231 if (err) 1232 goto out_path; 1233 err = mutex_lock_interruptible(&u->bindlock); 1234 if (err) 1235 goto out_unlink; 1236 if (u->addr) 1237 goto out_unlock; 1238 1239 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1240 unix_table_double_lock(net, old_hash, new_hash); 1241 u->path.mnt = mntget(parent.mnt); 1242 u->path.dentry = dget(dentry); 1243 __unix_set_addr_hash(net, sk, addr, new_hash); 1244 unix_table_double_unlock(net, old_hash, new_hash); 1245 unix_insert_bsd_socket(sk); 1246 mutex_unlock(&u->bindlock); 1247 done_path_create(&parent, dentry); 1248 return 0; 1249 1250 out_unlock: 1251 mutex_unlock(&u->bindlock); 1252 err = -EINVAL; 1253 out_unlink: 1254 /* failed after successful mknod? unlink what we'd created... */ 1255 vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL); 1256 out_path: 1257 done_path_create(&parent, dentry); 1258 out: 1259 unix_release_addr(addr); 1260 return err == -EEXIST ? -EADDRINUSE : err; 1261 } 1262 1263 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1264 int addr_len) 1265 { 1266 unsigned int new_hash, old_hash = sk->sk_hash; 1267 struct unix_sock *u = unix_sk(sk); 1268 struct net *net = sock_net(sk); 1269 struct unix_address *addr; 1270 int err; 1271 1272 addr = unix_create_addr(sunaddr, addr_len); 1273 if (!addr) 1274 return -ENOMEM; 1275 1276 err = mutex_lock_interruptible(&u->bindlock); 1277 if (err) 1278 goto out; 1279 1280 if (u->addr) { 1281 err = -EINVAL; 1282 goto out_mutex; 1283 } 1284 1285 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1286 unix_table_double_lock(net, old_hash, new_hash); 1287 1288 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1289 goto out_spin; 1290 1291 __unix_set_addr_hash(net, sk, addr, new_hash); 1292 unix_table_double_unlock(net, old_hash, new_hash); 1293 mutex_unlock(&u->bindlock); 1294 return 0; 1295 1296 out_spin: 1297 unix_table_double_unlock(net, old_hash, new_hash); 1298 err = -EADDRINUSE; 1299 out_mutex: 1300 mutex_unlock(&u->bindlock); 1301 out: 1302 unix_release_addr(addr); 1303 return err; 1304 } 1305 1306 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1307 { 1308 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1309 struct sock *sk = sock->sk; 1310 int err; 1311 1312 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1313 sunaddr->sun_family == AF_UNIX) 1314 return unix_autobind(sk); 1315 1316 err = unix_validate_addr(sunaddr, addr_len); 1317 if (err) 1318 return err; 1319 1320 if (sunaddr->sun_path[0]) 1321 err = unix_bind_bsd(sk, sunaddr, addr_len); 1322 else 1323 err = unix_bind_abstract(sk, sunaddr, addr_len); 1324 1325 return err; 1326 } 1327 1328 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1329 { 1330 if (unlikely(sk1 == sk2) || !sk2) { 1331 unix_state_lock(sk1); 1332 return; 1333 } 1334 if (sk1 > sk2) 1335 swap(sk1, sk2); 1336 1337 unix_state_lock(sk1); 1338 unix_state_lock_nested(sk2, U_LOCK_SECOND); 1339 } 1340 1341 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1342 { 1343 if (unlikely(sk1 == sk2) || !sk2) { 1344 unix_state_unlock(sk1); 1345 return; 1346 } 1347 unix_state_unlock(sk1); 1348 unix_state_unlock(sk2); 1349 } 1350 1351 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1352 int alen, int flags) 1353 { 1354 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1355 struct sock *sk = sock->sk; 1356 struct sock *other; 1357 int err; 1358 1359 err = -EINVAL; 1360 if (alen < offsetofend(struct sockaddr, sa_family)) 1361 goto out; 1362 1363 if (addr->sa_family != AF_UNSPEC) { 1364 err = unix_validate_addr(sunaddr, alen); 1365 if (err) 1366 goto out; 1367 1368 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, addr, &alen); 1369 if (err) 1370 goto out; 1371 1372 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1373 test_bit(SOCK_PASSPIDFD, &sock->flags)) && 1374 !unix_sk(sk)->addr) { 1375 err = unix_autobind(sk); 1376 if (err) 1377 goto out; 1378 } 1379 1380 restart: 1381 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1382 if (IS_ERR(other)) { 1383 err = PTR_ERR(other); 1384 goto out; 1385 } 1386 1387 unix_state_double_lock(sk, other); 1388 1389 /* Apparently VFS overslept socket death. Retry. */ 1390 if (sock_flag(other, SOCK_DEAD)) { 1391 unix_state_double_unlock(sk, other); 1392 sock_put(other); 1393 goto restart; 1394 } 1395 1396 err = -EPERM; 1397 if (!unix_may_send(sk, other)) 1398 goto out_unlock; 1399 1400 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1401 if (err) 1402 goto out_unlock; 1403 1404 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1405 } else { 1406 /* 1407 * 1003.1g breaking connected state with AF_UNSPEC 1408 */ 1409 other = NULL; 1410 unix_state_double_lock(sk, other); 1411 } 1412 1413 /* 1414 * If it was connected, reconnect. 1415 */ 1416 if (unix_peer(sk)) { 1417 struct sock *old_peer = unix_peer(sk); 1418 1419 unix_peer(sk) = other; 1420 if (!other) 1421 sk->sk_state = TCP_CLOSE; 1422 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1423 1424 unix_state_double_unlock(sk, other); 1425 1426 if (other != old_peer) 1427 unix_dgram_disconnected(sk, old_peer); 1428 sock_put(old_peer); 1429 } else { 1430 unix_peer(sk) = other; 1431 unix_state_double_unlock(sk, other); 1432 } 1433 1434 return 0; 1435 1436 out_unlock: 1437 unix_state_double_unlock(sk, other); 1438 sock_put(other); 1439 out: 1440 return err; 1441 } 1442 1443 static long unix_wait_for_peer(struct sock *other, long timeo) 1444 __releases(&unix_sk(other)->lock) 1445 { 1446 struct unix_sock *u = unix_sk(other); 1447 int sched; 1448 DEFINE_WAIT(wait); 1449 1450 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1451 1452 sched = !sock_flag(other, SOCK_DEAD) && 1453 !(other->sk_shutdown & RCV_SHUTDOWN) && 1454 unix_recvq_full_lockless(other); 1455 1456 unix_state_unlock(other); 1457 1458 if (sched) 1459 timeo = schedule_timeout(timeo); 1460 1461 finish_wait(&u->peer_wait, &wait); 1462 return timeo; 1463 } 1464 1465 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1466 int addr_len, int flags) 1467 { 1468 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1469 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1470 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1471 struct net *net = sock_net(sk); 1472 struct sk_buff *skb = NULL; 1473 long timeo; 1474 int err; 1475 int st; 1476 1477 err = unix_validate_addr(sunaddr, addr_len); 1478 if (err) 1479 goto out; 1480 1481 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, uaddr, &addr_len); 1482 if (err) 1483 goto out; 1484 1485 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1486 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1487 err = unix_autobind(sk); 1488 if (err) 1489 goto out; 1490 } 1491 1492 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1493 1494 /* First of all allocate resources. 1495 If we will make it after state is locked, 1496 we will have to recheck all again in any case. 1497 */ 1498 1499 /* create new sock for complete connection */ 1500 newsk = unix_create1(net, NULL, 0, sock->type); 1501 if (IS_ERR(newsk)) { 1502 err = PTR_ERR(newsk); 1503 newsk = NULL; 1504 goto out; 1505 } 1506 1507 err = -ENOMEM; 1508 1509 /* Allocate skb for sending to listening sock */ 1510 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1511 if (skb == NULL) 1512 goto out; 1513 1514 restart: 1515 /* Find listening sock. */ 1516 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1517 if (IS_ERR(other)) { 1518 err = PTR_ERR(other); 1519 other = NULL; 1520 goto out; 1521 } 1522 1523 /* Latch state of peer */ 1524 unix_state_lock(other); 1525 1526 /* Apparently VFS overslept socket death. Retry. */ 1527 if (sock_flag(other, SOCK_DEAD)) { 1528 unix_state_unlock(other); 1529 sock_put(other); 1530 goto restart; 1531 } 1532 1533 err = -ECONNREFUSED; 1534 if (other->sk_state != TCP_LISTEN) 1535 goto out_unlock; 1536 if (other->sk_shutdown & RCV_SHUTDOWN) 1537 goto out_unlock; 1538 1539 if (unix_recvq_full(other)) { 1540 err = -EAGAIN; 1541 if (!timeo) 1542 goto out_unlock; 1543 1544 timeo = unix_wait_for_peer(other, timeo); 1545 1546 err = sock_intr_errno(timeo); 1547 if (signal_pending(current)) 1548 goto out; 1549 sock_put(other); 1550 goto restart; 1551 } 1552 1553 /* Latch our state. 1554 1555 It is tricky place. We need to grab our state lock and cannot 1556 drop lock on peer. It is dangerous because deadlock is 1557 possible. Connect to self case and simultaneous 1558 attempt to connect are eliminated by checking socket 1559 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1560 check this before attempt to grab lock. 1561 1562 Well, and we have to recheck the state after socket locked. 1563 */ 1564 st = sk->sk_state; 1565 1566 switch (st) { 1567 case TCP_CLOSE: 1568 /* This is ok... continue with connect */ 1569 break; 1570 case TCP_ESTABLISHED: 1571 /* Socket is already connected */ 1572 err = -EISCONN; 1573 goto out_unlock; 1574 default: 1575 err = -EINVAL; 1576 goto out_unlock; 1577 } 1578 1579 unix_state_lock_nested(sk, U_LOCK_SECOND); 1580 1581 if (sk->sk_state != st) { 1582 unix_state_unlock(sk); 1583 unix_state_unlock(other); 1584 sock_put(other); 1585 goto restart; 1586 } 1587 1588 err = security_unix_stream_connect(sk, other, newsk); 1589 if (err) { 1590 unix_state_unlock(sk); 1591 goto out_unlock; 1592 } 1593 1594 /* The way is open! Fastly set all the necessary fields... */ 1595 1596 sock_hold(sk); 1597 unix_peer(newsk) = sk; 1598 newsk->sk_state = TCP_ESTABLISHED; 1599 newsk->sk_type = sk->sk_type; 1600 init_peercred(newsk); 1601 newu = unix_sk(newsk); 1602 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1603 otheru = unix_sk(other); 1604 1605 /* copy address information from listening to new sock 1606 * 1607 * The contents of *(otheru->addr) and otheru->path 1608 * are seen fully set up here, since we have found 1609 * otheru in hash under its lock. Insertion into the 1610 * hash chain we'd found it in had been done in an 1611 * earlier critical area protected by the chain's lock, 1612 * the same one where we'd set *(otheru->addr) contents, 1613 * as well as otheru->path and otheru->addr itself. 1614 * 1615 * Using smp_store_release() here to set newu->addr 1616 * is enough to make those stores, as well as stores 1617 * to newu->path visible to anyone who gets newu->addr 1618 * by smp_load_acquire(). IOW, the same warranties 1619 * as for unix_sock instances bound in unix_bind() or 1620 * in unix_autobind(). 1621 */ 1622 if (otheru->path.dentry) { 1623 path_get(&otheru->path); 1624 newu->path = otheru->path; 1625 } 1626 refcount_inc(&otheru->addr->refcnt); 1627 smp_store_release(&newu->addr, otheru->addr); 1628 1629 /* Set credentials */ 1630 copy_peercred(sk, other); 1631 1632 sock->state = SS_CONNECTED; 1633 sk->sk_state = TCP_ESTABLISHED; 1634 sock_hold(newsk); 1635 1636 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1637 unix_peer(sk) = newsk; 1638 1639 unix_state_unlock(sk); 1640 1641 /* take ten and send info to listening sock */ 1642 spin_lock(&other->sk_receive_queue.lock); 1643 __skb_queue_tail(&other->sk_receive_queue, skb); 1644 spin_unlock(&other->sk_receive_queue.lock); 1645 unix_state_unlock(other); 1646 other->sk_data_ready(other); 1647 sock_put(other); 1648 return 0; 1649 1650 out_unlock: 1651 if (other) 1652 unix_state_unlock(other); 1653 1654 out: 1655 kfree_skb(skb); 1656 if (newsk) 1657 unix_release_sock(newsk, 0); 1658 if (other) 1659 sock_put(other); 1660 return err; 1661 } 1662 1663 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1664 { 1665 struct sock *ska = socka->sk, *skb = sockb->sk; 1666 1667 /* Join our sockets back to back */ 1668 sock_hold(ska); 1669 sock_hold(skb); 1670 unix_peer(ska) = skb; 1671 unix_peer(skb) = ska; 1672 init_peercred(ska); 1673 init_peercred(skb); 1674 1675 ska->sk_state = TCP_ESTABLISHED; 1676 skb->sk_state = TCP_ESTABLISHED; 1677 socka->state = SS_CONNECTED; 1678 sockb->state = SS_CONNECTED; 1679 return 0; 1680 } 1681 1682 static void unix_sock_inherit_flags(const struct socket *old, 1683 struct socket *new) 1684 { 1685 if (test_bit(SOCK_PASSCRED, &old->flags)) 1686 set_bit(SOCK_PASSCRED, &new->flags); 1687 if (test_bit(SOCK_PASSPIDFD, &old->flags)) 1688 set_bit(SOCK_PASSPIDFD, &new->flags); 1689 if (test_bit(SOCK_PASSSEC, &old->flags)) 1690 set_bit(SOCK_PASSSEC, &new->flags); 1691 } 1692 1693 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1694 bool kern) 1695 { 1696 struct sock *sk = sock->sk; 1697 struct sock *tsk; 1698 struct sk_buff *skb; 1699 int err; 1700 1701 err = -EOPNOTSUPP; 1702 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1703 goto out; 1704 1705 err = -EINVAL; 1706 if (sk->sk_state != TCP_LISTEN) 1707 goto out; 1708 1709 /* If socket state is TCP_LISTEN it cannot change (for now...), 1710 * so that no locks are necessary. 1711 */ 1712 1713 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1714 &err); 1715 if (!skb) { 1716 /* This means receive shutdown. */ 1717 if (err == 0) 1718 err = -EINVAL; 1719 goto out; 1720 } 1721 1722 tsk = skb->sk; 1723 skb_free_datagram(sk, skb); 1724 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1725 1726 /* attach accepted sock to socket */ 1727 unix_state_lock(tsk); 1728 newsock->state = SS_CONNECTED; 1729 unix_sock_inherit_flags(sock, newsock); 1730 sock_graft(tsk, newsock); 1731 unix_state_unlock(tsk); 1732 return 0; 1733 1734 out: 1735 return err; 1736 } 1737 1738 1739 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1740 { 1741 struct sock *sk = sock->sk; 1742 struct unix_address *addr; 1743 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1744 int err = 0; 1745 1746 if (peer) { 1747 sk = unix_peer_get(sk); 1748 1749 err = -ENOTCONN; 1750 if (!sk) 1751 goto out; 1752 err = 0; 1753 } else { 1754 sock_hold(sk); 1755 } 1756 1757 addr = smp_load_acquire(&unix_sk(sk)->addr); 1758 if (!addr) { 1759 sunaddr->sun_family = AF_UNIX; 1760 sunaddr->sun_path[0] = 0; 1761 err = offsetof(struct sockaddr_un, sun_path); 1762 } else { 1763 err = addr->len; 1764 memcpy(sunaddr, addr->name, addr->len); 1765 1766 if (peer) 1767 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1768 CGROUP_UNIX_GETPEERNAME); 1769 else 1770 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1771 CGROUP_UNIX_GETSOCKNAME); 1772 } 1773 sock_put(sk); 1774 out: 1775 return err; 1776 } 1777 1778 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1779 { 1780 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1781 1782 /* 1783 * Garbage collection of unix sockets starts by selecting a set of 1784 * candidate sockets which have reference only from being in flight 1785 * (total_refs == inflight_refs). This condition is checked once during 1786 * the candidate collection phase, and candidates are marked as such, so 1787 * that non-candidates can later be ignored. While inflight_refs is 1788 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1789 * is an instantaneous decision. 1790 * 1791 * Once a candidate, however, the socket must not be reinstalled into a 1792 * file descriptor while the garbage collection is in progress. 1793 * 1794 * If the above conditions are met, then the directed graph of 1795 * candidates (*) does not change while unix_gc_lock is held. 1796 * 1797 * Any operations that changes the file count through file descriptors 1798 * (dup, close, sendmsg) does not change the graph since candidates are 1799 * not installed in fds. 1800 * 1801 * Dequeing a candidate via recvmsg would install it into an fd, but 1802 * that takes unix_gc_lock to decrement the inflight count, so it's 1803 * serialized with garbage collection. 1804 * 1805 * MSG_PEEK is special in that it does not change the inflight count, 1806 * yet does install the socket into an fd. The following lock/unlock 1807 * pair is to ensure serialization with garbage collection. It must be 1808 * done between incrementing the file count and installing the file into 1809 * an fd. 1810 * 1811 * If garbage collection starts after the barrier provided by the 1812 * lock/unlock, then it will see the elevated refcount and not mark this 1813 * as a candidate. If a garbage collection is already in progress 1814 * before the file count was incremented, then the lock/unlock pair will 1815 * ensure that garbage collection is finished before progressing to 1816 * installing the fd. 1817 * 1818 * (*) A -> B where B is on the queue of A or B is on the queue of C 1819 * which is on the queue of listening socket A. 1820 */ 1821 spin_lock(&unix_gc_lock); 1822 spin_unlock(&unix_gc_lock); 1823 } 1824 1825 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1826 { 1827 int err = 0; 1828 1829 UNIXCB(skb).pid = get_pid(scm->pid); 1830 UNIXCB(skb).uid = scm->creds.uid; 1831 UNIXCB(skb).gid = scm->creds.gid; 1832 UNIXCB(skb).fp = NULL; 1833 unix_get_secdata(scm, skb); 1834 if (scm->fp && send_fds) 1835 err = unix_attach_fds(scm, skb); 1836 1837 skb->destructor = unix_destruct_scm; 1838 return err; 1839 } 1840 1841 static bool unix_passcred_enabled(const struct socket *sock, 1842 const struct sock *other) 1843 { 1844 return test_bit(SOCK_PASSCRED, &sock->flags) || 1845 test_bit(SOCK_PASSPIDFD, &sock->flags) || 1846 !other->sk_socket || 1847 test_bit(SOCK_PASSCRED, &other->sk_socket->flags) || 1848 test_bit(SOCK_PASSPIDFD, &other->sk_socket->flags); 1849 } 1850 1851 /* 1852 * Some apps rely on write() giving SCM_CREDENTIALS 1853 * We include credentials if source or destination socket 1854 * asserted SOCK_PASSCRED. 1855 */ 1856 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1857 const struct sock *other) 1858 { 1859 if (UNIXCB(skb).pid) 1860 return; 1861 if (unix_passcred_enabled(sock, other)) { 1862 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1863 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1864 } 1865 } 1866 1867 static bool unix_skb_scm_eq(struct sk_buff *skb, 1868 struct scm_cookie *scm) 1869 { 1870 return UNIXCB(skb).pid == scm->pid && 1871 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1872 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1873 unix_secdata_eq(scm, skb); 1874 } 1875 1876 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1877 { 1878 struct scm_fp_list *fp = UNIXCB(skb).fp; 1879 struct unix_sock *u = unix_sk(sk); 1880 1881 if (unlikely(fp && fp->count)) 1882 atomic_add(fp->count, &u->scm_stat.nr_fds); 1883 } 1884 1885 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1886 { 1887 struct scm_fp_list *fp = UNIXCB(skb).fp; 1888 struct unix_sock *u = unix_sk(sk); 1889 1890 if (unlikely(fp && fp->count)) 1891 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1892 } 1893 1894 /* 1895 * Send AF_UNIX data. 1896 */ 1897 1898 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1899 size_t len) 1900 { 1901 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1902 struct sock *sk = sock->sk, *other = NULL; 1903 struct unix_sock *u = unix_sk(sk); 1904 struct scm_cookie scm; 1905 struct sk_buff *skb; 1906 int data_len = 0; 1907 int sk_locked; 1908 long timeo; 1909 int err; 1910 1911 wait_for_unix_gc(); 1912 err = scm_send(sock, msg, &scm, false); 1913 if (err < 0) 1914 return err; 1915 1916 err = -EOPNOTSUPP; 1917 if (msg->msg_flags&MSG_OOB) 1918 goto out; 1919 1920 if (msg->msg_namelen) { 1921 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1922 if (err) 1923 goto out; 1924 1925 err = BPF_CGROUP_RUN_PROG_UNIX_SENDMSG_LOCK(sk, 1926 msg->msg_name, 1927 &msg->msg_namelen, 1928 NULL); 1929 if (err) 1930 goto out; 1931 } else { 1932 sunaddr = NULL; 1933 err = -ENOTCONN; 1934 other = unix_peer_get(sk); 1935 if (!other) 1936 goto out; 1937 } 1938 1939 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1940 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1941 err = unix_autobind(sk); 1942 if (err) 1943 goto out; 1944 } 1945 1946 err = -EMSGSIZE; 1947 if (len > sk->sk_sndbuf - 32) 1948 goto out; 1949 1950 if (len > SKB_MAX_ALLOC) { 1951 data_len = min_t(size_t, 1952 len - SKB_MAX_ALLOC, 1953 MAX_SKB_FRAGS * PAGE_SIZE); 1954 data_len = PAGE_ALIGN(data_len); 1955 1956 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1957 } 1958 1959 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1960 msg->msg_flags & MSG_DONTWAIT, &err, 1961 PAGE_ALLOC_COSTLY_ORDER); 1962 if (skb == NULL) 1963 goto out; 1964 1965 err = unix_scm_to_skb(&scm, skb, true); 1966 if (err < 0) 1967 goto out_free; 1968 1969 skb_put(skb, len - data_len); 1970 skb->data_len = data_len; 1971 skb->len = len; 1972 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1973 if (err) 1974 goto out_free; 1975 1976 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1977 1978 restart: 1979 if (!other) { 1980 err = -ECONNRESET; 1981 if (sunaddr == NULL) 1982 goto out_free; 1983 1984 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 1985 sk->sk_type); 1986 if (IS_ERR(other)) { 1987 err = PTR_ERR(other); 1988 other = NULL; 1989 goto out_free; 1990 } 1991 } 1992 1993 if (sk_filter(other, skb) < 0) { 1994 /* Toss the packet but do not return any error to the sender */ 1995 err = len; 1996 goto out_free; 1997 } 1998 1999 sk_locked = 0; 2000 unix_state_lock(other); 2001 restart_locked: 2002 err = -EPERM; 2003 if (!unix_may_send(sk, other)) 2004 goto out_unlock; 2005 2006 if (unlikely(sock_flag(other, SOCK_DEAD))) { 2007 /* 2008 * Check with 1003.1g - what should 2009 * datagram error 2010 */ 2011 unix_state_unlock(other); 2012 sock_put(other); 2013 2014 if (!sk_locked) 2015 unix_state_lock(sk); 2016 2017 err = 0; 2018 if (sk->sk_type == SOCK_SEQPACKET) { 2019 /* We are here only when racing with unix_release_sock() 2020 * is clearing @other. Never change state to TCP_CLOSE 2021 * unlike SOCK_DGRAM wants. 2022 */ 2023 unix_state_unlock(sk); 2024 err = -EPIPE; 2025 } else if (unix_peer(sk) == other) { 2026 unix_peer(sk) = NULL; 2027 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 2028 2029 sk->sk_state = TCP_CLOSE; 2030 unix_state_unlock(sk); 2031 2032 unix_dgram_disconnected(sk, other); 2033 sock_put(other); 2034 err = -ECONNREFUSED; 2035 } else { 2036 unix_state_unlock(sk); 2037 } 2038 2039 other = NULL; 2040 if (err) 2041 goto out_free; 2042 goto restart; 2043 } 2044 2045 err = -EPIPE; 2046 if (other->sk_shutdown & RCV_SHUTDOWN) 2047 goto out_unlock; 2048 2049 if (sk->sk_type != SOCK_SEQPACKET) { 2050 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2051 if (err) 2052 goto out_unlock; 2053 } 2054 2055 /* other == sk && unix_peer(other) != sk if 2056 * - unix_peer(sk) == NULL, destination address bound to sk 2057 * - unix_peer(sk) == sk by time of get but disconnected before lock 2058 */ 2059 if (other != sk && 2060 unlikely(unix_peer(other) != sk && 2061 unix_recvq_full_lockless(other))) { 2062 if (timeo) { 2063 timeo = unix_wait_for_peer(other, timeo); 2064 2065 err = sock_intr_errno(timeo); 2066 if (signal_pending(current)) 2067 goto out_free; 2068 2069 goto restart; 2070 } 2071 2072 if (!sk_locked) { 2073 unix_state_unlock(other); 2074 unix_state_double_lock(sk, other); 2075 } 2076 2077 if (unix_peer(sk) != other || 2078 unix_dgram_peer_wake_me(sk, other)) { 2079 err = -EAGAIN; 2080 sk_locked = 1; 2081 goto out_unlock; 2082 } 2083 2084 if (!sk_locked) { 2085 sk_locked = 1; 2086 goto restart_locked; 2087 } 2088 } 2089 2090 if (unlikely(sk_locked)) 2091 unix_state_unlock(sk); 2092 2093 if (sock_flag(other, SOCK_RCVTSTAMP)) 2094 __net_timestamp(skb); 2095 maybe_add_creds(skb, sock, other); 2096 scm_stat_add(other, skb); 2097 skb_queue_tail(&other->sk_receive_queue, skb); 2098 unix_state_unlock(other); 2099 other->sk_data_ready(other); 2100 sock_put(other); 2101 scm_destroy(&scm); 2102 return len; 2103 2104 out_unlock: 2105 if (sk_locked) 2106 unix_state_unlock(sk); 2107 unix_state_unlock(other); 2108 out_free: 2109 kfree_skb(skb); 2110 out: 2111 if (other) 2112 sock_put(other); 2113 scm_destroy(&scm); 2114 return err; 2115 } 2116 2117 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2118 * bytes, and a minimum of a full page. 2119 */ 2120 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2121 2122 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2123 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other, 2124 struct scm_cookie *scm, bool fds_sent) 2125 { 2126 struct unix_sock *ousk = unix_sk(other); 2127 struct sk_buff *skb; 2128 int err = 0; 2129 2130 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2131 2132 if (!skb) 2133 return err; 2134 2135 err = unix_scm_to_skb(scm, skb, !fds_sent); 2136 if (err < 0) { 2137 kfree_skb(skb); 2138 return err; 2139 } 2140 skb_put(skb, 1); 2141 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2142 2143 if (err) { 2144 kfree_skb(skb); 2145 return err; 2146 } 2147 2148 unix_state_lock(other); 2149 2150 if (sock_flag(other, SOCK_DEAD) || 2151 (other->sk_shutdown & RCV_SHUTDOWN)) { 2152 unix_state_unlock(other); 2153 kfree_skb(skb); 2154 return -EPIPE; 2155 } 2156 2157 maybe_add_creds(skb, sock, other); 2158 skb_get(skb); 2159 2160 if (ousk->oob_skb) 2161 consume_skb(ousk->oob_skb); 2162 2163 WRITE_ONCE(ousk->oob_skb, skb); 2164 2165 scm_stat_add(other, skb); 2166 skb_queue_tail(&other->sk_receive_queue, skb); 2167 sk_send_sigurg(other); 2168 unix_state_unlock(other); 2169 other->sk_data_ready(other); 2170 2171 return err; 2172 } 2173 #endif 2174 2175 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2176 size_t len) 2177 { 2178 struct sock *sk = sock->sk; 2179 struct sock *other = NULL; 2180 int err, size; 2181 struct sk_buff *skb; 2182 int sent = 0; 2183 struct scm_cookie scm; 2184 bool fds_sent = false; 2185 int data_len; 2186 2187 wait_for_unix_gc(); 2188 err = scm_send(sock, msg, &scm, false); 2189 if (err < 0) 2190 return err; 2191 2192 err = -EOPNOTSUPP; 2193 if (msg->msg_flags & MSG_OOB) { 2194 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2195 if (len) 2196 len--; 2197 else 2198 #endif 2199 goto out_err; 2200 } 2201 2202 if (msg->msg_namelen) { 2203 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2204 goto out_err; 2205 } else { 2206 err = -ENOTCONN; 2207 other = unix_peer(sk); 2208 if (!other) 2209 goto out_err; 2210 } 2211 2212 if (sk->sk_shutdown & SEND_SHUTDOWN) 2213 goto pipe_err; 2214 2215 while (sent < len) { 2216 size = len - sent; 2217 2218 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2219 skb = sock_alloc_send_pskb(sk, 0, 0, 2220 msg->msg_flags & MSG_DONTWAIT, 2221 &err, 0); 2222 } else { 2223 /* Keep two messages in the pipe so it schedules better */ 2224 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2225 2226 /* allow fallback to order-0 allocations */ 2227 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2228 2229 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2230 2231 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2232 2233 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2234 msg->msg_flags & MSG_DONTWAIT, &err, 2235 get_order(UNIX_SKB_FRAGS_SZ)); 2236 } 2237 if (!skb) 2238 goto out_err; 2239 2240 /* Only send the fds in the first buffer */ 2241 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2242 if (err < 0) { 2243 kfree_skb(skb); 2244 goto out_err; 2245 } 2246 fds_sent = true; 2247 2248 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2249 err = skb_splice_from_iter(skb, &msg->msg_iter, size, 2250 sk->sk_allocation); 2251 if (err < 0) { 2252 kfree_skb(skb); 2253 goto out_err; 2254 } 2255 size = err; 2256 refcount_add(size, &sk->sk_wmem_alloc); 2257 } else { 2258 skb_put(skb, size - data_len); 2259 skb->data_len = data_len; 2260 skb->len = size; 2261 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2262 if (err) { 2263 kfree_skb(skb); 2264 goto out_err; 2265 } 2266 } 2267 2268 unix_state_lock(other); 2269 2270 if (sock_flag(other, SOCK_DEAD) || 2271 (other->sk_shutdown & RCV_SHUTDOWN)) 2272 goto pipe_err_free; 2273 2274 maybe_add_creds(skb, sock, other); 2275 scm_stat_add(other, skb); 2276 skb_queue_tail(&other->sk_receive_queue, skb); 2277 unix_state_unlock(other); 2278 other->sk_data_ready(other); 2279 sent += size; 2280 } 2281 2282 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2283 if (msg->msg_flags & MSG_OOB) { 2284 err = queue_oob(sock, msg, other, &scm, fds_sent); 2285 if (err) 2286 goto out_err; 2287 sent++; 2288 } 2289 #endif 2290 2291 scm_destroy(&scm); 2292 2293 return sent; 2294 2295 pipe_err_free: 2296 unix_state_unlock(other); 2297 kfree_skb(skb); 2298 pipe_err: 2299 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2300 send_sig(SIGPIPE, current, 0); 2301 err = -EPIPE; 2302 out_err: 2303 scm_destroy(&scm); 2304 return sent ? : err; 2305 } 2306 2307 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2308 size_t len) 2309 { 2310 int err; 2311 struct sock *sk = sock->sk; 2312 2313 err = sock_error(sk); 2314 if (err) 2315 return err; 2316 2317 if (sk->sk_state != TCP_ESTABLISHED) 2318 return -ENOTCONN; 2319 2320 if (msg->msg_namelen) 2321 msg->msg_namelen = 0; 2322 2323 return unix_dgram_sendmsg(sock, msg, len); 2324 } 2325 2326 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2327 size_t size, int flags) 2328 { 2329 struct sock *sk = sock->sk; 2330 2331 if (sk->sk_state != TCP_ESTABLISHED) 2332 return -ENOTCONN; 2333 2334 return unix_dgram_recvmsg(sock, msg, size, flags); 2335 } 2336 2337 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2338 { 2339 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2340 2341 if (addr) { 2342 msg->msg_namelen = addr->len; 2343 memcpy(msg->msg_name, addr->name, addr->len); 2344 } 2345 } 2346 2347 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2348 int flags) 2349 { 2350 struct scm_cookie scm; 2351 struct socket *sock = sk->sk_socket; 2352 struct unix_sock *u = unix_sk(sk); 2353 struct sk_buff *skb, *last; 2354 long timeo; 2355 int skip; 2356 int err; 2357 2358 err = -EOPNOTSUPP; 2359 if (flags&MSG_OOB) 2360 goto out; 2361 2362 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2363 2364 do { 2365 mutex_lock(&u->iolock); 2366 2367 skip = sk_peek_offset(sk, flags); 2368 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2369 &skip, &err, &last); 2370 if (skb) { 2371 if (!(flags & MSG_PEEK)) 2372 scm_stat_del(sk, skb); 2373 break; 2374 } 2375 2376 mutex_unlock(&u->iolock); 2377 2378 if (err != -EAGAIN) 2379 break; 2380 } while (timeo && 2381 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2382 &err, &timeo, last)); 2383 2384 if (!skb) { /* implies iolock unlocked */ 2385 unix_state_lock(sk); 2386 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2387 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2388 (sk->sk_shutdown & RCV_SHUTDOWN)) 2389 err = 0; 2390 unix_state_unlock(sk); 2391 goto out; 2392 } 2393 2394 if (wq_has_sleeper(&u->peer_wait)) 2395 wake_up_interruptible_sync_poll(&u->peer_wait, 2396 EPOLLOUT | EPOLLWRNORM | 2397 EPOLLWRBAND); 2398 2399 if (msg->msg_name) { 2400 unix_copy_addr(msg, skb->sk); 2401 2402 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2403 msg->msg_name, 2404 &msg->msg_namelen); 2405 } 2406 2407 if (size > skb->len - skip) 2408 size = skb->len - skip; 2409 else if (size < skb->len - skip) 2410 msg->msg_flags |= MSG_TRUNC; 2411 2412 err = skb_copy_datagram_msg(skb, skip, msg, size); 2413 if (err) 2414 goto out_free; 2415 2416 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2417 __sock_recv_timestamp(msg, sk, skb); 2418 2419 memset(&scm, 0, sizeof(scm)); 2420 2421 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2422 unix_set_secdata(&scm, skb); 2423 2424 if (!(flags & MSG_PEEK)) { 2425 if (UNIXCB(skb).fp) 2426 unix_detach_fds(&scm, skb); 2427 2428 sk_peek_offset_bwd(sk, skb->len); 2429 } else { 2430 /* It is questionable: on PEEK we could: 2431 - do not return fds - good, but too simple 8) 2432 - return fds, and do not return them on read (old strategy, 2433 apparently wrong) 2434 - clone fds (I chose it for now, it is the most universal 2435 solution) 2436 2437 POSIX 1003.1g does not actually define this clearly 2438 at all. POSIX 1003.1g doesn't define a lot of things 2439 clearly however! 2440 2441 */ 2442 2443 sk_peek_offset_fwd(sk, size); 2444 2445 if (UNIXCB(skb).fp) 2446 unix_peek_fds(&scm, skb); 2447 } 2448 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2449 2450 scm_recv_unix(sock, msg, &scm, flags); 2451 2452 out_free: 2453 skb_free_datagram(sk, skb); 2454 mutex_unlock(&u->iolock); 2455 out: 2456 return err; 2457 } 2458 2459 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2460 int flags) 2461 { 2462 struct sock *sk = sock->sk; 2463 2464 #ifdef CONFIG_BPF_SYSCALL 2465 const struct proto *prot = READ_ONCE(sk->sk_prot); 2466 2467 if (prot != &unix_dgram_proto) 2468 return prot->recvmsg(sk, msg, size, flags, NULL); 2469 #endif 2470 return __unix_dgram_recvmsg(sk, msg, size, flags); 2471 } 2472 2473 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2474 { 2475 struct unix_sock *u = unix_sk(sk); 2476 struct sk_buff *skb; 2477 int err; 2478 2479 mutex_lock(&u->iolock); 2480 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2481 mutex_unlock(&u->iolock); 2482 if (!skb) 2483 return err; 2484 2485 return recv_actor(sk, skb); 2486 } 2487 2488 /* 2489 * Sleep until more data has arrived. But check for races.. 2490 */ 2491 static long unix_stream_data_wait(struct sock *sk, long timeo, 2492 struct sk_buff *last, unsigned int last_len, 2493 bool freezable) 2494 { 2495 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2496 struct sk_buff *tail; 2497 DEFINE_WAIT(wait); 2498 2499 unix_state_lock(sk); 2500 2501 for (;;) { 2502 prepare_to_wait(sk_sleep(sk), &wait, state); 2503 2504 tail = skb_peek_tail(&sk->sk_receive_queue); 2505 if (tail != last || 2506 (tail && tail->len != last_len) || 2507 sk->sk_err || 2508 (sk->sk_shutdown & RCV_SHUTDOWN) || 2509 signal_pending(current) || 2510 !timeo) 2511 break; 2512 2513 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2514 unix_state_unlock(sk); 2515 timeo = schedule_timeout(timeo); 2516 unix_state_lock(sk); 2517 2518 if (sock_flag(sk, SOCK_DEAD)) 2519 break; 2520 2521 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2522 } 2523 2524 finish_wait(sk_sleep(sk), &wait); 2525 unix_state_unlock(sk); 2526 return timeo; 2527 } 2528 2529 static unsigned int unix_skb_len(const struct sk_buff *skb) 2530 { 2531 return skb->len - UNIXCB(skb).consumed; 2532 } 2533 2534 struct unix_stream_read_state { 2535 int (*recv_actor)(struct sk_buff *, int, int, 2536 struct unix_stream_read_state *); 2537 struct socket *socket; 2538 struct msghdr *msg; 2539 struct pipe_inode_info *pipe; 2540 size_t size; 2541 int flags; 2542 unsigned int splice_flags; 2543 }; 2544 2545 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2546 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2547 { 2548 struct socket *sock = state->socket; 2549 struct sock *sk = sock->sk; 2550 struct unix_sock *u = unix_sk(sk); 2551 int chunk = 1; 2552 struct sk_buff *oob_skb; 2553 2554 mutex_lock(&u->iolock); 2555 unix_state_lock(sk); 2556 2557 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2558 unix_state_unlock(sk); 2559 mutex_unlock(&u->iolock); 2560 return -EINVAL; 2561 } 2562 2563 oob_skb = u->oob_skb; 2564 2565 if (!(state->flags & MSG_PEEK)) 2566 WRITE_ONCE(u->oob_skb, NULL); 2567 else 2568 skb_get(oob_skb); 2569 unix_state_unlock(sk); 2570 2571 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2572 2573 if (!(state->flags & MSG_PEEK)) 2574 UNIXCB(oob_skb).consumed += 1; 2575 2576 consume_skb(oob_skb); 2577 2578 mutex_unlock(&u->iolock); 2579 2580 if (chunk < 0) 2581 return -EFAULT; 2582 2583 state->msg->msg_flags |= MSG_OOB; 2584 return 1; 2585 } 2586 2587 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2588 int flags, int copied) 2589 { 2590 struct unix_sock *u = unix_sk(sk); 2591 2592 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2593 skb_unlink(skb, &sk->sk_receive_queue); 2594 consume_skb(skb); 2595 skb = NULL; 2596 } else { 2597 if (skb == u->oob_skb) { 2598 if (copied) { 2599 skb = NULL; 2600 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2601 if (!(flags & MSG_PEEK)) { 2602 WRITE_ONCE(u->oob_skb, NULL); 2603 consume_skb(skb); 2604 } 2605 } else if (!(flags & MSG_PEEK)) { 2606 skb_unlink(skb, &sk->sk_receive_queue); 2607 consume_skb(skb); 2608 skb = skb_peek(&sk->sk_receive_queue); 2609 } 2610 } 2611 } 2612 return skb; 2613 } 2614 #endif 2615 2616 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2617 { 2618 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2619 return -ENOTCONN; 2620 2621 return unix_read_skb(sk, recv_actor); 2622 } 2623 2624 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2625 bool freezable) 2626 { 2627 struct scm_cookie scm; 2628 struct socket *sock = state->socket; 2629 struct sock *sk = sock->sk; 2630 struct unix_sock *u = unix_sk(sk); 2631 int copied = 0; 2632 int flags = state->flags; 2633 int noblock = flags & MSG_DONTWAIT; 2634 bool check_creds = false; 2635 int target; 2636 int err = 0; 2637 long timeo; 2638 int skip; 2639 size_t size = state->size; 2640 unsigned int last_len; 2641 2642 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2643 err = -EINVAL; 2644 goto out; 2645 } 2646 2647 if (unlikely(flags & MSG_OOB)) { 2648 err = -EOPNOTSUPP; 2649 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2650 err = unix_stream_recv_urg(state); 2651 #endif 2652 goto out; 2653 } 2654 2655 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2656 timeo = sock_rcvtimeo(sk, noblock); 2657 2658 memset(&scm, 0, sizeof(scm)); 2659 2660 /* Lock the socket to prevent queue disordering 2661 * while sleeps in memcpy_tomsg 2662 */ 2663 mutex_lock(&u->iolock); 2664 2665 skip = max(sk_peek_offset(sk, flags), 0); 2666 2667 do { 2668 int chunk; 2669 bool drop_skb; 2670 struct sk_buff *skb, *last; 2671 2672 redo: 2673 unix_state_lock(sk); 2674 if (sock_flag(sk, SOCK_DEAD)) { 2675 err = -ECONNRESET; 2676 goto unlock; 2677 } 2678 last = skb = skb_peek(&sk->sk_receive_queue); 2679 last_len = last ? last->len : 0; 2680 2681 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2682 if (skb) { 2683 skb = manage_oob(skb, sk, flags, copied); 2684 if (!skb) { 2685 unix_state_unlock(sk); 2686 if (copied) 2687 break; 2688 goto redo; 2689 } 2690 } 2691 #endif 2692 again: 2693 if (skb == NULL) { 2694 if (copied >= target) 2695 goto unlock; 2696 2697 /* 2698 * POSIX 1003.1g mandates this order. 2699 */ 2700 2701 err = sock_error(sk); 2702 if (err) 2703 goto unlock; 2704 if (sk->sk_shutdown & RCV_SHUTDOWN) 2705 goto unlock; 2706 2707 unix_state_unlock(sk); 2708 if (!timeo) { 2709 err = -EAGAIN; 2710 break; 2711 } 2712 2713 mutex_unlock(&u->iolock); 2714 2715 timeo = unix_stream_data_wait(sk, timeo, last, 2716 last_len, freezable); 2717 2718 if (signal_pending(current)) { 2719 err = sock_intr_errno(timeo); 2720 scm_destroy(&scm); 2721 goto out; 2722 } 2723 2724 mutex_lock(&u->iolock); 2725 goto redo; 2726 unlock: 2727 unix_state_unlock(sk); 2728 break; 2729 } 2730 2731 while (skip >= unix_skb_len(skb)) { 2732 skip -= unix_skb_len(skb); 2733 last = skb; 2734 last_len = skb->len; 2735 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2736 if (!skb) 2737 goto again; 2738 } 2739 2740 unix_state_unlock(sk); 2741 2742 if (check_creds) { 2743 /* Never glue messages from different writers */ 2744 if (!unix_skb_scm_eq(skb, &scm)) 2745 break; 2746 } else if (test_bit(SOCK_PASSCRED, &sock->flags) || 2747 test_bit(SOCK_PASSPIDFD, &sock->flags)) { 2748 /* Copy credentials */ 2749 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2750 unix_set_secdata(&scm, skb); 2751 check_creds = true; 2752 } 2753 2754 /* Copy address just once */ 2755 if (state->msg && state->msg->msg_name) { 2756 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2757 state->msg->msg_name); 2758 unix_copy_addr(state->msg, skb->sk); 2759 2760 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2761 state->msg->msg_name, 2762 &state->msg->msg_namelen); 2763 2764 sunaddr = NULL; 2765 } 2766 2767 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2768 skb_get(skb); 2769 chunk = state->recv_actor(skb, skip, chunk, state); 2770 drop_skb = !unix_skb_len(skb); 2771 /* skb is only safe to use if !drop_skb */ 2772 consume_skb(skb); 2773 if (chunk < 0) { 2774 if (copied == 0) 2775 copied = -EFAULT; 2776 break; 2777 } 2778 copied += chunk; 2779 size -= chunk; 2780 2781 if (drop_skb) { 2782 /* the skb was touched by a concurrent reader; 2783 * we should not expect anything from this skb 2784 * anymore and assume it invalid - we can be 2785 * sure it was dropped from the socket queue 2786 * 2787 * let's report a short read 2788 */ 2789 err = 0; 2790 break; 2791 } 2792 2793 /* Mark read part of skb as used */ 2794 if (!(flags & MSG_PEEK)) { 2795 UNIXCB(skb).consumed += chunk; 2796 2797 sk_peek_offset_bwd(sk, chunk); 2798 2799 if (UNIXCB(skb).fp) { 2800 scm_stat_del(sk, skb); 2801 unix_detach_fds(&scm, skb); 2802 } 2803 2804 if (unix_skb_len(skb)) 2805 break; 2806 2807 skb_unlink(skb, &sk->sk_receive_queue); 2808 consume_skb(skb); 2809 2810 if (scm.fp) 2811 break; 2812 } else { 2813 /* It is questionable, see note in unix_dgram_recvmsg. 2814 */ 2815 if (UNIXCB(skb).fp) 2816 unix_peek_fds(&scm, skb); 2817 2818 sk_peek_offset_fwd(sk, chunk); 2819 2820 if (UNIXCB(skb).fp) 2821 break; 2822 2823 skip = 0; 2824 last = skb; 2825 last_len = skb->len; 2826 unix_state_lock(sk); 2827 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2828 if (skb) 2829 goto again; 2830 unix_state_unlock(sk); 2831 break; 2832 } 2833 } while (size); 2834 2835 mutex_unlock(&u->iolock); 2836 if (state->msg) 2837 scm_recv_unix(sock, state->msg, &scm, flags); 2838 else 2839 scm_destroy(&scm); 2840 out: 2841 return copied ? : err; 2842 } 2843 2844 static int unix_stream_read_actor(struct sk_buff *skb, 2845 int skip, int chunk, 2846 struct unix_stream_read_state *state) 2847 { 2848 int ret; 2849 2850 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2851 state->msg, chunk); 2852 return ret ?: chunk; 2853 } 2854 2855 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2856 size_t size, int flags) 2857 { 2858 struct unix_stream_read_state state = { 2859 .recv_actor = unix_stream_read_actor, 2860 .socket = sk->sk_socket, 2861 .msg = msg, 2862 .size = size, 2863 .flags = flags 2864 }; 2865 2866 return unix_stream_read_generic(&state, true); 2867 } 2868 2869 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2870 size_t size, int flags) 2871 { 2872 struct unix_stream_read_state state = { 2873 .recv_actor = unix_stream_read_actor, 2874 .socket = sock, 2875 .msg = msg, 2876 .size = size, 2877 .flags = flags 2878 }; 2879 2880 #ifdef CONFIG_BPF_SYSCALL 2881 struct sock *sk = sock->sk; 2882 const struct proto *prot = READ_ONCE(sk->sk_prot); 2883 2884 if (prot != &unix_stream_proto) 2885 return prot->recvmsg(sk, msg, size, flags, NULL); 2886 #endif 2887 return unix_stream_read_generic(&state, true); 2888 } 2889 2890 static int unix_stream_splice_actor(struct sk_buff *skb, 2891 int skip, int chunk, 2892 struct unix_stream_read_state *state) 2893 { 2894 return skb_splice_bits(skb, state->socket->sk, 2895 UNIXCB(skb).consumed + skip, 2896 state->pipe, chunk, state->splice_flags); 2897 } 2898 2899 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2900 struct pipe_inode_info *pipe, 2901 size_t size, unsigned int flags) 2902 { 2903 struct unix_stream_read_state state = { 2904 .recv_actor = unix_stream_splice_actor, 2905 .socket = sock, 2906 .pipe = pipe, 2907 .size = size, 2908 .splice_flags = flags, 2909 }; 2910 2911 if (unlikely(*ppos)) 2912 return -ESPIPE; 2913 2914 if (sock->file->f_flags & O_NONBLOCK || 2915 flags & SPLICE_F_NONBLOCK) 2916 state.flags = MSG_DONTWAIT; 2917 2918 return unix_stream_read_generic(&state, false); 2919 } 2920 2921 static int unix_shutdown(struct socket *sock, int mode) 2922 { 2923 struct sock *sk = sock->sk; 2924 struct sock *other; 2925 2926 if (mode < SHUT_RD || mode > SHUT_RDWR) 2927 return -EINVAL; 2928 /* This maps: 2929 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2930 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2931 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2932 */ 2933 ++mode; 2934 2935 unix_state_lock(sk); 2936 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode); 2937 other = unix_peer(sk); 2938 if (other) 2939 sock_hold(other); 2940 unix_state_unlock(sk); 2941 sk->sk_state_change(sk); 2942 2943 if (other && 2944 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2945 2946 int peer_mode = 0; 2947 const struct proto *prot = READ_ONCE(other->sk_prot); 2948 2949 if (prot->unhash) 2950 prot->unhash(other); 2951 if (mode&RCV_SHUTDOWN) 2952 peer_mode |= SEND_SHUTDOWN; 2953 if (mode&SEND_SHUTDOWN) 2954 peer_mode |= RCV_SHUTDOWN; 2955 unix_state_lock(other); 2956 WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode); 2957 unix_state_unlock(other); 2958 other->sk_state_change(other); 2959 if (peer_mode == SHUTDOWN_MASK) 2960 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2961 else if (peer_mode & RCV_SHUTDOWN) 2962 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2963 } 2964 if (other) 2965 sock_put(other); 2966 2967 return 0; 2968 } 2969 2970 long unix_inq_len(struct sock *sk) 2971 { 2972 struct sk_buff *skb; 2973 long amount = 0; 2974 2975 if (sk->sk_state == TCP_LISTEN) 2976 return -EINVAL; 2977 2978 spin_lock(&sk->sk_receive_queue.lock); 2979 if (sk->sk_type == SOCK_STREAM || 2980 sk->sk_type == SOCK_SEQPACKET) { 2981 skb_queue_walk(&sk->sk_receive_queue, skb) 2982 amount += unix_skb_len(skb); 2983 } else { 2984 skb = skb_peek(&sk->sk_receive_queue); 2985 if (skb) 2986 amount = skb->len; 2987 } 2988 spin_unlock(&sk->sk_receive_queue.lock); 2989 2990 return amount; 2991 } 2992 EXPORT_SYMBOL_GPL(unix_inq_len); 2993 2994 long unix_outq_len(struct sock *sk) 2995 { 2996 return sk_wmem_alloc_get(sk); 2997 } 2998 EXPORT_SYMBOL_GPL(unix_outq_len); 2999 3000 static int unix_open_file(struct sock *sk) 3001 { 3002 struct path path; 3003 struct file *f; 3004 int fd; 3005 3006 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3007 return -EPERM; 3008 3009 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3010 return -ENOENT; 3011 3012 path = unix_sk(sk)->path; 3013 if (!path.dentry) 3014 return -ENOENT; 3015 3016 path_get(&path); 3017 3018 fd = get_unused_fd_flags(O_CLOEXEC); 3019 if (fd < 0) 3020 goto out; 3021 3022 f = dentry_open(&path, O_PATH, current_cred()); 3023 if (IS_ERR(f)) { 3024 put_unused_fd(fd); 3025 fd = PTR_ERR(f); 3026 goto out; 3027 } 3028 3029 fd_install(fd, f); 3030 out: 3031 path_put(&path); 3032 3033 return fd; 3034 } 3035 3036 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3037 { 3038 struct sock *sk = sock->sk; 3039 long amount = 0; 3040 int err; 3041 3042 switch (cmd) { 3043 case SIOCOUTQ: 3044 amount = unix_outq_len(sk); 3045 err = put_user(amount, (int __user *)arg); 3046 break; 3047 case SIOCINQ: 3048 amount = unix_inq_len(sk); 3049 if (amount < 0) 3050 err = amount; 3051 else 3052 err = put_user(amount, (int __user *)arg); 3053 break; 3054 case SIOCUNIXFILE: 3055 err = unix_open_file(sk); 3056 break; 3057 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3058 case SIOCATMARK: 3059 { 3060 struct sk_buff *skb; 3061 int answ = 0; 3062 3063 skb = skb_peek(&sk->sk_receive_queue); 3064 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3065 answ = 1; 3066 err = put_user(answ, (int __user *)arg); 3067 } 3068 break; 3069 #endif 3070 default: 3071 err = -ENOIOCTLCMD; 3072 break; 3073 } 3074 return err; 3075 } 3076 3077 #ifdef CONFIG_COMPAT 3078 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3079 { 3080 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3081 } 3082 #endif 3083 3084 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3085 { 3086 struct sock *sk = sock->sk; 3087 __poll_t mask; 3088 u8 shutdown; 3089 3090 sock_poll_wait(file, sock, wait); 3091 mask = 0; 3092 shutdown = READ_ONCE(sk->sk_shutdown); 3093 3094 /* exceptional events? */ 3095 if (READ_ONCE(sk->sk_err)) 3096 mask |= EPOLLERR; 3097 if (shutdown == SHUTDOWN_MASK) 3098 mask |= EPOLLHUP; 3099 if (shutdown & RCV_SHUTDOWN) 3100 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3101 3102 /* readable? */ 3103 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3104 mask |= EPOLLIN | EPOLLRDNORM; 3105 if (sk_is_readable(sk)) 3106 mask |= EPOLLIN | EPOLLRDNORM; 3107 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3108 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3109 mask |= EPOLLPRI; 3110 #endif 3111 3112 /* Connection-based need to check for termination and startup */ 3113 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3114 sk->sk_state == TCP_CLOSE) 3115 mask |= EPOLLHUP; 3116 3117 /* 3118 * we set writable also when the other side has shut down the 3119 * connection. This prevents stuck sockets. 3120 */ 3121 if (unix_writable(sk)) 3122 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3123 3124 return mask; 3125 } 3126 3127 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3128 poll_table *wait) 3129 { 3130 struct sock *sk = sock->sk, *other; 3131 unsigned int writable; 3132 __poll_t mask; 3133 u8 shutdown; 3134 3135 sock_poll_wait(file, sock, wait); 3136 mask = 0; 3137 shutdown = READ_ONCE(sk->sk_shutdown); 3138 3139 /* exceptional events? */ 3140 if (READ_ONCE(sk->sk_err) || 3141 !skb_queue_empty_lockless(&sk->sk_error_queue)) 3142 mask |= EPOLLERR | 3143 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3144 3145 if (shutdown & RCV_SHUTDOWN) 3146 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3147 if (shutdown == SHUTDOWN_MASK) 3148 mask |= EPOLLHUP; 3149 3150 /* readable? */ 3151 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3152 mask |= EPOLLIN | EPOLLRDNORM; 3153 if (sk_is_readable(sk)) 3154 mask |= EPOLLIN | EPOLLRDNORM; 3155 3156 /* Connection-based need to check for termination and startup */ 3157 if (sk->sk_type == SOCK_SEQPACKET) { 3158 if (sk->sk_state == TCP_CLOSE) 3159 mask |= EPOLLHUP; 3160 /* connection hasn't started yet? */ 3161 if (sk->sk_state == TCP_SYN_SENT) 3162 return mask; 3163 } 3164 3165 /* No write status requested, avoid expensive OUT tests. */ 3166 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3167 return mask; 3168 3169 writable = unix_writable(sk); 3170 if (writable) { 3171 unix_state_lock(sk); 3172 3173 other = unix_peer(sk); 3174 if (other && unix_peer(other) != sk && 3175 unix_recvq_full_lockless(other) && 3176 unix_dgram_peer_wake_me(sk, other)) 3177 writable = 0; 3178 3179 unix_state_unlock(sk); 3180 } 3181 3182 if (writable) 3183 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3184 else 3185 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3186 3187 return mask; 3188 } 3189 3190 #ifdef CONFIG_PROC_FS 3191 3192 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3193 3194 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3195 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3196 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3197 3198 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3199 { 3200 unsigned long offset = get_offset(*pos); 3201 unsigned long bucket = get_bucket(*pos); 3202 unsigned long count = 0; 3203 struct sock *sk; 3204 3205 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3206 sk; sk = sk_next(sk)) { 3207 if (++count == offset) 3208 break; 3209 } 3210 3211 return sk; 3212 } 3213 3214 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3215 { 3216 unsigned long bucket = get_bucket(*pos); 3217 struct net *net = seq_file_net(seq); 3218 struct sock *sk; 3219 3220 while (bucket < UNIX_HASH_SIZE) { 3221 spin_lock(&net->unx.table.locks[bucket]); 3222 3223 sk = unix_from_bucket(seq, pos); 3224 if (sk) 3225 return sk; 3226 3227 spin_unlock(&net->unx.table.locks[bucket]); 3228 3229 *pos = set_bucket_offset(++bucket, 1); 3230 } 3231 3232 return NULL; 3233 } 3234 3235 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3236 loff_t *pos) 3237 { 3238 unsigned long bucket = get_bucket(*pos); 3239 3240 sk = sk_next(sk); 3241 if (sk) 3242 return sk; 3243 3244 3245 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3246 3247 *pos = set_bucket_offset(++bucket, 1); 3248 3249 return unix_get_first(seq, pos); 3250 } 3251 3252 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3253 { 3254 if (!*pos) 3255 return SEQ_START_TOKEN; 3256 3257 return unix_get_first(seq, pos); 3258 } 3259 3260 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3261 { 3262 ++*pos; 3263 3264 if (v == SEQ_START_TOKEN) 3265 return unix_get_first(seq, pos); 3266 3267 return unix_get_next(seq, v, pos); 3268 } 3269 3270 static void unix_seq_stop(struct seq_file *seq, void *v) 3271 { 3272 struct sock *sk = v; 3273 3274 if (sk) 3275 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3276 } 3277 3278 static int unix_seq_show(struct seq_file *seq, void *v) 3279 { 3280 3281 if (v == SEQ_START_TOKEN) 3282 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3283 "Inode Path\n"); 3284 else { 3285 struct sock *s = v; 3286 struct unix_sock *u = unix_sk(s); 3287 unix_state_lock(s); 3288 3289 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3290 s, 3291 refcount_read(&s->sk_refcnt), 3292 0, 3293 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3294 s->sk_type, 3295 s->sk_socket ? 3296 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3297 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3298 sock_i_ino(s)); 3299 3300 if (u->addr) { // under a hash table lock here 3301 int i, len; 3302 seq_putc(seq, ' '); 3303 3304 i = 0; 3305 len = u->addr->len - 3306 offsetof(struct sockaddr_un, sun_path); 3307 if (u->addr->name->sun_path[0]) { 3308 len--; 3309 } else { 3310 seq_putc(seq, '@'); 3311 i++; 3312 } 3313 for ( ; i < len; i++) 3314 seq_putc(seq, u->addr->name->sun_path[i] ?: 3315 '@'); 3316 } 3317 unix_state_unlock(s); 3318 seq_putc(seq, '\n'); 3319 } 3320 3321 return 0; 3322 } 3323 3324 static const struct seq_operations unix_seq_ops = { 3325 .start = unix_seq_start, 3326 .next = unix_seq_next, 3327 .stop = unix_seq_stop, 3328 .show = unix_seq_show, 3329 }; 3330 3331 #ifdef CONFIG_BPF_SYSCALL 3332 struct bpf_unix_iter_state { 3333 struct seq_net_private p; 3334 unsigned int cur_sk; 3335 unsigned int end_sk; 3336 unsigned int max_sk; 3337 struct sock **batch; 3338 bool st_bucket_done; 3339 }; 3340 3341 struct bpf_iter__unix { 3342 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3343 __bpf_md_ptr(struct unix_sock *, unix_sk); 3344 uid_t uid __aligned(8); 3345 }; 3346 3347 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3348 struct unix_sock *unix_sk, uid_t uid) 3349 { 3350 struct bpf_iter__unix ctx; 3351 3352 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3353 ctx.meta = meta; 3354 ctx.unix_sk = unix_sk; 3355 ctx.uid = uid; 3356 return bpf_iter_run_prog(prog, &ctx); 3357 } 3358 3359 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3360 3361 { 3362 struct bpf_unix_iter_state *iter = seq->private; 3363 unsigned int expected = 1; 3364 struct sock *sk; 3365 3366 sock_hold(start_sk); 3367 iter->batch[iter->end_sk++] = start_sk; 3368 3369 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3370 if (iter->end_sk < iter->max_sk) { 3371 sock_hold(sk); 3372 iter->batch[iter->end_sk++] = sk; 3373 } 3374 3375 expected++; 3376 } 3377 3378 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3379 3380 return expected; 3381 } 3382 3383 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3384 { 3385 while (iter->cur_sk < iter->end_sk) 3386 sock_put(iter->batch[iter->cur_sk++]); 3387 } 3388 3389 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3390 unsigned int new_batch_sz) 3391 { 3392 struct sock **new_batch; 3393 3394 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3395 GFP_USER | __GFP_NOWARN); 3396 if (!new_batch) 3397 return -ENOMEM; 3398 3399 bpf_iter_unix_put_batch(iter); 3400 kvfree(iter->batch); 3401 iter->batch = new_batch; 3402 iter->max_sk = new_batch_sz; 3403 3404 return 0; 3405 } 3406 3407 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3408 loff_t *pos) 3409 { 3410 struct bpf_unix_iter_state *iter = seq->private; 3411 unsigned int expected; 3412 bool resized = false; 3413 struct sock *sk; 3414 3415 if (iter->st_bucket_done) 3416 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3417 3418 again: 3419 /* Get a new batch */ 3420 iter->cur_sk = 0; 3421 iter->end_sk = 0; 3422 3423 sk = unix_get_first(seq, pos); 3424 if (!sk) 3425 return NULL; /* Done */ 3426 3427 expected = bpf_iter_unix_hold_batch(seq, sk); 3428 3429 if (iter->end_sk == expected) { 3430 iter->st_bucket_done = true; 3431 return sk; 3432 } 3433 3434 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3435 resized = true; 3436 goto again; 3437 } 3438 3439 return sk; 3440 } 3441 3442 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3443 { 3444 if (!*pos) 3445 return SEQ_START_TOKEN; 3446 3447 /* bpf iter does not support lseek, so it always 3448 * continue from where it was stop()-ped. 3449 */ 3450 return bpf_iter_unix_batch(seq, pos); 3451 } 3452 3453 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3454 { 3455 struct bpf_unix_iter_state *iter = seq->private; 3456 struct sock *sk; 3457 3458 /* Whenever seq_next() is called, the iter->cur_sk is 3459 * done with seq_show(), so advance to the next sk in 3460 * the batch. 3461 */ 3462 if (iter->cur_sk < iter->end_sk) 3463 sock_put(iter->batch[iter->cur_sk++]); 3464 3465 ++*pos; 3466 3467 if (iter->cur_sk < iter->end_sk) 3468 sk = iter->batch[iter->cur_sk]; 3469 else 3470 sk = bpf_iter_unix_batch(seq, pos); 3471 3472 return sk; 3473 } 3474 3475 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3476 { 3477 struct bpf_iter_meta meta; 3478 struct bpf_prog *prog; 3479 struct sock *sk = v; 3480 uid_t uid; 3481 bool slow; 3482 int ret; 3483 3484 if (v == SEQ_START_TOKEN) 3485 return 0; 3486 3487 slow = lock_sock_fast(sk); 3488 3489 if (unlikely(sk_unhashed(sk))) { 3490 ret = SEQ_SKIP; 3491 goto unlock; 3492 } 3493 3494 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3495 meta.seq = seq; 3496 prog = bpf_iter_get_info(&meta, false); 3497 ret = unix_prog_seq_show(prog, &meta, v, uid); 3498 unlock: 3499 unlock_sock_fast(sk, slow); 3500 return ret; 3501 } 3502 3503 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3504 { 3505 struct bpf_unix_iter_state *iter = seq->private; 3506 struct bpf_iter_meta meta; 3507 struct bpf_prog *prog; 3508 3509 if (!v) { 3510 meta.seq = seq; 3511 prog = bpf_iter_get_info(&meta, true); 3512 if (prog) 3513 (void)unix_prog_seq_show(prog, &meta, v, 0); 3514 } 3515 3516 if (iter->cur_sk < iter->end_sk) 3517 bpf_iter_unix_put_batch(iter); 3518 } 3519 3520 static const struct seq_operations bpf_iter_unix_seq_ops = { 3521 .start = bpf_iter_unix_seq_start, 3522 .next = bpf_iter_unix_seq_next, 3523 .stop = bpf_iter_unix_seq_stop, 3524 .show = bpf_iter_unix_seq_show, 3525 }; 3526 #endif 3527 #endif 3528 3529 static const struct net_proto_family unix_family_ops = { 3530 .family = PF_UNIX, 3531 .create = unix_create, 3532 .owner = THIS_MODULE, 3533 }; 3534 3535 3536 static int __net_init unix_net_init(struct net *net) 3537 { 3538 int i; 3539 3540 net->unx.sysctl_max_dgram_qlen = 10; 3541 if (unix_sysctl_register(net)) 3542 goto out; 3543 3544 #ifdef CONFIG_PROC_FS 3545 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3546 sizeof(struct seq_net_private))) 3547 goto err_sysctl; 3548 #endif 3549 3550 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3551 sizeof(spinlock_t), GFP_KERNEL); 3552 if (!net->unx.table.locks) 3553 goto err_proc; 3554 3555 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3556 sizeof(struct hlist_head), 3557 GFP_KERNEL); 3558 if (!net->unx.table.buckets) 3559 goto free_locks; 3560 3561 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3562 spin_lock_init(&net->unx.table.locks[i]); 3563 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3564 } 3565 3566 return 0; 3567 3568 free_locks: 3569 kvfree(net->unx.table.locks); 3570 err_proc: 3571 #ifdef CONFIG_PROC_FS 3572 remove_proc_entry("unix", net->proc_net); 3573 err_sysctl: 3574 #endif 3575 unix_sysctl_unregister(net); 3576 out: 3577 return -ENOMEM; 3578 } 3579 3580 static void __net_exit unix_net_exit(struct net *net) 3581 { 3582 kvfree(net->unx.table.buckets); 3583 kvfree(net->unx.table.locks); 3584 unix_sysctl_unregister(net); 3585 remove_proc_entry("unix", net->proc_net); 3586 } 3587 3588 static struct pernet_operations unix_net_ops = { 3589 .init = unix_net_init, 3590 .exit = unix_net_exit, 3591 }; 3592 3593 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3594 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3595 struct unix_sock *unix_sk, uid_t uid) 3596 3597 #define INIT_BATCH_SZ 16 3598 3599 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3600 { 3601 struct bpf_unix_iter_state *iter = priv_data; 3602 int err; 3603 3604 err = bpf_iter_init_seq_net(priv_data, aux); 3605 if (err) 3606 return err; 3607 3608 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3609 if (err) { 3610 bpf_iter_fini_seq_net(priv_data); 3611 return err; 3612 } 3613 3614 return 0; 3615 } 3616 3617 static void bpf_iter_fini_unix(void *priv_data) 3618 { 3619 struct bpf_unix_iter_state *iter = priv_data; 3620 3621 bpf_iter_fini_seq_net(priv_data); 3622 kvfree(iter->batch); 3623 } 3624 3625 static const struct bpf_iter_seq_info unix_seq_info = { 3626 .seq_ops = &bpf_iter_unix_seq_ops, 3627 .init_seq_private = bpf_iter_init_unix, 3628 .fini_seq_private = bpf_iter_fini_unix, 3629 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3630 }; 3631 3632 static const struct bpf_func_proto * 3633 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3634 const struct bpf_prog *prog) 3635 { 3636 switch (func_id) { 3637 case BPF_FUNC_setsockopt: 3638 return &bpf_sk_setsockopt_proto; 3639 case BPF_FUNC_getsockopt: 3640 return &bpf_sk_getsockopt_proto; 3641 default: 3642 return NULL; 3643 } 3644 } 3645 3646 static struct bpf_iter_reg unix_reg_info = { 3647 .target = "unix", 3648 .ctx_arg_info_size = 1, 3649 .ctx_arg_info = { 3650 { offsetof(struct bpf_iter__unix, unix_sk), 3651 PTR_TO_BTF_ID_OR_NULL }, 3652 }, 3653 .get_func_proto = bpf_iter_unix_get_func_proto, 3654 .seq_info = &unix_seq_info, 3655 }; 3656 3657 static void __init bpf_iter_register(void) 3658 { 3659 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3660 if (bpf_iter_reg_target(&unix_reg_info)) 3661 pr_warn("Warning: could not register bpf iterator unix\n"); 3662 } 3663 #endif 3664 3665 static int __init af_unix_init(void) 3666 { 3667 int i, rc = -1; 3668 3669 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3670 3671 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3672 spin_lock_init(&bsd_socket_locks[i]); 3673 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3674 } 3675 3676 rc = proto_register(&unix_dgram_proto, 1); 3677 if (rc != 0) { 3678 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3679 goto out; 3680 } 3681 3682 rc = proto_register(&unix_stream_proto, 1); 3683 if (rc != 0) { 3684 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3685 proto_unregister(&unix_dgram_proto); 3686 goto out; 3687 } 3688 3689 sock_register(&unix_family_ops); 3690 register_pernet_subsys(&unix_net_ops); 3691 unix_bpf_build_proto(); 3692 3693 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3694 bpf_iter_register(); 3695 #endif 3696 3697 out: 3698 return rc; 3699 } 3700 3701 /* Later than subsys_initcall() because we depend on stuff initialised there */ 3702 fs_initcall(af_unix_init); 3703