1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/splice.h> 116 #include <linux/freezer.h> 117 #include <linux/file.h> 118 #include <linux/btf_ids.h> 119 #include <linux/bpf-cgroup.h> 120 121 #include "scm.h" 122 123 static atomic_long_t unix_nr_socks; 124 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 125 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 126 127 /* SMP locking strategy: 128 * hash table is protected with spinlock. 129 * each socket state is protected by separate spinlock. 130 */ 131 132 static unsigned int unix_unbound_hash(struct sock *sk) 133 { 134 unsigned long hash = (unsigned long)sk; 135 136 hash ^= hash >> 16; 137 hash ^= hash >> 8; 138 hash ^= sk->sk_type; 139 140 return hash & UNIX_HASH_MOD; 141 } 142 143 static unsigned int unix_bsd_hash(struct inode *i) 144 { 145 return i->i_ino & UNIX_HASH_MOD; 146 } 147 148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 149 int addr_len, int type) 150 { 151 __wsum csum = csum_partial(sunaddr, addr_len, 0); 152 unsigned int hash; 153 154 hash = (__force unsigned int)csum_fold(csum); 155 hash ^= hash >> 8; 156 hash ^= type; 157 158 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 159 } 160 161 static void unix_table_double_lock(struct net *net, 162 unsigned int hash1, unsigned int hash2) 163 { 164 if (hash1 == hash2) { 165 spin_lock(&net->unx.table.locks[hash1]); 166 return; 167 } 168 169 if (hash1 > hash2) 170 swap(hash1, hash2); 171 172 spin_lock(&net->unx.table.locks[hash1]); 173 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 174 } 175 176 static void unix_table_double_unlock(struct net *net, 177 unsigned int hash1, unsigned int hash2) 178 { 179 if (hash1 == hash2) { 180 spin_unlock(&net->unx.table.locks[hash1]); 181 return; 182 } 183 184 spin_unlock(&net->unx.table.locks[hash1]); 185 spin_unlock(&net->unx.table.locks[hash2]); 186 } 187 188 #ifdef CONFIG_SECURITY_NETWORK 189 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 190 { 191 UNIXCB(skb).secid = scm->secid; 192 } 193 194 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 195 { 196 scm->secid = UNIXCB(skb).secid; 197 } 198 199 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 200 { 201 return (scm->secid == UNIXCB(skb).secid); 202 } 203 #else 204 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 205 { } 206 207 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 208 { } 209 210 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 211 { 212 return true; 213 } 214 #endif /* CONFIG_SECURITY_NETWORK */ 215 216 #define unix_peer(sk) (unix_sk(sk)->peer) 217 218 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 219 { 220 return unix_peer(osk) == sk; 221 } 222 223 static inline int unix_may_send(struct sock *sk, struct sock *osk) 224 { 225 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 226 } 227 228 static inline int unix_recvq_full(const struct sock *sk) 229 { 230 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 231 } 232 233 static inline int unix_recvq_full_lockless(const struct sock *sk) 234 { 235 return skb_queue_len_lockless(&sk->sk_receive_queue) > 236 READ_ONCE(sk->sk_max_ack_backlog); 237 } 238 239 struct sock *unix_peer_get(struct sock *s) 240 { 241 struct sock *peer; 242 243 unix_state_lock(s); 244 peer = unix_peer(s); 245 if (peer) 246 sock_hold(peer); 247 unix_state_unlock(s); 248 return peer; 249 } 250 EXPORT_SYMBOL_GPL(unix_peer_get); 251 252 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 253 int addr_len) 254 { 255 struct unix_address *addr; 256 257 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 258 if (!addr) 259 return NULL; 260 261 refcount_set(&addr->refcnt, 1); 262 addr->len = addr_len; 263 memcpy(addr->name, sunaddr, addr_len); 264 265 return addr; 266 } 267 268 static inline void unix_release_addr(struct unix_address *addr) 269 { 270 if (refcount_dec_and_test(&addr->refcnt)) 271 kfree(addr); 272 } 273 274 /* 275 * Check unix socket name: 276 * - should be not zero length. 277 * - if started by not zero, should be NULL terminated (FS object) 278 * - if started by zero, it is abstract name. 279 */ 280 281 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 282 { 283 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 284 addr_len > sizeof(*sunaddr)) 285 return -EINVAL; 286 287 if (sunaddr->sun_family != AF_UNIX) 288 return -EINVAL; 289 290 return 0; 291 } 292 293 static int unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 294 { 295 struct sockaddr_storage *addr = (struct sockaddr_storage *)sunaddr; 296 short offset = offsetof(struct sockaddr_storage, __data); 297 298 BUILD_BUG_ON(offset != offsetof(struct sockaddr_un, sun_path)); 299 300 /* This may look like an off by one error but it is a bit more 301 * subtle. 108 is the longest valid AF_UNIX path for a binding. 302 * sun_path[108] doesn't as such exist. However in kernel space 303 * we are guaranteed that it is a valid memory location in our 304 * kernel address buffer because syscall functions always pass 305 * a pointer of struct sockaddr_storage which has a bigger buffer 306 * than 108. Also, we must terminate sun_path for strlen() in 307 * getname_kernel(). 308 */ 309 addr->__data[addr_len - offset] = 0; 310 311 /* Don't pass sunaddr->sun_path to strlen(). Otherwise, 108 will 312 * cause panic if CONFIG_FORTIFY_SOURCE=y. Let __fortify_strlen() 313 * know the actual buffer. 314 */ 315 return strlen(addr->__data) + offset + 1; 316 } 317 318 static void __unix_remove_socket(struct sock *sk) 319 { 320 sk_del_node_init(sk); 321 } 322 323 static void __unix_insert_socket(struct net *net, struct sock *sk) 324 { 325 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 326 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 327 } 328 329 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 330 struct unix_address *addr, unsigned int hash) 331 { 332 __unix_remove_socket(sk); 333 smp_store_release(&unix_sk(sk)->addr, addr); 334 335 sk->sk_hash = hash; 336 __unix_insert_socket(net, sk); 337 } 338 339 static void unix_remove_socket(struct net *net, struct sock *sk) 340 { 341 spin_lock(&net->unx.table.locks[sk->sk_hash]); 342 __unix_remove_socket(sk); 343 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 344 } 345 346 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 347 { 348 spin_lock(&net->unx.table.locks[sk->sk_hash]); 349 __unix_insert_socket(net, sk); 350 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 351 } 352 353 static void unix_insert_bsd_socket(struct sock *sk) 354 { 355 spin_lock(&bsd_socket_locks[sk->sk_hash]); 356 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 357 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 358 } 359 360 static void unix_remove_bsd_socket(struct sock *sk) 361 { 362 if (!hlist_unhashed(&sk->sk_bind_node)) { 363 spin_lock(&bsd_socket_locks[sk->sk_hash]); 364 __sk_del_bind_node(sk); 365 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 366 367 sk_node_init(&sk->sk_bind_node); 368 } 369 } 370 371 static struct sock *__unix_find_socket_byname(struct net *net, 372 struct sockaddr_un *sunname, 373 int len, unsigned int hash) 374 { 375 struct sock *s; 376 377 sk_for_each(s, &net->unx.table.buckets[hash]) { 378 struct unix_sock *u = unix_sk(s); 379 380 if (u->addr->len == len && 381 !memcmp(u->addr->name, sunname, len)) 382 return s; 383 } 384 return NULL; 385 } 386 387 static inline struct sock *unix_find_socket_byname(struct net *net, 388 struct sockaddr_un *sunname, 389 int len, unsigned int hash) 390 { 391 struct sock *s; 392 393 spin_lock(&net->unx.table.locks[hash]); 394 s = __unix_find_socket_byname(net, sunname, len, hash); 395 if (s) 396 sock_hold(s); 397 spin_unlock(&net->unx.table.locks[hash]); 398 return s; 399 } 400 401 static struct sock *unix_find_socket_byinode(struct inode *i) 402 { 403 unsigned int hash = unix_bsd_hash(i); 404 struct sock *s; 405 406 spin_lock(&bsd_socket_locks[hash]); 407 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 408 struct dentry *dentry = unix_sk(s)->path.dentry; 409 410 if (dentry && d_backing_inode(dentry) == i) { 411 sock_hold(s); 412 spin_unlock(&bsd_socket_locks[hash]); 413 return s; 414 } 415 } 416 spin_unlock(&bsd_socket_locks[hash]); 417 return NULL; 418 } 419 420 /* Support code for asymmetrically connected dgram sockets 421 * 422 * If a datagram socket is connected to a socket not itself connected 423 * to the first socket (eg, /dev/log), clients may only enqueue more 424 * messages if the present receive queue of the server socket is not 425 * "too large". This means there's a second writeability condition 426 * poll and sendmsg need to test. The dgram recv code will do a wake 427 * up on the peer_wait wait queue of a socket upon reception of a 428 * datagram which needs to be propagated to sleeping would-be writers 429 * since these might not have sent anything so far. This can't be 430 * accomplished via poll_wait because the lifetime of the server 431 * socket might be less than that of its clients if these break their 432 * association with it or if the server socket is closed while clients 433 * are still connected to it and there's no way to inform "a polling 434 * implementation" that it should let go of a certain wait queue 435 * 436 * In order to propagate a wake up, a wait_queue_entry_t of the client 437 * socket is enqueued on the peer_wait queue of the server socket 438 * whose wake function does a wake_up on the ordinary client socket 439 * wait queue. This connection is established whenever a write (or 440 * poll for write) hit the flow control condition and broken when the 441 * association to the server socket is dissolved or after a wake up 442 * was relayed. 443 */ 444 445 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 446 void *key) 447 { 448 struct unix_sock *u; 449 wait_queue_head_t *u_sleep; 450 451 u = container_of(q, struct unix_sock, peer_wake); 452 453 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 454 q); 455 u->peer_wake.private = NULL; 456 457 /* relaying can only happen while the wq still exists */ 458 u_sleep = sk_sleep(&u->sk); 459 if (u_sleep) 460 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 461 462 return 0; 463 } 464 465 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 466 { 467 struct unix_sock *u, *u_other; 468 int rc; 469 470 u = unix_sk(sk); 471 u_other = unix_sk(other); 472 rc = 0; 473 spin_lock(&u_other->peer_wait.lock); 474 475 if (!u->peer_wake.private) { 476 u->peer_wake.private = other; 477 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 478 479 rc = 1; 480 } 481 482 spin_unlock(&u_other->peer_wait.lock); 483 return rc; 484 } 485 486 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 487 struct sock *other) 488 { 489 struct unix_sock *u, *u_other; 490 491 u = unix_sk(sk); 492 u_other = unix_sk(other); 493 spin_lock(&u_other->peer_wait.lock); 494 495 if (u->peer_wake.private == other) { 496 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 497 u->peer_wake.private = NULL; 498 } 499 500 spin_unlock(&u_other->peer_wait.lock); 501 } 502 503 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 504 struct sock *other) 505 { 506 unix_dgram_peer_wake_disconnect(sk, other); 507 wake_up_interruptible_poll(sk_sleep(sk), 508 EPOLLOUT | 509 EPOLLWRNORM | 510 EPOLLWRBAND); 511 } 512 513 /* preconditions: 514 * - unix_peer(sk) == other 515 * - association is stable 516 */ 517 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 518 { 519 int connected; 520 521 connected = unix_dgram_peer_wake_connect(sk, other); 522 523 /* If other is SOCK_DEAD, we want to make sure we signal 524 * POLLOUT, such that a subsequent write() can get a 525 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 526 * to other and its full, we will hang waiting for POLLOUT. 527 */ 528 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 529 return 1; 530 531 if (connected) 532 unix_dgram_peer_wake_disconnect(sk, other); 533 534 return 0; 535 } 536 537 static int unix_writable(const struct sock *sk) 538 { 539 return sk->sk_state != TCP_LISTEN && 540 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 541 } 542 543 static void unix_write_space(struct sock *sk) 544 { 545 struct socket_wq *wq; 546 547 rcu_read_lock(); 548 if (unix_writable(sk)) { 549 wq = rcu_dereference(sk->sk_wq); 550 if (skwq_has_sleeper(wq)) 551 wake_up_interruptible_sync_poll(&wq->wait, 552 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 553 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 554 } 555 rcu_read_unlock(); 556 } 557 558 /* When dgram socket disconnects (or changes its peer), we clear its receive 559 * queue of packets arrived from previous peer. First, it allows to do 560 * flow control based only on wmem_alloc; second, sk connected to peer 561 * may receive messages only from that peer. */ 562 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 563 { 564 if (!skb_queue_empty(&sk->sk_receive_queue)) { 565 skb_queue_purge(&sk->sk_receive_queue); 566 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 567 568 /* If one link of bidirectional dgram pipe is disconnected, 569 * we signal error. Messages are lost. Do not make this, 570 * when peer was not connected to us. 571 */ 572 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 573 WRITE_ONCE(other->sk_err, ECONNRESET); 574 sk_error_report(other); 575 } 576 } 577 other->sk_state = TCP_CLOSE; 578 } 579 580 static void unix_sock_destructor(struct sock *sk) 581 { 582 struct unix_sock *u = unix_sk(sk); 583 584 skb_queue_purge(&sk->sk_receive_queue); 585 586 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 587 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 588 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 589 if (!sock_flag(sk, SOCK_DEAD)) { 590 pr_info("Attempt to release alive unix socket: %p\n", sk); 591 return; 592 } 593 594 if (u->addr) 595 unix_release_addr(u->addr); 596 597 atomic_long_dec(&unix_nr_socks); 598 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 599 #ifdef UNIX_REFCNT_DEBUG 600 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 601 atomic_long_read(&unix_nr_socks)); 602 #endif 603 } 604 605 static void unix_release_sock(struct sock *sk, int embrion) 606 { 607 struct unix_sock *u = unix_sk(sk); 608 struct sock *skpair; 609 struct sk_buff *skb; 610 struct path path; 611 int state; 612 613 unix_remove_socket(sock_net(sk), sk); 614 unix_remove_bsd_socket(sk); 615 616 /* Clear state */ 617 unix_state_lock(sk); 618 sock_orphan(sk); 619 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 620 path = u->path; 621 u->path.dentry = NULL; 622 u->path.mnt = NULL; 623 state = sk->sk_state; 624 sk->sk_state = TCP_CLOSE; 625 626 skpair = unix_peer(sk); 627 unix_peer(sk) = NULL; 628 629 unix_state_unlock(sk); 630 631 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 632 if (u->oob_skb) { 633 kfree_skb(u->oob_skb); 634 u->oob_skb = NULL; 635 } 636 #endif 637 638 wake_up_interruptible_all(&u->peer_wait); 639 640 if (skpair != NULL) { 641 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 642 unix_state_lock(skpair); 643 /* No more writes */ 644 WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK); 645 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 646 WRITE_ONCE(skpair->sk_err, ECONNRESET); 647 unix_state_unlock(skpair); 648 skpair->sk_state_change(skpair); 649 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 650 } 651 652 unix_dgram_peer_wake_disconnect(sk, skpair); 653 sock_put(skpair); /* It may now die */ 654 } 655 656 /* Try to flush out this socket. Throw out buffers at least */ 657 658 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 659 if (state == TCP_LISTEN) 660 unix_release_sock(skb->sk, 1); 661 /* passed fds are erased in the kfree_skb hook */ 662 UNIXCB(skb).consumed = skb->len; 663 kfree_skb(skb); 664 } 665 666 if (path.dentry) 667 path_put(&path); 668 669 sock_put(sk); 670 671 /* ---- Socket is dead now and most probably destroyed ---- */ 672 673 /* 674 * Fixme: BSD difference: In BSD all sockets connected to us get 675 * ECONNRESET and we die on the spot. In Linux we behave 676 * like files and pipes do and wait for the last 677 * dereference. 678 * 679 * Can't we simply set sock->err? 680 * 681 * What the above comment does talk about? --ANK(980817) 682 */ 683 684 if (READ_ONCE(unix_tot_inflight)) 685 unix_gc(); /* Garbage collect fds */ 686 } 687 688 static void init_peercred(struct sock *sk) 689 { 690 const struct cred *old_cred; 691 struct pid *old_pid; 692 693 spin_lock(&sk->sk_peer_lock); 694 old_pid = sk->sk_peer_pid; 695 old_cred = sk->sk_peer_cred; 696 sk->sk_peer_pid = get_pid(task_tgid(current)); 697 sk->sk_peer_cred = get_current_cred(); 698 spin_unlock(&sk->sk_peer_lock); 699 700 put_pid(old_pid); 701 put_cred(old_cred); 702 } 703 704 static void copy_peercred(struct sock *sk, struct sock *peersk) 705 { 706 const struct cred *old_cred; 707 struct pid *old_pid; 708 709 if (sk < peersk) { 710 spin_lock(&sk->sk_peer_lock); 711 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 712 } else { 713 spin_lock(&peersk->sk_peer_lock); 714 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 715 } 716 old_pid = sk->sk_peer_pid; 717 old_cred = sk->sk_peer_cred; 718 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 719 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 720 721 spin_unlock(&sk->sk_peer_lock); 722 spin_unlock(&peersk->sk_peer_lock); 723 724 put_pid(old_pid); 725 put_cred(old_cred); 726 } 727 728 static int unix_listen(struct socket *sock, int backlog) 729 { 730 int err; 731 struct sock *sk = sock->sk; 732 struct unix_sock *u = unix_sk(sk); 733 734 err = -EOPNOTSUPP; 735 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 736 goto out; /* Only stream/seqpacket sockets accept */ 737 err = -EINVAL; 738 if (!u->addr) 739 goto out; /* No listens on an unbound socket */ 740 unix_state_lock(sk); 741 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 742 goto out_unlock; 743 if (backlog > sk->sk_max_ack_backlog) 744 wake_up_interruptible_all(&u->peer_wait); 745 sk->sk_max_ack_backlog = backlog; 746 sk->sk_state = TCP_LISTEN; 747 /* set credentials so connect can copy them */ 748 init_peercred(sk); 749 err = 0; 750 751 out_unlock: 752 unix_state_unlock(sk); 753 out: 754 return err; 755 } 756 757 static int unix_release(struct socket *); 758 static int unix_bind(struct socket *, struct sockaddr *, int); 759 static int unix_stream_connect(struct socket *, struct sockaddr *, 760 int addr_len, int flags); 761 static int unix_socketpair(struct socket *, struct socket *); 762 static int unix_accept(struct socket *, struct socket *, int, bool); 763 static int unix_getname(struct socket *, struct sockaddr *, int); 764 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 765 static __poll_t unix_dgram_poll(struct file *, struct socket *, 766 poll_table *); 767 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 768 #ifdef CONFIG_COMPAT 769 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 770 #endif 771 static int unix_shutdown(struct socket *, int); 772 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 773 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 774 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 775 struct pipe_inode_info *, size_t size, 776 unsigned int flags); 777 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 778 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 779 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 780 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 781 static int unix_dgram_connect(struct socket *, struct sockaddr *, 782 int, int); 783 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 784 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 785 int); 786 787 static int unix_set_peek_off(struct sock *sk, int val) 788 { 789 struct unix_sock *u = unix_sk(sk); 790 791 if (mutex_lock_interruptible(&u->iolock)) 792 return -EINTR; 793 794 WRITE_ONCE(sk->sk_peek_off, val); 795 mutex_unlock(&u->iolock); 796 797 return 0; 798 } 799 800 #ifdef CONFIG_PROC_FS 801 static int unix_count_nr_fds(struct sock *sk) 802 { 803 struct sk_buff *skb; 804 struct unix_sock *u; 805 int nr_fds = 0; 806 807 spin_lock(&sk->sk_receive_queue.lock); 808 skb = skb_peek(&sk->sk_receive_queue); 809 while (skb) { 810 u = unix_sk(skb->sk); 811 nr_fds += atomic_read(&u->scm_stat.nr_fds); 812 skb = skb_peek_next(skb, &sk->sk_receive_queue); 813 } 814 spin_unlock(&sk->sk_receive_queue.lock); 815 816 return nr_fds; 817 } 818 819 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 820 { 821 struct sock *sk = sock->sk; 822 unsigned char s_state; 823 struct unix_sock *u; 824 int nr_fds = 0; 825 826 if (sk) { 827 s_state = READ_ONCE(sk->sk_state); 828 u = unix_sk(sk); 829 830 /* SOCK_STREAM and SOCK_SEQPACKET sockets never change their 831 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN. 832 * SOCK_DGRAM is ordinary. So, no lock is needed. 833 */ 834 if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED) 835 nr_fds = atomic_read(&u->scm_stat.nr_fds); 836 else if (s_state == TCP_LISTEN) 837 nr_fds = unix_count_nr_fds(sk); 838 839 seq_printf(m, "scm_fds: %u\n", nr_fds); 840 } 841 } 842 #else 843 #define unix_show_fdinfo NULL 844 #endif 845 846 static const struct proto_ops unix_stream_ops = { 847 .family = PF_UNIX, 848 .owner = THIS_MODULE, 849 .release = unix_release, 850 .bind = unix_bind, 851 .connect = unix_stream_connect, 852 .socketpair = unix_socketpair, 853 .accept = unix_accept, 854 .getname = unix_getname, 855 .poll = unix_poll, 856 .ioctl = unix_ioctl, 857 #ifdef CONFIG_COMPAT 858 .compat_ioctl = unix_compat_ioctl, 859 #endif 860 .listen = unix_listen, 861 .shutdown = unix_shutdown, 862 .sendmsg = unix_stream_sendmsg, 863 .recvmsg = unix_stream_recvmsg, 864 .read_skb = unix_stream_read_skb, 865 .mmap = sock_no_mmap, 866 .splice_read = unix_stream_splice_read, 867 .set_peek_off = unix_set_peek_off, 868 .show_fdinfo = unix_show_fdinfo, 869 }; 870 871 static const struct proto_ops unix_dgram_ops = { 872 .family = PF_UNIX, 873 .owner = THIS_MODULE, 874 .release = unix_release, 875 .bind = unix_bind, 876 .connect = unix_dgram_connect, 877 .socketpair = unix_socketpair, 878 .accept = sock_no_accept, 879 .getname = unix_getname, 880 .poll = unix_dgram_poll, 881 .ioctl = unix_ioctl, 882 #ifdef CONFIG_COMPAT 883 .compat_ioctl = unix_compat_ioctl, 884 #endif 885 .listen = sock_no_listen, 886 .shutdown = unix_shutdown, 887 .sendmsg = unix_dgram_sendmsg, 888 .read_skb = unix_read_skb, 889 .recvmsg = unix_dgram_recvmsg, 890 .mmap = sock_no_mmap, 891 .set_peek_off = unix_set_peek_off, 892 .show_fdinfo = unix_show_fdinfo, 893 }; 894 895 static const struct proto_ops unix_seqpacket_ops = { 896 .family = PF_UNIX, 897 .owner = THIS_MODULE, 898 .release = unix_release, 899 .bind = unix_bind, 900 .connect = unix_stream_connect, 901 .socketpair = unix_socketpair, 902 .accept = unix_accept, 903 .getname = unix_getname, 904 .poll = unix_dgram_poll, 905 .ioctl = unix_ioctl, 906 #ifdef CONFIG_COMPAT 907 .compat_ioctl = unix_compat_ioctl, 908 #endif 909 .listen = unix_listen, 910 .shutdown = unix_shutdown, 911 .sendmsg = unix_seqpacket_sendmsg, 912 .recvmsg = unix_seqpacket_recvmsg, 913 .mmap = sock_no_mmap, 914 .set_peek_off = unix_set_peek_off, 915 .show_fdinfo = unix_show_fdinfo, 916 }; 917 918 static void unix_close(struct sock *sk, long timeout) 919 { 920 /* Nothing to do here, unix socket does not need a ->close(). 921 * This is merely for sockmap. 922 */ 923 } 924 925 static void unix_unhash(struct sock *sk) 926 { 927 /* Nothing to do here, unix socket does not need a ->unhash(). 928 * This is merely for sockmap. 929 */ 930 } 931 932 static bool unix_bpf_bypass_getsockopt(int level, int optname) 933 { 934 if (level == SOL_SOCKET) { 935 switch (optname) { 936 case SO_PEERPIDFD: 937 return true; 938 default: 939 return false; 940 } 941 } 942 943 return false; 944 } 945 946 struct proto unix_dgram_proto = { 947 .name = "UNIX", 948 .owner = THIS_MODULE, 949 .obj_size = sizeof(struct unix_sock), 950 .close = unix_close, 951 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 952 #ifdef CONFIG_BPF_SYSCALL 953 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 954 #endif 955 }; 956 957 struct proto unix_stream_proto = { 958 .name = "UNIX-STREAM", 959 .owner = THIS_MODULE, 960 .obj_size = sizeof(struct unix_sock), 961 .close = unix_close, 962 .unhash = unix_unhash, 963 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 964 #ifdef CONFIG_BPF_SYSCALL 965 .psock_update_sk_prot = unix_stream_bpf_update_proto, 966 #endif 967 }; 968 969 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 970 { 971 struct unix_sock *u; 972 struct sock *sk; 973 int err; 974 975 atomic_long_inc(&unix_nr_socks); 976 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 977 err = -ENFILE; 978 goto err; 979 } 980 981 if (type == SOCK_STREAM) 982 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 983 else /*dgram and seqpacket */ 984 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 985 986 if (!sk) { 987 err = -ENOMEM; 988 goto err; 989 } 990 991 sock_init_data(sock, sk); 992 993 sk->sk_hash = unix_unbound_hash(sk); 994 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 995 sk->sk_write_space = unix_write_space; 996 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 997 sk->sk_destruct = unix_sock_destructor; 998 u = unix_sk(sk); 999 u->path.dentry = NULL; 1000 u->path.mnt = NULL; 1001 spin_lock_init(&u->lock); 1002 atomic_long_set(&u->inflight, 0); 1003 INIT_LIST_HEAD(&u->link); 1004 mutex_init(&u->iolock); /* single task reading lock */ 1005 mutex_init(&u->bindlock); /* single task binding lock */ 1006 init_waitqueue_head(&u->peer_wait); 1007 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 1008 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 1009 unix_insert_unbound_socket(net, sk); 1010 1011 sock_prot_inuse_add(net, sk->sk_prot, 1); 1012 1013 return sk; 1014 1015 err: 1016 atomic_long_dec(&unix_nr_socks); 1017 return ERR_PTR(err); 1018 } 1019 1020 static int unix_create(struct net *net, struct socket *sock, int protocol, 1021 int kern) 1022 { 1023 struct sock *sk; 1024 1025 if (protocol && protocol != PF_UNIX) 1026 return -EPROTONOSUPPORT; 1027 1028 sock->state = SS_UNCONNECTED; 1029 1030 switch (sock->type) { 1031 case SOCK_STREAM: 1032 sock->ops = &unix_stream_ops; 1033 break; 1034 /* 1035 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1036 * nothing uses it. 1037 */ 1038 case SOCK_RAW: 1039 sock->type = SOCK_DGRAM; 1040 fallthrough; 1041 case SOCK_DGRAM: 1042 sock->ops = &unix_dgram_ops; 1043 break; 1044 case SOCK_SEQPACKET: 1045 sock->ops = &unix_seqpacket_ops; 1046 break; 1047 default: 1048 return -ESOCKTNOSUPPORT; 1049 } 1050 1051 sk = unix_create1(net, sock, kern, sock->type); 1052 if (IS_ERR(sk)) 1053 return PTR_ERR(sk); 1054 1055 return 0; 1056 } 1057 1058 static int unix_release(struct socket *sock) 1059 { 1060 struct sock *sk = sock->sk; 1061 1062 if (!sk) 1063 return 0; 1064 1065 sk->sk_prot->close(sk, 0); 1066 unix_release_sock(sk, 0); 1067 sock->sk = NULL; 1068 1069 return 0; 1070 } 1071 1072 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1073 int type) 1074 { 1075 struct inode *inode; 1076 struct path path; 1077 struct sock *sk; 1078 int err; 1079 1080 unix_mkname_bsd(sunaddr, addr_len); 1081 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1082 if (err) 1083 goto fail; 1084 1085 err = path_permission(&path, MAY_WRITE); 1086 if (err) 1087 goto path_put; 1088 1089 err = -ECONNREFUSED; 1090 inode = d_backing_inode(path.dentry); 1091 if (!S_ISSOCK(inode->i_mode)) 1092 goto path_put; 1093 1094 sk = unix_find_socket_byinode(inode); 1095 if (!sk) 1096 goto path_put; 1097 1098 err = -EPROTOTYPE; 1099 if (sk->sk_type == type) 1100 touch_atime(&path); 1101 else 1102 goto sock_put; 1103 1104 path_put(&path); 1105 1106 return sk; 1107 1108 sock_put: 1109 sock_put(sk); 1110 path_put: 1111 path_put(&path); 1112 fail: 1113 return ERR_PTR(err); 1114 } 1115 1116 static struct sock *unix_find_abstract(struct net *net, 1117 struct sockaddr_un *sunaddr, 1118 int addr_len, int type) 1119 { 1120 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1121 struct dentry *dentry; 1122 struct sock *sk; 1123 1124 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1125 if (!sk) 1126 return ERR_PTR(-ECONNREFUSED); 1127 1128 dentry = unix_sk(sk)->path.dentry; 1129 if (dentry) 1130 touch_atime(&unix_sk(sk)->path); 1131 1132 return sk; 1133 } 1134 1135 static struct sock *unix_find_other(struct net *net, 1136 struct sockaddr_un *sunaddr, 1137 int addr_len, int type) 1138 { 1139 struct sock *sk; 1140 1141 if (sunaddr->sun_path[0]) 1142 sk = unix_find_bsd(sunaddr, addr_len, type); 1143 else 1144 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1145 1146 return sk; 1147 } 1148 1149 static int unix_autobind(struct sock *sk) 1150 { 1151 unsigned int new_hash, old_hash = sk->sk_hash; 1152 struct unix_sock *u = unix_sk(sk); 1153 struct net *net = sock_net(sk); 1154 struct unix_address *addr; 1155 u32 lastnum, ordernum; 1156 int err; 1157 1158 err = mutex_lock_interruptible(&u->bindlock); 1159 if (err) 1160 return err; 1161 1162 if (u->addr) 1163 goto out; 1164 1165 err = -ENOMEM; 1166 addr = kzalloc(sizeof(*addr) + 1167 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1168 if (!addr) 1169 goto out; 1170 1171 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1172 addr->name->sun_family = AF_UNIX; 1173 refcount_set(&addr->refcnt, 1); 1174 1175 ordernum = get_random_u32(); 1176 lastnum = ordernum & 0xFFFFF; 1177 retry: 1178 ordernum = (ordernum + 1) & 0xFFFFF; 1179 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1180 1181 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1182 unix_table_double_lock(net, old_hash, new_hash); 1183 1184 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1185 unix_table_double_unlock(net, old_hash, new_hash); 1186 1187 /* __unix_find_socket_byname() may take long time if many names 1188 * are already in use. 1189 */ 1190 cond_resched(); 1191 1192 if (ordernum == lastnum) { 1193 /* Give up if all names seems to be in use. */ 1194 err = -ENOSPC; 1195 unix_release_addr(addr); 1196 goto out; 1197 } 1198 1199 goto retry; 1200 } 1201 1202 __unix_set_addr_hash(net, sk, addr, new_hash); 1203 unix_table_double_unlock(net, old_hash, new_hash); 1204 err = 0; 1205 1206 out: mutex_unlock(&u->bindlock); 1207 return err; 1208 } 1209 1210 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1211 int addr_len) 1212 { 1213 umode_t mode = S_IFSOCK | 1214 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1215 unsigned int new_hash, old_hash = sk->sk_hash; 1216 struct unix_sock *u = unix_sk(sk); 1217 struct net *net = sock_net(sk); 1218 struct mnt_idmap *idmap; 1219 struct unix_address *addr; 1220 struct dentry *dentry; 1221 struct path parent; 1222 int err; 1223 1224 addr_len = unix_mkname_bsd(sunaddr, addr_len); 1225 addr = unix_create_addr(sunaddr, addr_len); 1226 if (!addr) 1227 return -ENOMEM; 1228 1229 /* 1230 * Get the parent directory, calculate the hash for last 1231 * component. 1232 */ 1233 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1234 if (IS_ERR(dentry)) { 1235 err = PTR_ERR(dentry); 1236 goto out; 1237 } 1238 1239 /* 1240 * All right, let's create it. 1241 */ 1242 idmap = mnt_idmap(parent.mnt); 1243 err = security_path_mknod(&parent, dentry, mode, 0); 1244 if (!err) 1245 err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0); 1246 if (err) 1247 goto out_path; 1248 err = mutex_lock_interruptible(&u->bindlock); 1249 if (err) 1250 goto out_unlink; 1251 if (u->addr) 1252 goto out_unlock; 1253 1254 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1255 unix_table_double_lock(net, old_hash, new_hash); 1256 u->path.mnt = mntget(parent.mnt); 1257 u->path.dentry = dget(dentry); 1258 __unix_set_addr_hash(net, sk, addr, new_hash); 1259 unix_table_double_unlock(net, old_hash, new_hash); 1260 unix_insert_bsd_socket(sk); 1261 mutex_unlock(&u->bindlock); 1262 done_path_create(&parent, dentry); 1263 return 0; 1264 1265 out_unlock: 1266 mutex_unlock(&u->bindlock); 1267 err = -EINVAL; 1268 out_unlink: 1269 /* failed after successful mknod? unlink what we'd created... */ 1270 vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL); 1271 out_path: 1272 done_path_create(&parent, dentry); 1273 out: 1274 unix_release_addr(addr); 1275 return err == -EEXIST ? -EADDRINUSE : err; 1276 } 1277 1278 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1279 int addr_len) 1280 { 1281 unsigned int new_hash, old_hash = sk->sk_hash; 1282 struct unix_sock *u = unix_sk(sk); 1283 struct net *net = sock_net(sk); 1284 struct unix_address *addr; 1285 int err; 1286 1287 addr = unix_create_addr(sunaddr, addr_len); 1288 if (!addr) 1289 return -ENOMEM; 1290 1291 err = mutex_lock_interruptible(&u->bindlock); 1292 if (err) 1293 goto out; 1294 1295 if (u->addr) { 1296 err = -EINVAL; 1297 goto out_mutex; 1298 } 1299 1300 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1301 unix_table_double_lock(net, old_hash, new_hash); 1302 1303 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1304 goto out_spin; 1305 1306 __unix_set_addr_hash(net, sk, addr, new_hash); 1307 unix_table_double_unlock(net, old_hash, new_hash); 1308 mutex_unlock(&u->bindlock); 1309 return 0; 1310 1311 out_spin: 1312 unix_table_double_unlock(net, old_hash, new_hash); 1313 err = -EADDRINUSE; 1314 out_mutex: 1315 mutex_unlock(&u->bindlock); 1316 out: 1317 unix_release_addr(addr); 1318 return err; 1319 } 1320 1321 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1322 { 1323 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1324 struct sock *sk = sock->sk; 1325 int err; 1326 1327 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1328 sunaddr->sun_family == AF_UNIX) 1329 return unix_autobind(sk); 1330 1331 err = unix_validate_addr(sunaddr, addr_len); 1332 if (err) 1333 return err; 1334 1335 if (sunaddr->sun_path[0]) 1336 err = unix_bind_bsd(sk, sunaddr, addr_len); 1337 else 1338 err = unix_bind_abstract(sk, sunaddr, addr_len); 1339 1340 return err; 1341 } 1342 1343 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1344 { 1345 if (unlikely(sk1 == sk2) || !sk2) { 1346 unix_state_lock(sk1); 1347 return; 1348 } 1349 if (sk1 < sk2) { 1350 unix_state_lock(sk1); 1351 unix_state_lock_nested(sk2); 1352 } else { 1353 unix_state_lock(sk2); 1354 unix_state_lock_nested(sk1); 1355 } 1356 } 1357 1358 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1359 { 1360 if (unlikely(sk1 == sk2) || !sk2) { 1361 unix_state_unlock(sk1); 1362 return; 1363 } 1364 unix_state_unlock(sk1); 1365 unix_state_unlock(sk2); 1366 } 1367 1368 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1369 int alen, int flags) 1370 { 1371 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1372 struct sock *sk = sock->sk; 1373 struct sock *other; 1374 int err; 1375 1376 err = -EINVAL; 1377 if (alen < offsetofend(struct sockaddr, sa_family)) 1378 goto out; 1379 1380 if (addr->sa_family != AF_UNSPEC) { 1381 err = unix_validate_addr(sunaddr, alen); 1382 if (err) 1383 goto out; 1384 1385 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, addr, &alen); 1386 if (err) 1387 goto out; 1388 1389 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1390 test_bit(SOCK_PASSPIDFD, &sock->flags)) && 1391 !unix_sk(sk)->addr) { 1392 err = unix_autobind(sk); 1393 if (err) 1394 goto out; 1395 } 1396 1397 restart: 1398 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1399 if (IS_ERR(other)) { 1400 err = PTR_ERR(other); 1401 goto out; 1402 } 1403 1404 unix_state_double_lock(sk, other); 1405 1406 /* Apparently VFS overslept socket death. Retry. */ 1407 if (sock_flag(other, SOCK_DEAD)) { 1408 unix_state_double_unlock(sk, other); 1409 sock_put(other); 1410 goto restart; 1411 } 1412 1413 err = -EPERM; 1414 if (!unix_may_send(sk, other)) 1415 goto out_unlock; 1416 1417 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1418 if (err) 1419 goto out_unlock; 1420 1421 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1422 } else { 1423 /* 1424 * 1003.1g breaking connected state with AF_UNSPEC 1425 */ 1426 other = NULL; 1427 unix_state_double_lock(sk, other); 1428 } 1429 1430 /* 1431 * If it was connected, reconnect. 1432 */ 1433 if (unix_peer(sk)) { 1434 struct sock *old_peer = unix_peer(sk); 1435 1436 unix_peer(sk) = other; 1437 if (!other) 1438 sk->sk_state = TCP_CLOSE; 1439 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1440 1441 unix_state_double_unlock(sk, other); 1442 1443 if (other != old_peer) 1444 unix_dgram_disconnected(sk, old_peer); 1445 sock_put(old_peer); 1446 } else { 1447 unix_peer(sk) = other; 1448 unix_state_double_unlock(sk, other); 1449 } 1450 1451 return 0; 1452 1453 out_unlock: 1454 unix_state_double_unlock(sk, other); 1455 sock_put(other); 1456 out: 1457 return err; 1458 } 1459 1460 static long unix_wait_for_peer(struct sock *other, long timeo) 1461 __releases(&unix_sk(other)->lock) 1462 { 1463 struct unix_sock *u = unix_sk(other); 1464 int sched; 1465 DEFINE_WAIT(wait); 1466 1467 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1468 1469 sched = !sock_flag(other, SOCK_DEAD) && 1470 !(other->sk_shutdown & RCV_SHUTDOWN) && 1471 unix_recvq_full_lockless(other); 1472 1473 unix_state_unlock(other); 1474 1475 if (sched) 1476 timeo = schedule_timeout(timeo); 1477 1478 finish_wait(&u->peer_wait, &wait); 1479 return timeo; 1480 } 1481 1482 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1483 int addr_len, int flags) 1484 { 1485 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1486 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1487 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1488 struct net *net = sock_net(sk); 1489 struct sk_buff *skb = NULL; 1490 long timeo; 1491 int err; 1492 int st; 1493 1494 err = unix_validate_addr(sunaddr, addr_len); 1495 if (err) 1496 goto out; 1497 1498 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, uaddr, &addr_len); 1499 if (err) 1500 goto out; 1501 1502 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1503 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1504 err = unix_autobind(sk); 1505 if (err) 1506 goto out; 1507 } 1508 1509 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1510 1511 /* First of all allocate resources. 1512 If we will make it after state is locked, 1513 we will have to recheck all again in any case. 1514 */ 1515 1516 /* create new sock for complete connection */ 1517 newsk = unix_create1(net, NULL, 0, sock->type); 1518 if (IS_ERR(newsk)) { 1519 err = PTR_ERR(newsk); 1520 newsk = NULL; 1521 goto out; 1522 } 1523 1524 err = -ENOMEM; 1525 1526 /* Allocate skb for sending to listening sock */ 1527 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1528 if (skb == NULL) 1529 goto out; 1530 1531 restart: 1532 /* Find listening sock. */ 1533 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1534 if (IS_ERR(other)) { 1535 err = PTR_ERR(other); 1536 other = NULL; 1537 goto out; 1538 } 1539 1540 /* Latch state of peer */ 1541 unix_state_lock(other); 1542 1543 /* Apparently VFS overslept socket death. Retry. */ 1544 if (sock_flag(other, SOCK_DEAD)) { 1545 unix_state_unlock(other); 1546 sock_put(other); 1547 goto restart; 1548 } 1549 1550 err = -ECONNREFUSED; 1551 if (other->sk_state != TCP_LISTEN) 1552 goto out_unlock; 1553 if (other->sk_shutdown & RCV_SHUTDOWN) 1554 goto out_unlock; 1555 1556 if (unix_recvq_full(other)) { 1557 err = -EAGAIN; 1558 if (!timeo) 1559 goto out_unlock; 1560 1561 timeo = unix_wait_for_peer(other, timeo); 1562 1563 err = sock_intr_errno(timeo); 1564 if (signal_pending(current)) 1565 goto out; 1566 sock_put(other); 1567 goto restart; 1568 } 1569 1570 /* Latch our state. 1571 1572 It is tricky place. We need to grab our state lock and cannot 1573 drop lock on peer. It is dangerous because deadlock is 1574 possible. Connect to self case and simultaneous 1575 attempt to connect are eliminated by checking socket 1576 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1577 check this before attempt to grab lock. 1578 1579 Well, and we have to recheck the state after socket locked. 1580 */ 1581 st = sk->sk_state; 1582 1583 switch (st) { 1584 case TCP_CLOSE: 1585 /* This is ok... continue with connect */ 1586 break; 1587 case TCP_ESTABLISHED: 1588 /* Socket is already connected */ 1589 err = -EISCONN; 1590 goto out_unlock; 1591 default: 1592 err = -EINVAL; 1593 goto out_unlock; 1594 } 1595 1596 unix_state_lock_nested(sk); 1597 1598 if (sk->sk_state != st) { 1599 unix_state_unlock(sk); 1600 unix_state_unlock(other); 1601 sock_put(other); 1602 goto restart; 1603 } 1604 1605 err = security_unix_stream_connect(sk, other, newsk); 1606 if (err) { 1607 unix_state_unlock(sk); 1608 goto out_unlock; 1609 } 1610 1611 /* The way is open! Fastly set all the necessary fields... */ 1612 1613 sock_hold(sk); 1614 unix_peer(newsk) = sk; 1615 newsk->sk_state = TCP_ESTABLISHED; 1616 newsk->sk_type = sk->sk_type; 1617 init_peercred(newsk); 1618 newu = unix_sk(newsk); 1619 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1620 otheru = unix_sk(other); 1621 1622 /* copy address information from listening to new sock 1623 * 1624 * The contents of *(otheru->addr) and otheru->path 1625 * are seen fully set up here, since we have found 1626 * otheru in hash under its lock. Insertion into the 1627 * hash chain we'd found it in had been done in an 1628 * earlier critical area protected by the chain's lock, 1629 * the same one where we'd set *(otheru->addr) contents, 1630 * as well as otheru->path and otheru->addr itself. 1631 * 1632 * Using smp_store_release() here to set newu->addr 1633 * is enough to make those stores, as well as stores 1634 * to newu->path visible to anyone who gets newu->addr 1635 * by smp_load_acquire(). IOW, the same warranties 1636 * as for unix_sock instances bound in unix_bind() or 1637 * in unix_autobind(). 1638 */ 1639 if (otheru->path.dentry) { 1640 path_get(&otheru->path); 1641 newu->path = otheru->path; 1642 } 1643 refcount_inc(&otheru->addr->refcnt); 1644 smp_store_release(&newu->addr, otheru->addr); 1645 1646 /* Set credentials */ 1647 copy_peercred(sk, other); 1648 1649 sock->state = SS_CONNECTED; 1650 sk->sk_state = TCP_ESTABLISHED; 1651 sock_hold(newsk); 1652 1653 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1654 unix_peer(sk) = newsk; 1655 1656 unix_state_unlock(sk); 1657 1658 /* take ten and send info to listening sock */ 1659 spin_lock(&other->sk_receive_queue.lock); 1660 __skb_queue_tail(&other->sk_receive_queue, skb); 1661 spin_unlock(&other->sk_receive_queue.lock); 1662 unix_state_unlock(other); 1663 other->sk_data_ready(other); 1664 sock_put(other); 1665 return 0; 1666 1667 out_unlock: 1668 if (other) 1669 unix_state_unlock(other); 1670 1671 out: 1672 kfree_skb(skb); 1673 if (newsk) 1674 unix_release_sock(newsk, 0); 1675 if (other) 1676 sock_put(other); 1677 return err; 1678 } 1679 1680 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1681 { 1682 struct sock *ska = socka->sk, *skb = sockb->sk; 1683 1684 /* Join our sockets back to back */ 1685 sock_hold(ska); 1686 sock_hold(skb); 1687 unix_peer(ska) = skb; 1688 unix_peer(skb) = ska; 1689 init_peercred(ska); 1690 init_peercred(skb); 1691 1692 ska->sk_state = TCP_ESTABLISHED; 1693 skb->sk_state = TCP_ESTABLISHED; 1694 socka->state = SS_CONNECTED; 1695 sockb->state = SS_CONNECTED; 1696 return 0; 1697 } 1698 1699 static void unix_sock_inherit_flags(const struct socket *old, 1700 struct socket *new) 1701 { 1702 if (test_bit(SOCK_PASSCRED, &old->flags)) 1703 set_bit(SOCK_PASSCRED, &new->flags); 1704 if (test_bit(SOCK_PASSPIDFD, &old->flags)) 1705 set_bit(SOCK_PASSPIDFD, &new->flags); 1706 if (test_bit(SOCK_PASSSEC, &old->flags)) 1707 set_bit(SOCK_PASSSEC, &new->flags); 1708 } 1709 1710 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1711 bool kern) 1712 { 1713 struct sock *sk = sock->sk; 1714 struct sock *tsk; 1715 struct sk_buff *skb; 1716 int err; 1717 1718 err = -EOPNOTSUPP; 1719 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1720 goto out; 1721 1722 err = -EINVAL; 1723 if (sk->sk_state != TCP_LISTEN) 1724 goto out; 1725 1726 /* If socket state is TCP_LISTEN it cannot change (for now...), 1727 * so that no locks are necessary. 1728 */ 1729 1730 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1731 &err); 1732 if (!skb) { 1733 /* This means receive shutdown. */ 1734 if (err == 0) 1735 err = -EINVAL; 1736 goto out; 1737 } 1738 1739 tsk = skb->sk; 1740 skb_free_datagram(sk, skb); 1741 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1742 1743 /* attach accepted sock to socket */ 1744 unix_state_lock(tsk); 1745 newsock->state = SS_CONNECTED; 1746 unix_sock_inherit_flags(sock, newsock); 1747 sock_graft(tsk, newsock); 1748 unix_state_unlock(tsk); 1749 return 0; 1750 1751 out: 1752 return err; 1753 } 1754 1755 1756 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1757 { 1758 struct sock *sk = sock->sk; 1759 struct unix_address *addr; 1760 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1761 int err = 0; 1762 1763 if (peer) { 1764 sk = unix_peer_get(sk); 1765 1766 err = -ENOTCONN; 1767 if (!sk) 1768 goto out; 1769 err = 0; 1770 } else { 1771 sock_hold(sk); 1772 } 1773 1774 addr = smp_load_acquire(&unix_sk(sk)->addr); 1775 if (!addr) { 1776 sunaddr->sun_family = AF_UNIX; 1777 sunaddr->sun_path[0] = 0; 1778 err = offsetof(struct sockaddr_un, sun_path); 1779 } else { 1780 err = addr->len; 1781 memcpy(sunaddr, addr->name, addr->len); 1782 1783 if (peer) 1784 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1785 CGROUP_UNIX_GETPEERNAME); 1786 else 1787 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1788 CGROUP_UNIX_GETSOCKNAME); 1789 } 1790 sock_put(sk); 1791 out: 1792 return err; 1793 } 1794 1795 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1796 { 1797 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1798 1799 /* 1800 * Garbage collection of unix sockets starts by selecting a set of 1801 * candidate sockets which have reference only from being in flight 1802 * (total_refs == inflight_refs). This condition is checked once during 1803 * the candidate collection phase, and candidates are marked as such, so 1804 * that non-candidates can later be ignored. While inflight_refs is 1805 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1806 * is an instantaneous decision. 1807 * 1808 * Once a candidate, however, the socket must not be reinstalled into a 1809 * file descriptor while the garbage collection is in progress. 1810 * 1811 * If the above conditions are met, then the directed graph of 1812 * candidates (*) does not change while unix_gc_lock is held. 1813 * 1814 * Any operations that changes the file count through file descriptors 1815 * (dup, close, sendmsg) does not change the graph since candidates are 1816 * not installed in fds. 1817 * 1818 * Dequeing a candidate via recvmsg would install it into an fd, but 1819 * that takes unix_gc_lock to decrement the inflight count, so it's 1820 * serialized with garbage collection. 1821 * 1822 * MSG_PEEK is special in that it does not change the inflight count, 1823 * yet does install the socket into an fd. The following lock/unlock 1824 * pair is to ensure serialization with garbage collection. It must be 1825 * done between incrementing the file count and installing the file into 1826 * an fd. 1827 * 1828 * If garbage collection starts after the barrier provided by the 1829 * lock/unlock, then it will see the elevated refcount and not mark this 1830 * as a candidate. If a garbage collection is already in progress 1831 * before the file count was incremented, then the lock/unlock pair will 1832 * ensure that garbage collection is finished before progressing to 1833 * installing the fd. 1834 * 1835 * (*) A -> B where B is on the queue of A or B is on the queue of C 1836 * which is on the queue of listening socket A. 1837 */ 1838 spin_lock(&unix_gc_lock); 1839 spin_unlock(&unix_gc_lock); 1840 } 1841 1842 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1843 { 1844 int err = 0; 1845 1846 UNIXCB(skb).pid = get_pid(scm->pid); 1847 UNIXCB(skb).uid = scm->creds.uid; 1848 UNIXCB(skb).gid = scm->creds.gid; 1849 UNIXCB(skb).fp = NULL; 1850 unix_get_secdata(scm, skb); 1851 if (scm->fp && send_fds) 1852 err = unix_attach_fds(scm, skb); 1853 1854 skb->destructor = unix_destruct_scm; 1855 return err; 1856 } 1857 1858 static bool unix_passcred_enabled(const struct socket *sock, 1859 const struct sock *other) 1860 { 1861 return test_bit(SOCK_PASSCRED, &sock->flags) || 1862 test_bit(SOCK_PASSPIDFD, &sock->flags) || 1863 !other->sk_socket || 1864 test_bit(SOCK_PASSCRED, &other->sk_socket->flags) || 1865 test_bit(SOCK_PASSPIDFD, &other->sk_socket->flags); 1866 } 1867 1868 /* 1869 * Some apps rely on write() giving SCM_CREDENTIALS 1870 * We include credentials if source or destination socket 1871 * asserted SOCK_PASSCRED. 1872 */ 1873 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1874 const struct sock *other) 1875 { 1876 if (UNIXCB(skb).pid) 1877 return; 1878 if (unix_passcred_enabled(sock, other)) { 1879 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1880 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1881 } 1882 } 1883 1884 static bool unix_skb_scm_eq(struct sk_buff *skb, 1885 struct scm_cookie *scm) 1886 { 1887 return UNIXCB(skb).pid == scm->pid && 1888 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1889 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1890 unix_secdata_eq(scm, skb); 1891 } 1892 1893 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1894 { 1895 struct scm_fp_list *fp = UNIXCB(skb).fp; 1896 struct unix_sock *u = unix_sk(sk); 1897 1898 if (unlikely(fp && fp->count)) 1899 atomic_add(fp->count, &u->scm_stat.nr_fds); 1900 } 1901 1902 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1903 { 1904 struct scm_fp_list *fp = UNIXCB(skb).fp; 1905 struct unix_sock *u = unix_sk(sk); 1906 1907 if (unlikely(fp && fp->count)) 1908 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1909 } 1910 1911 /* 1912 * Send AF_UNIX data. 1913 */ 1914 1915 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1916 size_t len) 1917 { 1918 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1919 struct sock *sk = sock->sk, *other = NULL; 1920 struct unix_sock *u = unix_sk(sk); 1921 struct scm_cookie scm; 1922 struct sk_buff *skb; 1923 int data_len = 0; 1924 int sk_locked; 1925 long timeo; 1926 int err; 1927 1928 wait_for_unix_gc(); 1929 err = scm_send(sock, msg, &scm, false); 1930 if (err < 0) 1931 return err; 1932 1933 err = -EOPNOTSUPP; 1934 if (msg->msg_flags&MSG_OOB) 1935 goto out; 1936 1937 if (msg->msg_namelen) { 1938 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1939 if (err) 1940 goto out; 1941 1942 err = BPF_CGROUP_RUN_PROG_UNIX_SENDMSG_LOCK(sk, 1943 msg->msg_name, 1944 &msg->msg_namelen, 1945 NULL); 1946 if (err) 1947 goto out; 1948 } else { 1949 sunaddr = NULL; 1950 err = -ENOTCONN; 1951 other = unix_peer_get(sk); 1952 if (!other) 1953 goto out; 1954 } 1955 1956 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1957 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1958 err = unix_autobind(sk); 1959 if (err) 1960 goto out; 1961 } 1962 1963 err = -EMSGSIZE; 1964 if (len > sk->sk_sndbuf - 32) 1965 goto out; 1966 1967 if (len > SKB_MAX_ALLOC) { 1968 data_len = min_t(size_t, 1969 len - SKB_MAX_ALLOC, 1970 MAX_SKB_FRAGS * PAGE_SIZE); 1971 data_len = PAGE_ALIGN(data_len); 1972 1973 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1974 } 1975 1976 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1977 msg->msg_flags & MSG_DONTWAIT, &err, 1978 PAGE_ALLOC_COSTLY_ORDER); 1979 if (skb == NULL) 1980 goto out; 1981 1982 err = unix_scm_to_skb(&scm, skb, true); 1983 if (err < 0) 1984 goto out_free; 1985 1986 skb_put(skb, len - data_len); 1987 skb->data_len = data_len; 1988 skb->len = len; 1989 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1990 if (err) 1991 goto out_free; 1992 1993 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1994 1995 restart: 1996 if (!other) { 1997 err = -ECONNRESET; 1998 if (sunaddr == NULL) 1999 goto out_free; 2000 2001 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 2002 sk->sk_type); 2003 if (IS_ERR(other)) { 2004 err = PTR_ERR(other); 2005 other = NULL; 2006 goto out_free; 2007 } 2008 } 2009 2010 if (sk_filter(other, skb) < 0) { 2011 /* Toss the packet but do not return any error to the sender */ 2012 err = len; 2013 goto out_free; 2014 } 2015 2016 sk_locked = 0; 2017 unix_state_lock(other); 2018 restart_locked: 2019 err = -EPERM; 2020 if (!unix_may_send(sk, other)) 2021 goto out_unlock; 2022 2023 if (unlikely(sock_flag(other, SOCK_DEAD))) { 2024 /* 2025 * Check with 1003.1g - what should 2026 * datagram error 2027 */ 2028 unix_state_unlock(other); 2029 sock_put(other); 2030 2031 if (!sk_locked) 2032 unix_state_lock(sk); 2033 2034 err = 0; 2035 if (sk->sk_type == SOCK_SEQPACKET) { 2036 /* We are here only when racing with unix_release_sock() 2037 * is clearing @other. Never change state to TCP_CLOSE 2038 * unlike SOCK_DGRAM wants. 2039 */ 2040 unix_state_unlock(sk); 2041 err = -EPIPE; 2042 } else if (unix_peer(sk) == other) { 2043 unix_peer(sk) = NULL; 2044 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 2045 2046 sk->sk_state = TCP_CLOSE; 2047 unix_state_unlock(sk); 2048 2049 unix_dgram_disconnected(sk, other); 2050 sock_put(other); 2051 err = -ECONNREFUSED; 2052 } else { 2053 unix_state_unlock(sk); 2054 } 2055 2056 other = NULL; 2057 if (err) 2058 goto out_free; 2059 goto restart; 2060 } 2061 2062 err = -EPIPE; 2063 if (other->sk_shutdown & RCV_SHUTDOWN) 2064 goto out_unlock; 2065 2066 if (sk->sk_type != SOCK_SEQPACKET) { 2067 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2068 if (err) 2069 goto out_unlock; 2070 } 2071 2072 /* other == sk && unix_peer(other) != sk if 2073 * - unix_peer(sk) == NULL, destination address bound to sk 2074 * - unix_peer(sk) == sk by time of get but disconnected before lock 2075 */ 2076 if (other != sk && 2077 unlikely(unix_peer(other) != sk && 2078 unix_recvq_full_lockless(other))) { 2079 if (timeo) { 2080 timeo = unix_wait_for_peer(other, timeo); 2081 2082 err = sock_intr_errno(timeo); 2083 if (signal_pending(current)) 2084 goto out_free; 2085 2086 goto restart; 2087 } 2088 2089 if (!sk_locked) { 2090 unix_state_unlock(other); 2091 unix_state_double_lock(sk, other); 2092 } 2093 2094 if (unix_peer(sk) != other || 2095 unix_dgram_peer_wake_me(sk, other)) { 2096 err = -EAGAIN; 2097 sk_locked = 1; 2098 goto out_unlock; 2099 } 2100 2101 if (!sk_locked) { 2102 sk_locked = 1; 2103 goto restart_locked; 2104 } 2105 } 2106 2107 if (unlikely(sk_locked)) 2108 unix_state_unlock(sk); 2109 2110 if (sock_flag(other, SOCK_RCVTSTAMP)) 2111 __net_timestamp(skb); 2112 maybe_add_creds(skb, sock, other); 2113 scm_stat_add(other, skb); 2114 skb_queue_tail(&other->sk_receive_queue, skb); 2115 unix_state_unlock(other); 2116 other->sk_data_ready(other); 2117 sock_put(other); 2118 scm_destroy(&scm); 2119 return len; 2120 2121 out_unlock: 2122 if (sk_locked) 2123 unix_state_unlock(sk); 2124 unix_state_unlock(other); 2125 out_free: 2126 kfree_skb(skb); 2127 out: 2128 if (other) 2129 sock_put(other); 2130 scm_destroy(&scm); 2131 return err; 2132 } 2133 2134 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2135 * bytes, and a minimum of a full page. 2136 */ 2137 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2138 2139 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2140 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other, 2141 struct scm_cookie *scm, bool fds_sent) 2142 { 2143 struct unix_sock *ousk = unix_sk(other); 2144 struct sk_buff *skb; 2145 int err = 0; 2146 2147 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2148 2149 if (!skb) 2150 return err; 2151 2152 err = unix_scm_to_skb(scm, skb, !fds_sent); 2153 if (err < 0) { 2154 kfree_skb(skb); 2155 return err; 2156 } 2157 skb_put(skb, 1); 2158 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2159 2160 if (err) { 2161 kfree_skb(skb); 2162 return err; 2163 } 2164 2165 unix_state_lock(other); 2166 2167 if (sock_flag(other, SOCK_DEAD) || 2168 (other->sk_shutdown & RCV_SHUTDOWN)) { 2169 unix_state_unlock(other); 2170 kfree_skb(skb); 2171 return -EPIPE; 2172 } 2173 2174 maybe_add_creds(skb, sock, other); 2175 skb_get(skb); 2176 2177 if (ousk->oob_skb) 2178 consume_skb(ousk->oob_skb); 2179 2180 WRITE_ONCE(ousk->oob_skb, skb); 2181 2182 scm_stat_add(other, skb); 2183 skb_queue_tail(&other->sk_receive_queue, skb); 2184 sk_send_sigurg(other); 2185 unix_state_unlock(other); 2186 other->sk_data_ready(other); 2187 2188 return err; 2189 } 2190 #endif 2191 2192 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2193 size_t len) 2194 { 2195 struct sock *sk = sock->sk; 2196 struct sock *other = NULL; 2197 int err, size; 2198 struct sk_buff *skb; 2199 int sent = 0; 2200 struct scm_cookie scm; 2201 bool fds_sent = false; 2202 int data_len; 2203 2204 wait_for_unix_gc(); 2205 err = scm_send(sock, msg, &scm, false); 2206 if (err < 0) 2207 return err; 2208 2209 err = -EOPNOTSUPP; 2210 if (msg->msg_flags & MSG_OOB) { 2211 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2212 if (len) 2213 len--; 2214 else 2215 #endif 2216 goto out_err; 2217 } 2218 2219 if (msg->msg_namelen) { 2220 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2221 goto out_err; 2222 } else { 2223 err = -ENOTCONN; 2224 other = unix_peer(sk); 2225 if (!other) 2226 goto out_err; 2227 } 2228 2229 if (sk->sk_shutdown & SEND_SHUTDOWN) 2230 goto pipe_err; 2231 2232 while (sent < len) { 2233 size = len - sent; 2234 2235 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2236 skb = sock_alloc_send_pskb(sk, 0, 0, 2237 msg->msg_flags & MSG_DONTWAIT, 2238 &err, 0); 2239 } else { 2240 /* Keep two messages in the pipe so it schedules better */ 2241 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2242 2243 /* allow fallback to order-0 allocations */ 2244 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2245 2246 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2247 2248 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2249 2250 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2251 msg->msg_flags & MSG_DONTWAIT, &err, 2252 get_order(UNIX_SKB_FRAGS_SZ)); 2253 } 2254 if (!skb) 2255 goto out_err; 2256 2257 /* Only send the fds in the first buffer */ 2258 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2259 if (err < 0) { 2260 kfree_skb(skb); 2261 goto out_err; 2262 } 2263 fds_sent = true; 2264 2265 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2266 err = skb_splice_from_iter(skb, &msg->msg_iter, size, 2267 sk->sk_allocation); 2268 if (err < 0) { 2269 kfree_skb(skb); 2270 goto out_err; 2271 } 2272 size = err; 2273 refcount_add(size, &sk->sk_wmem_alloc); 2274 } else { 2275 skb_put(skb, size - data_len); 2276 skb->data_len = data_len; 2277 skb->len = size; 2278 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2279 if (err) { 2280 kfree_skb(skb); 2281 goto out_err; 2282 } 2283 } 2284 2285 unix_state_lock(other); 2286 2287 if (sock_flag(other, SOCK_DEAD) || 2288 (other->sk_shutdown & RCV_SHUTDOWN)) 2289 goto pipe_err_free; 2290 2291 maybe_add_creds(skb, sock, other); 2292 scm_stat_add(other, skb); 2293 skb_queue_tail(&other->sk_receive_queue, skb); 2294 unix_state_unlock(other); 2295 other->sk_data_ready(other); 2296 sent += size; 2297 } 2298 2299 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2300 if (msg->msg_flags & MSG_OOB) { 2301 err = queue_oob(sock, msg, other, &scm, fds_sent); 2302 if (err) 2303 goto out_err; 2304 sent++; 2305 } 2306 #endif 2307 2308 scm_destroy(&scm); 2309 2310 return sent; 2311 2312 pipe_err_free: 2313 unix_state_unlock(other); 2314 kfree_skb(skb); 2315 pipe_err: 2316 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2317 send_sig(SIGPIPE, current, 0); 2318 err = -EPIPE; 2319 out_err: 2320 scm_destroy(&scm); 2321 return sent ? : err; 2322 } 2323 2324 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2325 size_t len) 2326 { 2327 int err; 2328 struct sock *sk = sock->sk; 2329 2330 err = sock_error(sk); 2331 if (err) 2332 return err; 2333 2334 if (sk->sk_state != TCP_ESTABLISHED) 2335 return -ENOTCONN; 2336 2337 if (msg->msg_namelen) 2338 msg->msg_namelen = 0; 2339 2340 return unix_dgram_sendmsg(sock, msg, len); 2341 } 2342 2343 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2344 size_t size, int flags) 2345 { 2346 struct sock *sk = sock->sk; 2347 2348 if (sk->sk_state != TCP_ESTABLISHED) 2349 return -ENOTCONN; 2350 2351 return unix_dgram_recvmsg(sock, msg, size, flags); 2352 } 2353 2354 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2355 { 2356 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2357 2358 if (addr) { 2359 msg->msg_namelen = addr->len; 2360 memcpy(msg->msg_name, addr->name, addr->len); 2361 } 2362 } 2363 2364 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2365 int flags) 2366 { 2367 struct scm_cookie scm; 2368 struct socket *sock = sk->sk_socket; 2369 struct unix_sock *u = unix_sk(sk); 2370 struct sk_buff *skb, *last; 2371 long timeo; 2372 int skip; 2373 int err; 2374 2375 err = -EOPNOTSUPP; 2376 if (flags&MSG_OOB) 2377 goto out; 2378 2379 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2380 2381 do { 2382 mutex_lock(&u->iolock); 2383 2384 skip = sk_peek_offset(sk, flags); 2385 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2386 &skip, &err, &last); 2387 if (skb) { 2388 if (!(flags & MSG_PEEK)) 2389 scm_stat_del(sk, skb); 2390 break; 2391 } 2392 2393 mutex_unlock(&u->iolock); 2394 2395 if (err != -EAGAIN) 2396 break; 2397 } while (timeo && 2398 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2399 &err, &timeo, last)); 2400 2401 if (!skb) { /* implies iolock unlocked */ 2402 unix_state_lock(sk); 2403 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2404 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2405 (sk->sk_shutdown & RCV_SHUTDOWN)) 2406 err = 0; 2407 unix_state_unlock(sk); 2408 goto out; 2409 } 2410 2411 if (wq_has_sleeper(&u->peer_wait)) 2412 wake_up_interruptible_sync_poll(&u->peer_wait, 2413 EPOLLOUT | EPOLLWRNORM | 2414 EPOLLWRBAND); 2415 2416 if (msg->msg_name) { 2417 unix_copy_addr(msg, skb->sk); 2418 2419 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2420 msg->msg_name, 2421 &msg->msg_namelen); 2422 } 2423 2424 if (size > skb->len - skip) 2425 size = skb->len - skip; 2426 else if (size < skb->len - skip) 2427 msg->msg_flags |= MSG_TRUNC; 2428 2429 err = skb_copy_datagram_msg(skb, skip, msg, size); 2430 if (err) 2431 goto out_free; 2432 2433 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2434 __sock_recv_timestamp(msg, sk, skb); 2435 2436 memset(&scm, 0, sizeof(scm)); 2437 2438 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2439 unix_set_secdata(&scm, skb); 2440 2441 if (!(flags & MSG_PEEK)) { 2442 if (UNIXCB(skb).fp) 2443 unix_detach_fds(&scm, skb); 2444 2445 sk_peek_offset_bwd(sk, skb->len); 2446 } else { 2447 /* It is questionable: on PEEK we could: 2448 - do not return fds - good, but too simple 8) 2449 - return fds, and do not return them on read (old strategy, 2450 apparently wrong) 2451 - clone fds (I chose it for now, it is the most universal 2452 solution) 2453 2454 POSIX 1003.1g does not actually define this clearly 2455 at all. POSIX 1003.1g doesn't define a lot of things 2456 clearly however! 2457 2458 */ 2459 2460 sk_peek_offset_fwd(sk, size); 2461 2462 if (UNIXCB(skb).fp) 2463 unix_peek_fds(&scm, skb); 2464 } 2465 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2466 2467 scm_recv_unix(sock, msg, &scm, flags); 2468 2469 out_free: 2470 skb_free_datagram(sk, skb); 2471 mutex_unlock(&u->iolock); 2472 out: 2473 return err; 2474 } 2475 2476 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2477 int flags) 2478 { 2479 struct sock *sk = sock->sk; 2480 2481 #ifdef CONFIG_BPF_SYSCALL 2482 const struct proto *prot = READ_ONCE(sk->sk_prot); 2483 2484 if (prot != &unix_dgram_proto) 2485 return prot->recvmsg(sk, msg, size, flags, NULL); 2486 #endif 2487 return __unix_dgram_recvmsg(sk, msg, size, flags); 2488 } 2489 2490 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2491 { 2492 struct unix_sock *u = unix_sk(sk); 2493 struct sk_buff *skb; 2494 int err; 2495 2496 mutex_lock(&u->iolock); 2497 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2498 mutex_unlock(&u->iolock); 2499 if (!skb) 2500 return err; 2501 2502 return recv_actor(sk, skb); 2503 } 2504 2505 /* 2506 * Sleep until more data has arrived. But check for races.. 2507 */ 2508 static long unix_stream_data_wait(struct sock *sk, long timeo, 2509 struct sk_buff *last, unsigned int last_len, 2510 bool freezable) 2511 { 2512 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2513 struct sk_buff *tail; 2514 DEFINE_WAIT(wait); 2515 2516 unix_state_lock(sk); 2517 2518 for (;;) { 2519 prepare_to_wait(sk_sleep(sk), &wait, state); 2520 2521 tail = skb_peek_tail(&sk->sk_receive_queue); 2522 if (tail != last || 2523 (tail && tail->len != last_len) || 2524 sk->sk_err || 2525 (sk->sk_shutdown & RCV_SHUTDOWN) || 2526 signal_pending(current) || 2527 !timeo) 2528 break; 2529 2530 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2531 unix_state_unlock(sk); 2532 timeo = schedule_timeout(timeo); 2533 unix_state_lock(sk); 2534 2535 if (sock_flag(sk, SOCK_DEAD)) 2536 break; 2537 2538 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2539 } 2540 2541 finish_wait(sk_sleep(sk), &wait); 2542 unix_state_unlock(sk); 2543 return timeo; 2544 } 2545 2546 static unsigned int unix_skb_len(const struct sk_buff *skb) 2547 { 2548 return skb->len - UNIXCB(skb).consumed; 2549 } 2550 2551 struct unix_stream_read_state { 2552 int (*recv_actor)(struct sk_buff *, int, int, 2553 struct unix_stream_read_state *); 2554 struct socket *socket; 2555 struct msghdr *msg; 2556 struct pipe_inode_info *pipe; 2557 size_t size; 2558 int flags; 2559 unsigned int splice_flags; 2560 }; 2561 2562 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2563 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2564 { 2565 struct socket *sock = state->socket; 2566 struct sock *sk = sock->sk; 2567 struct unix_sock *u = unix_sk(sk); 2568 int chunk = 1; 2569 struct sk_buff *oob_skb; 2570 2571 mutex_lock(&u->iolock); 2572 unix_state_lock(sk); 2573 2574 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2575 unix_state_unlock(sk); 2576 mutex_unlock(&u->iolock); 2577 return -EINVAL; 2578 } 2579 2580 oob_skb = u->oob_skb; 2581 2582 if (!(state->flags & MSG_PEEK)) 2583 WRITE_ONCE(u->oob_skb, NULL); 2584 else 2585 skb_get(oob_skb); 2586 unix_state_unlock(sk); 2587 2588 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2589 2590 if (!(state->flags & MSG_PEEK)) 2591 UNIXCB(oob_skb).consumed += 1; 2592 2593 consume_skb(oob_skb); 2594 2595 mutex_unlock(&u->iolock); 2596 2597 if (chunk < 0) 2598 return -EFAULT; 2599 2600 state->msg->msg_flags |= MSG_OOB; 2601 return 1; 2602 } 2603 2604 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2605 int flags, int copied) 2606 { 2607 struct unix_sock *u = unix_sk(sk); 2608 2609 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2610 skb_unlink(skb, &sk->sk_receive_queue); 2611 consume_skb(skb); 2612 skb = NULL; 2613 } else { 2614 if (skb == u->oob_skb) { 2615 if (copied) { 2616 skb = NULL; 2617 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2618 if (!(flags & MSG_PEEK)) { 2619 WRITE_ONCE(u->oob_skb, NULL); 2620 consume_skb(skb); 2621 } 2622 } else if (!(flags & MSG_PEEK)) { 2623 skb_unlink(skb, &sk->sk_receive_queue); 2624 consume_skb(skb); 2625 skb = skb_peek(&sk->sk_receive_queue); 2626 } 2627 } 2628 } 2629 return skb; 2630 } 2631 #endif 2632 2633 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2634 { 2635 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2636 return -ENOTCONN; 2637 2638 return unix_read_skb(sk, recv_actor); 2639 } 2640 2641 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2642 bool freezable) 2643 { 2644 struct scm_cookie scm; 2645 struct socket *sock = state->socket; 2646 struct sock *sk = sock->sk; 2647 struct unix_sock *u = unix_sk(sk); 2648 int copied = 0; 2649 int flags = state->flags; 2650 int noblock = flags & MSG_DONTWAIT; 2651 bool check_creds = false; 2652 int target; 2653 int err = 0; 2654 long timeo; 2655 int skip; 2656 size_t size = state->size; 2657 unsigned int last_len; 2658 2659 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2660 err = -EINVAL; 2661 goto out; 2662 } 2663 2664 if (unlikely(flags & MSG_OOB)) { 2665 err = -EOPNOTSUPP; 2666 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2667 err = unix_stream_recv_urg(state); 2668 #endif 2669 goto out; 2670 } 2671 2672 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2673 timeo = sock_rcvtimeo(sk, noblock); 2674 2675 memset(&scm, 0, sizeof(scm)); 2676 2677 /* Lock the socket to prevent queue disordering 2678 * while sleeps in memcpy_tomsg 2679 */ 2680 mutex_lock(&u->iolock); 2681 2682 skip = max(sk_peek_offset(sk, flags), 0); 2683 2684 do { 2685 int chunk; 2686 bool drop_skb; 2687 struct sk_buff *skb, *last; 2688 2689 redo: 2690 unix_state_lock(sk); 2691 if (sock_flag(sk, SOCK_DEAD)) { 2692 err = -ECONNRESET; 2693 goto unlock; 2694 } 2695 last = skb = skb_peek(&sk->sk_receive_queue); 2696 last_len = last ? last->len : 0; 2697 2698 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2699 if (skb) { 2700 skb = manage_oob(skb, sk, flags, copied); 2701 if (!skb) { 2702 unix_state_unlock(sk); 2703 if (copied) 2704 break; 2705 goto redo; 2706 } 2707 } 2708 #endif 2709 again: 2710 if (skb == NULL) { 2711 if (copied >= target) 2712 goto unlock; 2713 2714 /* 2715 * POSIX 1003.1g mandates this order. 2716 */ 2717 2718 err = sock_error(sk); 2719 if (err) 2720 goto unlock; 2721 if (sk->sk_shutdown & RCV_SHUTDOWN) 2722 goto unlock; 2723 2724 unix_state_unlock(sk); 2725 if (!timeo) { 2726 err = -EAGAIN; 2727 break; 2728 } 2729 2730 mutex_unlock(&u->iolock); 2731 2732 timeo = unix_stream_data_wait(sk, timeo, last, 2733 last_len, freezable); 2734 2735 if (signal_pending(current)) { 2736 err = sock_intr_errno(timeo); 2737 scm_destroy(&scm); 2738 goto out; 2739 } 2740 2741 mutex_lock(&u->iolock); 2742 goto redo; 2743 unlock: 2744 unix_state_unlock(sk); 2745 break; 2746 } 2747 2748 while (skip >= unix_skb_len(skb)) { 2749 skip -= unix_skb_len(skb); 2750 last = skb; 2751 last_len = skb->len; 2752 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2753 if (!skb) 2754 goto again; 2755 } 2756 2757 unix_state_unlock(sk); 2758 2759 if (check_creds) { 2760 /* Never glue messages from different writers */ 2761 if (!unix_skb_scm_eq(skb, &scm)) 2762 break; 2763 } else if (test_bit(SOCK_PASSCRED, &sock->flags) || 2764 test_bit(SOCK_PASSPIDFD, &sock->flags)) { 2765 /* Copy credentials */ 2766 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2767 unix_set_secdata(&scm, skb); 2768 check_creds = true; 2769 } 2770 2771 /* Copy address just once */ 2772 if (state->msg && state->msg->msg_name) { 2773 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2774 state->msg->msg_name); 2775 unix_copy_addr(state->msg, skb->sk); 2776 2777 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2778 state->msg->msg_name, 2779 &state->msg->msg_namelen); 2780 2781 sunaddr = NULL; 2782 } 2783 2784 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2785 skb_get(skb); 2786 chunk = state->recv_actor(skb, skip, chunk, state); 2787 drop_skb = !unix_skb_len(skb); 2788 /* skb is only safe to use if !drop_skb */ 2789 consume_skb(skb); 2790 if (chunk < 0) { 2791 if (copied == 0) 2792 copied = -EFAULT; 2793 break; 2794 } 2795 copied += chunk; 2796 size -= chunk; 2797 2798 if (drop_skb) { 2799 /* the skb was touched by a concurrent reader; 2800 * we should not expect anything from this skb 2801 * anymore and assume it invalid - we can be 2802 * sure it was dropped from the socket queue 2803 * 2804 * let's report a short read 2805 */ 2806 err = 0; 2807 break; 2808 } 2809 2810 /* Mark read part of skb as used */ 2811 if (!(flags & MSG_PEEK)) { 2812 UNIXCB(skb).consumed += chunk; 2813 2814 sk_peek_offset_bwd(sk, chunk); 2815 2816 if (UNIXCB(skb).fp) { 2817 scm_stat_del(sk, skb); 2818 unix_detach_fds(&scm, skb); 2819 } 2820 2821 if (unix_skb_len(skb)) 2822 break; 2823 2824 skb_unlink(skb, &sk->sk_receive_queue); 2825 consume_skb(skb); 2826 2827 if (scm.fp) 2828 break; 2829 } else { 2830 /* It is questionable, see note in unix_dgram_recvmsg. 2831 */ 2832 if (UNIXCB(skb).fp) 2833 unix_peek_fds(&scm, skb); 2834 2835 sk_peek_offset_fwd(sk, chunk); 2836 2837 if (UNIXCB(skb).fp) 2838 break; 2839 2840 skip = 0; 2841 last = skb; 2842 last_len = skb->len; 2843 unix_state_lock(sk); 2844 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2845 if (skb) 2846 goto again; 2847 unix_state_unlock(sk); 2848 break; 2849 } 2850 } while (size); 2851 2852 mutex_unlock(&u->iolock); 2853 if (state->msg) 2854 scm_recv_unix(sock, state->msg, &scm, flags); 2855 else 2856 scm_destroy(&scm); 2857 out: 2858 return copied ? : err; 2859 } 2860 2861 static int unix_stream_read_actor(struct sk_buff *skb, 2862 int skip, int chunk, 2863 struct unix_stream_read_state *state) 2864 { 2865 int ret; 2866 2867 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2868 state->msg, chunk); 2869 return ret ?: chunk; 2870 } 2871 2872 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2873 size_t size, int flags) 2874 { 2875 struct unix_stream_read_state state = { 2876 .recv_actor = unix_stream_read_actor, 2877 .socket = sk->sk_socket, 2878 .msg = msg, 2879 .size = size, 2880 .flags = flags 2881 }; 2882 2883 return unix_stream_read_generic(&state, true); 2884 } 2885 2886 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2887 size_t size, int flags) 2888 { 2889 struct unix_stream_read_state state = { 2890 .recv_actor = unix_stream_read_actor, 2891 .socket = sock, 2892 .msg = msg, 2893 .size = size, 2894 .flags = flags 2895 }; 2896 2897 #ifdef CONFIG_BPF_SYSCALL 2898 struct sock *sk = sock->sk; 2899 const struct proto *prot = READ_ONCE(sk->sk_prot); 2900 2901 if (prot != &unix_stream_proto) 2902 return prot->recvmsg(sk, msg, size, flags, NULL); 2903 #endif 2904 return unix_stream_read_generic(&state, true); 2905 } 2906 2907 static int unix_stream_splice_actor(struct sk_buff *skb, 2908 int skip, int chunk, 2909 struct unix_stream_read_state *state) 2910 { 2911 return skb_splice_bits(skb, state->socket->sk, 2912 UNIXCB(skb).consumed + skip, 2913 state->pipe, chunk, state->splice_flags); 2914 } 2915 2916 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2917 struct pipe_inode_info *pipe, 2918 size_t size, unsigned int flags) 2919 { 2920 struct unix_stream_read_state state = { 2921 .recv_actor = unix_stream_splice_actor, 2922 .socket = sock, 2923 .pipe = pipe, 2924 .size = size, 2925 .splice_flags = flags, 2926 }; 2927 2928 if (unlikely(*ppos)) 2929 return -ESPIPE; 2930 2931 if (sock->file->f_flags & O_NONBLOCK || 2932 flags & SPLICE_F_NONBLOCK) 2933 state.flags = MSG_DONTWAIT; 2934 2935 return unix_stream_read_generic(&state, false); 2936 } 2937 2938 static int unix_shutdown(struct socket *sock, int mode) 2939 { 2940 struct sock *sk = sock->sk; 2941 struct sock *other; 2942 2943 if (mode < SHUT_RD || mode > SHUT_RDWR) 2944 return -EINVAL; 2945 /* This maps: 2946 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2947 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2948 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2949 */ 2950 ++mode; 2951 2952 unix_state_lock(sk); 2953 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode); 2954 other = unix_peer(sk); 2955 if (other) 2956 sock_hold(other); 2957 unix_state_unlock(sk); 2958 sk->sk_state_change(sk); 2959 2960 if (other && 2961 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2962 2963 int peer_mode = 0; 2964 const struct proto *prot = READ_ONCE(other->sk_prot); 2965 2966 if (prot->unhash) 2967 prot->unhash(other); 2968 if (mode&RCV_SHUTDOWN) 2969 peer_mode |= SEND_SHUTDOWN; 2970 if (mode&SEND_SHUTDOWN) 2971 peer_mode |= RCV_SHUTDOWN; 2972 unix_state_lock(other); 2973 WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode); 2974 unix_state_unlock(other); 2975 other->sk_state_change(other); 2976 if (peer_mode == SHUTDOWN_MASK) 2977 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2978 else if (peer_mode & RCV_SHUTDOWN) 2979 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2980 } 2981 if (other) 2982 sock_put(other); 2983 2984 return 0; 2985 } 2986 2987 long unix_inq_len(struct sock *sk) 2988 { 2989 struct sk_buff *skb; 2990 long amount = 0; 2991 2992 if (sk->sk_state == TCP_LISTEN) 2993 return -EINVAL; 2994 2995 spin_lock(&sk->sk_receive_queue.lock); 2996 if (sk->sk_type == SOCK_STREAM || 2997 sk->sk_type == SOCK_SEQPACKET) { 2998 skb_queue_walk(&sk->sk_receive_queue, skb) 2999 amount += unix_skb_len(skb); 3000 } else { 3001 skb = skb_peek(&sk->sk_receive_queue); 3002 if (skb) 3003 amount = skb->len; 3004 } 3005 spin_unlock(&sk->sk_receive_queue.lock); 3006 3007 return amount; 3008 } 3009 EXPORT_SYMBOL_GPL(unix_inq_len); 3010 3011 long unix_outq_len(struct sock *sk) 3012 { 3013 return sk_wmem_alloc_get(sk); 3014 } 3015 EXPORT_SYMBOL_GPL(unix_outq_len); 3016 3017 static int unix_open_file(struct sock *sk) 3018 { 3019 struct path path; 3020 struct file *f; 3021 int fd; 3022 3023 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3024 return -EPERM; 3025 3026 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3027 return -ENOENT; 3028 3029 path = unix_sk(sk)->path; 3030 if (!path.dentry) 3031 return -ENOENT; 3032 3033 path_get(&path); 3034 3035 fd = get_unused_fd_flags(O_CLOEXEC); 3036 if (fd < 0) 3037 goto out; 3038 3039 f = dentry_open(&path, O_PATH, current_cred()); 3040 if (IS_ERR(f)) { 3041 put_unused_fd(fd); 3042 fd = PTR_ERR(f); 3043 goto out; 3044 } 3045 3046 fd_install(fd, f); 3047 out: 3048 path_put(&path); 3049 3050 return fd; 3051 } 3052 3053 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3054 { 3055 struct sock *sk = sock->sk; 3056 long amount = 0; 3057 int err; 3058 3059 switch (cmd) { 3060 case SIOCOUTQ: 3061 amount = unix_outq_len(sk); 3062 err = put_user(amount, (int __user *)arg); 3063 break; 3064 case SIOCINQ: 3065 amount = unix_inq_len(sk); 3066 if (amount < 0) 3067 err = amount; 3068 else 3069 err = put_user(amount, (int __user *)arg); 3070 break; 3071 case SIOCUNIXFILE: 3072 err = unix_open_file(sk); 3073 break; 3074 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3075 case SIOCATMARK: 3076 { 3077 struct sk_buff *skb; 3078 int answ = 0; 3079 3080 skb = skb_peek(&sk->sk_receive_queue); 3081 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3082 answ = 1; 3083 err = put_user(answ, (int __user *)arg); 3084 } 3085 break; 3086 #endif 3087 default: 3088 err = -ENOIOCTLCMD; 3089 break; 3090 } 3091 return err; 3092 } 3093 3094 #ifdef CONFIG_COMPAT 3095 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3096 { 3097 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3098 } 3099 #endif 3100 3101 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3102 { 3103 struct sock *sk = sock->sk; 3104 __poll_t mask; 3105 u8 shutdown; 3106 3107 sock_poll_wait(file, sock, wait); 3108 mask = 0; 3109 shutdown = READ_ONCE(sk->sk_shutdown); 3110 3111 /* exceptional events? */ 3112 if (READ_ONCE(sk->sk_err)) 3113 mask |= EPOLLERR; 3114 if (shutdown == SHUTDOWN_MASK) 3115 mask |= EPOLLHUP; 3116 if (shutdown & RCV_SHUTDOWN) 3117 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3118 3119 /* readable? */ 3120 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3121 mask |= EPOLLIN | EPOLLRDNORM; 3122 if (sk_is_readable(sk)) 3123 mask |= EPOLLIN | EPOLLRDNORM; 3124 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3125 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3126 mask |= EPOLLPRI; 3127 #endif 3128 3129 /* Connection-based need to check for termination and startup */ 3130 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3131 sk->sk_state == TCP_CLOSE) 3132 mask |= EPOLLHUP; 3133 3134 /* 3135 * we set writable also when the other side has shut down the 3136 * connection. This prevents stuck sockets. 3137 */ 3138 if (unix_writable(sk)) 3139 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3140 3141 return mask; 3142 } 3143 3144 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3145 poll_table *wait) 3146 { 3147 struct sock *sk = sock->sk, *other; 3148 unsigned int writable; 3149 __poll_t mask; 3150 u8 shutdown; 3151 3152 sock_poll_wait(file, sock, wait); 3153 mask = 0; 3154 shutdown = READ_ONCE(sk->sk_shutdown); 3155 3156 /* exceptional events? */ 3157 if (READ_ONCE(sk->sk_err) || 3158 !skb_queue_empty_lockless(&sk->sk_error_queue)) 3159 mask |= EPOLLERR | 3160 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3161 3162 if (shutdown & RCV_SHUTDOWN) 3163 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3164 if (shutdown == SHUTDOWN_MASK) 3165 mask |= EPOLLHUP; 3166 3167 /* readable? */ 3168 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3169 mask |= EPOLLIN | EPOLLRDNORM; 3170 if (sk_is_readable(sk)) 3171 mask |= EPOLLIN | EPOLLRDNORM; 3172 3173 /* Connection-based need to check for termination and startup */ 3174 if (sk->sk_type == SOCK_SEQPACKET) { 3175 if (sk->sk_state == TCP_CLOSE) 3176 mask |= EPOLLHUP; 3177 /* connection hasn't started yet? */ 3178 if (sk->sk_state == TCP_SYN_SENT) 3179 return mask; 3180 } 3181 3182 /* No write status requested, avoid expensive OUT tests. */ 3183 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3184 return mask; 3185 3186 writable = unix_writable(sk); 3187 if (writable) { 3188 unix_state_lock(sk); 3189 3190 other = unix_peer(sk); 3191 if (other && unix_peer(other) != sk && 3192 unix_recvq_full_lockless(other) && 3193 unix_dgram_peer_wake_me(sk, other)) 3194 writable = 0; 3195 3196 unix_state_unlock(sk); 3197 } 3198 3199 if (writable) 3200 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3201 else 3202 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3203 3204 return mask; 3205 } 3206 3207 #ifdef CONFIG_PROC_FS 3208 3209 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3210 3211 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3212 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3213 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3214 3215 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3216 { 3217 unsigned long offset = get_offset(*pos); 3218 unsigned long bucket = get_bucket(*pos); 3219 unsigned long count = 0; 3220 struct sock *sk; 3221 3222 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3223 sk; sk = sk_next(sk)) { 3224 if (++count == offset) 3225 break; 3226 } 3227 3228 return sk; 3229 } 3230 3231 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3232 { 3233 unsigned long bucket = get_bucket(*pos); 3234 struct net *net = seq_file_net(seq); 3235 struct sock *sk; 3236 3237 while (bucket < UNIX_HASH_SIZE) { 3238 spin_lock(&net->unx.table.locks[bucket]); 3239 3240 sk = unix_from_bucket(seq, pos); 3241 if (sk) 3242 return sk; 3243 3244 spin_unlock(&net->unx.table.locks[bucket]); 3245 3246 *pos = set_bucket_offset(++bucket, 1); 3247 } 3248 3249 return NULL; 3250 } 3251 3252 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3253 loff_t *pos) 3254 { 3255 unsigned long bucket = get_bucket(*pos); 3256 3257 sk = sk_next(sk); 3258 if (sk) 3259 return sk; 3260 3261 3262 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3263 3264 *pos = set_bucket_offset(++bucket, 1); 3265 3266 return unix_get_first(seq, pos); 3267 } 3268 3269 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3270 { 3271 if (!*pos) 3272 return SEQ_START_TOKEN; 3273 3274 return unix_get_first(seq, pos); 3275 } 3276 3277 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3278 { 3279 ++*pos; 3280 3281 if (v == SEQ_START_TOKEN) 3282 return unix_get_first(seq, pos); 3283 3284 return unix_get_next(seq, v, pos); 3285 } 3286 3287 static void unix_seq_stop(struct seq_file *seq, void *v) 3288 { 3289 struct sock *sk = v; 3290 3291 if (sk) 3292 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3293 } 3294 3295 static int unix_seq_show(struct seq_file *seq, void *v) 3296 { 3297 3298 if (v == SEQ_START_TOKEN) 3299 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3300 "Inode Path\n"); 3301 else { 3302 struct sock *s = v; 3303 struct unix_sock *u = unix_sk(s); 3304 unix_state_lock(s); 3305 3306 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3307 s, 3308 refcount_read(&s->sk_refcnt), 3309 0, 3310 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3311 s->sk_type, 3312 s->sk_socket ? 3313 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3314 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3315 sock_i_ino(s)); 3316 3317 if (u->addr) { // under a hash table lock here 3318 int i, len; 3319 seq_putc(seq, ' '); 3320 3321 i = 0; 3322 len = u->addr->len - 3323 offsetof(struct sockaddr_un, sun_path); 3324 if (u->addr->name->sun_path[0]) { 3325 len--; 3326 } else { 3327 seq_putc(seq, '@'); 3328 i++; 3329 } 3330 for ( ; i < len; i++) 3331 seq_putc(seq, u->addr->name->sun_path[i] ?: 3332 '@'); 3333 } 3334 unix_state_unlock(s); 3335 seq_putc(seq, '\n'); 3336 } 3337 3338 return 0; 3339 } 3340 3341 static const struct seq_operations unix_seq_ops = { 3342 .start = unix_seq_start, 3343 .next = unix_seq_next, 3344 .stop = unix_seq_stop, 3345 .show = unix_seq_show, 3346 }; 3347 3348 #ifdef CONFIG_BPF_SYSCALL 3349 struct bpf_unix_iter_state { 3350 struct seq_net_private p; 3351 unsigned int cur_sk; 3352 unsigned int end_sk; 3353 unsigned int max_sk; 3354 struct sock **batch; 3355 bool st_bucket_done; 3356 }; 3357 3358 struct bpf_iter__unix { 3359 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3360 __bpf_md_ptr(struct unix_sock *, unix_sk); 3361 uid_t uid __aligned(8); 3362 }; 3363 3364 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3365 struct unix_sock *unix_sk, uid_t uid) 3366 { 3367 struct bpf_iter__unix ctx; 3368 3369 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3370 ctx.meta = meta; 3371 ctx.unix_sk = unix_sk; 3372 ctx.uid = uid; 3373 return bpf_iter_run_prog(prog, &ctx); 3374 } 3375 3376 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3377 3378 { 3379 struct bpf_unix_iter_state *iter = seq->private; 3380 unsigned int expected = 1; 3381 struct sock *sk; 3382 3383 sock_hold(start_sk); 3384 iter->batch[iter->end_sk++] = start_sk; 3385 3386 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3387 if (iter->end_sk < iter->max_sk) { 3388 sock_hold(sk); 3389 iter->batch[iter->end_sk++] = sk; 3390 } 3391 3392 expected++; 3393 } 3394 3395 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3396 3397 return expected; 3398 } 3399 3400 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3401 { 3402 while (iter->cur_sk < iter->end_sk) 3403 sock_put(iter->batch[iter->cur_sk++]); 3404 } 3405 3406 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3407 unsigned int new_batch_sz) 3408 { 3409 struct sock **new_batch; 3410 3411 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3412 GFP_USER | __GFP_NOWARN); 3413 if (!new_batch) 3414 return -ENOMEM; 3415 3416 bpf_iter_unix_put_batch(iter); 3417 kvfree(iter->batch); 3418 iter->batch = new_batch; 3419 iter->max_sk = new_batch_sz; 3420 3421 return 0; 3422 } 3423 3424 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3425 loff_t *pos) 3426 { 3427 struct bpf_unix_iter_state *iter = seq->private; 3428 unsigned int expected; 3429 bool resized = false; 3430 struct sock *sk; 3431 3432 if (iter->st_bucket_done) 3433 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3434 3435 again: 3436 /* Get a new batch */ 3437 iter->cur_sk = 0; 3438 iter->end_sk = 0; 3439 3440 sk = unix_get_first(seq, pos); 3441 if (!sk) 3442 return NULL; /* Done */ 3443 3444 expected = bpf_iter_unix_hold_batch(seq, sk); 3445 3446 if (iter->end_sk == expected) { 3447 iter->st_bucket_done = true; 3448 return sk; 3449 } 3450 3451 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3452 resized = true; 3453 goto again; 3454 } 3455 3456 return sk; 3457 } 3458 3459 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3460 { 3461 if (!*pos) 3462 return SEQ_START_TOKEN; 3463 3464 /* bpf iter does not support lseek, so it always 3465 * continue from where it was stop()-ped. 3466 */ 3467 return bpf_iter_unix_batch(seq, pos); 3468 } 3469 3470 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3471 { 3472 struct bpf_unix_iter_state *iter = seq->private; 3473 struct sock *sk; 3474 3475 /* Whenever seq_next() is called, the iter->cur_sk is 3476 * done with seq_show(), so advance to the next sk in 3477 * the batch. 3478 */ 3479 if (iter->cur_sk < iter->end_sk) 3480 sock_put(iter->batch[iter->cur_sk++]); 3481 3482 ++*pos; 3483 3484 if (iter->cur_sk < iter->end_sk) 3485 sk = iter->batch[iter->cur_sk]; 3486 else 3487 sk = bpf_iter_unix_batch(seq, pos); 3488 3489 return sk; 3490 } 3491 3492 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3493 { 3494 struct bpf_iter_meta meta; 3495 struct bpf_prog *prog; 3496 struct sock *sk = v; 3497 uid_t uid; 3498 bool slow; 3499 int ret; 3500 3501 if (v == SEQ_START_TOKEN) 3502 return 0; 3503 3504 slow = lock_sock_fast(sk); 3505 3506 if (unlikely(sk_unhashed(sk))) { 3507 ret = SEQ_SKIP; 3508 goto unlock; 3509 } 3510 3511 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3512 meta.seq = seq; 3513 prog = bpf_iter_get_info(&meta, false); 3514 ret = unix_prog_seq_show(prog, &meta, v, uid); 3515 unlock: 3516 unlock_sock_fast(sk, slow); 3517 return ret; 3518 } 3519 3520 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3521 { 3522 struct bpf_unix_iter_state *iter = seq->private; 3523 struct bpf_iter_meta meta; 3524 struct bpf_prog *prog; 3525 3526 if (!v) { 3527 meta.seq = seq; 3528 prog = bpf_iter_get_info(&meta, true); 3529 if (prog) 3530 (void)unix_prog_seq_show(prog, &meta, v, 0); 3531 } 3532 3533 if (iter->cur_sk < iter->end_sk) 3534 bpf_iter_unix_put_batch(iter); 3535 } 3536 3537 static const struct seq_operations bpf_iter_unix_seq_ops = { 3538 .start = bpf_iter_unix_seq_start, 3539 .next = bpf_iter_unix_seq_next, 3540 .stop = bpf_iter_unix_seq_stop, 3541 .show = bpf_iter_unix_seq_show, 3542 }; 3543 #endif 3544 #endif 3545 3546 static const struct net_proto_family unix_family_ops = { 3547 .family = PF_UNIX, 3548 .create = unix_create, 3549 .owner = THIS_MODULE, 3550 }; 3551 3552 3553 static int __net_init unix_net_init(struct net *net) 3554 { 3555 int i; 3556 3557 net->unx.sysctl_max_dgram_qlen = 10; 3558 if (unix_sysctl_register(net)) 3559 goto out; 3560 3561 #ifdef CONFIG_PROC_FS 3562 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3563 sizeof(struct seq_net_private))) 3564 goto err_sysctl; 3565 #endif 3566 3567 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3568 sizeof(spinlock_t), GFP_KERNEL); 3569 if (!net->unx.table.locks) 3570 goto err_proc; 3571 3572 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3573 sizeof(struct hlist_head), 3574 GFP_KERNEL); 3575 if (!net->unx.table.buckets) 3576 goto free_locks; 3577 3578 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3579 spin_lock_init(&net->unx.table.locks[i]); 3580 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3581 } 3582 3583 return 0; 3584 3585 free_locks: 3586 kvfree(net->unx.table.locks); 3587 err_proc: 3588 #ifdef CONFIG_PROC_FS 3589 remove_proc_entry("unix", net->proc_net); 3590 err_sysctl: 3591 #endif 3592 unix_sysctl_unregister(net); 3593 out: 3594 return -ENOMEM; 3595 } 3596 3597 static void __net_exit unix_net_exit(struct net *net) 3598 { 3599 kvfree(net->unx.table.buckets); 3600 kvfree(net->unx.table.locks); 3601 unix_sysctl_unregister(net); 3602 remove_proc_entry("unix", net->proc_net); 3603 } 3604 3605 static struct pernet_operations unix_net_ops = { 3606 .init = unix_net_init, 3607 .exit = unix_net_exit, 3608 }; 3609 3610 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3611 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3612 struct unix_sock *unix_sk, uid_t uid) 3613 3614 #define INIT_BATCH_SZ 16 3615 3616 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3617 { 3618 struct bpf_unix_iter_state *iter = priv_data; 3619 int err; 3620 3621 err = bpf_iter_init_seq_net(priv_data, aux); 3622 if (err) 3623 return err; 3624 3625 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3626 if (err) { 3627 bpf_iter_fini_seq_net(priv_data); 3628 return err; 3629 } 3630 3631 return 0; 3632 } 3633 3634 static void bpf_iter_fini_unix(void *priv_data) 3635 { 3636 struct bpf_unix_iter_state *iter = priv_data; 3637 3638 bpf_iter_fini_seq_net(priv_data); 3639 kvfree(iter->batch); 3640 } 3641 3642 static const struct bpf_iter_seq_info unix_seq_info = { 3643 .seq_ops = &bpf_iter_unix_seq_ops, 3644 .init_seq_private = bpf_iter_init_unix, 3645 .fini_seq_private = bpf_iter_fini_unix, 3646 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3647 }; 3648 3649 static const struct bpf_func_proto * 3650 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3651 const struct bpf_prog *prog) 3652 { 3653 switch (func_id) { 3654 case BPF_FUNC_setsockopt: 3655 return &bpf_sk_setsockopt_proto; 3656 case BPF_FUNC_getsockopt: 3657 return &bpf_sk_getsockopt_proto; 3658 default: 3659 return NULL; 3660 } 3661 } 3662 3663 static struct bpf_iter_reg unix_reg_info = { 3664 .target = "unix", 3665 .ctx_arg_info_size = 1, 3666 .ctx_arg_info = { 3667 { offsetof(struct bpf_iter__unix, unix_sk), 3668 PTR_TO_BTF_ID_OR_NULL }, 3669 }, 3670 .get_func_proto = bpf_iter_unix_get_func_proto, 3671 .seq_info = &unix_seq_info, 3672 }; 3673 3674 static void __init bpf_iter_register(void) 3675 { 3676 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3677 if (bpf_iter_reg_target(&unix_reg_info)) 3678 pr_warn("Warning: could not register bpf iterator unix\n"); 3679 } 3680 #endif 3681 3682 static int __init af_unix_init(void) 3683 { 3684 int i, rc = -1; 3685 3686 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3687 3688 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3689 spin_lock_init(&bsd_socket_locks[i]); 3690 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3691 } 3692 3693 rc = proto_register(&unix_dgram_proto, 1); 3694 if (rc != 0) { 3695 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3696 goto out; 3697 } 3698 3699 rc = proto_register(&unix_stream_proto, 1); 3700 if (rc != 0) { 3701 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3702 proto_unregister(&unix_dgram_proto); 3703 goto out; 3704 } 3705 3706 sock_register(&unix_family_ops); 3707 register_pernet_subsys(&unix_net_ops); 3708 unix_bpf_build_proto(); 3709 3710 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3711 bpf_iter_register(); 3712 #endif 3713 3714 out: 3715 return rc; 3716 } 3717 3718 /* Later than subsys_initcall() because we depend on stuff initialised there */ 3719 fs_initcall(af_unix_init); 3720