1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/freezer.h> 116 #include <linux/file.h> 117 #include <linux/btf_ids.h> 118 119 #include "scm.h" 120 121 static atomic_long_t unix_nr_socks; 122 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 123 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 124 125 /* SMP locking strategy: 126 * hash table is protected with spinlock. 127 * each socket state is protected by separate spinlock. 128 */ 129 130 static unsigned int unix_unbound_hash(struct sock *sk) 131 { 132 unsigned long hash = (unsigned long)sk; 133 134 hash ^= hash >> 16; 135 hash ^= hash >> 8; 136 hash ^= sk->sk_type; 137 138 return hash & UNIX_HASH_MOD; 139 } 140 141 static unsigned int unix_bsd_hash(struct inode *i) 142 { 143 return i->i_ino & UNIX_HASH_MOD; 144 } 145 146 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 147 int addr_len, int type) 148 { 149 __wsum csum = csum_partial(sunaddr, addr_len, 0); 150 unsigned int hash; 151 152 hash = (__force unsigned int)csum_fold(csum); 153 hash ^= hash >> 8; 154 hash ^= type; 155 156 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 157 } 158 159 static void unix_table_double_lock(struct net *net, 160 unsigned int hash1, unsigned int hash2) 161 { 162 if (hash1 == hash2) { 163 spin_lock(&net->unx.table.locks[hash1]); 164 return; 165 } 166 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&net->unx.table.locks[hash1]); 171 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(struct net *net, 175 unsigned int hash1, unsigned int hash2) 176 { 177 if (hash1 == hash2) { 178 spin_unlock(&net->unx.table.locks[hash1]); 179 return; 180 } 181 182 spin_unlock(&net->unx.table.locks[hash1]); 183 spin_unlock(&net->unx.table.locks[hash2]); 184 } 185 186 #ifdef CONFIG_SECURITY_NETWORK 187 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 188 { 189 UNIXCB(skb).secid = scm->secid; 190 } 191 192 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 193 { 194 scm->secid = UNIXCB(skb).secid; 195 } 196 197 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 198 { 199 return (scm->secid == UNIXCB(skb).secid); 200 } 201 #else 202 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 203 { } 204 205 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 206 { } 207 208 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 209 { 210 return true; 211 } 212 #endif /* CONFIG_SECURITY_NETWORK */ 213 214 #define unix_peer(sk) (unix_sk(sk)->peer) 215 216 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 217 { 218 return unix_peer(osk) == sk; 219 } 220 221 static inline int unix_may_send(struct sock *sk, struct sock *osk) 222 { 223 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 224 } 225 226 static inline int unix_recvq_full(const struct sock *sk) 227 { 228 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 229 } 230 231 static inline int unix_recvq_full_lockless(const struct sock *sk) 232 { 233 return skb_queue_len_lockless(&sk->sk_receive_queue) > 234 READ_ONCE(sk->sk_max_ack_backlog); 235 } 236 237 struct sock *unix_peer_get(struct sock *s) 238 { 239 struct sock *peer; 240 241 unix_state_lock(s); 242 peer = unix_peer(s); 243 if (peer) 244 sock_hold(peer); 245 unix_state_unlock(s); 246 return peer; 247 } 248 EXPORT_SYMBOL_GPL(unix_peer_get); 249 250 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 251 int addr_len) 252 { 253 struct unix_address *addr; 254 255 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 256 if (!addr) 257 return NULL; 258 259 refcount_set(&addr->refcnt, 1); 260 addr->len = addr_len; 261 memcpy(addr->name, sunaddr, addr_len); 262 263 return addr; 264 } 265 266 static inline void unix_release_addr(struct unix_address *addr) 267 { 268 if (refcount_dec_and_test(&addr->refcnt)) 269 kfree(addr); 270 } 271 272 /* 273 * Check unix socket name: 274 * - should be not zero length. 275 * - if started by not zero, should be NULL terminated (FS object) 276 * - if started by zero, it is abstract name. 277 */ 278 279 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 280 { 281 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 282 addr_len > sizeof(*sunaddr)) 283 return -EINVAL; 284 285 if (sunaddr->sun_family != AF_UNIX) 286 return -EINVAL; 287 288 return 0; 289 } 290 291 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 292 { 293 /* This may look like an off by one error but it is a bit more 294 * subtle. 108 is the longest valid AF_UNIX path for a binding. 295 * sun_path[108] doesn't as such exist. However in kernel space 296 * we are guaranteed that it is a valid memory location in our 297 * kernel address buffer because syscall functions always pass 298 * a pointer of struct sockaddr_storage which has a bigger buffer 299 * than 108. 300 */ 301 ((char *)sunaddr)[addr_len] = 0; 302 } 303 304 static void __unix_remove_socket(struct sock *sk) 305 { 306 sk_del_node_init(sk); 307 } 308 309 static void __unix_insert_socket(struct net *net, struct sock *sk) 310 { 311 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 312 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 313 } 314 315 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 316 struct unix_address *addr, unsigned int hash) 317 { 318 __unix_remove_socket(sk); 319 smp_store_release(&unix_sk(sk)->addr, addr); 320 321 sk->sk_hash = hash; 322 __unix_insert_socket(net, sk); 323 } 324 325 static void unix_remove_socket(struct net *net, struct sock *sk) 326 { 327 spin_lock(&net->unx.table.locks[sk->sk_hash]); 328 __unix_remove_socket(sk); 329 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 330 } 331 332 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 333 { 334 spin_lock(&net->unx.table.locks[sk->sk_hash]); 335 __unix_insert_socket(net, sk); 336 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 337 } 338 339 static void unix_insert_bsd_socket(struct sock *sk) 340 { 341 spin_lock(&bsd_socket_locks[sk->sk_hash]); 342 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 343 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 344 } 345 346 static void unix_remove_bsd_socket(struct sock *sk) 347 { 348 if (!hlist_unhashed(&sk->sk_bind_node)) { 349 spin_lock(&bsd_socket_locks[sk->sk_hash]); 350 __sk_del_bind_node(sk); 351 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 352 353 sk_node_init(&sk->sk_bind_node); 354 } 355 } 356 357 static struct sock *__unix_find_socket_byname(struct net *net, 358 struct sockaddr_un *sunname, 359 int len, unsigned int hash) 360 { 361 struct sock *s; 362 363 sk_for_each(s, &net->unx.table.buckets[hash]) { 364 struct unix_sock *u = unix_sk(s); 365 366 if (u->addr->len == len && 367 !memcmp(u->addr->name, sunname, len)) 368 return s; 369 } 370 return NULL; 371 } 372 373 static inline struct sock *unix_find_socket_byname(struct net *net, 374 struct sockaddr_un *sunname, 375 int len, unsigned int hash) 376 { 377 struct sock *s; 378 379 spin_lock(&net->unx.table.locks[hash]); 380 s = __unix_find_socket_byname(net, sunname, len, hash); 381 if (s) 382 sock_hold(s); 383 spin_unlock(&net->unx.table.locks[hash]); 384 return s; 385 } 386 387 static struct sock *unix_find_socket_byinode(struct inode *i) 388 { 389 unsigned int hash = unix_bsd_hash(i); 390 struct sock *s; 391 392 spin_lock(&bsd_socket_locks[hash]); 393 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 394 struct dentry *dentry = unix_sk(s)->path.dentry; 395 396 if (dentry && d_backing_inode(dentry) == i) { 397 sock_hold(s); 398 spin_unlock(&bsd_socket_locks[hash]); 399 return s; 400 } 401 } 402 spin_unlock(&bsd_socket_locks[hash]); 403 return NULL; 404 } 405 406 /* Support code for asymmetrically connected dgram sockets 407 * 408 * If a datagram socket is connected to a socket not itself connected 409 * to the first socket (eg, /dev/log), clients may only enqueue more 410 * messages if the present receive queue of the server socket is not 411 * "too large". This means there's a second writeability condition 412 * poll and sendmsg need to test. The dgram recv code will do a wake 413 * up on the peer_wait wait queue of a socket upon reception of a 414 * datagram which needs to be propagated to sleeping would-be writers 415 * since these might not have sent anything so far. This can't be 416 * accomplished via poll_wait because the lifetime of the server 417 * socket might be less than that of its clients if these break their 418 * association with it or if the server socket is closed while clients 419 * are still connected to it and there's no way to inform "a polling 420 * implementation" that it should let go of a certain wait queue 421 * 422 * In order to propagate a wake up, a wait_queue_entry_t of the client 423 * socket is enqueued on the peer_wait queue of the server socket 424 * whose wake function does a wake_up on the ordinary client socket 425 * wait queue. This connection is established whenever a write (or 426 * poll for write) hit the flow control condition and broken when the 427 * association to the server socket is dissolved or after a wake up 428 * was relayed. 429 */ 430 431 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 432 void *key) 433 { 434 struct unix_sock *u; 435 wait_queue_head_t *u_sleep; 436 437 u = container_of(q, struct unix_sock, peer_wake); 438 439 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 440 q); 441 u->peer_wake.private = NULL; 442 443 /* relaying can only happen while the wq still exists */ 444 u_sleep = sk_sleep(&u->sk); 445 if (u_sleep) 446 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 447 448 return 0; 449 } 450 451 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 452 { 453 struct unix_sock *u, *u_other; 454 int rc; 455 456 u = unix_sk(sk); 457 u_other = unix_sk(other); 458 rc = 0; 459 spin_lock(&u_other->peer_wait.lock); 460 461 if (!u->peer_wake.private) { 462 u->peer_wake.private = other; 463 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 464 465 rc = 1; 466 } 467 468 spin_unlock(&u_other->peer_wait.lock); 469 return rc; 470 } 471 472 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 473 struct sock *other) 474 { 475 struct unix_sock *u, *u_other; 476 477 u = unix_sk(sk); 478 u_other = unix_sk(other); 479 spin_lock(&u_other->peer_wait.lock); 480 481 if (u->peer_wake.private == other) { 482 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 483 u->peer_wake.private = NULL; 484 } 485 486 spin_unlock(&u_other->peer_wait.lock); 487 } 488 489 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 490 struct sock *other) 491 { 492 unix_dgram_peer_wake_disconnect(sk, other); 493 wake_up_interruptible_poll(sk_sleep(sk), 494 EPOLLOUT | 495 EPOLLWRNORM | 496 EPOLLWRBAND); 497 } 498 499 /* preconditions: 500 * - unix_peer(sk) == other 501 * - association is stable 502 */ 503 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 504 { 505 int connected; 506 507 connected = unix_dgram_peer_wake_connect(sk, other); 508 509 /* If other is SOCK_DEAD, we want to make sure we signal 510 * POLLOUT, such that a subsequent write() can get a 511 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 512 * to other and its full, we will hang waiting for POLLOUT. 513 */ 514 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 515 return 1; 516 517 if (connected) 518 unix_dgram_peer_wake_disconnect(sk, other); 519 520 return 0; 521 } 522 523 static int unix_writable(const struct sock *sk) 524 { 525 return sk->sk_state != TCP_LISTEN && 526 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 527 } 528 529 static void unix_write_space(struct sock *sk) 530 { 531 struct socket_wq *wq; 532 533 rcu_read_lock(); 534 if (unix_writable(sk)) { 535 wq = rcu_dereference(sk->sk_wq); 536 if (skwq_has_sleeper(wq)) 537 wake_up_interruptible_sync_poll(&wq->wait, 538 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 539 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 540 } 541 rcu_read_unlock(); 542 } 543 544 /* When dgram socket disconnects (or changes its peer), we clear its receive 545 * queue of packets arrived from previous peer. First, it allows to do 546 * flow control based only on wmem_alloc; second, sk connected to peer 547 * may receive messages only from that peer. */ 548 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 549 { 550 if (!skb_queue_empty(&sk->sk_receive_queue)) { 551 skb_queue_purge(&sk->sk_receive_queue); 552 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 553 554 /* If one link of bidirectional dgram pipe is disconnected, 555 * we signal error. Messages are lost. Do not make this, 556 * when peer was not connected to us. 557 */ 558 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 559 other->sk_err = ECONNRESET; 560 sk_error_report(other); 561 } 562 } 563 other->sk_state = TCP_CLOSE; 564 } 565 566 static void unix_sock_destructor(struct sock *sk) 567 { 568 struct unix_sock *u = unix_sk(sk); 569 570 skb_queue_purge(&sk->sk_receive_queue); 571 572 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 573 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 574 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 575 if (!sock_flag(sk, SOCK_DEAD)) { 576 pr_info("Attempt to release alive unix socket: %p\n", sk); 577 return; 578 } 579 580 if (u->addr) 581 unix_release_addr(u->addr); 582 583 atomic_long_dec(&unix_nr_socks); 584 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 585 #ifdef UNIX_REFCNT_DEBUG 586 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 587 atomic_long_read(&unix_nr_socks)); 588 #endif 589 } 590 591 static void unix_release_sock(struct sock *sk, int embrion) 592 { 593 struct unix_sock *u = unix_sk(sk); 594 struct sock *skpair; 595 struct sk_buff *skb; 596 struct path path; 597 int state; 598 599 unix_remove_socket(sock_net(sk), sk); 600 unix_remove_bsd_socket(sk); 601 602 /* Clear state */ 603 unix_state_lock(sk); 604 sock_orphan(sk); 605 sk->sk_shutdown = SHUTDOWN_MASK; 606 path = u->path; 607 u->path.dentry = NULL; 608 u->path.mnt = NULL; 609 state = sk->sk_state; 610 sk->sk_state = TCP_CLOSE; 611 612 skpair = unix_peer(sk); 613 unix_peer(sk) = NULL; 614 615 unix_state_unlock(sk); 616 617 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 618 if (u->oob_skb) { 619 kfree_skb(u->oob_skb); 620 u->oob_skb = NULL; 621 } 622 #endif 623 624 wake_up_interruptible_all(&u->peer_wait); 625 626 if (skpair != NULL) { 627 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 628 unix_state_lock(skpair); 629 /* No more writes */ 630 skpair->sk_shutdown = SHUTDOWN_MASK; 631 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 632 skpair->sk_err = ECONNRESET; 633 unix_state_unlock(skpair); 634 skpair->sk_state_change(skpair); 635 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 636 } 637 638 unix_dgram_peer_wake_disconnect(sk, skpair); 639 sock_put(skpair); /* It may now die */ 640 } 641 642 /* Try to flush out this socket. Throw out buffers at least */ 643 644 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 645 if (state == TCP_LISTEN) 646 unix_release_sock(skb->sk, 1); 647 /* passed fds are erased in the kfree_skb hook */ 648 UNIXCB(skb).consumed = skb->len; 649 kfree_skb(skb); 650 } 651 652 if (path.dentry) 653 path_put(&path); 654 655 sock_put(sk); 656 657 /* ---- Socket is dead now and most probably destroyed ---- */ 658 659 /* 660 * Fixme: BSD difference: In BSD all sockets connected to us get 661 * ECONNRESET and we die on the spot. In Linux we behave 662 * like files and pipes do and wait for the last 663 * dereference. 664 * 665 * Can't we simply set sock->err? 666 * 667 * What the above comment does talk about? --ANK(980817) 668 */ 669 670 if (unix_tot_inflight) 671 unix_gc(); /* Garbage collect fds */ 672 } 673 674 static void init_peercred(struct sock *sk) 675 { 676 const struct cred *old_cred; 677 struct pid *old_pid; 678 679 spin_lock(&sk->sk_peer_lock); 680 old_pid = sk->sk_peer_pid; 681 old_cred = sk->sk_peer_cred; 682 sk->sk_peer_pid = get_pid(task_tgid(current)); 683 sk->sk_peer_cred = get_current_cred(); 684 spin_unlock(&sk->sk_peer_lock); 685 686 put_pid(old_pid); 687 put_cred(old_cred); 688 } 689 690 static void copy_peercred(struct sock *sk, struct sock *peersk) 691 { 692 const struct cred *old_cred; 693 struct pid *old_pid; 694 695 if (sk < peersk) { 696 spin_lock(&sk->sk_peer_lock); 697 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 698 } else { 699 spin_lock(&peersk->sk_peer_lock); 700 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 701 } 702 old_pid = sk->sk_peer_pid; 703 old_cred = sk->sk_peer_cred; 704 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 705 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 706 707 spin_unlock(&sk->sk_peer_lock); 708 spin_unlock(&peersk->sk_peer_lock); 709 710 put_pid(old_pid); 711 put_cred(old_cred); 712 } 713 714 static int unix_listen(struct socket *sock, int backlog) 715 { 716 int err; 717 struct sock *sk = sock->sk; 718 struct unix_sock *u = unix_sk(sk); 719 720 err = -EOPNOTSUPP; 721 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 722 goto out; /* Only stream/seqpacket sockets accept */ 723 err = -EINVAL; 724 if (!u->addr) 725 goto out; /* No listens on an unbound socket */ 726 unix_state_lock(sk); 727 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 728 goto out_unlock; 729 if (backlog > sk->sk_max_ack_backlog) 730 wake_up_interruptible_all(&u->peer_wait); 731 sk->sk_max_ack_backlog = backlog; 732 sk->sk_state = TCP_LISTEN; 733 /* set credentials so connect can copy them */ 734 init_peercred(sk); 735 err = 0; 736 737 out_unlock: 738 unix_state_unlock(sk); 739 out: 740 return err; 741 } 742 743 static int unix_release(struct socket *); 744 static int unix_bind(struct socket *, struct sockaddr *, int); 745 static int unix_stream_connect(struct socket *, struct sockaddr *, 746 int addr_len, int flags); 747 static int unix_socketpair(struct socket *, struct socket *); 748 static int unix_accept(struct socket *, struct socket *, int, bool); 749 static int unix_getname(struct socket *, struct sockaddr *, int); 750 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 751 static __poll_t unix_dgram_poll(struct file *, struct socket *, 752 poll_table *); 753 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 754 #ifdef CONFIG_COMPAT 755 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 756 #endif 757 static int unix_shutdown(struct socket *, int); 758 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 759 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 760 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset, 761 size_t size, int flags); 762 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 763 struct pipe_inode_info *, size_t size, 764 unsigned int flags); 765 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 766 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 767 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 768 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 769 static int unix_dgram_connect(struct socket *, struct sockaddr *, 770 int, int); 771 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 772 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 773 int); 774 775 static int unix_set_peek_off(struct sock *sk, int val) 776 { 777 struct unix_sock *u = unix_sk(sk); 778 779 if (mutex_lock_interruptible(&u->iolock)) 780 return -EINTR; 781 782 sk->sk_peek_off = val; 783 mutex_unlock(&u->iolock); 784 785 return 0; 786 } 787 788 #ifdef CONFIG_PROC_FS 789 static int unix_count_nr_fds(struct sock *sk) 790 { 791 struct sk_buff *skb; 792 struct unix_sock *u; 793 int nr_fds = 0; 794 795 spin_lock(&sk->sk_receive_queue.lock); 796 skb = skb_peek(&sk->sk_receive_queue); 797 while (skb) { 798 u = unix_sk(skb->sk); 799 nr_fds += atomic_read(&u->scm_stat.nr_fds); 800 skb = skb_peek_next(skb, &sk->sk_receive_queue); 801 } 802 spin_unlock(&sk->sk_receive_queue.lock); 803 804 return nr_fds; 805 } 806 807 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 808 { 809 struct sock *sk = sock->sk; 810 struct unix_sock *u; 811 int nr_fds; 812 813 if (sk) { 814 u = unix_sk(sk); 815 if (sock->type == SOCK_DGRAM) { 816 nr_fds = atomic_read(&u->scm_stat.nr_fds); 817 goto out_print; 818 } 819 820 unix_state_lock(sk); 821 if (sk->sk_state != TCP_LISTEN) 822 nr_fds = atomic_read(&u->scm_stat.nr_fds); 823 else 824 nr_fds = unix_count_nr_fds(sk); 825 unix_state_unlock(sk); 826 out_print: 827 seq_printf(m, "scm_fds: %u\n", nr_fds); 828 } 829 } 830 #else 831 #define unix_show_fdinfo NULL 832 #endif 833 834 static const struct proto_ops unix_stream_ops = { 835 .family = PF_UNIX, 836 .owner = THIS_MODULE, 837 .release = unix_release, 838 .bind = unix_bind, 839 .connect = unix_stream_connect, 840 .socketpair = unix_socketpair, 841 .accept = unix_accept, 842 .getname = unix_getname, 843 .poll = unix_poll, 844 .ioctl = unix_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = unix_compat_ioctl, 847 #endif 848 .listen = unix_listen, 849 .shutdown = unix_shutdown, 850 .sendmsg = unix_stream_sendmsg, 851 .recvmsg = unix_stream_recvmsg, 852 .read_skb = unix_stream_read_skb, 853 .mmap = sock_no_mmap, 854 .sendpage = unix_stream_sendpage, 855 .splice_read = unix_stream_splice_read, 856 .set_peek_off = unix_set_peek_off, 857 .show_fdinfo = unix_show_fdinfo, 858 }; 859 860 static const struct proto_ops unix_dgram_ops = { 861 .family = PF_UNIX, 862 .owner = THIS_MODULE, 863 .release = unix_release, 864 .bind = unix_bind, 865 .connect = unix_dgram_connect, 866 .socketpair = unix_socketpair, 867 .accept = sock_no_accept, 868 .getname = unix_getname, 869 .poll = unix_dgram_poll, 870 .ioctl = unix_ioctl, 871 #ifdef CONFIG_COMPAT 872 .compat_ioctl = unix_compat_ioctl, 873 #endif 874 .listen = sock_no_listen, 875 .shutdown = unix_shutdown, 876 .sendmsg = unix_dgram_sendmsg, 877 .read_skb = unix_read_skb, 878 .recvmsg = unix_dgram_recvmsg, 879 .mmap = sock_no_mmap, 880 .sendpage = sock_no_sendpage, 881 .set_peek_off = unix_set_peek_off, 882 .show_fdinfo = unix_show_fdinfo, 883 }; 884 885 static const struct proto_ops unix_seqpacket_ops = { 886 .family = PF_UNIX, 887 .owner = THIS_MODULE, 888 .release = unix_release, 889 .bind = unix_bind, 890 .connect = unix_stream_connect, 891 .socketpair = unix_socketpair, 892 .accept = unix_accept, 893 .getname = unix_getname, 894 .poll = unix_dgram_poll, 895 .ioctl = unix_ioctl, 896 #ifdef CONFIG_COMPAT 897 .compat_ioctl = unix_compat_ioctl, 898 #endif 899 .listen = unix_listen, 900 .shutdown = unix_shutdown, 901 .sendmsg = unix_seqpacket_sendmsg, 902 .recvmsg = unix_seqpacket_recvmsg, 903 .mmap = sock_no_mmap, 904 .sendpage = sock_no_sendpage, 905 .set_peek_off = unix_set_peek_off, 906 .show_fdinfo = unix_show_fdinfo, 907 }; 908 909 static void unix_close(struct sock *sk, long timeout) 910 { 911 /* Nothing to do here, unix socket does not need a ->close(). 912 * This is merely for sockmap. 913 */ 914 } 915 916 static void unix_unhash(struct sock *sk) 917 { 918 /* Nothing to do here, unix socket does not need a ->unhash(). 919 * This is merely for sockmap. 920 */ 921 } 922 923 struct proto unix_dgram_proto = { 924 .name = "UNIX", 925 .owner = THIS_MODULE, 926 .obj_size = sizeof(struct unix_sock), 927 .close = unix_close, 928 #ifdef CONFIG_BPF_SYSCALL 929 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 930 #endif 931 }; 932 933 struct proto unix_stream_proto = { 934 .name = "UNIX-STREAM", 935 .owner = THIS_MODULE, 936 .obj_size = sizeof(struct unix_sock), 937 .close = unix_close, 938 .unhash = unix_unhash, 939 #ifdef CONFIG_BPF_SYSCALL 940 .psock_update_sk_prot = unix_stream_bpf_update_proto, 941 #endif 942 }; 943 944 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 945 { 946 struct unix_sock *u; 947 struct sock *sk; 948 int err; 949 950 atomic_long_inc(&unix_nr_socks); 951 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 952 err = -ENFILE; 953 goto err; 954 } 955 956 if (type == SOCK_STREAM) 957 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 958 else /*dgram and seqpacket */ 959 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 960 961 if (!sk) { 962 err = -ENOMEM; 963 goto err; 964 } 965 966 sock_init_data(sock, sk); 967 968 sk->sk_hash = unix_unbound_hash(sk); 969 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 970 sk->sk_write_space = unix_write_space; 971 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 972 sk->sk_destruct = unix_sock_destructor; 973 u = unix_sk(sk); 974 u->path.dentry = NULL; 975 u->path.mnt = NULL; 976 spin_lock_init(&u->lock); 977 atomic_long_set(&u->inflight, 0); 978 INIT_LIST_HEAD(&u->link); 979 mutex_init(&u->iolock); /* single task reading lock */ 980 mutex_init(&u->bindlock); /* single task binding lock */ 981 init_waitqueue_head(&u->peer_wait); 982 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 983 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 984 unix_insert_unbound_socket(net, sk); 985 986 sock_prot_inuse_add(net, sk->sk_prot, 1); 987 988 return sk; 989 990 err: 991 atomic_long_dec(&unix_nr_socks); 992 return ERR_PTR(err); 993 } 994 995 static int unix_create(struct net *net, struct socket *sock, int protocol, 996 int kern) 997 { 998 struct sock *sk; 999 1000 if (protocol && protocol != PF_UNIX) 1001 return -EPROTONOSUPPORT; 1002 1003 sock->state = SS_UNCONNECTED; 1004 1005 switch (sock->type) { 1006 case SOCK_STREAM: 1007 sock->ops = &unix_stream_ops; 1008 break; 1009 /* 1010 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1011 * nothing uses it. 1012 */ 1013 case SOCK_RAW: 1014 sock->type = SOCK_DGRAM; 1015 fallthrough; 1016 case SOCK_DGRAM: 1017 sock->ops = &unix_dgram_ops; 1018 break; 1019 case SOCK_SEQPACKET: 1020 sock->ops = &unix_seqpacket_ops; 1021 break; 1022 default: 1023 return -ESOCKTNOSUPPORT; 1024 } 1025 1026 sk = unix_create1(net, sock, kern, sock->type); 1027 if (IS_ERR(sk)) 1028 return PTR_ERR(sk); 1029 1030 return 0; 1031 } 1032 1033 static int unix_release(struct socket *sock) 1034 { 1035 struct sock *sk = sock->sk; 1036 1037 if (!sk) 1038 return 0; 1039 1040 sk->sk_prot->close(sk, 0); 1041 unix_release_sock(sk, 0); 1042 sock->sk = NULL; 1043 1044 return 0; 1045 } 1046 1047 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1048 int type) 1049 { 1050 struct inode *inode; 1051 struct path path; 1052 struct sock *sk; 1053 int err; 1054 1055 unix_mkname_bsd(sunaddr, addr_len); 1056 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1057 if (err) 1058 goto fail; 1059 1060 err = path_permission(&path, MAY_WRITE); 1061 if (err) 1062 goto path_put; 1063 1064 err = -ECONNREFUSED; 1065 inode = d_backing_inode(path.dentry); 1066 if (!S_ISSOCK(inode->i_mode)) 1067 goto path_put; 1068 1069 sk = unix_find_socket_byinode(inode); 1070 if (!sk) 1071 goto path_put; 1072 1073 err = -EPROTOTYPE; 1074 if (sk->sk_type == type) 1075 touch_atime(&path); 1076 else 1077 goto sock_put; 1078 1079 path_put(&path); 1080 1081 return sk; 1082 1083 sock_put: 1084 sock_put(sk); 1085 path_put: 1086 path_put(&path); 1087 fail: 1088 return ERR_PTR(err); 1089 } 1090 1091 static struct sock *unix_find_abstract(struct net *net, 1092 struct sockaddr_un *sunaddr, 1093 int addr_len, int type) 1094 { 1095 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1096 struct dentry *dentry; 1097 struct sock *sk; 1098 1099 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1100 if (!sk) 1101 return ERR_PTR(-ECONNREFUSED); 1102 1103 dentry = unix_sk(sk)->path.dentry; 1104 if (dentry) 1105 touch_atime(&unix_sk(sk)->path); 1106 1107 return sk; 1108 } 1109 1110 static struct sock *unix_find_other(struct net *net, 1111 struct sockaddr_un *sunaddr, 1112 int addr_len, int type) 1113 { 1114 struct sock *sk; 1115 1116 if (sunaddr->sun_path[0]) 1117 sk = unix_find_bsd(sunaddr, addr_len, type); 1118 else 1119 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1120 1121 return sk; 1122 } 1123 1124 static int unix_autobind(struct sock *sk) 1125 { 1126 unsigned int new_hash, old_hash = sk->sk_hash; 1127 struct unix_sock *u = unix_sk(sk); 1128 struct net *net = sock_net(sk); 1129 struct unix_address *addr; 1130 u32 lastnum, ordernum; 1131 int err; 1132 1133 err = mutex_lock_interruptible(&u->bindlock); 1134 if (err) 1135 return err; 1136 1137 if (u->addr) 1138 goto out; 1139 1140 err = -ENOMEM; 1141 addr = kzalloc(sizeof(*addr) + 1142 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1143 if (!addr) 1144 goto out; 1145 1146 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1147 addr->name->sun_family = AF_UNIX; 1148 refcount_set(&addr->refcnt, 1); 1149 1150 ordernum = get_random_u32(); 1151 lastnum = ordernum & 0xFFFFF; 1152 retry: 1153 ordernum = (ordernum + 1) & 0xFFFFF; 1154 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1155 1156 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1157 unix_table_double_lock(net, old_hash, new_hash); 1158 1159 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1160 unix_table_double_unlock(net, old_hash, new_hash); 1161 1162 /* __unix_find_socket_byname() may take long time if many names 1163 * are already in use. 1164 */ 1165 cond_resched(); 1166 1167 if (ordernum == lastnum) { 1168 /* Give up if all names seems to be in use. */ 1169 err = -ENOSPC; 1170 unix_release_addr(addr); 1171 goto out; 1172 } 1173 1174 goto retry; 1175 } 1176 1177 __unix_set_addr_hash(net, sk, addr, new_hash); 1178 unix_table_double_unlock(net, old_hash, new_hash); 1179 err = 0; 1180 1181 out: mutex_unlock(&u->bindlock); 1182 return err; 1183 } 1184 1185 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1186 int addr_len) 1187 { 1188 umode_t mode = S_IFSOCK | 1189 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1190 unsigned int new_hash, old_hash = sk->sk_hash; 1191 struct unix_sock *u = unix_sk(sk); 1192 struct net *net = sock_net(sk); 1193 struct user_namespace *ns; // barf... 1194 struct unix_address *addr; 1195 struct dentry *dentry; 1196 struct path parent; 1197 int err; 1198 1199 unix_mkname_bsd(sunaddr, addr_len); 1200 addr_len = strlen(sunaddr->sun_path) + 1201 offsetof(struct sockaddr_un, sun_path) + 1; 1202 1203 addr = unix_create_addr(sunaddr, addr_len); 1204 if (!addr) 1205 return -ENOMEM; 1206 1207 /* 1208 * Get the parent directory, calculate the hash for last 1209 * component. 1210 */ 1211 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1212 if (IS_ERR(dentry)) { 1213 err = PTR_ERR(dentry); 1214 goto out; 1215 } 1216 1217 /* 1218 * All right, let's create it. 1219 */ 1220 ns = mnt_user_ns(parent.mnt); 1221 err = security_path_mknod(&parent, dentry, mode, 0); 1222 if (!err) 1223 err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0); 1224 if (err) 1225 goto out_path; 1226 err = mutex_lock_interruptible(&u->bindlock); 1227 if (err) 1228 goto out_unlink; 1229 if (u->addr) 1230 goto out_unlock; 1231 1232 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1233 unix_table_double_lock(net, old_hash, new_hash); 1234 u->path.mnt = mntget(parent.mnt); 1235 u->path.dentry = dget(dentry); 1236 __unix_set_addr_hash(net, sk, addr, new_hash); 1237 unix_table_double_unlock(net, old_hash, new_hash); 1238 unix_insert_bsd_socket(sk); 1239 mutex_unlock(&u->bindlock); 1240 done_path_create(&parent, dentry); 1241 return 0; 1242 1243 out_unlock: 1244 mutex_unlock(&u->bindlock); 1245 err = -EINVAL; 1246 out_unlink: 1247 /* failed after successful mknod? unlink what we'd created... */ 1248 vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL); 1249 out_path: 1250 done_path_create(&parent, dentry); 1251 out: 1252 unix_release_addr(addr); 1253 return err == -EEXIST ? -EADDRINUSE : err; 1254 } 1255 1256 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1257 int addr_len) 1258 { 1259 unsigned int new_hash, old_hash = sk->sk_hash; 1260 struct unix_sock *u = unix_sk(sk); 1261 struct net *net = sock_net(sk); 1262 struct unix_address *addr; 1263 int err; 1264 1265 addr = unix_create_addr(sunaddr, addr_len); 1266 if (!addr) 1267 return -ENOMEM; 1268 1269 err = mutex_lock_interruptible(&u->bindlock); 1270 if (err) 1271 goto out; 1272 1273 if (u->addr) { 1274 err = -EINVAL; 1275 goto out_mutex; 1276 } 1277 1278 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1279 unix_table_double_lock(net, old_hash, new_hash); 1280 1281 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1282 goto out_spin; 1283 1284 __unix_set_addr_hash(net, sk, addr, new_hash); 1285 unix_table_double_unlock(net, old_hash, new_hash); 1286 mutex_unlock(&u->bindlock); 1287 return 0; 1288 1289 out_spin: 1290 unix_table_double_unlock(net, old_hash, new_hash); 1291 err = -EADDRINUSE; 1292 out_mutex: 1293 mutex_unlock(&u->bindlock); 1294 out: 1295 unix_release_addr(addr); 1296 return err; 1297 } 1298 1299 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1300 { 1301 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1302 struct sock *sk = sock->sk; 1303 int err; 1304 1305 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1306 sunaddr->sun_family == AF_UNIX) 1307 return unix_autobind(sk); 1308 1309 err = unix_validate_addr(sunaddr, addr_len); 1310 if (err) 1311 return err; 1312 1313 if (sunaddr->sun_path[0]) 1314 err = unix_bind_bsd(sk, sunaddr, addr_len); 1315 else 1316 err = unix_bind_abstract(sk, sunaddr, addr_len); 1317 1318 return err; 1319 } 1320 1321 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1322 { 1323 if (unlikely(sk1 == sk2) || !sk2) { 1324 unix_state_lock(sk1); 1325 return; 1326 } 1327 if (sk1 < sk2) { 1328 unix_state_lock(sk1); 1329 unix_state_lock_nested(sk2); 1330 } else { 1331 unix_state_lock(sk2); 1332 unix_state_lock_nested(sk1); 1333 } 1334 } 1335 1336 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1337 { 1338 if (unlikely(sk1 == sk2) || !sk2) { 1339 unix_state_unlock(sk1); 1340 return; 1341 } 1342 unix_state_unlock(sk1); 1343 unix_state_unlock(sk2); 1344 } 1345 1346 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1347 int alen, int flags) 1348 { 1349 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1350 struct sock *sk = sock->sk; 1351 struct sock *other; 1352 int err; 1353 1354 err = -EINVAL; 1355 if (alen < offsetofend(struct sockaddr, sa_family)) 1356 goto out; 1357 1358 if (addr->sa_family != AF_UNSPEC) { 1359 err = unix_validate_addr(sunaddr, alen); 1360 if (err) 1361 goto out; 1362 1363 if (test_bit(SOCK_PASSCRED, &sock->flags) && 1364 !unix_sk(sk)->addr) { 1365 err = unix_autobind(sk); 1366 if (err) 1367 goto out; 1368 } 1369 1370 restart: 1371 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1372 if (IS_ERR(other)) { 1373 err = PTR_ERR(other); 1374 goto out; 1375 } 1376 1377 unix_state_double_lock(sk, other); 1378 1379 /* Apparently VFS overslept socket death. Retry. */ 1380 if (sock_flag(other, SOCK_DEAD)) { 1381 unix_state_double_unlock(sk, other); 1382 sock_put(other); 1383 goto restart; 1384 } 1385 1386 err = -EPERM; 1387 if (!unix_may_send(sk, other)) 1388 goto out_unlock; 1389 1390 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1391 if (err) 1392 goto out_unlock; 1393 1394 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1395 } else { 1396 /* 1397 * 1003.1g breaking connected state with AF_UNSPEC 1398 */ 1399 other = NULL; 1400 unix_state_double_lock(sk, other); 1401 } 1402 1403 /* 1404 * If it was connected, reconnect. 1405 */ 1406 if (unix_peer(sk)) { 1407 struct sock *old_peer = unix_peer(sk); 1408 1409 unix_peer(sk) = other; 1410 if (!other) 1411 sk->sk_state = TCP_CLOSE; 1412 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1413 1414 unix_state_double_unlock(sk, other); 1415 1416 if (other != old_peer) 1417 unix_dgram_disconnected(sk, old_peer); 1418 sock_put(old_peer); 1419 } else { 1420 unix_peer(sk) = other; 1421 unix_state_double_unlock(sk, other); 1422 } 1423 1424 return 0; 1425 1426 out_unlock: 1427 unix_state_double_unlock(sk, other); 1428 sock_put(other); 1429 out: 1430 return err; 1431 } 1432 1433 static long unix_wait_for_peer(struct sock *other, long timeo) 1434 __releases(&unix_sk(other)->lock) 1435 { 1436 struct unix_sock *u = unix_sk(other); 1437 int sched; 1438 DEFINE_WAIT(wait); 1439 1440 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1441 1442 sched = !sock_flag(other, SOCK_DEAD) && 1443 !(other->sk_shutdown & RCV_SHUTDOWN) && 1444 unix_recvq_full(other); 1445 1446 unix_state_unlock(other); 1447 1448 if (sched) 1449 timeo = schedule_timeout(timeo); 1450 1451 finish_wait(&u->peer_wait, &wait); 1452 return timeo; 1453 } 1454 1455 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1456 int addr_len, int flags) 1457 { 1458 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1459 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1460 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1461 struct net *net = sock_net(sk); 1462 struct sk_buff *skb = NULL; 1463 long timeo; 1464 int err; 1465 int st; 1466 1467 err = unix_validate_addr(sunaddr, addr_len); 1468 if (err) 1469 goto out; 1470 1471 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1472 err = unix_autobind(sk); 1473 if (err) 1474 goto out; 1475 } 1476 1477 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1478 1479 /* First of all allocate resources. 1480 If we will make it after state is locked, 1481 we will have to recheck all again in any case. 1482 */ 1483 1484 /* create new sock for complete connection */ 1485 newsk = unix_create1(net, NULL, 0, sock->type); 1486 if (IS_ERR(newsk)) { 1487 err = PTR_ERR(newsk); 1488 newsk = NULL; 1489 goto out; 1490 } 1491 1492 err = -ENOMEM; 1493 1494 /* Allocate skb for sending to listening sock */ 1495 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1496 if (skb == NULL) 1497 goto out; 1498 1499 restart: 1500 /* Find listening sock. */ 1501 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1502 if (IS_ERR(other)) { 1503 err = PTR_ERR(other); 1504 other = NULL; 1505 goto out; 1506 } 1507 1508 /* Latch state of peer */ 1509 unix_state_lock(other); 1510 1511 /* Apparently VFS overslept socket death. Retry. */ 1512 if (sock_flag(other, SOCK_DEAD)) { 1513 unix_state_unlock(other); 1514 sock_put(other); 1515 goto restart; 1516 } 1517 1518 err = -ECONNREFUSED; 1519 if (other->sk_state != TCP_LISTEN) 1520 goto out_unlock; 1521 if (other->sk_shutdown & RCV_SHUTDOWN) 1522 goto out_unlock; 1523 1524 if (unix_recvq_full(other)) { 1525 err = -EAGAIN; 1526 if (!timeo) 1527 goto out_unlock; 1528 1529 timeo = unix_wait_for_peer(other, timeo); 1530 1531 err = sock_intr_errno(timeo); 1532 if (signal_pending(current)) 1533 goto out; 1534 sock_put(other); 1535 goto restart; 1536 } 1537 1538 /* Latch our state. 1539 1540 It is tricky place. We need to grab our state lock and cannot 1541 drop lock on peer. It is dangerous because deadlock is 1542 possible. Connect to self case and simultaneous 1543 attempt to connect are eliminated by checking socket 1544 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1545 check this before attempt to grab lock. 1546 1547 Well, and we have to recheck the state after socket locked. 1548 */ 1549 st = sk->sk_state; 1550 1551 switch (st) { 1552 case TCP_CLOSE: 1553 /* This is ok... continue with connect */ 1554 break; 1555 case TCP_ESTABLISHED: 1556 /* Socket is already connected */ 1557 err = -EISCONN; 1558 goto out_unlock; 1559 default: 1560 err = -EINVAL; 1561 goto out_unlock; 1562 } 1563 1564 unix_state_lock_nested(sk); 1565 1566 if (sk->sk_state != st) { 1567 unix_state_unlock(sk); 1568 unix_state_unlock(other); 1569 sock_put(other); 1570 goto restart; 1571 } 1572 1573 err = security_unix_stream_connect(sk, other, newsk); 1574 if (err) { 1575 unix_state_unlock(sk); 1576 goto out_unlock; 1577 } 1578 1579 /* The way is open! Fastly set all the necessary fields... */ 1580 1581 sock_hold(sk); 1582 unix_peer(newsk) = sk; 1583 newsk->sk_state = TCP_ESTABLISHED; 1584 newsk->sk_type = sk->sk_type; 1585 init_peercred(newsk); 1586 newu = unix_sk(newsk); 1587 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1588 otheru = unix_sk(other); 1589 1590 /* copy address information from listening to new sock 1591 * 1592 * The contents of *(otheru->addr) and otheru->path 1593 * are seen fully set up here, since we have found 1594 * otheru in hash under its lock. Insertion into the 1595 * hash chain we'd found it in had been done in an 1596 * earlier critical area protected by the chain's lock, 1597 * the same one where we'd set *(otheru->addr) contents, 1598 * as well as otheru->path and otheru->addr itself. 1599 * 1600 * Using smp_store_release() here to set newu->addr 1601 * is enough to make those stores, as well as stores 1602 * to newu->path visible to anyone who gets newu->addr 1603 * by smp_load_acquire(). IOW, the same warranties 1604 * as for unix_sock instances bound in unix_bind() or 1605 * in unix_autobind(). 1606 */ 1607 if (otheru->path.dentry) { 1608 path_get(&otheru->path); 1609 newu->path = otheru->path; 1610 } 1611 refcount_inc(&otheru->addr->refcnt); 1612 smp_store_release(&newu->addr, otheru->addr); 1613 1614 /* Set credentials */ 1615 copy_peercred(sk, other); 1616 1617 sock->state = SS_CONNECTED; 1618 sk->sk_state = TCP_ESTABLISHED; 1619 sock_hold(newsk); 1620 1621 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1622 unix_peer(sk) = newsk; 1623 1624 unix_state_unlock(sk); 1625 1626 /* take ten and send info to listening sock */ 1627 spin_lock(&other->sk_receive_queue.lock); 1628 __skb_queue_tail(&other->sk_receive_queue, skb); 1629 spin_unlock(&other->sk_receive_queue.lock); 1630 unix_state_unlock(other); 1631 other->sk_data_ready(other); 1632 sock_put(other); 1633 return 0; 1634 1635 out_unlock: 1636 if (other) 1637 unix_state_unlock(other); 1638 1639 out: 1640 kfree_skb(skb); 1641 if (newsk) 1642 unix_release_sock(newsk, 0); 1643 if (other) 1644 sock_put(other); 1645 return err; 1646 } 1647 1648 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1649 { 1650 struct sock *ska = socka->sk, *skb = sockb->sk; 1651 1652 /* Join our sockets back to back */ 1653 sock_hold(ska); 1654 sock_hold(skb); 1655 unix_peer(ska) = skb; 1656 unix_peer(skb) = ska; 1657 init_peercred(ska); 1658 init_peercred(skb); 1659 1660 ska->sk_state = TCP_ESTABLISHED; 1661 skb->sk_state = TCP_ESTABLISHED; 1662 socka->state = SS_CONNECTED; 1663 sockb->state = SS_CONNECTED; 1664 return 0; 1665 } 1666 1667 static void unix_sock_inherit_flags(const struct socket *old, 1668 struct socket *new) 1669 { 1670 if (test_bit(SOCK_PASSCRED, &old->flags)) 1671 set_bit(SOCK_PASSCRED, &new->flags); 1672 if (test_bit(SOCK_PASSSEC, &old->flags)) 1673 set_bit(SOCK_PASSSEC, &new->flags); 1674 } 1675 1676 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1677 bool kern) 1678 { 1679 struct sock *sk = sock->sk; 1680 struct sock *tsk; 1681 struct sk_buff *skb; 1682 int err; 1683 1684 err = -EOPNOTSUPP; 1685 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1686 goto out; 1687 1688 err = -EINVAL; 1689 if (sk->sk_state != TCP_LISTEN) 1690 goto out; 1691 1692 /* If socket state is TCP_LISTEN it cannot change (for now...), 1693 * so that no locks are necessary. 1694 */ 1695 1696 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1697 &err); 1698 if (!skb) { 1699 /* This means receive shutdown. */ 1700 if (err == 0) 1701 err = -EINVAL; 1702 goto out; 1703 } 1704 1705 tsk = skb->sk; 1706 skb_free_datagram(sk, skb); 1707 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1708 1709 /* attach accepted sock to socket */ 1710 unix_state_lock(tsk); 1711 newsock->state = SS_CONNECTED; 1712 unix_sock_inherit_flags(sock, newsock); 1713 sock_graft(tsk, newsock); 1714 unix_state_unlock(tsk); 1715 return 0; 1716 1717 out: 1718 return err; 1719 } 1720 1721 1722 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1723 { 1724 struct sock *sk = sock->sk; 1725 struct unix_address *addr; 1726 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1727 int err = 0; 1728 1729 if (peer) { 1730 sk = unix_peer_get(sk); 1731 1732 err = -ENOTCONN; 1733 if (!sk) 1734 goto out; 1735 err = 0; 1736 } else { 1737 sock_hold(sk); 1738 } 1739 1740 addr = smp_load_acquire(&unix_sk(sk)->addr); 1741 if (!addr) { 1742 sunaddr->sun_family = AF_UNIX; 1743 sunaddr->sun_path[0] = 0; 1744 err = offsetof(struct sockaddr_un, sun_path); 1745 } else { 1746 err = addr->len; 1747 memcpy(sunaddr, addr->name, addr->len); 1748 } 1749 sock_put(sk); 1750 out: 1751 return err; 1752 } 1753 1754 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1755 { 1756 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1757 1758 /* 1759 * Garbage collection of unix sockets starts by selecting a set of 1760 * candidate sockets which have reference only from being in flight 1761 * (total_refs == inflight_refs). This condition is checked once during 1762 * the candidate collection phase, and candidates are marked as such, so 1763 * that non-candidates can later be ignored. While inflight_refs is 1764 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1765 * is an instantaneous decision. 1766 * 1767 * Once a candidate, however, the socket must not be reinstalled into a 1768 * file descriptor while the garbage collection is in progress. 1769 * 1770 * If the above conditions are met, then the directed graph of 1771 * candidates (*) does not change while unix_gc_lock is held. 1772 * 1773 * Any operations that changes the file count through file descriptors 1774 * (dup, close, sendmsg) does not change the graph since candidates are 1775 * not installed in fds. 1776 * 1777 * Dequeing a candidate via recvmsg would install it into an fd, but 1778 * that takes unix_gc_lock to decrement the inflight count, so it's 1779 * serialized with garbage collection. 1780 * 1781 * MSG_PEEK is special in that it does not change the inflight count, 1782 * yet does install the socket into an fd. The following lock/unlock 1783 * pair is to ensure serialization with garbage collection. It must be 1784 * done between incrementing the file count and installing the file into 1785 * an fd. 1786 * 1787 * If garbage collection starts after the barrier provided by the 1788 * lock/unlock, then it will see the elevated refcount and not mark this 1789 * as a candidate. If a garbage collection is already in progress 1790 * before the file count was incremented, then the lock/unlock pair will 1791 * ensure that garbage collection is finished before progressing to 1792 * installing the fd. 1793 * 1794 * (*) A -> B where B is on the queue of A or B is on the queue of C 1795 * which is on the queue of listening socket A. 1796 */ 1797 spin_lock(&unix_gc_lock); 1798 spin_unlock(&unix_gc_lock); 1799 } 1800 1801 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1802 { 1803 int err = 0; 1804 1805 UNIXCB(skb).pid = get_pid(scm->pid); 1806 UNIXCB(skb).uid = scm->creds.uid; 1807 UNIXCB(skb).gid = scm->creds.gid; 1808 UNIXCB(skb).fp = NULL; 1809 unix_get_secdata(scm, skb); 1810 if (scm->fp && send_fds) 1811 err = unix_attach_fds(scm, skb); 1812 1813 skb->destructor = unix_destruct_scm; 1814 return err; 1815 } 1816 1817 static bool unix_passcred_enabled(const struct socket *sock, 1818 const struct sock *other) 1819 { 1820 return test_bit(SOCK_PASSCRED, &sock->flags) || 1821 !other->sk_socket || 1822 test_bit(SOCK_PASSCRED, &other->sk_socket->flags); 1823 } 1824 1825 /* 1826 * Some apps rely on write() giving SCM_CREDENTIALS 1827 * We include credentials if source or destination socket 1828 * asserted SOCK_PASSCRED. 1829 */ 1830 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1831 const struct sock *other) 1832 { 1833 if (UNIXCB(skb).pid) 1834 return; 1835 if (unix_passcred_enabled(sock, other)) { 1836 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1837 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1838 } 1839 } 1840 1841 static int maybe_init_creds(struct scm_cookie *scm, 1842 struct socket *socket, 1843 const struct sock *other) 1844 { 1845 int err; 1846 struct msghdr msg = { .msg_controllen = 0 }; 1847 1848 err = scm_send(socket, &msg, scm, false); 1849 if (err) 1850 return err; 1851 1852 if (unix_passcred_enabled(socket, other)) { 1853 scm->pid = get_pid(task_tgid(current)); 1854 current_uid_gid(&scm->creds.uid, &scm->creds.gid); 1855 } 1856 return err; 1857 } 1858 1859 static bool unix_skb_scm_eq(struct sk_buff *skb, 1860 struct scm_cookie *scm) 1861 { 1862 return UNIXCB(skb).pid == scm->pid && 1863 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1864 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1865 unix_secdata_eq(scm, skb); 1866 } 1867 1868 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1869 { 1870 struct scm_fp_list *fp = UNIXCB(skb).fp; 1871 struct unix_sock *u = unix_sk(sk); 1872 1873 if (unlikely(fp && fp->count)) 1874 atomic_add(fp->count, &u->scm_stat.nr_fds); 1875 } 1876 1877 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1878 { 1879 struct scm_fp_list *fp = UNIXCB(skb).fp; 1880 struct unix_sock *u = unix_sk(sk); 1881 1882 if (unlikely(fp && fp->count)) 1883 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1884 } 1885 1886 /* 1887 * Send AF_UNIX data. 1888 */ 1889 1890 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1891 size_t len) 1892 { 1893 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1894 struct sock *sk = sock->sk, *other = NULL; 1895 struct unix_sock *u = unix_sk(sk); 1896 struct scm_cookie scm; 1897 struct sk_buff *skb; 1898 int data_len = 0; 1899 int sk_locked; 1900 long timeo; 1901 int err; 1902 1903 wait_for_unix_gc(); 1904 err = scm_send(sock, msg, &scm, false); 1905 if (err < 0) 1906 return err; 1907 1908 err = -EOPNOTSUPP; 1909 if (msg->msg_flags&MSG_OOB) 1910 goto out; 1911 1912 if (msg->msg_namelen) { 1913 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1914 if (err) 1915 goto out; 1916 } else { 1917 sunaddr = NULL; 1918 err = -ENOTCONN; 1919 other = unix_peer_get(sk); 1920 if (!other) 1921 goto out; 1922 } 1923 1924 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1925 err = unix_autobind(sk); 1926 if (err) 1927 goto out; 1928 } 1929 1930 err = -EMSGSIZE; 1931 if (len > sk->sk_sndbuf - 32) 1932 goto out; 1933 1934 if (len > SKB_MAX_ALLOC) { 1935 data_len = min_t(size_t, 1936 len - SKB_MAX_ALLOC, 1937 MAX_SKB_FRAGS * PAGE_SIZE); 1938 data_len = PAGE_ALIGN(data_len); 1939 1940 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1941 } 1942 1943 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1944 msg->msg_flags & MSG_DONTWAIT, &err, 1945 PAGE_ALLOC_COSTLY_ORDER); 1946 if (skb == NULL) 1947 goto out; 1948 1949 err = unix_scm_to_skb(&scm, skb, true); 1950 if (err < 0) 1951 goto out_free; 1952 1953 skb_put(skb, len - data_len); 1954 skb->data_len = data_len; 1955 skb->len = len; 1956 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1957 if (err) 1958 goto out_free; 1959 1960 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1961 1962 restart: 1963 if (!other) { 1964 err = -ECONNRESET; 1965 if (sunaddr == NULL) 1966 goto out_free; 1967 1968 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 1969 sk->sk_type); 1970 if (IS_ERR(other)) { 1971 err = PTR_ERR(other); 1972 other = NULL; 1973 goto out_free; 1974 } 1975 } 1976 1977 if (sk_filter(other, skb) < 0) { 1978 /* Toss the packet but do not return any error to the sender */ 1979 err = len; 1980 goto out_free; 1981 } 1982 1983 sk_locked = 0; 1984 unix_state_lock(other); 1985 restart_locked: 1986 err = -EPERM; 1987 if (!unix_may_send(sk, other)) 1988 goto out_unlock; 1989 1990 if (unlikely(sock_flag(other, SOCK_DEAD))) { 1991 /* 1992 * Check with 1003.1g - what should 1993 * datagram error 1994 */ 1995 unix_state_unlock(other); 1996 sock_put(other); 1997 1998 if (!sk_locked) 1999 unix_state_lock(sk); 2000 2001 err = 0; 2002 if (sk->sk_type == SOCK_SEQPACKET) { 2003 /* We are here only when racing with unix_release_sock() 2004 * is clearing @other. Never change state to TCP_CLOSE 2005 * unlike SOCK_DGRAM wants. 2006 */ 2007 unix_state_unlock(sk); 2008 err = -EPIPE; 2009 } else if (unix_peer(sk) == other) { 2010 unix_peer(sk) = NULL; 2011 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 2012 2013 sk->sk_state = TCP_CLOSE; 2014 unix_state_unlock(sk); 2015 2016 unix_dgram_disconnected(sk, other); 2017 sock_put(other); 2018 err = -ECONNREFUSED; 2019 } else { 2020 unix_state_unlock(sk); 2021 } 2022 2023 other = NULL; 2024 if (err) 2025 goto out_free; 2026 goto restart; 2027 } 2028 2029 err = -EPIPE; 2030 if (other->sk_shutdown & RCV_SHUTDOWN) 2031 goto out_unlock; 2032 2033 if (sk->sk_type != SOCK_SEQPACKET) { 2034 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2035 if (err) 2036 goto out_unlock; 2037 } 2038 2039 /* other == sk && unix_peer(other) != sk if 2040 * - unix_peer(sk) == NULL, destination address bound to sk 2041 * - unix_peer(sk) == sk by time of get but disconnected before lock 2042 */ 2043 if (other != sk && 2044 unlikely(unix_peer(other) != sk && 2045 unix_recvq_full_lockless(other))) { 2046 if (timeo) { 2047 timeo = unix_wait_for_peer(other, timeo); 2048 2049 err = sock_intr_errno(timeo); 2050 if (signal_pending(current)) 2051 goto out_free; 2052 2053 goto restart; 2054 } 2055 2056 if (!sk_locked) { 2057 unix_state_unlock(other); 2058 unix_state_double_lock(sk, other); 2059 } 2060 2061 if (unix_peer(sk) != other || 2062 unix_dgram_peer_wake_me(sk, other)) { 2063 err = -EAGAIN; 2064 sk_locked = 1; 2065 goto out_unlock; 2066 } 2067 2068 if (!sk_locked) { 2069 sk_locked = 1; 2070 goto restart_locked; 2071 } 2072 } 2073 2074 if (unlikely(sk_locked)) 2075 unix_state_unlock(sk); 2076 2077 if (sock_flag(other, SOCK_RCVTSTAMP)) 2078 __net_timestamp(skb); 2079 maybe_add_creds(skb, sock, other); 2080 scm_stat_add(other, skb); 2081 skb_queue_tail(&other->sk_receive_queue, skb); 2082 unix_state_unlock(other); 2083 other->sk_data_ready(other); 2084 sock_put(other); 2085 scm_destroy(&scm); 2086 return len; 2087 2088 out_unlock: 2089 if (sk_locked) 2090 unix_state_unlock(sk); 2091 unix_state_unlock(other); 2092 out_free: 2093 kfree_skb(skb); 2094 out: 2095 if (other) 2096 sock_put(other); 2097 scm_destroy(&scm); 2098 return err; 2099 } 2100 2101 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2102 * bytes, and a minimum of a full page. 2103 */ 2104 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2105 2106 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2107 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other) 2108 { 2109 struct unix_sock *ousk = unix_sk(other); 2110 struct sk_buff *skb; 2111 int err = 0; 2112 2113 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2114 2115 if (!skb) 2116 return err; 2117 2118 skb_put(skb, 1); 2119 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2120 2121 if (err) { 2122 kfree_skb(skb); 2123 return err; 2124 } 2125 2126 unix_state_lock(other); 2127 2128 if (sock_flag(other, SOCK_DEAD) || 2129 (other->sk_shutdown & RCV_SHUTDOWN)) { 2130 unix_state_unlock(other); 2131 kfree_skb(skb); 2132 return -EPIPE; 2133 } 2134 2135 maybe_add_creds(skb, sock, other); 2136 skb_get(skb); 2137 2138 if (ousk->oob_skb) 2139 consume_skb(ousk->oob_skb); 2140 2141 WRITE_ONCE(ousk->oob_skb, skb); 2142 2143 scm_stat_add(other, skb); 2144 skb_queue_tail(&other->sk_receive_queue, skb); 2145 sk_send_sigurg(other); 2146 unix_state_unlock(other); 2147 other->sk_data_ready(other); 2148 2149 return err; 2150 } 2151 #endif 2152 2153 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2154 size_t len) 2155 { 2156 struct sock *sk = sock->sk; 2157 struct sock *other = NULL; 2158 int err, size; 2159 struct sk_buff *skb; 2160 int sent = 0; 2161 struct scm_cookie scm; 2162 bool fds_sent = false; 2163 int data_len; 2164 2165 wait_for_unix_gc(); 2166 err = scm_send(sock, msg, &scm, false); 2167 if (err < 0) 2168 return err; 2169 2170 err = -EOPNOTSUPP; 2171 if (msg->msg_flags & MSG_OOB) { 2172 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2173 if (len) 2174 len--; 2175 else 2176 #endif 2177 goto out_err; 2178 } 2179 2180 if (msg->msg_namelen) { 2181 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2182 goto out_err; 2183 } else { 2184 err = -ENOTCONN; 2185 other = unix_peer(sk); 2186 if (!other) 2187 goto out_err; 2188 } 2189 2190 if (sk->sk_shutdown & SEND_SHUTDOWN) 2191 goto pipe_err; 2192 2193 while (sent < len) { 2194 size = len - sent; 2195 2196 /* Keep two messages in the pipe so it schedules better */ 2197 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2198 2199 /* allow fallback to order-0 allocations */ 2200 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2201 2202 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2203 2204 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2205 2206 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2207 msg->msg_flags & MSG_DONTWAIT, &err, 2208 get_order(UNIX_SKB_FRAGS_SZ)); 2209 if (!skb) 2210 goto out_err; 2211 2212 /* Only send the fds in the first buffer */ 2213 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2214 if (err < 0) { 2215 kfree_skb(skb); 2216 goto out_err; 2217 } 2218 fds_sent = true; 2219 2220 skb_put(skb, size - data_len); 2221 skb->data_len = data_len; 2222 skb->len = size; 2223 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2224 if (err) { 2225 kfree_skb(skb); 2226 goto out_err; 2227 } 2228 2229 unix_state_lock(other); 2230 2231 if (sock_flag(other, SOCK_DEAD) || 2232 (other->sk_shutdown & RCV_SHUTDOWN)) 2233 goto pipe_err_free; 2234 2235 maybe_add_creds(skb, sock, other); 2236 scm_stat_add(other, skb); 2237 skb_queue_tail(&other->sk_receive_queue, skb); 2238 unix_state_unlock(other); 2239 other->sk_data_ready(other); 2240 sent += size; 2241 } 2242 2243 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2244 if (msg->msg_flags & MSG_OOB) { 2245 err = queue_oob(sock, msg, other); 2246 if (err) 2247 goto out_err; 2248 sent++; 2249 } 2250 #endif 2251 2252 scm_destroy(&scm); 2253 2254 return sent; 2255 2256 pipe_err_free: 2257 unix_state_unlock(other); 2258 kfree_skb(skb); 2259 pipe_err: 2260 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2261 send_sig(SIGPIPE, current, 0); 2262 err = -EPIPE; 2263 out_err: 2264 scm_destroy(&scm); 2265 return sent ? : err; 2266 } 2267 2268 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page, 2269 int offset, size_t size, int flags) 2270 { 2271 int err; 2272 bool send_sigpipe = false; 2273 bool init_scm = true; 2274 struct scm_cookie scm; 2275 struct sock *other, *sk = socket->sk; 2276 struct sk_buff *skb, *newskb = NULL, *tail = NULL; 2277 2278 if (flags & MSG_OOB) 2279 return -EOPNOTSUPP; 2280 2281 other = unix_peer(sk); 2282 if (!other || sk->sk_state != TCP_ESTABLISHED) 2283 return -ENOTCONN; 2284 2285 if (false) { 2286 alloc_skb: 2287 unix_state_unlock(other); 2288 mutex_unlock(&unix_sk(other)->iolock); 2289 newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT, 2290 &err, 0); 2291 if (!newskb) 2292 goto err; 2293 } 2294 2295 /* we must acquire iolock as we modify already present 2296 * skbs in the sk_receive_queue and mess with skb->len 2297 */ 2298 err = mutex_lock_interruptible(&unix_sk(other)->iolock); 2299 if (err) { 2300 err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS; 2301 goto err; 2302 } 2303 2304 if (sk->sk_shutdown & SEND_SHUTDOWN) { 2305 err = -EPIPE; 2306 send_sigpipe = true; 2307 goto err_unlock; 2308 } 2309 2310 unix_state_lock(other); 2311 2312 if (sock_flag(other, SOCK_DEAD) || 2313 other->sk_shutdown & RCV_SHUTDOWN) { 2314 err = -EPIPE; 2315 send_sigpipe = true; 2316 goto err_state_unlock; 2317 } 2318 2319 if (init_scm) { 2320 err = maybe_init_creds(&scm, socket, other); 2321 if (err) 2322 goto err_state_unlock; 2323 init_scm = false; 2324 } 2325 2326 skb = skb_peek_tail(&other->sk_receive_queue); 2327 if (tail && tail == skb) { 2328 skb = newskb; 2329 } else if (!skb || !unix_skb_scm_eq(skb, &scm)) { 2330 if (newskb) { 2331 skb = newskb; 2332 } else { 2333 tail = skb; 2334 goto alloc_skb; 2335 } 2336 } else if (newskb) { 2337 /* this is fast path, we don't necessarily need to 2338 * call to kfree_skb even though with newskb == NULL 2339 * this - does no harm 2340 */ 2341 consume_skb(newskb); 2342 newskb = NULL; 2343 } 2344 2345 if (skb_append_pagefrags(skb, page, offset, size)) { 2346 tail = skb; 2347 goto alloc_skb; 2348 } 2349 2350 skb->len += size; 2351 skb->data_len += size; 2352 skb->truesize += size; 2353 refcount_add(size, &sk->sk_wmem_alloc); 2354 2355 if (newskb) { 2356 err = unix_scm_to_skb(&scm, skb, false); 2357 if (err) 2358 goto err_state_unlock; 2359 spin_lock(&other->sk_receive_queue.lock); 2360 __skb_queue_tail(&other->sk_receive_queue, newskb); 2361 spin_unlock(&other->sk_receive_queue.lock); 2362 } 2363 2364 unix_state_unlock(other); 2365 mutex_unlock(&unix_sk(other)->iolock); 2366 2367 other->sk_data_ready(other); 2368 scm_destroy(&scm); 2369 return size; 2370 2371 err_state_unlock: 2372 unix_state_unlock(other); 2373 err_unlock: 2374 mutex_unlock(&unix_sk(other)->iolock); 2375 err: 2376 kfree_skb(newskb); 2377 if (send_sigpipe && !(flags & MSG_NOSIGNAL)) 2378 send_sig(SIGPIPE, current, 0); 2379 if (!init_scm) 2380 scm_destroy(&scm); 2381 return err; 2382 } 2383 2384 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2385 size_t len) 2386 { 2387 int err; 2388 struct sock *sk = sock->sk; 2389 2390 err = sock_error(sk); 2391 if (err) 2392 return err; 2393 2394 if (sk->sk_state != TCP_ESTABLISHED) 2395 return -ENOTCONN; 2396 2397 if (msg->msg_namelen) 2398 msg->msg_namelen = 0; 2399 2400 return unix_dgram_sendmsg(sock, msg, len); 2401 } 2402 2403 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2404 size_t size, int flags) 2405 { 2406 struct sock *sk = sock->sk; 2407 2408 if (sk->sk_state != TCP_ESTABLISHED) 2409 return -ENOTCONN; 2410 2411 return unix_dgram_recvmsg(sock, msg, size, flags); 2412 } 2413 2414 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2415 { 2416 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2417 2418 if (addr) { 2419 msg->msg_namelen = addr->len; 2420 memcpy(msg->msg_name, addr->name, addr->len); 2421 } 2422 } 2423 2424 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2425 int flags) 2426 { 2427 struct scm_cookie scm; 2428 struct socket *sock = sk->sk_socket; 2429 struct unix_sock *u = unix_sk(sk); 2430 struct sk_buff *skb, *last; 2431 long timeo; 2432 int skip; 2433 int err; 2434 2435 err = -EOPNOTSUPP; 2436 if (flags&MSG_OOB) 2437 goto out; 2438 2439 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2440 2441 do { 2442 mutex_lock(&u->iolock); 2443 2444 skip = sk_peek_offset(sk, flags); 2445 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2446 &skip, &err, &last); 2447 if (skb) { 2448 if (!(flags & MSG_PEEK)) 2449 scm_stat_del(sk, skb); 2450 break; 2451 } 2452 2453 mutex_unlock(&u->iolock); 2454 2455 if (err != -EAGAIN) 2456 break; 2457 } while (timeo && 2458 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2459 &err, &timeo, last)); 2460 2461 if (!skb) { /* implies iolock unlocked */ 2462 unix_state_lock(sk); 2463 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2464 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2465 (sk->sk_shutdown & RCV_SHUTDOWN)) 2466 err = 0; 2467 unix_state_unlock(sk); 2468 goto out; 2469 } 2470 2471 if (wq_has_sleeper(&u->peer_wait)) 2472 wake_up_interruptible_sync_poll(&u->peer_wait, 2473 EPOLLOUT | EPOLLWRNORM | 2474 EPOLLWRBAND); 2475 2476 if (msg->msg_name) 2477 unix_copy_addr(msg, skb->sk); 2478 2479 if (size > skb->len - skip) 2480 size = skb->len - skip; 2481 else if (size < skb->len - skip) 2482 msg->msg_flags |= MSG_TRUNC; 2483 2484 err = skb_copy_datagram_msg(skb, skip, msg, size); 2485 if (err) 2486 goto out_free; 2487 2488 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2489 __sock_recv_timestamp(msg, sk, skb); 2490 2491 memset(&scm, 0, sizeof(scm)); 2492 2493 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2494 unix_set_secdata(&scm, skb); 2495 2496 if (!(flags & MSG_PEEK)) { 2497 if (UNIXCB(skb).fp) 2498 unix_detach_fds(&scm, skb); 2499 2500 sk_peek_offset_bwd(sk, skb->len); 2501 } else { 2502 /* It is questionable: on PEEK we could: 2503 - do not return fds - good, but too simple 8) 2504 - return fds, and do not return them on read (old strategy, 2505 apparently wrong) 2506 - clone fds (I chose it for now, it is the most universal 2507 solution) 2508 2509 POSIX 1003.1g does not actually define this clearly 2510 at all. POSIX 1003.1g doesn't define a lot of things 2511 clearly however! 2512 2513 */ 2514 2515 sk_peek_offset_fwd(sk, size); 2516 2517 if (UNIXCB(skb).fp) 2518 unix_peek_fds(&scm, skb); 2519 } 2520 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2521 2522 scm_recv(sock, msg, &scm, flags); 2523 2524 out_free: 2525 skb_free_datagram(sk, skb); 2526 mutex_unlock(&u->iolock); 2527 out: 2528 return err; 2529 } 2530 2531 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2532 int flags) 2533 { 2534 struct sock *sk = sock->sk; 2535 2536 #ifdef CONFIG_BPF_SYSCALL 2537 const struct proto *prot = READ_ONCE(sk->sk_prot); 2538 2539 if (prot != &unix_dgram_proto) 2540 return prot->recvmsg(sk, msg, size, flags, NULL); 2541 #endif 2542 return __unix_dgram_recvmsg(sk, msg, size, flags); 2543 } 2544 2545 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2546 { 2547 struct unix_sock *u = unix_sk(sk); 2548 struct sk_buff *skb; 2549 int err, copied; 2550 2551 mutex_lock(&u->iolock); 2552 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2553 mutex_unlock(&u->iolock); 2554 if (!skb) 2555 return err; 2556 2557 copied = recv_actor(sk, skb); 2558 kfree_skb(skb); 2559 2560 return copied; 2561 } 2562 2563 /* 2564 * Sleep until more data has arrived. But check for races.. 2565 */ 2566 static long unix_stream_data_wait(struct sock *sk, long timeo, 2567 struct sk_buff *last, unsigned int last_len, 2568 bool freezable) 2569 { 2570 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2571 struct sk_buff *tail; 2572 DEFINE_WAIT(wait); 2573 2574 unix_state_lock(sk); 2575 2576 for (;;) { 2577 prepare_to_wait(sk_sleep(sk), &wait, state); 2578 2579 tail = skb_peek_tail(&sk->sk_receive_queue); 2580 if (tail != last || 2581 (tail && tail->len != last_len) || 2582 sk->sk_err || 2583 (sk->sk_shutdown & RCV_SHUTDOWN) || 2584 signal_pending(current) || 2585 !timeo) 2586 break; 2587 2588 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2589 unix_state_unlock(sk); 2590 timeo = schedule_timeout(timeo); 2591 unix_state_lock(sk); 2592 2593 if (sock_flag(sk, SOCK_DEAD)) 2594 break; 2595 2596 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2597 } 2598 2599 finish_wait(sk_sleep(sk), &wait); 2600 unix_state_unlock(sk); 2601 return timeo; 2602 } 2603 2604 static unsigned int unix_skb_len(const struct sk_buff *skb) 2605 { 2606 return skb->len - UNIXCB(skb).consumed; 2607 } 2608 2609 struct unix_stream_read_state { 2610 int (*recv_actor)(struct sk_buff *, int, int, 2611 struct unix_stream_read_state *); 2612 struct socket *socket; 2613 struct msghdr *msg; 2614 struct pipe_inode_info *pipe; 2615 size_t size; 2616 int flags; 2617 unsigned int splice_flags; 2618 }; 2619 2620 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2621 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2622 { 2623 struct socket *sock = state->socket; 2624 struct sock *sk = sock->sk; 2625 struct unix_sock *u = unix_sk(sk); 2626 int chunk = 1; 2627 struct sk_buff *oob_skb; 2628 2629 mutex_lock(&u->iolock); 2630 unix_state_lock(sk); 2631 2632 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2633 unix_state_unlock(sk); 2634 mutex_unlock(&u->iolock); 2635 return -EINVAL; 2636 } 2637 2638 oob_skb = u->oob_skb; 2639 2640 if (!(state->flags & MSG_PEEK)) 2641 WRITE_ONCE(u->oob_skb, NULL); 2642 2643 unix_state_unlock(sk); 2644 2645 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2646 2647 if (!(state->flags & MSG_PEEK)) { 2648 UNIXCB(oob_skb).consumed += 1; 2649 kfree_skb(oob_skb); 2650 } 2651 2652 mutex_unlock(&u->iolock); 2653 2654 if (chunk < 0) 2655 return -EFAULT; 2656 2657 state->msg->msg_flags |= MSG_OOB; 2658 return 1; 2659 } 2660 2661 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2662 int flags, int copied) 2663 { 2664 struct unix_sock *u = unix_sk(sk); 2665 2666 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2667 skb_unlink(skb, &sk->sk_receive_queue); 2668 consume_skb(skb); 2669 skb = NULL; 2670 } else { 2671 if (skb == u->oob_skb) { 2672 if (copied) { 2673 skb = NULL; 2674 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2675 if (!(flags & MSG_PEEK)) { 2676 WRITE_ONCE(u->oob_skb, NULL); 2677 consume_skb(skb); 2678 } 2679 } else if (!(flags & MSG_PEEK)) { 2680 skb_unlink(skb, &sk->sk_receive_queue); 2681 consume_skb(skb); 2682 skb = skb_peek(&sk->sk_receive_queue); 2683 } 2684 } 2685 } 2686 return skb; 2687 } 2688 #endif 2689 2690 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2691 { 2692 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2693 return -ENOTCONN; 2694 2695 return unix_read_skb(sk, recv_actor); 2696 } 2697 2698 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2699 bool freezable) 2700 { 2701 struct scm_cookie scm; 2702 struct socket *sock = state->socket; 2703 struct sock *sk = sock->sk; 2704 struct unix_sock *u = unix_sk(sk); 2705 int copied = 0; 2706 int flags = state->flags; 2707 int noblock = flags & MSG_DONTWAIT; 2708 bool check_creds = false; 2709 int target; 2710 int err = 0; 2711 long timeo; 2712 int skip; 2713 size_t size = state->size; 2714 unsigned int last_len; 2715 2716 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2717 err = -EINVAL; 2718 goto out; 2719 } 2720 2721 if (unlikely(flags & MSG_OOB)) { 2722 err = -EOPNOTSUPP; 2723 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2724 err = unix_stream_recv_urg(state); 2725 #endif 2726 goto out; 2727 } 2728 2729 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2730 timeo = sock_rcvtimeo(sk, noblock); 2731 2732 memset(&scm, 0, sizeof(scm)); 2733 2734 /* Lock the socket to prevent queue disordering 2735 * while sleeps in memcpy_tomsg 2736 */ 2737 mutex_lock(&u->iolock); 2738 2739 skip = max(sk_peek_offset(sk, flags), 0); 2740 2741 do { 2742 int chunk; 2743 bool drop_skb; 2744 struct sk_buff *skb, *last; 2745 2746 redo: 2747 unix_state_lock(sk); 2748 if (sock_flag(sk, SOCK_DEAD)) { 2749 err = -ECONNRESET; 2750 goto unlock; 2751 } 2752 last = skb = skb_peek(&sk->sk_receive_queue); 2753 last_len = last ? last->len : 0; 2754 2755 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2756 if (skb) { 2757 skb = manage_oob(skb, sk, flags, copied); 2758 if (!skb) { 2759 unix_state_unlock(sk); 2760 if (copied) 2761 break; 2762 goto redo; 2763 } 2764 } 2765 #endif 2766 again: 2767 if (skb == NULL) { 2768 if (copied >= target) 2769 goto unlock; 2770 2771 /* 2772 * POSIX 1003.1g mandates this order. 2773 */ 2774 2775 err = sock_error(sk); 2776 if (err) 2777 goto unlock; 2778 if (sk->sk_shutdown & RCV_SHUTDOWN) 2779 goto unlock; 2780 2781 unix_state_unlock(sk); 2782 if (!timeo) { 2783 err = -EAGAIN; 2784 break; 2785 } 2786 2787 mutex_unlock(&u->iolock); 2788 2789 timeo = unix_stream_data_wait(sk, timeo, last, 2790 last_len, freezable); 2791 2792 if (signal_pending(current)) { 2793 err = sock_intr_errno(timeo); 2794 scm_destroy(&scm); 2795 goto out; 2796 } 2797 2798 mutex_lock(&u->iolock); 2799 goto redo; 2800 unlock: 2801 unix_state_unlock(sk); 2802 break; 2803 } 2804 2805 while (skip >= unix_skb_len(skb)) { 2806 skip -= unix_skb_len(skb); 2807 last = skb; 2808 last_len = skb->len; 2809 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2810 if (!skb) 2811 goto again; 2812 } 2813 2814 unix_state_unlock(sk); 2815 2816 if (check_creds) { 2817 /* Never glue messages from different writers */ 2818 if (!unix_skb_scm_eq(skb, &scm)) 2819 break; 2820 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) { 2821 /* Copy credentials */ 2822 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2823 unix_set_secdata(&scm, skb); 2824 check_creds = true; 2825 } 2826 2827 /* Copy address just once */ 2828 if (state->msg && state->msg->msg_name) { 2829 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2830 state->msg->msg_name); 2831 unix_copy_addr(state->msg, skb->sk); 2832 sunaddr = NULL; 2833 } 2834 2835 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2836 skb_get(skb); 2837 chunk = state->recv_actor(skb, skip, chunk, state); 2838 drop_skb = !unix_skb_len(skb); 2839 /* skb is only safe to use if !drop_skb */ 2840 consume_skb(skb); 2841 if (chunk < 0) { 2842 if (copied == 0) 2843 copied = -EFAULT; 2844 break; 2845 } 2846 copied += chunk; 2847 size -= chunk; 2848 2849 if (drop_skb) { 2850 /* the skb was touched by a concurrent reader; 2851 * we should not expect anything from this skb 2852 * anymore and assume it invalid - we can be 2853 * sure it was dropped from the socket queue 2854 * 2855 * let's report a short read 2856 */ 2857 err = 0; 2858 break; 2859 } 2860 2861 /* Mark read part of skb as used */ 2862 if (!(flags & MSG_PEEK)) { 2863 UNIXCB(skb).consumed += chunk; 2864 2865 sk_peek_offset_bwd(sk, chunk); 2866 2867 if (UNIXCB(skb).fp) { 2868 scm_stat_del(sk, skb); 2869 unix_detach_fds(&scm, skb); 2870 } 2871 2872 if (unix_skb_len(skb)) 2873 break; 2874 2875 skb_unlink(skb, &sk->sk_receive_queue); 2876 consume_skb(skb); 2877 2878 if (scm.fp) 2879 break; 2880 } else { 2881 /* It is questionable, see note in unix_dgram_recvmsg. 2882 */ 2883 if (UNIXCB(skb).fp) 2884 unix_peek_fds(&scm, skb); 2885 2886 sk_peek_offset_fwd(sk, chunk); 2887 2888 if (UNIXCB(skb).fp) 2889 break; 2890 2891 skip = 0; 2892 last = skb; 2893 last_len = skb->len; 2894 unix_state_lock(sk); 2895 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2896 if (skb) 2897 goto again; 2898 unix_state_unlock(sk); 2899 break; 2900 } 2901 } while (size); 2902 2903 mutex_unlock(&u->iolock); 2904 if (state->msg) 2905 scm_recv(sock, state->msg, &scm, flags); 2906 else 2907 scm_destroy(&scm); 2908 out: 2909 return copied ? : err; 2910 } 2911 2912 static int unix_stream_read_actor(struct sk_buff *skb, 2913 int skip, int chunk, 2914 struct unix_stream_read_state *state) 2915 { 2916 int ret; 2917 2918 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2919 state->msg, chunk); 2920 return ret ?: chunk; 2921 } 2922 2923 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2924 size_t size, int flags) 2925 { 2926 struct unix_stream_read_state state = { 2927 .recv_actor = unix_stream_read_actor, 2928 .socket = sk->sk_socket, 2929 .msg = msg, 2930 .size = size, 2931 .flags = flags 2932 }; 2933 2934 return unix_stream_read_generic(&state, true); 2935 } 2936 2937 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2938 size_t size, int flags) 2939 { 2940 struct unix_stream_read_state state = { 2941 .recv_actor = unix_stream_read_actor, 2942 .socket = sock, 2943 .msg = msg, 2944 .size = size, 2945 .flags = flags 2946 }; 2947 2948 #ifdef CONFIG_BPF_SYSCALL 2949 struct sock *sk = sock->sk; 2950 const struct proto *prot = READ_ONCE(sk->sk_prot); 2951 2952 if (prot != &unix_stream_proto) 2953 return prot->recvmsg(sk, msg, size, flags, NULL); 2954 #endif 2955 return unix_stream_read_generic(&state, true); 2956 } 2957 2958 static int unix_stream_splice_actor(struct sk_buff *skb, 2959 int skip, int chunk, 2960 struct unix_stream_read_state *state) 2961 { 2962 return skb_splice_bits(skb, state->socket->sk, 2963 UNIXCB(skb).consumed + skip, 2964 state->pipe, chunk, state->splice_flags); 2965 } 2966 2967 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2968 struct pipe_inode_info *pipe, 2969 size_t size, unsigned int flags) 2970 { 2971 struct unix_stream_read_state state = { 2972 .recv_actor = unix_stream_splice_actor, 2973 .socket = sock, 2974 .pipe = pipe, 2975 .size = size, 2976 .splice_flags = flags, 2977 }; 2978 2979 if (unlikely(*ppos)) 2980 return -ESPIPE; 2981 2982 if (sock->file->f_flags & O_NONBLOCK || 2983 flags & SPLICE_F_NONBLOCK) 2984 state.flags = MSG_DONTWAIT; 2985 2986 return unix_stream_read_generic(&state, false); 2987 } 2988 2989 static int unix_shutdown(struct socket *sock, int mode) 2990 { 2991 struct sock *sk = sock->sk; 2992 struct sock *other; 2993 2994 if (mode < SHUT_RD || mode > SHUT_RDWR) 2995 return -EINVAL; 2996 /* This maps: 2997 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2998 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2999 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 3000 */ 3001 ++mode; 3002 3003 unix_state_lock(sk); 3004 sk->sk_shutdown |= mode; 3005 other = unix_peer(sk); 3006 if (other) 3007 sock_hold(other); 3008 unix_state_unlock(sk); 3009 sk->sk_state_change(sk); 3010 3011 if (other && 3012 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 3013 3014 int peer_mode = 0; 3015 const struct proto *prot = READ_ONCE(other->sk_prot); 3016 3017 if (prot->unhash) 3018 prot->unhash(other); 3019 if (mode&RCV_SHUTDOWN) 3020 peer_mode |= SEND_SHUTDOWN; 3021 if (mode&SEND_SHUTDOWN) 3022 peer_mode |= RCV_SHUTDOWN; 3023 unix_state_lock(other); 3024 other->sk_shutdown |= peer_mode; 3025 unix_state_unlock(other); 3026 other->sk_state_change(other); 3027 if (peer_mode == SHUTDOWN_MASK) 3028 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 3029 else if (peer_mode & RCV_SHUTDOWN) 3030 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 3031 } 3032 if (other) 3033 sock_put(other); 3034 3035 return 0; 3036 } 3037 3038 long unix_inq_len(struct sock *sk) 3039 { 3040 struct sk_buff *skb; 3041 long amount = 0; 3042 3043 if (sk->sk_state == TCP_LISTEN) 3044 return -EINVAL; 3045 3046 spin_lock(&sk->sk_receive_queue.lock); 3047 if (sk->sk_type == SOCK_STREAM || 3048 sk->sk_type == SOCK_SEQPACKET) { 3049 skb_queue_walk(&sk->sk_receive_queue, skb) 3050 amount += unix_skb_len(skb); 3051 } else { 3052 skb = skb_peek(&sk->sk_receive_queue); 3053 if (skb) 3054 amount = skb->len; 3055 } 3056 spin_unlock(&sk->sk_receive_queue.lock); 3057 3058 return amount; 3059 } 3060 EXPORT_SYMBOL_GPL(unix_inq_len); 3061 3062 long unix_outq_len(struct sock *sk) 3063 { 3064 return sk_wmem_alloc_get(sk); 3065 } 3066 EXPORT_SYMBOL_GPL(unix_outq_len); 3067 3068 static int unix_open_file(struct sock *sk) 3069 { 3070 struct path path; 3071 struct file *f; 3072 int fd; 3073 3074 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3075 return -EPERM; 3076 3077 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3078 return -ENOENT; 3079 3080 path = unix_sk(sk)->path; 3081 if (!path.dentry) 3082 return -ENOENT; 3083 3084 path_get(&path); 3085 3086 fd = get_unused_fd_flags(O_CLOEXEC); 3087 if (fd < 0) 3088 goto out; 3089 3090 f = dentry_open(&path, O_PATH, current_cred()); 3091 if (IS_ERR(f)) { 3092 put_unused_fd(fd); 3093 fd = PTR_ERR(f); 3094 goto out; 3095 } 3096 3097 fd_install(fd, f); 3098 out: 3099 path_put(&path); 3100 3101 return fd; 3102 } 3103 3104 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3105 { 3106 struct sock *sk = sock->sk; 3107 long amount = 0; 3108 int err; 3109 3110 switch (cmd) { 3111 case SIOCOUTQ: 3112 amount = unix_outq_len(sk); 3113 err = put_user(amount, (int __user *)arg); 3114 break; 3115 case SIOCINQ: 3116 amount = unix_inq_len(sk); 3117 if (amount < 0) 3118 err = amount; 3119 else 3120 err = put_user(amount, (int __user *)arg); 3121 break; 3122 case SIOCUNIXFILE: 3123 err = unix_open_file(sk); 3124 break; 3125 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3126 case SIOCATMARK: 3127 { 3128 struct sk_buff *skb; 3129 int answ = 0; 3130 3131 skb = skb_peek(&sk->sk_receive_queue); 3132 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3133 answ = 1; 3134 err = put_user(answ, (int __user *)arg); 3135 } 3136 break; 3137 #endif 3138 default: 3139 err = -ENOIOCTLCMD; 3140 break; 3141 } 3142 return err; 3143 } 3144 3145 #ifdef CONFIG_COMPAT 3146 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3147 { 3148 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3149 } 3150 #endif 3151 3152 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3153 { 3154 struct sock *sk = sock->sk; 3155 __poll_t mask; 3156 3157 sock_poll_wait(file, sock, wait); 3158 mask = 0; 3159 3160 /* exceptional events? */ 3161 if (sk->sk_err) 3162 mask |= EPOLLERR; 3163 if (sk->sk_shutdown == SHUTDOWN_MASK) 3164 mask |= EPOLLHUP; 3165 if (sk->sk_shutdown & RCV_SHUTDOWN) 3166 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3167 3168 /* readable? */ 3169 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3170 mask |= EPOLLIN | EPOLLRDNORM; 3171 if (sk_is_readable(sk)) 3172 mask |= EPOLLIN | EPOLLRDNORM; 3173 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3174 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3175 mask |= EPOLLPRI; 3176 #endif 3177 3178 /* Connection-based need to check for termination and startup */ 3179 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3180 sk->sk_state == TCP_CLOSE) 3181 mask |= EPOLLHUP; 3182 3183 /* 3184 * we set writable also when the other side has shut down the 3185 * connection. This prevents stuck sockets. 3186 */ 3187 if (unix_writable(sk)) 3188 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3189 3190 return mask; 3191 } 3192 3193 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3194 poll_table *wait) 3195 { 3196 struct sock *sk = sock->sk, *other; 3197 unsigned int writable; 3198 __poll_t mask; 3199 3200 sock_poll_wait(file, sock, wait); 3201 mask = 0; 3202 3203 /* exceptional events? */ 3204 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 3205 mask |= EPOLLERR | 3206 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3207 3208 if (sk->sk_shutdown & RCV_SHUTDOWN) 3209 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3210 if (sk->sk_shutdown == SHUTDOWN_MASK) 3211 mask |= EPOLLHUP; 3212 3213 /* readable? */ 3214 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3215 mask |= EPOLLIN | EPOLLRDNORM; 3216 if (sk_is_readable(sk)) 3217 mask |= EPOLLIN | EPOLLRDNORM; 3218 3219 /* Connection-based need to check for termination and startup */ 3220 if (sk->sk_type == SOCK_SEQPACKET) { 3221 if (sk->sk_state == TCP_CLOSE) 3222 mask |= EPOLLHUP; 3223 /* connection hasn't started yet? */ 3224 if (sk->sk_state == TCP_SYN_SENT) 3225 return mask; 3226 } 3227 3228 /* No write status requested, avoid expensive OUT tests. */ 3229 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3230 return mask; 3231 3232 writable = unix_writable(sk); 3233 if (writable) { 3234 unix_state_lock(sk); 3235 3236 other = unix_peer(sk); 3237 if (other && unix_peer(other) != sk && 3238 unix_recvq_full_lockless(other) && 3239 unix_dgram_peer_wake_me(sk, other)) 3240 writable = 0; 3241 3242 unix_state_unlock(sk); 3243 } 3244 3245 if (writable) 3246 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3247 else 3248 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3249 3250 return mask; 3251 } 3252 3253 #ifdef CONFIG_PROC_FS 3254 3255 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3256 3257 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3258 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3259 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3260 3261 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3262 { 3263 unsigned long offset = get_offset(*pos); 3264 unsigned long bucket = get_bucket(*pos); 3265 unsigned long count = 0; 3266 struct sock *sk; 3267 3268 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3269 sk; sk = sk_next(sk)) { 3270 if (++count == offset) 3271 break; 3272 } 3273 3274 return sk; 3275 } 3276 3277 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3278 { 3279 unsigned long bucket = get_bucket(*pos); 3280 struct net *net = seq_file_net(seq); 3281 struct sock *sk; 3282 3283 while (bucket < UNIX_HASH_SIZE) { 3284 spin_lock(&net->unx.table.locks[bucket]); 3285 3286 sk = unix_from_bucket(seq, pos); 3287 if (sk) 3288 return sk; 3289 3290 spin_unlock(&net->unx.table.locks[bucket]); 3291 3292 *pos = set_bucket_offset(++bucket, 1); 3293 } 3294 3295 return NULL; 3296 } 3297 3298 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3299 loff_t *pos) 3300 { 3301 unsigned long bucket = get_bucket(*pos); 3302 3303 sk = sk_next(sk); 3304 if (sk) 3305 return sk; 3306 3307 3308 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3309 3310 *pos = set_bucket_offset(++bucket, 1); 3311 3312 return unix_get_first(seq, pos); 3313 } 3314 3315 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3316 { 3317 if (!*pos) 3318 return SEQ_START_TOKEN; 3319 3320 return unix_get_first(seq, pos); 3321 } 3322 3323 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3324 { 3325 ++*pos; 3326 3327 if (v == SEQ_START_TOKEN) 3328 return unix_get_first(seq, pos); 3329 3330 return unix_get_next(seq, v, pos); 3331 } 3332 3333 static void unix_seq_stop(struct seq_file *seq, void *v) 3334 { 3335 struct sock *sk = v; 3336 3337 if (sk) 3338 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3339 } 3340 3341 static int unix_seq_show(struct seq_file *seq, void *v) 3342 { 3343 3344 if (v == SEQ_START_TOKEN) 3345 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3346 "Inode Path\n"); 3347 else { 3348 struct sock *s = v; 3349 struct unix_sock *u = unix_sk(s); 3350 unix_state_lock(s); 3351 3352 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3353 s, 3354 refcount_read(&s->sk_refcnt), 3355 0, 3356 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3357 s->sk_type, 3358 s->sk_socket ? 3359 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3360 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3361 sock_i_ino(s)); 3362 3363 if (u->addr) { // under a hash table lock here 3364 int i, len; 3365 seq_putc(seq, ' '); 3366 3367 i = 0; 3368 len = u->addr->len - 3369 offsetof(struct sockaddr_un, sun_path); 3370 if (u->addr->name->sun_path[0]) { 3371 len--; 3372 } else { 3373 seq_putc(seq, '@'); 3374 i++; 3375 } 3376 for ( ; i < len; i++) 3377 seq_putc(seq, u->addr->name->sun_path[i] ?: 3378 '@'); 3379 } 3380 unix_state_unlock(s); 3381 seq_putc(seq, '\n'); 3382 } 3383 3384 return 0; 3385 } 3386 3387 static const struct seq_operations unix_seq_ops = { 3388 .start = unix_seq_start, 3389 .next = unix_seq_next, 3390 .stop = unix_seq_stop, 3391 .show = unix_seq_show, 3392 }; 3393 3394 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) 3395 struct bpf_unix_iter_state { 3396 struct seq_net_private p; 3397 unsigned int cur_sk; 3398 unsigned int end_sk; 3399 unsigned int max_sk; 3400 struct sock **batch; 3401 bool st_bucket_done; 3402 }; 3403 3404 struct bpf_iter__unix { 3405 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3406 __bpf_md_ptr(struct unix_sock *, unix_sk); 3407 uid_t uid __aligned(8); 3408 }; 3409 3410 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3411 struct unix_sock *unix_sk, uid_t uid) 3412 { 3413 struct bpf_iter__unix ctx; 3414 3415 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3416 ctx.meta = meta; 3417 ctx.unix_sk = unix_sk; 3418 ctx.uid = uid; 3419 return bpf_iter_run_prog(prog, &ctx); 3420 } 3421 3422 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3423 3424 { 3425 struct bpf_unix_iter_state *iter = seq->private; 3426 unsigned int expected = 1; 3427 struct sock *sk; 3428 3429 sock_hold(start_sk); 3430 iter->batch[iter->end_sk++] = start_sk; 3431 3432 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3433 if (iter->end_sk < iter->max_sk) { 3434 sock_hold(sk); 3435 iter->batch[iter->end_sk++] = sk; 3436 } 3437 3438 expected++; 3439 } 3440 3441 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3442 3443 return expected; 3444 } 3445 3446 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3447 { 3448 while (iter->cur_sk < iter->end_sk) 3449 sock_put(iter->batch[iter->cur_sk++]); 3450 } 3451 3452 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3453 unsigned int new_batch_sz) 3454 { 3455 struct sock **new_batch; 3456 3457 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3458 GFP_USER | __GFP_NOWARN); 3459 if (!new_batch) 3460 return -ENOMEM; 3461 3462 bpf_iter_unix_put_batch(iter); 3463 kvfree(iter->batch); 3464 iter->batch = new_batch; 3465 iter->max_sk = new_batch_sz; 3466 3467 return 0; 3468 } 3469 3470 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3471 loff_t *pos) 3472 { 3473 struct bpf_unix_iter_state *iter = seq->private; 3474 unsigned int expected; 3475 bool resized = false; 3476 struct sock *sk; 3477 3478 if (iter->st_bucket_done) 3479 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3480 3481 again: 3482 /* Get a new batch */ 3483 iter->cur_sk = 0; 3484 iter->end_sk = 0; 3485 3486 sk = unix_get_first(seq, pos); 3487 if (!sk) 3488 return NULL; /* Done */ 3489 3490 expected = bpf_iter_unix_hold_batch(seq, sk); 3491 3492 if (iter->end_sk == expected) { 3493 iter->st_bucket_done = true; 3494 return sk; 3495 } 3496 3497 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3498 resized = true; 3499 goto again; 3500 } 3501 3502 return sk; 3503 } 3504 3505 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3506 { 3507 if (!*pos) 3508 return SEQ_START_TOKEN; 3509 3510 /* bpf iter does not support lseek, so it always 3511 * continue from where it was stop()-ped. 3512 */ 3513 return bpf_iter_unix_batch(seq, pos); 3514 } 3515 3516 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3517 { 3518 struct bpf_unix_iter_state *iter = seq->private; 3519 struct sock *sk; 3520 3521 /* Whenever seq_next() is called, the iter->cur_sk is 3522 * done with seq_show(), so advance to the next sk in 3523 * the batch. 3524 */ 3525 if (iter->cur_sk < iter->end_sk) 3526 sock_put(iter->batch[iter->cur_sk++]); 3527 3528 ++*pos; 3529 3530 if (iter->cur_sk < iter->end_sk) 3531 sk = iter->batch[iter->cur_sk]; 3532 else 3533 sk = bpf_iter_unix_batch(seq, pos); 3534 3535 return sk; 3536 } 3537 3538 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3539 { 3540 struct bpf_iter_meta meta; 3541 struct bpf_prog *prog; 3542 struct sock *sk = v; 3543 uid_t uid; 3544 bool slow; 3545 int ret; 3546 3547 if (v == SEQ_START_TOKEN) 3548 return 0; 3549 3550 slow = lock_sock_fast(sk); 3551 3552 if (unlikely(sk_unhashed(sk))) { 3553 ret = SEQ_SKIP; 3554 goto unlock; 3555 } 3556 3557 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3558 meta.seq = seq; 3559 prog = bpf_iter_get_info(&meta, false); 3560 ret = unix_prog_seq_show(prog, &meta, v, uid); 3561 unlock: 3562 unlock_sock_fast(sk, slow); 3563 return ret; 3564 } 3565 3566 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3567 { 3568 struct bpf_unix_iter_state *iter = seq->private; 3569 struct bpf_iter_meta meta; 3570 struct bpf_prog *prog; 3571 3572 if (!v) { 3573 meta.seq = seq; 3574 prog = bpf_iter_get_info(&meta, true); 3575 if (prog) 3576 (void)unix_prog_seq_show(prog, &meta, v, 0); 3577 } 3578 3579 if (iter->cur_sk < iter->end_sk) 3580 bpf_iter_unix_put_batch(iter); 3581 } 3582 3583 static const struct seq_operations bpf_iter_unix_seq_ops = { 3584 .start = bpf_iter_unix_seq_start, 3585 .next = bpf_iter_unix_seq_next, 3586 .stop = bpf_iter_unix_seq_stop, 3587 .show = bpf_iter_unix_seq_show, 3588 }; 3589 #endif 3590 #endif 3591 3592 static const struct net_proto_family unix_family_ops = { 3593 .family = PF_UNIX, 3594 .create = unix_create, 3595 .owner = THIS_MODULE, 3596 }; 3597 3598 3599 static int __net_init unix_net_init(struct net *net) 3600 { 3601 int i; 3602 3603 net->unx.sysctl_max_dgram_qlen = 10; 3604 if (unix_sysctl_register(net)) 3605 goto out; 3606 3607 #ifdef CONFIG_PROC_FS 3608 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3609 sizeof(struct seq_net_private))) 3610 goto err_sysctl; 3611 #endif 3612 3613 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3614 sizeof(spinlock_t), GFP_KERNEL); 3615 if (!net->unx.table.locks) 3616 goto err_proc; 3617 3618 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3619 sizeof(struct hlist_head), 3620 GFP_KERNEL); 3621 if (!net->unx.table.buckets) 3622 goto free_locks; 3623 3624 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3625 spin_lock_init(&net->unx.table.locks[i]); 3626 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3627 } 3628 3629 return 0; 3630 3631 free_locks: 3632 kvfree(net->unx.table.locks); 3633 err_proc: 3634 #ifdef CONFIG_PROC_FS 3635 remove_proc_entry("unix", net->proc_net); 3636 err_sysctl: 3637 #endif 3638 unix_sysctl_unregister(net); 3639 out: 3640 return -ENOMEM; 3641 } 3642 3643 static void __net_exit unix_net_exit(struct net *net) 3644 { 3645 kvfree(net->unx.table.buckets); 3646 kvfree(net->unx.table.locks); 3647 unix_sysctl_unregister(net); 3648 remove_proc_entry("unix", net->proc_net); 3649 } 3650 3651 static struct pernet_operations unix_net_ops = { 3652 .init = unix_net_init, 3653 .exit = unix_net_exit, 3654 }; 3655 3656 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3657 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3658 struct unix_sock *unix_sk, uid_t uid) 3659 3660 #define INIT_BATCH_SZ 16 3661 3662 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3663 { 3664 struct bpf_unix_iter_state *iter = priv_data; 3665 int err; 3666 3667 err = bpf_iter_init_seq_net(priv_data, aux); 3668 if (err) 3669 return err; 3670 3671 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3672 if (err) { 3673 bpf_iter_fini_seq_net(priv_data); 3674 return err; 3675 } 3676 3677 return 0; 3678 } 3679 3680 static void bpf_iter_fini_unix(void *priv_data) 3681 { 3682 struct bpf_unix_iter_state *iter = priv_data; 3683 3684 bpf_iter_fini_seq_net(priv_data); 3685 kvfree(iter->batch); 3686 } 3687 3688 static const struct bpf_iter_seq_info unix_seq_info = { 3689 .seq_ops = &bpf_iter_unix_seq_ops, 3690 .init_seq_private = bpf_iter_init_unix, 3691 .fini_seq_private = bpf_iter_fini_unix, 3692 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3693 }; 3694 3695 static const struct bpf_func_proto * 3696 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3697 const struct bpf_prog *prog) 3698 { 3699 switch (func_id) { 3700 case BPF_FUNC_setsockopt: 3701 return &bpf_sk_setsockopt_proto; 3702 case BPF_FUNC_getsockopt: 3703 return &bpf_sk_getsockopt_proto; 3704 default: 3705 return NULL; 3706 } 3707 } 3708 3709 static struct bpf_iter_reg unix_reg_info = { 3710 .target = "unix", 3711 .ctx_arg_info_size = 1, 3712 .ctx_arg_info = { 3713 { offsetof(struct bpf_iter__unix, unix_sk), 3714 PTR_TO_BTF_ID_OR_NULL }, 3715 }, 3716 .get_func_proto = bpf_iter_unix_get_func_proto, 3717 .seq_info = &unix_seq_info, 3718 }; 3719 3720 static void __init bpf_iter_register(void) 3721 { 3722 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3723 if (bpf_iter_reg_target(&unix_reg_info)) 3724 pr_warn("Warning: could not register bpf iterator unix\n"); 3725 } 3726 #endif 3727 3728 static int __init af_unix_init(void) 3729 { 3730 int i, rc = -1; 3731 3732 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3733 3734 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3735 spin_lock_init(&bsd_socket_locks[i]); 3736 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3737 } 3738 3739 rc = proto_register(&unix_dgram_proto, 1); 3740 if (rc != 0) { 3741 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3742 goto out; 3743 } 3744 3745 rc = proto_register(&unix_stream_proto, 1); 3746 if (rc != 0) { 3747 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3748 proto_unregister(&unix_dgram_proto); 3749 goto out; 3750 } 3751 3752 sock_register(&unix_family_ops); 3753 register_pernet_subsys(&unix_net_ops); 3754 unix_bpf_build_proto(); 3755 3756 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3757 bpf_iter_register(); 3758 #endif 3759 3760 out: 3761 return rc; 3762 } 3763 3764 static void __exit af_unix_exit(void) 3765 { 3766 sock_unregister(PF_UNIX); 3767 proto_unregister(&unix_dgram_proto); 3768 proto_unregister(&unix_stream_proto); 3769 unregister_pernet_subsys(&unix_net_ops); 3770 } 3771 3772 /* Earlier than device_initcall() so that other drivers invoking 3773 request_module() don't end up in a loop when modprobe tries 3774 to use a UNIX socket. But later than subsys_initcall() because 3775 we depend on stuff initialised there */ 3776 fs_initcall(af_unix_init); 3777 module_exit(af_unix_exit); 3778 3779 MODULE_LICENSE("GPL"); 3780 MODULE_ALIAS_NETPROTO(PF_UNIX); 3781