1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/freezer.h> 116 #include <linux/file.h> 117 #include <linux/btf_ids.h> 118 119 #include "scm.h" 120 121 spinlock_t unix_table_locks[2 * UNIX_HASH_SIZE]; 122 EXPORT_SYMBOL_GPL(unix_table_locks); 123 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE]; 124 EXPORT_SYMBOL_GPL(unix_socket_table); 125 static atomic_long_t unix_nr_socks; 126 127 /* SMP locking strategy: 128 * hash table is protected with spinlock unix_table_locks 129 * each socket state is protected by separate spin lock. 130 */ 131 132 static unsigned int unix_unbound_hash(struct sock *sk) 133 { 134 unsigned long hash = (unsigned long)sk; 135 136 hash ^= hash >> 16; 137 hash ^= hash >> 8; 138 hash ^= sk->sk_type; 139 140 return UNIX_HASH_SIZE + (hash & (UNIX_HASH_SIZE - 1)); 141 } 142 143 static unsigned int unix_bsd_hash(struct inode *i) 144 { 145 return i->i_ino & (UNIX_HASH_SIZE - 1); 146 } 147 148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 149 int addr_len, int type) 150 { 151 __wsum csum = csum_partial(sunaddr, addr_len, 0); 152 unsigned int hash; 153 154 hash = (__force unsigned int)csum_fold(csum); 155 hash ^= hash >> 8; 156 hash ^= type; 157 158 return hash & (UNIX_HASH_SIZE - 1); 159 } 160 161 static void unix_table_double_lock(unsigned int hash1, unsigned int hash2) 162 { 163 /* hash1 and hash2 is never the same because 164 * one is between 0 and UNIX_HASH_SIZE - 1, and 165 * another is between UNIX_HASH_SIZE and UNIX_HASH_SIZE * 2. 166 */ 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&unix_table_locks[hash1]); 171 spin_lock_nested(&unix_table_locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(unsigned int hash1, unsigned int hash2) 175 { 176 spin_unlock(&unix_table_locks[hash1]); 177 spin_unlock(&unix_table_locks[hash2]); 178 } 179 180 #ifdef CONFIG_SECURITY_NETWORK 181 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 182 { 183 UNIXCB(skb).secid = scm->secid; 184 } 185 186 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 187 { 188 scm->secid = UNIXCB(skb).secid; 189 } 190 191 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 192 { 193 return (scm->secid == UNIXCB(skb).secid); 194 } 195 #else 196 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 197 { } 198 199 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 200 { } 201 202 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 203 { 204 return true; 205 } 206 #endif /* CONFIG_SECURITY_NETWORK */ 207 208 #define unix_peer(sk) (unix_sk(sk)->peer) 209 210 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 211 { 212 return unix_peer(osk) == sk; 213 } 214 215 static inline int unix_may_send(struct sock *sk, struct sock *osk) 216 { 217 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 218 } 219 220 static inline int unix_recvq_full(const struct sock *sk) 221 { 222 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 223 } 224 225 static inline int unix_recvq_full_lockless(const struct sock *sk) 226 { 227 return skb_queue_len_lockless(&sk->sk_receive_queue) > 228 READ_ONCE(sk->sk_max_ack_backlog); 229 } 230 231 struct sock *unix_peer_get(struct sock *s) 232 { 233 struct sock *peer; 234 235 unix_state_lock(s); 236 peer = unix_peer(s); 237 if (peer) 238 sock_hold(peer); 239 unix_state_unlock(s); 240 return peer; 241 } 242 EXPORT_SYMBOL_GPL(unix_peer_get); 243 244 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 245 int addr_len) 246 { 247 struct unix_address *addr; 248 249 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 250 if (!addr) 251 return NULL; 252 253 refcount_set(&addr->refcnt, 1); 254 addr->len = addr_len; 255 memcpy(addr->name, sunaddr, addr_len); 256 257 return addr; 258 } 259 260 static inline void unix_release_addr(struct unix_address *addr) 261 { 262 if (refcount_dec_and_test(&addr->refcnt)) 263 kfree(addr); 264 } 265 266 /* 267 * Check unix socket name: 268 * - should be not zero length. 269 * - if started by not zero, should be NULL terminated (FS object) 270 * - if started by zero, it is abstract name. 271 */ 272 273 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 274 { 275 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 276 addr_len > sizeof(*sunaddr)) 277 return -EINVAL; 278 279 if (sunaddr->sun_family != AF_UNIX) 280 return -EINVAL; 281 282 return 0; 283 } 284 285 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 286 { 287 /* This may look like an off by one error but it is a bit more 288 * subtle. 108 is the longest valid AF_UNIX path for a binding. 289 * sun_path[108] doesn't as such exist. However in kernel space 290 * we are guaranteed that it is a valid memory location in our 291 * kernel address buffer because syscall functions always pass 292 * a pointer of struct sockaddr_storage which has a bigger buffer 293 * than 108. 294 */ 295 ((char *)sunaddr)[addr_len] = 0; 296 } 297 298 static void __unix_remove_socket(struct sock *sk) 299 { 300 sk_del_node_init(sk); 301 } 302 303 static void __unix_insert_socket(struct sock *sk) 304 { 305 WARN_ON(!sk_unhashed(sk)); 306 sk_add_node(sk, &unix_socket_table[sk->sk_hash]); 307 } 308 309 static void __unix_set_addr_hash(struct sock *sk, struct unix_address *addr, 310 unsigned int hash) 311 { 312 __unix_remove_socket(sk); 313 smp_store_release(&unix_sk(sk)->addr, addr); 314 315 sk->sk_hash = hash; 316 __unix_insert_socket(sk); 317 } 318 319 static void unix_remove_socket(struct sock *sk) 320 { 321 spin_lock(&unix_table_locks[sk->sk_hash]); 322 __unix_remove_socket(sk); 323 spin_unlock(&unix_table_locks[sk->sk_hash]); 324 } 325 326 static void unix_insert_unbound_socket(struct sock *sk) 327 { 328 spin_lock(&unix_table_locks[sk->sk_hash]); 329 __unix_insert_socket(sk); 330 spin_unlock(&unix_table_locks[sk->sk_hash]); 331 } 332 333 static struct sock *__unix_find_socket_byname(struct net *net, 334 struct sockaddr_un *sunname, 335 int len, unsigned int hash) 336 { 337 struct sock *s; 338 339 sk_for_each(s, &unix_socket_table[hash]) { 340 struct unix_sock *u = unix_sk(s); 341 342 if (!net_eq(sock_net(s), net)) 343 continue; 344 345 if (u->addr->len == len && 346 !memcmp(u->addr->name, sunname, len)) 347 return s; 348 } 349 return NULL; 350 } 351 352 static inline struct sock *unix_find_socket_byname(struct net *net, 353 struct sockaddr_un *sunname, 354 int len, unsigned int hash) 355 { 356 struct sock *s; 357 358 spin_lock(&unix_table_locks[hash]); 359 s = __unix_find_socket_byname(net, sunname, len, hash); 360 if (s) 361 sock_hold(s); 362 spin_unlock(&unix_table_locks[hash]); 363 return s; 364 } 365 366 static struct sock *unix_find_socket_byinode(struct inode *i) 367 { 368 unsigned int hash = unix_bsd_hash(i); 369 struct sock *s; 370 371 spin_lock(&unix_table_locks[hash]); 372 sk_for_each(s, &unix_socket_table[hash]) { 373 struct dentry *dentry = unix_sk(s)->path.dentry; 374 375 if (dentry && d_backing_inode(dentry) == i) { 376 sock_hold(s); 377 spin_unlock(&unix_table_locks[hash]); 378 return s; 379 } 380 } 381 spin_unlock(&unix_table_locks[hash]); 382 return NULL; 383 } 384 385 /* Support code for asymmetrically connected dgram sockets 386 * 387 * If a datagram socket is connected to a socket not itself connected 388 * to the first socket (eg, /dev/log), clients may only enqueue more 389 * messages if the present receive queue of the server socket is not 390 * "too large". This means there's a second writeability condition 391 * poll and sendmsg need to test. The dgram recv code will do a wake 392 * up on the peer_wait wait queue of a socket upon reception of a 393 * datagram which needs to be propagated to sleeping would-be writers 394 * since these might not have sent anything so far. This can't be 395 * accomplished via poll_wait because the lifetime of the server 396 * socket might be less than that of its clients if these break their 397 * association with it or if the server socket is closed while clients 398 * are still connected to it and there's no way to inform "a polling 399 * implementation" that it should let go of a certain wait queue 400 * 401 * In order to propagate a wake up, a wait_queue_entry_t of the client 402 * socket is enqueued on the peer_wait queue of the server socket 403 * whose wake function does a wake_up on the ordinary client socket 404 * wait queue. This connection is established whenever a write (or 405 * poll for write) hit the flow control condition and broken when the 406 * association to the server socket is dissolved or after a wake up 407 * was relayed. 408 */ 409 410 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 411 void *key) 412 { 413 struct unix_sock *u; 414 wait_queue_head_t *u_sleep; 415 416 u = container_of(q, struct unix_sock, peer_wake); 417 418 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 419 q); 420 u->peer_wake.private = NULL; 421 422 /* relaying can only happen while the wq still exists */ 423 u_sleep = sk_sleep(&u->sk); 424 if (u_sleep) 425 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 426 427 return 0; 428 } 429 430 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 431 { 432 struct unix_sock *u, *u_other; 433 int rc; 434 435 u = unix_sk(sk); 436 u_other = unix_sk(other); 437 rc = 0; 438 spin_lock(&u_other->peer_wait.lock); 439 440 if (!u->peer_wake.private) { 441 u->peer_wake.private = other; 442 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 443 444 rc = 1; 445 } 446 447 spin_unlock(&u_other->peer_wait.lock); 448 return rc; 449 } 450 451 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 452 struct sock *other) 453 { 454 struct unix_sock *u, *u_other; 455 456 u = unix_sk(sk); 457 u_other = unix_sk(other); 458 spin_lock(&u_other->peer_wait.lock); 459 460 if (u->peer_wake.private == other) { 461 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 462 u->peer_wake.private = NULL; 463 } 464 465 spin_unlock(&u_other->peer_wait.lock); 466 } 467 468 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 469 struct sock *other) 470 { 471 unix_dgram_peer_wake_disconnect(sk, other); 472 wake_up_interruptible_poll(sk_sleep(sk), 473 EPOLLOUT | 474 EPOLLWRNORM | 475 EPOLLWRBAND); 476 } 477 478 /* preconditions: 479 * - unix_peer(sk) == other 480 * - association is stable 481 */ 482 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 483 { 484 int connected; 485 486 connected = unix_dgram_peer_wake_connect(sk, other); 487 488 /* If other is SOCK_DEAD, we want to make sure we signal 489 * POLLOUT, such that a subsequent write() can get a 490 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 491 * to other and its full, we will hang waiting for POLLOUT. 492 */ 493 if (unix_recvq_full(other) && !sock_flag(other, SOCK_DEAD)) 494 return 1; 495 496 if (connected) 497 unix_dgram_peer_wake_disconnect(sk, other); 498 499 return 0; 500 } 501 502 static int unix_writable(const struct sock *sk) 503 { 504 return sk->sk_state != TCP_LISTEN && 505 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 506 } 507 508 static void unix_write_space(struct sock *sk) 509 { 510 struct socket_wq *wq; 511 512 rcu_read_lock(); 513 if (unix_writable(sk)) { 514 wq = rcu_dereference(sk->sk_wq); 515 if (skwq_has_sleeper(wq)) 516 wake_up_interruptible_sync_poll(&wq->wait, 517 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 518 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 519 } 520 rcu_read_unlock(); 521 } 522 523 /* When dgram socket disconnects (or changes its peer), we clear its receive 524 * queue of packets arrived from previous peer. First, it allows to do 525 * flow control based only on wmem_alloc; second, sk connected to peer 526 * may receive messages only from that peer. */ 527 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 528 { 529 if (!skb_queue_empty(&sk->sk_receive_queue)) { 530 skb_queue_purge(&sk->sk_receive_queue); 531 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 532 533 /* If one link of bidirectional dgram pipe is disconnected, 534 * we signal error. Messages are lost. Do not make this, 535 * when peer was not connected to us. 536 */ 537 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 538 other->sk_err = ECONNRESET; 539 sk_error_report(other); 540 } 541 } 542 other->sk_state = TCP_CLOSE; 543 } 544 545 static void unix_sock_destructor(struct sock *sk) 546 { 547 struct unix_sock *u = unix_sk(sk); 548 549 skb_queue_purge(&sk->sk_receive_queue); 550 551 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 552 if (u->oob_skb) { 553 kfree_skb(u->oob_skb); 554 u->oob_skb = NULL; 555 } 556 #endif 557 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 558 WARN_ON(!sk_unhashed(sk)); 559 WARN_ON(sk->sk_socket); 560 if (!sock_flag(sk, SOCK_DEAD)) { 561 pr_info("Attempt to release alive unix socket: %p\n", sk); 562 return; 563 } 564 565 if (u->addr) 566 unix_release_addr(u->addr); 567 568 atomic_long_dec(&unix_nr_socks); 569 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 570 #ifdef UNIX_REFCNT_DEBUG 571 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 572 atomic_long_read(&unix_nr_socks)); 573 #endif 574 } 575 576 static void unix_release_sock(struct sock *sk, int embrion) 577 { 578 struct unix_sock *u = unix_sk(sk); 579 struct path path; 580 struct sock *skpair; 581 struct sk_buff *skb; 582 int state; 583 584 unix_remove_socket(sk); 585 586 /* Clear state */ 587 unix_state_lock(sk); 588 sock_orphan(sk); 589 sk->sk_shutdown = SHUTDOWN_MASK; 590 path = u->path; 591 u->path.dentry = NULL; 592 u->path.mnt = NULL; 593 state = sk->sk_state; 594 sk->sk_state = TCP_CLOSE; 595 596 skpair = unix_peer(sk); 597 unix_peer(sk) = NULL; 598 599 unix_state_unlock(sk); 600 601 wake_up_interruptible_all(&u->peer_wait); 602 603 if (skpair != NULL) { 604 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 605 unix_state_lock(skpair); 606 /* No more writes */ 607 skpair->sk_shutdown = SHUTDOWN_MASK; 608 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 609 skpair->sk_err = ECONNRESET; 610 unix_state_unlock(skpair); 611 skpair->sk_state_change(skpair); 612 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 613 } 614 615 unix_dgram_peer_wake_disconnect(sk, skpair); 616 sock_put(skpair); /* It may now die */ 617 } 618 619 /* Try to flush out this socket. Throw out buffers at least */ 620 621 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 622 if (state == TCP_LISTEN) 623 unix_release_sock(skb->sk, 1); 624 /* passed fds are erased in the kfree_skb hook */ 625 UNIXCB(skb).consumed = skb->len; 626 kfree_skb(skb); 627 } 628 629 if (path.dentry) 630 path_put(&path); 631 632 sock_put(sk); 633 634 /* ---- Socket is dead now and most probably destroyed ---- */ 635 636 /* 637 * Fixme: BSD difference: In BSD all sockets connected to us get 638 * ECONNRESET and we die on the spot. In Linux we behave 639 * like files and pipes do and wait for the last 640 * dereference. 641 * 642 * Can't we simply set sock->err? 643 * 644 * What the above comment does talk about? --ANK(980817) 645 */ 646 647 if (unix_tot_inflight) 648 unix_gc(); /* Garbage collect fds */ 649 } 650 651 static void init_peercred(struct sock *sk) 652 { 653 const struct cred *old_cred; 654 struct pid *old_pid; 655 656 spin_lock(&sk->sk_peer_lock); 657 old_pid = sk->sk_peer_pid; 658 old_cred = sk->sk_peer_cred; 659 sk->sk_peer_pid = get_pid(task_tgid(current)); 660 sk->sk_peer_cred = get_current_cred(); 661 spin_unlock(&sk->sk_peer_lock); 662 663 put_pid(old_pid); 664 put_cred(old_cred); 665 } 666 667 static void copy_peercred(struct sock *sk, struct sock *peersk) 668 { 669 const struct cred *old_cred; 670 struct pid *old_pid; 671 672 if (sk < peersk) { 673 spin_lock(&sk->sk_peer_lock); 674 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 675 } else { 676 spin_lock(&peersk->sk_peer_lock); 677 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 678 } 679 old_pid = sk->sk_peer_pid; 680 old_cred = sk->sk_peer_cred; 681 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 682 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 683 684 spin_unlock(&sk->sk_peer_lock); 685 spin_unlock(&peersk->sk_peer_lock); 686 687 put_pid(old_pid); 688 put_cred(old_cred); 689 } 690 691 static int unix_listen(struct socket *sock, int backlog) 692 { 693 int err; 694 struct sock *sk = sock->sk; 695 struct unix_sock *u = unix_sk(sk); 696 697 err = -EOPNOTSUPP; 698 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 699 goto out; /* Only stream/seqpacket sockets accept */ 700 err = -EINVAL; 701 if (!u->addr) 702 goto out; /* No listens on an unbound socket */ 703 unix_state_lock(sk); 704 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 705 goto out_unlock; 706 if (backlog > sk->sk_max_ack_backlog) 707 wake_up_interruptible_all(&u->peer_wait); 708 sk->sk_max_ack_backlog = backlog; 709 sk->sk_state = TCP_LISTEN; 710 /* set credentials so connect can copy them */ 711 init_peercred(sk); 712 err = 0; 713 714 out_unlock: 715 unix_state_unlock(sk); 716 out: 717 return err; 718 } 719 720 static int unix_release(struct socket *); 721 static int unix_bind(struct socket *, struct sockaddr *, int); 722 static int unix_stream_connect(struct socket *, struct sockaddr *, 723 int addr_len, int flags); 724 static int unix_socketpair(struct socket *, struct socket *); 725 static int unix_accept(struct socket *, struct socket *, int, bool); 726 static int unix_getname(struct socket *, struct sockaddr *, int); 727 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 728 static __poll_t unix_dgram_poll(struct file *, struct socket *, 729 poll_table *); 730 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 731 #ifdef CONFIG_COMPAT 732 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 733 #endif 734 static int unix_shutdown(struct socket *, int); 735 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 736 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 737 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset, 738 size_t size, int flags); 739 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 740 struct pipe_inode_info *, size_t size, 741 unsigned int flags); 742 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 743 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 744 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc, 745 sk_read_actor_t recv_actor); 746 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc, 747 sk_read_actor_t recv_actor); 748 static int unix_dgram_connect(struct socket *, struct sockaddr *, 749 int, int); 750 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 751 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 752 int); 753 754 static int unix_set_peek_off(struct sock *sk, int val) 755 { 756 struct unix_sock *u = unix_sk(sk); 757 758 if (mutex_lock_interruptible(&u->iolock)) 759 return -EINTR; 760 761 sk->sk_peek_off = val; 762 mutex_unlock(&u->iolock); 763 764 return 0; 765 } 766 767 #ifdef CONFIG_PROC_FS 768 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 769 { 770 struct sock *sk = sock->sk; 771 struct unix_sock *u; 772 773 if (sk) { 774 u = unix_sk(sock->sk); 775 seq_printf(m, "scm_fds: %u\n", 776 atomic_read(&u->scm_stat.nr_fds)); 777 } 778 } 779 #else 780 #define unix_show_fdinfo NULL 781 #endif 782 783 static const struct proto_ops unix_stream_ops = { 784 .family = PF_UNIX, 785 .owner = THIS_MODULE, 786 .release = unix_release, 787 .bind = unix_bind, 788 .connect = unix_stream_connect, 789 .socketpair = unix_socketpair, 790 .accept = unix_accept, 791 .getname = unix_getname, 792 .poll = unix_poll, 793 .ioctl = unix_ioctl, 794 #ifdef CONFIG_COMPAT 795 .compat_ioctl = unix_compat_ioctl, 796 #endif 797 .listen = unix_listen, 798 .shutdown = unix_shutdown, 799 .sendmsg = unix_stream_sendmsg, 800 .recvmsg = unix_stream_recvmsg, 801 .read_sock = unix_stream_read_sock, 802 .mmap = sock_no_mmap, 803 .sendpage = unix_stream_sendpage, 804 .splice_read = unix_stream_splice_read, 805 .set_peek_off = unix_set_peek_off, 806 .show_fdinfo = unix_show_fdinfo, 807 }; 808 809 static const struct proto_ops unix_dgram_ops = { 810 .family = PF_UNIX, 811 .owner = THIS_MODULE, 812 .release = unix_release, 813 .bind = unix_bind, 814 .connect = unix_dgram_connect, 815 .socketpair = unix_socketpair, 816 .accept = sock_no_accept, 817 .getname = unix_getname, 818 .poll = unix_dgram_poll, 819 .ioctl = unix_ioctl, 820 #ifdef CONFIG_COMPAT 821 .compat_ioctl = unix_compat_ioctl, 822 #endif 823 .listen = sock_no_listen, 824 .shutdown = unix_shutdown, 825 .sendmsg = unix_dgram_sendmsg, 826 .read_sock = unix_read_sock, 827 .recvmsg = unix_dgram_recvmsg, 828 .mmap = sock_no_mmap, 829 .sendpage = sock_no_sendpage, 830 .set_peek_off = unix_set_peek_off, 831 .show_fdinfo = unix_show_fdinfo, 832 }; 833 834 static const struct proto_ops unix_seqpacket_ops = { 835 .family = PF_UNIX, 836 .owner = THIS_MODULE, 837 .release = unix_release, 838 .bind = unix_bind, 839 .connect = unix_stream_connect, 840 .socketpair = unix_socketpair, 841 .accept = unix_accept, 842 .getname = unix_getname, 843 .poll = unix_dgram_poll, 844 .ioctl = unix_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = unix_compat_ioctl, 847 #endif 848 .listen = unix_listen, 849 .shutdown = unix_shutdown, 850 .sendmsg = unix_seqpacket_sendmsg, 851 .recvmsg = unix_seqpacket_recvmsg, 852 .mmap = sock_no_mmap, 853 .sendpage = sock_no_sendpage, 854 .set_peek_off = unix_set_peek_off, 855 .show_fdinfo = unix_show_fdinfo, 856 }; 857 858 static void unix_close(struct sock *sk, long timeout) 859 { 860 /* Nothing to do here, unix socket does not need a ->close(). 861 * This is merely for sockmap. 862 */ 863 } 864 865 static void unix_unhash(struct sock *sk) 866 { 867 /* Nothing to do here, unix socket does not need a ->unhash(). 868 * This is merely for sockmap. 869 */ 870 } 871 872 struct proto unix_dgram_proto = { 873 .name = "UNIX", 874 .owner = THIS_MODULE, 875 .obj_size = sizeof(struct unix_sock), 876 .close = unix_close, 877 #ifdef CONFIG_BPF_SYSCALL 878 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 879 #endif 880 }; 881 882 struct proto unix_stream_proto = { 883 .name = "UNIX-STREAM", 884 .owner = THIS_MODULE, 885 .obj_size = sizeof(struct unix_sock), 886 .close = unix_close, 887 .unhash = unix_unhash, 888 #ifdef CONFIG_BPF_SYSCALL 889 .psock_update_sk_prot = unix_stream_bpf_update_proto, 890 #endif 891 }; 892 893 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 894 { 895 struct unix_sock *u; 896 struct sock *sk; 897 int err; 898 899 atomic_long_inc(&unix_nr_socks); 900 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 901 err = -ENFILE; 902 goto err; 903 } 904 905 if (type == SOCK_STREAM) 906 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 907 else /*dgram and seqpacket */ 908 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 909 910 if (!sk) { 911 err = -ENOMEM; 912 goto err; 913 } 914 915 sock_init_data(sock, sk); 916 917 sk->sk_hash = unix_unbound_hash(sk); 918 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 919 sk->sk_write_space = unix_write_space; 920 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 921 sk->sk_destruct = unix_sock_destructor; 922 u = unix_sk(sk); 923 u->path.dentry = NULL; 924 u->path.mnt = NULL; 925 spin_lock_init(&u->lock); 926 atomic_long_set(&u->inflight, 0); 927 INIT_LIST_HEAD(&u->link); 928 mutex_init(&u->iolock); /* single task reading lock */ 929 mutex_init(&u->bindlock); /* single task binding lock */ 930 init_waitqueue_head(&u->peer_wait); 931 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 932 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 933 unix_insert_unbound_socket(sk); 934 935 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 936 937 return sk; 938 939 err: 940 atomic_long_dec(&unix_nr_socks); 941 return ERR_PTR(err); 942 } 943 944 static int unix_create(struct net *net, struct socket *sock, int protocol, 945 int kern) 946 { 947 struct sock *sk; 948 949 if (protocol && protocol != PF_UNIX) 950 return -EPROTONOSUPPORT; 951 952 sock->state = SS_UNCONNECTED; 953 954 switch (sock->type) { 955 case SOCK_STREAM: 956 sock->ops = &unix_stream_ops; 957 break; 958 /* 959 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 960 * nothing uses it. 961 */ 962 case SOCK_RAW: 963 sock->type = SOCK_DGRAM; 964 fallthrough; 965 case SOCK_DGRAM: 966 sock->ops = &unix_dgram_ops; 967 break; 968 case SOCK_SEQPACKET: 969 sock->ops = &unix_seqpacket_ops; 970 break; 971 default: 972 return -ESOCKTNOSUPPORT; 973 } 974 975 sk = unix_create1(net, sock, kern, sock->type); 976 if (IS_ERR(sk)) 977 return PTR_ERR(sk); 978 979 return 0; 980 } 981 982 static int unix_release(struct socket *sock) 983 { 984 struct sock *sk = sock->sk; 985 986 if (!sk) 987 return 0; 988 989 sk->sk_prot->close(sk, 0); 990 unix_release_sock(sk, 0); 991 sock->sk = NULL; 992 993 return 0; 994 } 995 996 static struct sock *unix_find_bsd(struct net *net, struct sockaddr_un *sunaddr, 997 int addr_len, int type) 998 { 999 struct inode *inode; 1000 struct path path; 1001 struct sock *sk; 1002 int err; 1003 1004 unix_mkname_bsd(sunaddr, addr_len); 1005 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1006 if (err) 1007 goto fail; 1008 1009 err = path_permission(&path, MAY_WRITE); 1010 if (err) 1011 goto path_put; 1012 1013 err = -ECONNREFUSED; 1014 inode = d_backing_inode(path.dentry); 1015 if (!S_ISSOCK(inode->i_mode)) 1016 goto path_put; 1017 1018 sk = unix_find_socket_byinode(inode); 1019 if (!sk) 1020 goto path_put; 1021 1022 err = -EPROTOTYPE; 1023 if (sk->sk_type == type) 1024 touch_atime(&path); 1025 else 1026 goto sock_put; 1027 1028 path_put(&path); 1029 1030 return sk; 1031 1032 sock_put: 1033 sock_put(sk); 1034 path_put: 1035 path_put(&path); 1036 fail: 1037 return ERR_PTR(err); 1038 } 1039 1040 static struct sock *unix_find_abstract(struct net *net, 1041 struct sockaddr_un *sunaddr, 1042 int addr_len, int type) 1043 { 1044 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1045 struct dentry *dentry; 1046 struct sock *sk; 1047 1048 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1049 if (!sk) 1050 return ERR_PTR(-ECONNREFUSED); 1051 1052 dentry = unix_sk(sk)->path.dentry; 1053 if (dentry) 1054 touch_atime(&unix_sk(sk)->path); 1055 1056 return sk; 1057 } 1058 1059 static struct sock *unix_find_other(struct net *net, 1060 struct sockaddr_un *sunaddr, 1061 int addr_len, int type) 1062 { 1063 struct sock *sk; 1064 1065 if (sunaddr->sun_path[0]) 1066 sk = unix_find_bsd(net, sunaddr, addr_len, type); 1067 else 1068 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1069 1070 return sk; 1071 } 1072 1073 static int unix_autobind(struct sock *sk) 1074 { 1075 unsigned int new_hash, old_hash = sk->sk_hash; 1076 struct unix_sock *u = unix_sk(sk); 1077 struct unix_address *addr; 1078 u32 lastnum, ordernum; 1079 int err; 1080 1081 err = mutex_lock_interruptible(&u->bindlock); 1082 if (err) 1083 return err; 1084 1085 if (u->addr) 1086 goto out; 1087 1088 err = -ENOMEM; 1089 addr = kzalloc(sizeof(*addr) + 1090 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1091 if (!addr) 1092 goto out; 1093 1094 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1095 addr->name->sun_family = AF_UNIX; 1096 refcount_set(&addr->refcnt, 1); 1097 1098 ordernum = prandom_u32(); 1099 lastnum = ordernum & 0xFFFFF; 1100 retry: 1101 ordernum = (ordernum + 1) & 0xFFFFF; 1102 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1103 1104 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1105 unix_table_double_lock(old_hash, new_hash); 1106 1107 if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len, 1108 new_hash)) { 1109 unix_table_double_unlock(old_hash, new_hash); 1110 1111 /* __unix_find_socket_byname() may take long time if many names 1112 * are already in use. 1113 */ 1114 cond_resched(); 1115 1116 if (ordernum == lastnum) { 1117 /* Give up if all names seems to be in use. */ 1118 err = -ENOSPC; 1119 unix_release_addr(addr); 1120 goto out; 1121 } 1122 1123 goto retry; 1124 } 1125 1126 __unix_set_addr_hash(sk, addr, new_hash); 1127 unix_table_double_unlock(old_hash, new_hash); 1128 err = 0; 1129 1130 out: mutex_unlock(&u->bindlock); 1131 return err; 1132 } 1133 1134 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1135 int addr_len) 1136 { 1137 umode_t mode = S_IFSOCK | 1138 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1139 unsigned int new_hash, old_hash = sk->sk_hash; 1140 struct unix_sock *u = unix_sk(sk); 1141 struct user_namespace *ns; // barf... 1142 struct unix_address *addr; 1143 struct dentry *dentry; 1144 struct path parent; 1145 int err; 1146 1147 unix_mkname_bsd(sunaddr, addr_len); 1148 addr_len = strlen(sunaddr->sun_path) + 1149 offsetof(struct sockaddr_un, sun_path) + 1; 1150 1151 addr = unix_create_addr(sunaddr, addr_len); 1152 if (!addr) 1153 return -ENOMEM; 1154 1155 /* 1156 * Get the parent directory, calculate the hash for last 1157 * component. 1158 */ 1159 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1160 if (IS_ERR(dentry)) { 1161 err = PTR_ERR(dentry); 1162 goto out; 1163 } 1164 1165 /* 1166 * All right, let's create it. 1167 */ 1168 ns = mnt_user_ns(parent.mnt); 1169 err = security_path_mknod(&parent, dentry, mode, 0); 1170 if (!err) 1171 err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0); 1172 if (err) 1173 goto out_path; 1174 err = mutex_lock_interruptible(&u->bindlock); 1175 if (err) 1176 goto out_unlink; 1177 if (u->addr) 1178 goto out_unlock; 1179 1180 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1181 unix_table_double_lock(old_hash, new_hash); 1182 u->path.mnt = mntget(parent.mnt); 1183 u->path.dentry = dget(dentry); 1184 __unix_set_addr_hash(sk, addr, new_hash); 1185 unix_table_double_unlock(old_hash, new_hash); 1186 mutex_unlock(&u->bindlock); 1187 done_path_create(&parent, dentry); 1188 return 0; 1189 1190 out_unlock: 1191 mutex_unlock(&u->bindlock); 1192 err = -EINVAL; 1193 out_unlink: 1194 /* failed after successful mknod? unlink what we'd created... */ 1195 vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL); 1196 out_path: 1197 done_path_create(&parent, dentry); 1198 out: 1199 unix_release_addr(addr); 1200 return err == -EEXIST ? -EADDRINUSE : err; 1201 } 1202 1203 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1204 int addr_len) 1205 { 1206 unsigned int new_hash, old_hash = sk->sk_hash; 1207 struct unix_sock *u = unix_sk(sk); 1208 struct unix_address *addr; 1209 int err; 1210 1211 addr = unix_create_addr(sunaddr, addr_len); 1212 if (!addr) 1213 return -ENOMEM; 1214 1215 err = mutex_lock_interruptible(&u->bindlock); 1216 if (err) 1217 goto out; 1218 1219 if (u->addr) { 1220 err = -EINVAL; 1221 goto out_mutex; 1222 } 1223 1224 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1225 unix_table_double_lock(old_hash, new_hash); 1226 1227 if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len, 1228 new_hash)) 1229 goto out_spin; 1230 1231 __unix_set_addr_hash(sk, addr, new_hash); 1232 unix_table_double_unlock(old_hash, new_hash); 1233 mutex_unlock(&u->bindlock); 1234 return 0; 1235 1236 out_spin: 1237 unix_table_double_unlock(old_hash, new_hash); 1238 err = -EADDRINUSE; 1239 out_mutex: 1240 mutex_unlock(&u->bindlock); 1241 out: 1242 unix_release_addr(addr); 1243 return err; 1244 } 1245 1246 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1247 { 1248 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1249 struct sock *sk = sock->sk; 1250 int err; 1251 1252 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1253 sunaddr->sun_family == AF_UNIX) 1254 return unix_autobind(sk); 1255 1256 err = unix_validate_addr(sunaddr, addr_len); 1257 if (err) 1258 return err; 1259 1260 if (sunaddr->sun_path[0]) 1261 err = unix_bind_bsd(sk, sunaddr, addr_len); 1262 else 1263 err = unix_bind_abstract(sk, sunaddr, addr_len); 1264 1265 return err; 1266 } 1267 1268 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1269 { 1270 if (unlikely(sk1 == sk2) || !sk2) { 1271 unix_state_lock(sk1); 1272 return; 1273 } 1274 if (sk1 < sk2) { 1275 unix_state_lock(sk1); 1276 unix_state_lock_nested(sk2); 1277 } else { 1278 unix_state_lock(sk2); 1279 unix_state_lock_nested(sk1); 1280 } 1281 } 1282 1283 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1284 { 1285 if (unlikely(sk1 == sk2) || !sk2) { 1286 unix_state_unlock(sk1); 1287 return; 1288 } 1289 unix_state_unlock(sk1); 1290 unix_state_unlock(sk2); 1291 } 1292 1293 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1294 int alen, int flags) 1295 { 1296 struct sock *sk = sock->sk; 1297 struct net *net = sock_net(sk); 1298 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1299 struct sock *other; 1300 int err; 1301 1302 err = -EINVAL; 1303 if (alen < offsetofend(struct sockaddr, sa_family)) 1304 goto out; 1305 1306 if (addr->sa_family != AF_UNSPEC) { 1307 err = unix_validate_addr(sunaddr, alen); 1308 if (err) 1309 goto out; 1310 1311 if (test_bit(SOCK_PASSCRED, &sock->flags) && 1312 !unix_sk(sk)->addr) { 1313 err = unix_autobind(sk); 1314 if (err) 1315 goto out; 1316 } 1317 1318 restart: 1319 other = unix_find_other(net, sunaddr, alen, sock->type); 1320 if (IS_ERR(other)) { 1321 err = PTR_ERR(other); 1322 goto out; 1323 } 1324 1325 unix_state_double_lock(sk, other); 1326 1327 /* Apparently VFS overslept socket death. Retry. */ 1328 if (sock_flag(other, SOCK_DEAD)) { 1329 unix_state_double_unlock(sk, other); 1330 sock_put(other); 1331 goto restart; 1332 } 1333 1334 err = -EPERM; 1335 if (!unix_may_send(sk, other)) 1336 goto out_unlock; 1337 1338 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1339 if (err) 1340 goto out_unlock; 1341 1342 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1343 } else { 1344 /* 1345 * 1003.1g breaking connected state with AF_UNSPEC 1346 */ 1347 other = NULL; 1348 unix_state_double_lock(sk, other); 1349 } 1350 1351 /* 1352 * If it was connected, reconnect. 1353 */ 1354 if (unix_peer(sk)) { 1355 struct sock *old_peer = unix_peer(sk); 1356 1357 unix_peer(sk) = other; 1358 if (!other) 1359 sk->sk_state = TCP_CLOSE; 1360 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1361 1362 unix_state_double_unlock(sk, other); 1363 1364 if (other != old_peer) 1365 unix_dgram_disconnected(sk, old_peer); 1366 sock_put(old_peer); 1367 } else { 1368 unix_peer(sk) = other; 1369 unix_state_double_unlock(sk, other); 1370 } 1371 1372 return 0; 1373 1374 out_unlock: 1375 unix_state_double_unlock(sk, other); 1376 sock_put(other); 1377 out: 1378 return err; 1379 } 1380 1381 static long unix_wait_for_peer(struct sock *other, long timeo) 1382 __releases(&unix_sk(other)->lock) 1383 { 1384 struct unix_sock *u = unix_sk(other); 1385 int sched; 1386 DEFINE_WAIT(wait); 1387 1388 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1389 1390 sched = !sock_flag(other, SOCK_DEAD) && 1391 !(other->sk_shutdown & RCV_SHUTDOWN) && 1392 unix_recvq_full(other); 1393 1394 unix_state_unlock(other); 1395 1396 if (sched) 1397 timeo = schedule_timeout(timeo); 1398 1399 finish_wait(&u->peer_wait, &wait); 1400 return timeo; 1401 } 1402 1403 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1404 int addr_len, int flags) 1405 { 1406 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1407 struct sock *sk = sock->sk; 1408 struct net *net = sock_net(sk); 1409 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1410 struct sock *newsk = NULL; 1411 struct sock *other = NULL; 1412 struct sk_buff *skb = NULL; 1413 int st; 1414 int err; 1415 long timeo; 1416 1417 err = unix_validate_addr(sunaddr, addr_len); 1418 if (err) 1419 goto out; 1420 1421 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1422 err = unix_autobind(sk); 1423 if (err) 1424 goto out; 1425 } 1426 1427 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1428 1429 /* First of all allocate resources. 1430 If we will make it after state is locked, 1431 we will have to recheck all again in any case. 1432 */ 1433 1434 /* create new sock for complete connection */ 1435 newsk = unix_create1(sock_net(sk), NULL, 0, sock->type); 1436 if (IS_ERR(newsk)) { 1437 err = PTR_ERR(newsk); 1438 newsk = NULL; 1439 goto out; 1440 } 1441 1442 err = -ENOMEM; 1443 1444 /* Allocate skb for sending to listening sock */ 1445 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1446 if (skb == NULL) 1447 goto out; 1448 1449 restart: 1450 /* Find listening sock. */ 1451 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1452 if (IS_ERR(other)) { 1453 err = PTR_ERR(other); 1454 other = NULL; 1455 goto out; 1456 } 1457 1458 /* Latch state of peer */ 1459 unix_state_lock(other); 1460 1461 /* Apparently VFS overslept socket death. Retry. */ 1462 if (sock_flag(other, SOCK_DEAD)) { 1463 unix_state_unlock(other); 1464 sock_put(other); 1465 goto restart; 1466 } 1467 1468 err = -ECONNREFUSED; 1469 if (other->sk_state != TCP_LISTEN) 1470 goto out_unlock; 1471 if (other->sk_shutdown & RCV_SHUTDOWN) 1472 goto out_unlock; 1473 1474 if (unix_recvq_full(other)) { 1475 err = -EAGAIN; 1476 if (!timeo) 1477 goto out_unlock; 1478 1479 timeo = unix_wait_for_peer(other, timeo); 1480 1481 err = sock_intr_errno(timeo); 1482 if (signal_pending(current)) 1483 goto out; 1484 sock_put(other); 1485 goto restart; 1486 } 1487 1488 /* Latch our state. 1489 1490 It is tricky place. We need to grab our state lock and cannot 1491 drop lock on peer. It is dangerous because deadlock is 1492 possible. Connect to self case and simultaneous 1493 attempt to connect are eliminated by checking socket 1494 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1495 check this before attempt to grab lock. 1496 1497 Well, and we have to recheck the state after socket locked. 1498 */ 1499 st = sk->sk_state; 1500 1501 switch (st) { 1502 case TCP_CLOSE: 1503 /* This is ok... continue with connect */ 1504 break; 1505 case TCP_ESTABLISHED: 1506 /* Socket is already connected */ 1507 err = -EISCONN; 1508 goto out_unlock; 1509 default: 1510 err = -EINVAL; 1511 goto out_unlock; 1512 } 1513 1514 unix_state_lock_nested(sk); 1515 1516 if (sk->sk_state != st) { 1517 unix_state_unlock(sk); 1518 unix_state_unlock(other); 1519 sock_put(other); 1520 goto restart; 1521 } 1522 1523 err = security_unix_stream_connect(sk, other, newsk); 1524 if (err) { 1525 unix_state_unlock(sk); 1526 goto out_unlock; 1527 } 1528 1529 /* The way is open! Fastly set all the necessary fields... */ 1530 1531 sock_hold(sk); 1532 unix_peer(newsk) = sk; 1533 newsk->sk_state = TCP_ESTABLISHED; 1534 newsk->sk_type = sk->sk_type; 1535 init_peercred(newsk); 1536 newu = unix_sk(newsk); 1537 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1538 otheru = unix_sk(other); 1539 1540 /* copy address information from listening to new sock 1541 * 1542 * The contents of *(otheru->addr) and otheru->path 1543 * are seen fully set up here, since we have found 1544 * otheru in hash under unix_table_locks. Insertion 1545 * into the hash chain we'd found it in had been done 1546 * in an earlier critical area protected by unix_table_locks, 1547 * the same one where we'd set *(otheru->addr) contents, 1548 * as well as otheru->path and otheru->addr itself. 1549 * 1550 * Using smp_store_release() here to set newu->addr 1551 * is enough to make those stores, as well as stores 1552 * to newu->path visible to anyone who gets newu->addr 1553 * by smp_load_acquire(). IOW, the same warranties 1554 * as for unix_sock instances bound in unix_bind() or 1555 * in unix_autobind(). 1556 */ 1557 if (otheru->path.dentry) { 1558 path_get(&otheru->path); 1559 newu->path = otheru->path; 1560 } 1561 refcount_inc(&otheru->addr->refcnt); 1562 smp_store_release(&newu->addr, otheru->addr); 1563 1564 /* Set credentials */ 1565 copy_peercred(sk, other); 1566 1567 sock->state = SS_CONNECTED; 1568 sk->sk_state = TCP_ESTABLISHED; 1569 sock_hold(newsk); 1570 1571 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1572 unix_peer(sk) = newsk; 1573 1574 unix_state_unlock(sk); 1575 1576 /* take ten and send info to listening sock */ 1577 spin_lock(&other->sk_receive_queue.lock); 1578 __skb_queue_tail(&other->sk_receive_queue, skb); 1579 spin_unlock(&other->sk_receive_queue.lock); 1580 unix_state_unlock(other); 1581 other->sk_data_ready(other); 1582 sock_put(other); 1583 return 0; 1584 1585 out_unlock: 1586 if (other) 1587 unix_state_unlock(other); 1588 1589 out: 1590 kfree_skb(skb); 1591 if (newsk) 1592 unix_release_sock(newsk, 0); 1593 if (other) 1594 sock_put(other); 1595 return err; 1596 } 1597 1598 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1599 { 1600 struct sock *ska = socka->sk, *skb = sockb->sk; 1601 1602 /* Join our sockets back to back */ 1603 sock_hold(ska); 1604 sock_hold(skb); 1605 unix_peer(ska) = skb; 1606 unix_peer(skb) = ska; 1607 init_peercred(ska); 1608 init_peercred(skb); 1609 1610 ska->sk_state = TCP_ESTABLISHED; 1611 skb->sk_state = TCP_ESTABLISHED; 1612 socka->state = SS_CONNECTED; 1613 sockb->state = SS_CONNECTED; 1614 return 0; 1615 } 1616 1617 static void unix_sock_inherit_flags(const struct socket *old, 1618 struct socket *new) 1619 { 1620 if (test_bit(SOCK_PASSCRED, &old->flags)) 1621 set_bit(SOCK_PASSCRED, &new->flags); 1622 if (test_bit(SOCK_PASSSEC, &old->flags)) 1623 set_bit(SOCK_PASSSEC, &new->flags); 1624 } 1625 1626 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1627 bool kern) 1628 { 1629 struct sock *sk = sock->sk; 1630 struct sock *tsk; 1631 struct sk_buff *skb; 1632 int err; 1633 1634 err = -EOPNOTSUPP; 1635 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1636 goto out; 1637 1638 err = -EINVAL; 1639 if (sk->sk_state != TCP_LISTEN) 1640 goto out; 1641 1642 /* If socket state is TCP_LISTEN it cannot change (for now...), 1643 * so that no locks are necessary. 1644 */ 1645 1646 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1647 &err); 1648 if (!skb) { 1649 /* This means receive shutdown. */ 1650 if (err == 0) 1651 err = -EINVAL; 1652 goto out; 1653 } 1654 1655 tsk = skb->sk; 1656 skb_free_datagram(sk, skb); 1657 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1658 1659 /* attach accepted sock to socket */ 1660 unix_state_lock(tsk); 1661 newsock->state = SS_CONNECTED; 1662 unix_sock_inherit_flags(sock, newsock); 1663 sock_graft(tsk, newsock); 1664 unix_state_unlock(tsk); 1665 return 0; 1666 1667 out: 1668 return err; 1669 } 1670 1671 1672 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1673 { 1674 struct sock *sk = sock->sk; 1675 struct unix_address *addr; 1676 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1677 int err = 0; 1678 1679 if (peer) { 1680 sk = unix_peer_get(sk); 1681 1682 err = -ENOTCONN; 1683 if (!sk) 1684 goto out; 1685 err = 0; 1686 } else { 1687 sock_hold(sk); 1688 } 1689 1690 addr = smp_load_acquire(&unix_sk(sk)->addr); 1691 if (!addr) { 1692 sunaddr->sun_family = AF_UNIX; 1693 sunaddr->sun_path[0] = 0; 1694 err = offsetof(struct sockaddr_un, sun_path); 1695 } else { 1696 err = addr->len; 1697 memcpy(sunaddr, addr->name, addr->len); 1698 } 1699 sock_put(sk); 1700 out: 1701 return err; 1702 } 1703 1704 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1705 { 1706 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1707 1708 /* 1709 * Garbage collection of unix sockets starts by selecting a set of 1710 * candidate sockets which have reference only from being in flight 1711 * (total_refs == inflight_refs). This condition is checked once during 1712 * the candidate collection phase, and candidates are marked as such, so 1713 * that non-candidates can later be ignored. While inflight_refs is 1714 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1715 * is an instantaneous decision. 1716 * 1717 * Once a candidate, however, the socket must not be reinstalled into a 1718 * file descriptor while the garbage collection is in progress. 1719 * 1720 * If the above conditions are met, then the directed graph of 1721 * candidates (*) does not change while unix_gc_lock is held. 1722 * 1723 * Any operations that changes the file count through file descriptors 1724 * (dup, close, sendmsg) does not change the graph since candidates are 1725 * not installed in fds. 1726 * 1727 * Dequeing a candidate via recvmsg would install it into an fd, but 1728 * that takes unix_gc_lock to decrement the inflight count, so it's 1729 * serialized with garbage collection. 1730 * 1731 * MSG_PEEK is special in that it does not change the inflight count, 1732 * yet does install the socket into an fd. The following lock/unlock 1733 * pair is to ensure serialization with garbage collection. It must be 1734 * done between incrementing the file count and installing the file into 1735 * an fd. 1736 * 1737 * If garbage collection starts after the barrier provided by the 1738 * lock/unlock, then it will see the elevated refcount and not mark this 1739 * as a candidate. If a garbage collection is already in progress 1740 * before the file count was incremented, then the lock/unlock pair will 1741 * ensure that garbage collection is finished before progressing to 1742 * installing the fd. 1743 * 1744 * (*) A -> B where B is on the queue of A or B is on the queue of C 1745 * which is on the queue of listening socket A. 1746 */ 1747 spin_lock(&unix_gc_lock); 1748 spin_unlock(&unix_gc_lock); 1749 } 1750 1751 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1752 { 1753 int err = 0; 1754 1755 UNIXCB(skb).pid = get_pid(scm->pid); 1756 UNIXCB(skb).uid = scm->creds.uid; 1757 UNIXCB(skb).gid = scm->creds.gid; 1758 UNIXCB(skb).fp = NULL; 1759 unix_get_secdata(scm, skb); 1760 if (scm->fp && send_fds) 1761 err = unix_attach_fds(scm, skb); 1762 1763 skb->destructor = unix_destruct_scm; 1764 return err; 1765 } 1766 1767 static bool unix_passcred_enabled(const struct socket *sock, 1768 const struct sock *other) 1769 { 1770 return test_bit(SOCK_PASSCRED, &sock->flags) || 1771 !other->sk_socket || 1772 test_bit(SOCK_PASSCRED, &other->sk_socket->flags); 1773 } 1774 1775 /* 1776 * Some apps rely on write() giving SCM_CREDENTIALS 1777 * We include credentials if source or destination socket 1778 * asserted SOCK_PASSCRED. 1779 */ 1780 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1781 const struct sock *other) 1782 { 1783 if (UNIXCB(skb).pid) 1784 return; 1785 if (unix_passcred_enabled(sock, other)) { 1786 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1787 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1788 } 1789 } 1790 1791 static int maybe_init_creds(struct scm_cookie *scm, 1792 struct socket *socket, 1793 const struct sock *other) 1794 { 1795 int err; 1796 struct msghdr msg = { .msg_controllen = 0 }; 1797 1798 err = scm_send(socket, &msg, scm, false); 1799 if (err) 1800 return err; 1801 1802 if (unix_passcred_enabled(socket, other)) { 1803 scm->pid = get_pid(task_tgid(current)); 1804 current_uid_gid(&scm->creds.uid, &scm->creds.gid); 1805 } 1806 return err; 1807 } 1808 1809 static bool unix_skb_scm_eq(struct sk_buff *skb, 1810 struct scm_cookie *scm) 1811 { 1812 const struct unix_skb_parms *u = &UNIXCB(skb); 1813 1814 return u->pid == scm->pid && 1815 uid_eq(u->uid, scm->creds.uid) && 1816 gid_eq(u->gid, scm->creds.gid) && 1817 unix_secdata_eq(scm, skb); 1818 } 1819 1820 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1821 { 1822 struct scm_fp_list *fp = UNIXCB(skb).fp; 1823 struct unix_sock *u = unix_sk(sk); 1824 1825 if (unlikely(fp && fp->count)) 1826 atomic_add(fp->count, &u->scm_stat.nr_fds); 1827 } 1828 1829 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1830 { 1831 struct scm_fp_list *fp = UNIXCB(skb).fp; 1832 struct unix_sock *u = unix_sk(sk); 1833 1834 if (unlikely(fp && fp->count)) 1835 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1836 } 1837 1838 /* 1839 * Send AF_UNIX data. 1840 */ 1841 1842 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1843 size_t len) 1844 { 1845 struct sock *sk = sock->sk; 1846 struct net *net = sock_net(sk); 1847 struct unix_sock *u = unix_sk(sk); 1848 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1849 struct sock *other = NULL; 1850 int err; 1851 struct sk_buff *skb; 1852 long timeo; 1853 struct scm_cookie scm; 1854 int data_len = 0; 1855 int sk_locked; 1856 1857 wait_for_unix_gc(); 1858 err = scm_send(sock, msg, &scm, false); 1859 if (err < 0) 1860 return err; 1861 1862 err = -EOPNOTSUPP; 1863 if (msg->msg_flags&MSG_OOB) 1864 goto out; 1865 1866 if (msg->msg_namelen) { 1867 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1868 if (err) 1869 goto out; 1870 } else { 1871 sunaddr = NULL; 1872 err = -ENOTCONN; 1873 other = unix_peer_get(sk); 1874 if (!other) 1875 goto out; 1876 } 1877 1878 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1879 err = unix_autobind(sk); 1880 if (err) 1881 goto out; 1882 } 1883 1884 err = -EMSGSIZE; 1885 if (len > sk->sk_sndbuf - 32) 1886 goto out; 1887 1888 if (len > SKB_MAX_ALLOC) { 1889 data_len = min_t(size_t, 1890 len - SKB_MAX_ALLOC, 1891 MAX_SKB_FRAGS * PAGE_SIZE); 1892 data_len = PAGE_ALIGN(data_len); 1893 1894 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1895 } 1896 1897 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1898 msg->msg_flags & MSG_DONTWAIT, &err, 1899 PAGE_ALLOC_COSTLY_ORDER); 1900 if (skb == NULL) 1901 goto out; 1902 1903 err = unix_scm_to_skb(&scm, skb, true); 1904 if (err < 0) 1905 goto out_free; 1906 1907 skb_put(skb, len - data_len); 1908 skb->data_len = data_len; 1909 skb->len = len; 1910 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1911 if (err) 1912 goto out_free; 1913 1914 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1915 1916 restart: 1917 if (!other) { 1918 err = -ECONNRESET; 1919 if (sunaddr == NULL) 1920 goto out_free; 1921 1922 other = unix_find_other(net, sunaddr, msg->msg_namelen, 1923 sk->sk_type); 1924 if (IS_ERR(other)) { 1925 err = PTR_ERR(other); 1926 other = NULL; 1927 goto out_free; 1928 } 1929 } 1930 1931 if (sk_filter(other, skb) < 0) { 1932 /* Toss the packet but do not return any error to the sender */ 1933 err = len; 1934 goto out_free; 1935 } 1936 1937 sk_locked = 0; 1938 unix_state_lock(other); 1939 restart_locked: 1940 err = -EPERM; 1941 if (!unix_may_send(sk, other)) 1942 goto out_unlock; 1943 1944 if (unlikely(sock_flag(other, SOCK_DEAD))) { 1945 /* 1946 * Check with 1003.1g - what should 1947 * datagram error 1948 */ 1949 unix_state_unlock(other); 1950 sock_put(other); 1951 1952 if (!sk_locked) 1953 unix_state_lock(sk); 1954 1955 err = 0; 1956 if (unix_peer(sk) == other) { 1957 unix_peer(sk) = NULL; 1958 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 1959 1960 unix_state_unlock(sk); 1961 1962 sk->sk_state = TCP_CLOSE; 1963 unix_dgram_disconnected(sk, other); 1964 sock_put(other); 1965 err = -ECONNREFUSED; 1966 } else { 1967 unix_state_unlock(sk); 1968 } 1969 1970 other = NULL; 1971 if (err) 1972 goto out_free; 1973 goto restart; 1974 } 1975 1976 err = -EPIPE; 1977 if (other->sk_shutdown & RCV_SHUTDOWN) 1978 goto out_unlock; 1979 1980 if (sk->sk_type != SOCK_SEQPACKET) { 1981 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1982 if (err) 1983 goto out_unlock; 1984 } 1985 1986 /* other == sk && unix_peer(other) != sk if 1987 * - unix_peer(sk) == NULL, destination address bound to sk 1988 * - unix_peer(sk) == sk by time of get but disconnected before lock 1989 */ 1990 if (other != sk && 1991 unlikely(unix_peer(other) != sk && 1992 unix_recvq_full_lockless(other))) { 1993 if (timeo) { 1994 timeo = unix_wait_for_peer(other, timeo); 1995 1996 err = sock_intr_errno(timeo); 1997 if (signal_pending(current)) 1998 goto out_free; 1999 2000 goto restart; 2001 } 2002 2003 if (!sk_locked) { 2004 unix_state_unlock(other); 2005 unix_state_double_lock(sk, other); 2006 } 2007 2008 if (unix_peer(sk) != other || 2009 unix_dgram_peer_wake_me(sk, other)) { 2010 err = -EAGAIN; 2011 sk_locked = 1; 2012 goto out_unlock; 2013 } 2014 2015 if (!sk_locked) { 2016 sk_locked = 1; 2017 goto restart_locked; 2018 } 2019 } 2020 2021 if (unlikely(sk_locked)) 2022 unix_state_unlock(sk); 2023 2024 if (sock_flag(other, SOCK_RCVTSTAMP)) 2025 __net_timestamp(skb); 2026 maybe_add_creds(skb, sock, other); 2027 scm_stat_add(other, skb); 2028 skb_queue_tail(&other->sk_receive_queue, skb); 2029 unix_state_unlock(other); 2030 other->sk_data_ready(other); 2031 sock_put(other); 2032 scm_destroy(&scm); 2033 return len; 2034 2035 out_unlock: 2036 if (sk_locked) 2037 unix_state_unlock(sk); 2038 unix_state_unlock(other); 2039 out_free: 2040 kfree_skb(skb); 2041 out: 2042 if (other) 2043 sock_put(other); 2044 scm_destroy(&scm); 2045 return err; 2046 } 2047 2048 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2049 * bytes, and a minimum of a full page. 2050 */ 2051 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2052 2053 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2054 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other) 2055 { 2056 struct unix_sock *ousk = unix_sk(other); 2057 struct sk_buff *skb; 2058 int err = 0; 2059 2060 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2061 2062 if (!skb) 2063 return err; 2064 2065 skb_put(skb, 1); 2066 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2067 2068 if (err) { 2069 kfree_skb(skb); 2070 return err; 2071 } 2072 2073 unix_state_lock(other); 2074 2075 if (sock_flag(other, SOCK_DEAD) || 2076 (other->sk_shutdown & RCV_SHUTDOWN)) { 2077 unix_state_unlock(other); 2078 kfree_skb(skb); 2079 return -EPIPE; 2080 } 2081 2082 maybe_add_creds(skb, sock, other); 2083 skb_get(skb); 2084 2085 if (ousk->oob_skb) 2086 consume_skb(ousk->oob_skb); 2087 2088 WRITE_ONCE(ousk->oob_skb, skb); 2089 2090 scm_stat_add(other, skb); 2091 skb_queue_tail(&other->sk_receive_queue, skb); 2092 sk_send_sigurg(other); 2093 unix_state_unlock(other); 2094 other->sk_data_ready(other); 2095 2096 return err; 2097 } 2098 #endif 2099 2100 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2101 size_t len) 2102 { 2103 struct sock *sk = sock->sk; 2104 struct sock *other = NULL; 2105 int err, size; 2106 struct sk_buff *skb; 2107 int sent = 0; 2108 struct scm_cookie scm; 2109 bool fds_sent = false; 2110 int data_len; 2111 2112 wait_for_unix_gc(); 2113 err = scm_send(sock, msg, &scm, false); 2114 if (err < 0) 2115 return err; 2116 2117 err = -EOPNOTSUPP; 2118 if (msg->msg_flags & MSG_OOB) { 2119 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2120 if (len) 2121 len--; 2122 else 2123 #endif 2124 goto out_err; 2125 } 2126 2127 if (msg->msg_namelen) { 2128 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2129 goto out_err; 2130 } else { 2131 err = -ENOTCONN; 2132 other = unix_peer(sk); 2133 if (!other) 2134 goto out_err; 2135 } 2136 2137 if (sk->sk_shutdown & SEND_SHUTDOWN) 2138 goto pipe_err; 2139 2140 while (sent < len) { 2141 size = len - sent; 2142 2143 /* Keep two messages in the pipe so it schedules better */ 2144 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2145 2146 /* allow fallback to order-0 allocations */ 2147 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2148 2149 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2150 2151 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2152 2153 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2154 msg->msg_flags & MSG_DONTWAIT, &err, 2155 get_order(UNIX_SKB_FRAGS_SZ)); 2156 if (!skb) 2157 goto out_err; 2158 2159 /* Only send the fds in the first buffer */ 2160 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2161 if (err < 0) { 2162 kfree_skb(skb); 2163 goto out_err; 2164 } 2165 fds_sent = true; 2166 2167 skb_put(skb, size - data_len); 2168 skb->data_len = data_len; 2169 skb->len = size; 2170 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2171 if (err) { 2172 kfree_skb(skb); 2173 goto out_err; 2174 } 2175 2176 unix_state_lock(other); 2177 2178 if (sock_flag(other, SOCK_DEAD) || 2179 (other->sk_shutdown & RCV_SHUTDOWN)) 2180 goto pipe_err_free; 2181 2182 maybe_add_creds(skb, sock, other); 2183 scm_stat_add(other, skb); 2184 skb_queue_tail(&other->sk_receive_queue, skb); 2185 unix_state_unlock(other); 2186 other->sk_data_ready(other); 2187 sent += size; 2188 } 2189 2190 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2191 if (msg->msg_flags & MSG_OOB) { 2192 err = queue_oob(sock, msg, other); 2193 if (err) 2194 goto out_err; 2195 sent++; 2196 } 2197 #endif 2198 2199 scm_destroy(&scm); 2200 2201 return sent; 2202 2203 pipe_err_free: 2204 unix_state_unlock(other); 2205 kfree_skb(skb); 2206 pipe_err: 2207 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2208 send_sig(SIGPIPE, current, 0); 2209 err = -EPIPE; 2210 out_err: 2211 scm_destroy(&scm); 2212 return sent ? : err; 2213 } 2214 2215 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page, 2216 int offset, size_t size, int flags) 2217 { 2218 int err; 2219 bool send_sigpipe = false; 2220 bool init_scm = true; 2221 struct scm_cookie scm; 2222 struct sock *other, *sk = socket->sk; 2223 struct sk_buff *skb, *newskb = NULL, *tail = NULL; 2224 2225 if (flags & MSG_OOB) 2226 return -EOPNOTSUPP; 2227 2228 other = unix_peer(sk); 2229 if (!other || sk->sk_state != TCP_ESTABLISHED) 2230 return -ENOTCONN; 2231 2232 if (false) { 2233 alloc_skb: 2234 unix_state_unlock(other); 2235 mutex_unlock(&unix_sk(other)->iolock); 2236 newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT, 2237 &err, 0); 2238 if (!newskb) 2239 goto err; 2240 } 2241 2242 /* we must acquire iolock as we modify already present 2243 * skbs in the sk_receive_queue and mess with skb->len 2244 */ 2245 err = mutex_lock_interruptible(&unix_sk(other)->iolock); 2246 if (err) { 2247 err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS; 2248 goto err; 2249 } 2250 2251 if (sk->sk_shutdown & SEND_SHUTDOWN) { 2252 err = -EPIPE; 2253 send_sigpipe = true; 2254 goto err_unlock; 2255 } 2256 2257 unix_state_lock(other); 2258 2259 if (sock_flag(other, SOCK_DEAD) || 2260 other->sk_shutdown & RCV_SHUTDOWN) { 2261 err = -EPIPE; 2262 send_sigpipe = true; 2263 goto err_state_unlock; 2264 } 2265 2266 if (init_scm) { 2267 err = maybe_init_creds(&scm, socket, other); 2268 if (err) 2269 goto err_state_unlock; 2270 init_scm = false; 2271 } 2272 2273 skb = skb_peek_tail(&other->sk_receive_queue); 2274 if (tail && tail == skb) { 2275 skb = newskb; 2276 } else if (!skb || !unix_skb_scm_eq(skb, &scm)) { 2277 if (newskb) { 2278 skb = newskb; 2279 } else { 2280 tail = skb; 2281 goto alloc_skb; 2282 } 2283 } else if (newskb) { 2284 /* this is fast path, we don't necessarily need to 2285 * call to kfree_skb even though with newskb == NULL 2286 * this - does no harm 2287 */ 2288 consume_skb(newskb); 2289 newskb = NULL; 2290 } 2291 2292 if (skb_append_pagefrags(skb, page, offset, size)) { 2293 tail = skb; 2294 goto alloc_skb; 2295 } 2296 2297 skb->len += size; 2298 skb->data_len += size; 2299 skb->truesize += size; 2300 refcount_add(size, &sk->sk_wmem_alloc); 2301 2302 if (newskb) { 2303 err = unix_scm_to_skb(&scm, skb, false); 2304 if (err) 2305 goto err_state_unlock; 2306 spin_lock(&other->sk_receive_queue.lock); 2307 __skb_queue_tail(&other->sk_receive_queue, newskb); 2308 spin_unlock(&other->sk_receive_queue.lock); 2309 } 2310 2311 unix_state_unlock(other); 2312 mutex_unlock(&unix_sk(other)->iolock); 2313 2314 other->sk_data_ready(other); 2315 scm_destroy(&scm); 2316 return size; 2317 2318 err_state_unlock: 2319 unix_state_unlock(other); 2320 err_unlock: 2321 mutex_unlock(&unix_sk(other)->iolock); 2322 err: 2323 kfree_skb(newskb); 2324 if (send_sigpipe && !(flags & MSG_NOSIGNAL)) 2325 send_sig(SIGPIPE, current, 0); 2326 if (!init_scm) 2327 scm_destroy(&scm); 2328 return err; 2329 } 2330 2331 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2332 size_t len) 2333 { 2334 int err; 2335 struct sock *sk = sock->sk; 2336 2337 err = sock_error(sk); 2338 if (err) 2339 return err; 2340 2341 if (sk->sk_state != TCP_ESTABLISHED) 2342 return -ENOTCONN; 2343 2344 if (msg->msg_namelen) 2345 msg->msg_namelen = 0; 2346 2347 return unix_dgram_sendmsg(sock, msg, len); 2348 } 2349 2350 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2351 size_t size, int flags) 2352 { 2353 struct sock *sk = sock->sk; 2354 2355 if (sk->sk_state != TCP_ESTABLISHED) 2356 return -ENOTCONN; 2357 2358 return unix_dgram_recvmsg(sock, msg, size, flags); 2359 } 2360 2361 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2362 { 2363 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2364 2365 if (addr) { 2366 msg->msg_namelen = addr->len; 2367 memcpy(msg->msg_name, addr->name, addr->len); 2368 } 2369 } 2370 2371 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2372 int flags) 2373 { 2374 struct scm_cookie scm; 2375 struct socket *sock = sk->sk_socket; 2376 struct unix_sock *u = unix_sk(sk); 2377 struct sk_buff *skb, *last; 2378 long timeo; 2379 int skip; 2380 int err; 2381 2382 err = -EOPNOTSUPP; 2383 if (flags&MSG_OOB) 2384 goto out; 2385 2386 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2387 2388 do { 2389 mutex_lock(&u->iolock); 2390 2391 skip = sk_peek_offset(sk, flags); 2392 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2393 &skip, &err, &last); 2394 if (skb) { 2395 if (!(flags & MSG_PEEK)) 2396 scm_stat_del(sk, skb); 2397 break; 2398 } 2399 2400 mutex_unlock(&u->iolock); 2401 2402 if (err != -EAGAIN) 2403 break; 2404 } while (timeo && 2405 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2406 &err, &timeo, last)); 2407 2408 if (!skb) { /* implies iolock unlocked */ 2409 unix_state_lock(sk); 2410 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2411 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2412 (sk->sk_shutdown & RCV_SHUTDOWN)) 2413 err = 0; 2414 unix_state_unlock(sk); 2415 goto out; 2416 } 2417 2418 if (wq_has_sleeper(&u->peer_wait)) 2419 wake_up_interruptible_sync_poll(&u->peer_wait, 2420 EPOLLOUT | EPOLLWRNORM | 2421 EPOLLWRBAND); 2422 2423 if (msg->msg_name) 2424 unix_copy_addr(msg, skb->sk); 2425 2426 if (size > skb->len - skip) 2427 size = skb->len - skip; 2428 else if (size < skb->len - skip) 2429 msg->msg_flags |= MSG_TRUNC; 2430 2431 err = skb_copy_datagram_msg(skb, skip, msg, size); 2432 if (err) 2433 goto out_free; 2434 2435 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2436 __sock_recv_timestamp(msg, sk, skb); 2437 2438 memset(&scm, 0, sizeof(scm)); 2439 2440 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2441 unix_set_secdata(&scm, skb); 2442 2443 if (!(flags & MSG_PEEK)) { 2444 if (UNIXCB(skb).fp) 2445 unix_detach_fds(&scm, skb); 2446 2447 sk_peek_offset_bwd(sk, skb->len); 2448 } else { 2449 /* It is questionable: on PEEK we could: 2450 - do not return fds - good, but too simple 8) 2451 - return fds, and do not return them on read (old strategy, 2452 apparently wrong) 2453 - clone fds (I chose it for now, it is the most universal 2454 solution) 2455 2456 POSIX 1003.1g does not actually define this clearly 2457 at all. POSIX 1003.1g doesn't define a lot of things 2458 clearly however! 2459 2460 */ 2461 2462 sk_peek_offset_fwd(sk, size); 2463 2464 if (UNIXCB(skb).fp) 2465 unix_peek_fds(&scm, skb); 2466 } 2467 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2468 2469 scm_recv(sock, msg, &scm, flags); 2470 2471 out_free: 2472 skb_free_datagram(sk, skb); 2473 mutex_unlock(&u->iolock); 2474 out: 2475 return err; 2476 } 2477 2478 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2479 int flags) 2480 { 2481 struct sock *sk = sock->sk; 2482 2483 #ifdef CONFIG_BPF_SYSCALL 2484 const struct proto *prot = READ_ONCE(sk->sk_prot); 2485 2486 if (prot != &unix_dgram_proto) 2487 return prot->recvmsg(sk, msg, size, flags, NULL); 2488 #endif 2489 return __unix_dgram_recvmsg(sk, msg, size, flags); 2490 } 2491 2492 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc, 2493 sk_read_actor_t recv_actor) 2494 { 2495 int copied = 0; 2496 2497 while (1) { 2498 struct unix_sock *u = unix_sk(sk); 2499 struct sk_buff *skb; 2500 int used, err; 2501 2502 mutex_lock(&u->iolock); 2503 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2504 mutex_unlock(&u->iolock); 2505 if (!skb) 2506 return err; 2507 2508 used = recv_actor(desc, skb, 0, skb->len); 2509 if (used <= 0) { 2510 if (!copied) 2511 copied = used; 2512 kfree_skb(skb); 2513 break; 2514 } else if (used <= skb->len) { 2515 copied += used; 2516 } 2517 2518 kfree_skb(skb); 2519 if (!desc->count) 2520 break; 2521 } 2522 2523 return copied; 2524 } 2525 2526 /* 2527 * Sleep until more data has arrived. But check for races.. 2528 */ 2529 static long unix_stream_data_wait(struct sock *sk, long timeo, 2530 struct sk_buff *last, unsigned int last_len, 2531 bool freezable) 2532 { 2533 struct sk_buff *tail; 2534 DEFINE_WAIT(wait); 2535 2536 unix_state_lock(sk); 2537 2538 for (;;) { 2539 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2540 2541 tail = skb_peek_tail(&sk->sk_receive_queue); 2542 if (tail != last || 2543 (tail && tail->len != last_len) || 2544 sk->sk_err || 2545 (sk->sk_shutdown & RCV_SHUTDOWN) || 2546 signal_pending(current) || 2547 !timeo) 2548 break; 2549 2550 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2551 unix_state_unlock(sk); 2552 if (freezable) 2553 timeo = freezable_schedule_timeout(timeo); 2554 else 2555 timeo = schedule_timeout(timeo); 2556 unix_state_lock(sk); 2557 2558 if (sock_flag(sk, SOCK_DEAD)) 2559 break; 2560 2561 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2562 } 2563 2564 finish_wait(sk_sleep(sk), &wait); 2565 unix_state_unlock(sk); 2566 return timeo; 2567 } 2568 2569 static unsigned int unix_skb_len(const struct sk_buff *skb) 2570 { 2571 return skb->len - UNIXCB(skb).consumed; 2572 } 2573 2574 struct unix_stream_read_state { 2575 int (*recv_actor)(struct sk_buff *, int, int, 2576 struct unix_stream_read_state *); 2577 struct socket *socket; 2578 struct msghdr *msg; 2579 struct pipe_inode_info *pipe; 2580 size_t size; 2581 int flags; 2582 unsigned int splice_flags; 2583 }; 2584 2585 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2586 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2587 { 2588 struct socket *sock = state->socket; 2589 struct sock *sk = sock->sk; 2590 struct unix_sock *u = unix_sk(sk); 2591 int chunk = 1; 2592 struct sk_buff *oob_skb; 2593 2594 mutex_lock(&u->iolock); 2595 unix_state_lock(sk); 2596 2597 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2598 unix_state_unlock(sk); 2599 mutex_unlock(&u->iolock); 2600 return -EINVAL; 2601 } 2602 2603 oob_skb = u->oob_skb; 2604 2605 if (!(state->flags & MSG_PEEK)) 2606 WRITE_ONCE(u->oob_skb, NULL); 2607 2608 unix_state_unlock(sk); 2609 2610 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2611 2612 if (!(state->flags & MSG_PEEK)) { 2613 UNIXCB(oob_skb).consumed += 1; 2614 kfree_skb(oob_skb); 2615 } 2616 2617 mutex_unlock(&u->iolock); 2618 2619 if (chunk < 0) 2620 return -EFAULT; 2621 2622 state->msg->msg_flags |= MSG_OOB; 2623 return 1; 2624 } 2625 2626 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2627 int flags, int copied) 2628 { 2629 struct unix_sock *u = unix_sk(sk); 2630 2631 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2632 skb_unlink(skb, &sk->sk_receive_queue); 2633 consume_skb(skb); 2634 skb = NULL; 2635 } else { 2636 if (skb == u->oob_skb) { 2637 if (copied) { 2638 skb = NULL; 2639 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2640 if (!(flags & MSG_PEEK)) { 2641 WRITE_ONCE(u->oob_skb, NULL); 2642 consume_skb(skb); 2643 } 2644 } else if (!(flags & MSG_PEEK)) { 2645 skb_unlink(skb, &sk->sk_receive_queue); 2646 consume_skb(skb); 2647 skb = skb_peek(&sk->sk_receive_queue); 2648 } 2649 } 2650 } 2651 return skb; 2652 } 2653 #endif 2654 2655 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc, 2656 sk_read_actor_t recv_actor) 2657 { 2658 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2659 return -ENOTCONN; 2660 2661 return unix_read_sock(sk, desc, recv_actor); 2662 } 2663 2664 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2665 bool freezable) 2666 { 2667 struct scm_cookie scm; 2668 struct socket *sock = state->socket; 2669 struct sock *sk = sock->sk; 2670 struct unix_sock *u = unix_sk(sk); 2671 int copied = 0; 2672 int flags = state->flags; 2673 int noblock = flags & MSG_DONTWAIT; 2674 bool check_creds = false; 2675 int target; 2676 int err = 0; 2677 long timeo; 2678 int skip; 2679 size_t size = state->size; 2680 unsigned int last_len; 2681 2682 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2683 err = -EINVAL; 2684 goto out; 2685 } 2686 2687 if (unlikely(flags & MSG_OOB)) { 2688 err = -EOPNOTSUPP; 2689 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2690 err = unix_stream_recv_urg(state); 2691 #endif 2692 goto out; 2693 } 2694 2695 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2696 timeo = sock_rcvtimeo(sk, noblock); 2697 2698 memset(&scm, 0, sizeof(scm)); 2699 2700 /* Lock the socket to prevent queue disordering 2701 * while sleeps in memcpy_tomsg 2702 */ 2703 mutex_lock(&u->iolock); 2704 2705 skip = max(sk_peek_offset(sk, flags), 0); 2706 2707 do { 2708 int chunk; 2709 bool drop_skb; 2710 struct sk_buff *skb, *last; 2711 2712 redo: 2713 unix_state_lock(sk); 2714 if (sock_flag(sk, SOCK_DEAD)) { 2715 err = -ECONNRESET; 2716 goto unlock; 2717 } 2718 last = skb = skb_peek(&sk->sk_receive_queue); 2719 last_len = last ? last->len : 0; 2720 2721 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2722 if (skb) { 2723 skb = manage_oob(skb, sk, flags, copied); 2724 if (!skb) { 2725 unix_state_unlock(sk); 2726 if (copied) 2727 break; 2728 goto redo; 2729 } 2730 } 2731 #endif 2732 again: 2733 if (skb == NULL) { 2734 if (copied >= target) 2735 goto unlock; 2736 2737 /* 2738 * POSIX 1003.1g mandates this order. 2739 */ 2740 2741 err = sock_error(sk); 2742 if (err) 2743 goto unlock; 2744 if (sk->sk_shutdown & RCV_SHUTDOWN) 2745 goto unlock; 2746 2747 unix_state_unlock(sk); 2748 if (!timeo) { 2749 err = -EAGAIN; 2750 break; 2751 } 2752 2753 mutex_unlock(&u->iolock); 2754 2755 timeo = unix_stream_data_wait(sk, timeo, last, 2756 last_len, freezable); 2757 2758 if (signal_pending(current)) { 2759 err = sock_intr_errno(timeo); 2760 scm_destroy(&scm); 2761 goto out; 2762 } 2763 2764 mutex_lock(&u->iolock); 2765 goto redo; 2766 unlock: 2767 unix_state_unlock(sk); 2768 break; 2769 } 2770 2771 while (skip >= unix_skb_len(skb)) { 2772 skip -= unix_skb_len(skb); 2773 last = skb; 2774 last_len = skb->len; 2775 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2776 if (!skb) 2777 goto again; 2778 } 2779 2780 unix_state_unlock(sk); 2781 2782 if (check_creds) { 2783 /* Never glue messages from different writers */ 2784 if (!unix_skb_scm_eq(skb, &scm)) 2785 break; 2786 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) { 2787 /* Copy credentials */ 2788 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2789 unix_set_secdata(&scm, skb); 2790 check_creds = true; 2791 } 2792 2793 /* Copy address just once */ 2794 if (state->msg && state->msg->msg_name) { 2795 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2796 state->msg->msg_name); 2797 unix_copy_addr(state->msg, skb->sk); 2798 sunaddr = NULL; 2799 } 2800 2801 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2802 skb_get(skb); 2803 chunk = state->recv_actor(skb, skip, chunk, state); 2804 drop_skb = !unix_skb_len(skb); 2805 /* skb is only safe to use if !drop_skb */ 2806 consume_skb(skb); 2807 if (chunk < 0) { 2808 if (copied == 0) 2809 copied = -EFAULT; 2810 break; 2811 } 2812 copied += chunk; 2813 size -= chunk; 2814 2815 if (drop_skb) { 2816 /* the skb was touched by a concurrent reader; 2817 * we should not expect anything from this skb 2818 * anymore and assume it invalid - we can be 2819 * sure it was dropped from the socket queue 2820 * 2821 * let's report a short read 2822 */ 2823 err = 0; 2824 break; 2825 } 2826 2827 /* Mark read part of skb as used */ 2828 if (!(flags & MSG_PEEK)) { 2829 UNIXCB(skb).consumed += chunk; 2830 2831 sk_peek_offset_bwd(sk, chunk); 2832 2833 if (UNIXCB(skb).fp) { 2834 scm_stat_del(sk, skb); 2835 unix_detach_fds(&scm, skb); 2836 } 2837 2838 if (unix_skb_len(skb)) 2839 break; 2840 2841 skb_unlink(skb, &sk->sk_receive_queue); 2842 consume_skb(skb); 2843 2844 if (scm.fp) 2845 break; 2846 } else { 2847 /* It is questionable, see note in unix_dgram_recvmsg. 2848 */ 2849 if (UNIXCB(skb).fp) 2850 unix_peek_fds(&scm, skb); 2851 2852 sk_peek_offset_fwd(sk, chunk); 2853 2854 if (UNIXCB(skb).fp) 2855 break; 2856 2857 skip = 0; 2858 last = skb; 2859 last_len = skb->len; 2860 unix_state_lock(sk); 2861 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2862 if (skb) 2863 goto again; 2864 unix_state_unlock(sk); 2865 break; 2866 } 2867 } while (size); 2868 2869 mutex_unlock(&u->iolock); 2870 if (state->msg) 2871 scm_recv(sock, state->msg, &scm, flags); 2872 else 2873 scm_destroy(&scm); 2874 out: 2875 return copied ? : err; 2876 } 2877 2878 static int unix_stream_read_actor(struct sk_buff *skb, 2879 int skip, int chunk, 2880 struct unix_stream_read_state *state) 2881 { 2882 int ret; 2883 2884 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2885 state->msg, chunk); 2886 return ret ?: chunk; 2887 } 2888 2889 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2890 size_t size, int flags) 2891 { 2892 struct unix_stream_read_state state = { 2893 .recv_actor = unix_stream_read_actor, 2894 .socket = sk->sk_socket, 2895 .msg = msg, 2896 .size = size, 2897 .flags = flags 2898 }; 2899 2900 return unix_stream_read_generic(&state, true); 2901 } 2902 2903 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2904 size_t size, int flags) 2905 { 2906 struct unix_stream_read_state state = { 2907 .recv_actor = unix_stream_read_actor, 2908 .socket = sock, 2909 .msg = msg, 2910 .size = size, 2911 .flags = flags 2912 }; 2913 2914 #ifdef CONFIG_BPF_SYSCALL 2915 struct sock *sk = sock->sk; 2916 const struct proto *prot = READ_ONCE(sk->sk_prot); 2917 2918 if (prot != &unix_stream_proto) 2919 return prot->recvmsg(sk, msg, size, flags, NULL); 2920 #endif 2921 return unix_stream_read_generic(&state, true); 2922 } 2923 2924 static int unix_stream_splice_actor(struct sk_buff *skb, 2925 int skip, int chunk, 2926 struct unix_stream_read_state *state) 2927 { 2928 return skb_splice_bits(skb, state->socket->sk, 2929 UNIXCB(skb).consumed + skip, 2930 state->pipe, chunk, state->splice_flags); 2931 } 2932 2933 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2934 struct pipe_inode_info *pipe, 2935 size_t size, unsigned int flags) 2936 { 2937 struct unix_stream_read_state state = { 2938 .recv_actor = unix_stream_splice_actor, 2939 .socket = sock, 2940 .pipe = pipe, 2941 .size = size, 2942 .splice_flags = flags, 2943 }; 2944 2945 if (unlikely(*ppos)) 2946 return -ESPIPE; 2947 2948 if (sock->file->f_flags & O_NONBLOCK || 2949 flags & SPLICE_F_NONBLOCK) 2950 state.flags = MSG_DONTWAIT; 2951 2952 return unix_stream_read_generic(&state, false); 2953 } 2954 2955 static int unix_shutdown(struct socket *sock, int mode) 2956 { 2957 struct sock *sk = sock->sk; 2958 struct sock *other; 2959 2960 if (mode < SHUT_RD || mode > SHUT_RDWR) 2961 return -EINVAL; 2962 /* This maps: 2963 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2964 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2965 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2966 */ 2967 ++mode; 2968 2969 unix_state_lock(sk); 2970 sk->sk_shutdown |= mode; 2971 other = unix_peer(sk); 2972 if (other) 2973 sock_hold(other); 2974 unix_state_unlock(sk); 2975 sk->sk_state_change(sk); 2976 2977 if (other && 2978 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2979 2980 int peer_mode = 0; 2981 const struct proto *prot = READ_ONCE(other->sk_prot); 2982 2983 if (prot->unhash) 2984 prot->unhash(other); 2985 if (mode&RCV_SHUTDOWN) 2986 peer_mode |= SEND_SHUTDOWN; 2987 if (mode&SEND_SHUTDOWN) 2988 peer_mode |= RCV_SHUTDOWN; 2989 unix_state_lock(other); 2990 other->sk_shutdown |= peer_mode; 2991 unix_state_unlock(other); 2992 other->sk_state_change(other); 2993 if (peer_mode == SHUTDOWN_MASK) 2994 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2995 else if (peer_mode & RCV_SHUTDOWN) 2996 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2997 } 2998 if (other) 2999 sock_put(other); 3000 3001 return 0; 3002 } 3003 3004 long unix_inq_len(struct sock *sk) 3005 { 3006 struct sk_buff *skb; 3007 long amount = 0; 3008 3009 if (sk->sk_state == TCP_LISTEN) 3010 return -EINVAL; 3011 3012 spin_lock(&sk->sk_receive_queue.lock); 3013 if (sk->sk_type == SOCK_STREAM || 3014 sk->sk_type == SOCK_SEQPACKET) { 3015 skb_queue_walk(&sk->sk_receive_queue, skb) 3016 amount += unix_skb_len(skb); 3017 } else { 3018 skb = skb_peek(&sk->sk_receive_queue); 3019 if (skb) 3020 amount = skb->len; 3021 } 3022 spin_unlock(&sk->sk_receive_queue.lock); 3023 3024 return amount; 3025 } 3026 EXPORT_SYMBOL_GPL(unix_inq_len); 3027 3028 long unix_outq_len(struct sock *sk) 3029 { 3030 return sk_wmem_alloc_get(sk); 3031 } 3032 EXPORT_SYMBOL_GPL(unix_outq_len); 3033 3034 static int unix_open_file(struct sock *sk) 3035 { 3036 struct path path; 3037 struct file *f; 3038 int fd; 3039 3040 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3041 return -EPERM; 3042 3043 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3044 return -ENOENT; 3045 3046 path = unix_sk(sk)->path; 3047 if (!path.dentry) 3048 return -ENOENT; 3049 3050 path_get(&path); 3051 3052 fd = get_unused_fd_flags(O_CLOEXEC); 3053 if (fd < 0) 3054 goto out; 3055 3056 f = dentry_open(&path, O_PATH, current_cred()); 3057 if (IS_ERR(f)) { 3058 put_unused_fd(fd); 3059 fd = PTR_ERR(f); 3060 goto out; 3061 } 3062 3063 fd_install(fd, f); 3064 out: 3065 path_put(&path); 3066 3067 return fd; 3068 } 3069 3070 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3071 { 3072 struct sock *sk = sock->sk; 3073 long amount = 0; 3074 int err; 3075 3076 switch (cmd) { 3077 case SIOCOUTQ: 3078 amount = unix_outq_len(sk); 3079 err = put_user(amount, (int __user *)arg); 3080 break; 3081 case SIOCINQ: 3082 amount = unix_inq_len(sk); 3083 if (amount < 0) 3084 err = amount; 3085 else 3086 err = put_user(amount, (int __user *)arg); 3087 break; 3088 case SIOCUNIXFILE: 3089 err = unix_open_file(sk); 3090 break; 3091 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3092 case SIOCATMARK: 3093 { 3094 struct sk_buff *skb; 3095 int answ = 0; 3096 3097 skb = skb_peek(&sk->sk_receive_queue); 3098 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3099 answ = 1; 3100 err = put_user(answ, (int __user *)arg); 3101 } 3102 break; 3103 #endif 3104 default: 3105 err = -ENOIOCTLCMD; 3106 break; 3107 } 3108 return err; 3109 } 3110 3111 #ifdef CONFIG_COMPAT 3112 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3113 { 3114 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3115 } 3116 #endif 3117 3118 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3119 { 3120 struct sock *sk = sock->sk; 3121 __poll_t mask; 3122 3123 sock_poll_wait(file, sock, wait); 3124 mask = 0; 3125 3126 /* exceptional events? */ 3127 if (sk->sk_err) 3128 mask |= EPOLLERR; 3129 if (sk->sk_shutdown == SHUTDOWN_MASK) 3130 mask |= EPOLLHUP; 3131 if (sk->sk_shutdown & RCV_SHUTDOWN) 3132 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3133 3134 /* readable? */ 3135 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3136 mask |= EPOLLIN | EPOLLRDNORM; 3137 if (sk_is_readable(sk)) 3138 mask |= EPOLLIN | EPOLLRDNORM; 3139 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3140 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3141 mask |= EPOLLPRI; 3142 #endif 3143 3144 /* Connection-based need to check for termination and startup */ 3145 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3146 sk->sk_state == TCP_CLOSE) 3147 mask |= EPOLLHUP; 3148 3149 /* 3150 * we set writable also when the other side has shut down the 3151 * connection. This prevents stuck sockets. 3152 */ 3153 if (unix_writable(sk)) 3154 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3155 3156 return mask; 3157 } 3158 3159 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3160 poll_table *wait) 3161 { 3162 struct sock *sk = sock->sk, *other; 3163 unsigned int writable; 3164 __poll_t mask; 3165 3166 sock_poll_wait(file, sock, wait); 3167 mask = 0; 3168 3169 /* exceptional events? */ 3170 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 3171 mask |= EPOLLERR | 3172 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3173 3174 if (sk->sk_shutdown & RCV_SHUTDOWN) 3175 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3176 if (sk->sk_shutdown == SHUTDOWN_MASK) 3177 mask |= EPOLLHUP; 3178 3179 /* readable? */ 3180 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3181 mask |= EPOLLIN | EPOLLRDNORM; 3182 if (sk_is_readable(sk)) 3183 mask |= EPOLLIN | EPOLLRDNORM; 3184 3185 /* Connection-based need to check for termination and startup */ 3186 if (sk->sk_type == SOCK_SEQPACKET) { 3187 if (sk->sk_state == TCP_CLOSE) 3188 mask |= EPOLLHUP; 3189 /* connection hasn't started yet? */ 3190 if (sk->sk_state == TCP_SYN_SENT) 3191 return mask; 3192 } 3193 3194 /* No write status requested, avoid expensive OUT tests. */ 3195 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3196 return mask; 3197 3198 writable = unix_writable(sk); 3199 if (writable) { 3200 unix_state_lock(sk); 3201 3202 other = unix_peer(sk); 3203 if (other && unix_peer(other) != sk && 3204 unix_recvq_full_lockless(other) && 3205 unix_dgram_peer_wake_me(sk, other)) 3206 writable = 0; 3207 3208 unix_state_unlock(sk); 3209 } 3210 3211 if (writable) 3212 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3213 else 3214 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3215 3216 return mask; 3217 } 3218 3219 #ifdef CONFIG_PROC_FS 3220 3221 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3222 3223 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3224 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3225 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3226 3227 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3228 { 3229 unsigned long offset = get_offset(*pos); 3230 unsigned long bucket = get_bucket(*pos); 3231 struct sock *sk; 3232 unsigned long count = 0; 3233 3234 for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) { 3235 if (sock_net(sk) != seq_file_net(seq)) 3236 continue; 3237 if (++count == offset) 3238 break; 3239 } 3240 3241 return sk; 3242 } 3243 3244 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3245 { 3246 unsigned long bucket = get_bucket(*pos); 3247 struct sock *sk; 3248 3249 while (bucket < ARRAY_SIZE(unix_socket_table)) { 3250 spin_lock(&unix_table_locks[bucket]); 3251 3252 sk = unix_from_bucket(seq, pos); 3253 if (sk) 3254 return sk; 3255 3256 spin_unlock(&unix_table_locks[bucket]); 3257 3258 *pos = set_bucket_offset(++bucket, 1); 3259 } 3260 3261 return NULL; 3262 } 3263 3264 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3265 loff_t *pos) 3266 { 3267 unsigned long bucket = get_bucket(*pos); 3268 3269 for (sk = sk_next(sk); sk; sk = sk_next(sk)) 3270 if (sock_net(sk) == seq_file_net(seq)) 3271 return sk; 3272 3273 spin_unlock(&unix_table_locks[bucket]); 3274 3275 *pos = set_bucket_offset(++bucket, 1); 3276 3277 return unix_get_first(seq, pos); 3278 } 3279 3280 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3281 { 3282 if (!*pos) 3283 return SEQ_START_TOKEN; 3284 3285 return unix_get_first(seq, pos); 3286 } 3287 3288 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3289 { 3290 ++*pos; 3291 3292 if (v == SEQ_START_TOKEN) 3293 return unix_get_first(seq, pos); 3294 3295 return unix_get_next(seq, v, pos); 3296 } 3297 3298 static void unix_seq_stop(struct seq_file *seq, void *v) 3299 { 3300 struct sock *sk = v; 3301 3302 if (sk) 3303 spin_unlock(&unix_table_locks[sk->sk_hash]); 3304 } 3305 3306 static int unix_seq_show(struct seq_file *seq, void *v) 3307 { 3308 3309 if (v == SEQ_START_TOKEN) 3310 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3311 "Inode Path\n"); 3312 else { 3313 struct sock *s = v; 3314 struct unix_sock *u = unix_sk(s); 3315 unix_state_lock(s); 3316 3317 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3318 s, 3319 refcount_read(&s->sk_refcnt), 3320 0, 3321 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3322 s->sk_type, 3323 s->sk_socket ? 3324 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3325 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3326 sock_i_ino(s)); 3327 3328 if (u->addr) { // under unix_table_locks here 3329 int i, len; 3330 seq_putc(seq, ' '); 3331 3332 i = 0; 3333 len = u->addr->len - 3334 offsetof(struct sockaddr_un, sun_path); 3335 if (u->addr->name->sun_path[0]) { 3336 len--; 3337 } else { 3338 seq_putc(seq, '@'); 3339 i++; 3340 } 3341 for ( ; i < len; i++) 3342 seq_putc(seq, u->addr->name->sun_path[i] ?: 3343 '@'); 3344 } 3345 unix_state_unlock(s); 3346 seq_putc(seq, '\n'); 3347 } 3348 3349 return 0; 3350 } 3351 3352 static const struct seq_operations unix_seq_ops = { 3353 .start = unix_seq_start, 3354 .next = unix_seq_next, 3355 .stop = unix_seq_stop, 3356 .show = unix_seq_show, 3357 }; 3358 3359 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) 3360 struct bpf_unix_iter_state { 3361 struct seq_net_private p; 3362 unsigned int cur_sk; 3363 unsigned int end_sk; 3364 unsigned int max_sk; 3365 struct sock **batch; 3366 bool st_bucket_done; 3367 }; 3368 3369 struct bpf_iter__unix { 3370 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3371 __bpf_md_ptr(struct unix_sock *, unix_sk); 3372 uid_t uid __aligned(8); 3373 }; 3374 3375 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3376 struct unix_sock *unix_sk, uid_t uid) 3377 { 3378 struct bpf_iter__unix ctx; 3379 3380 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3381 ctx.meta = meta; 3382 ctx.unix_sk = unix_sk; 3383 ctx.uid = uid; 3384 return bpf_iter_run_prog(prog, &ctx); 3385 } 3386 3387 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3388 3389 { 3390 struct bpf_unix_iter_state *iter = seq->private; 3391 unsigned int expected = 1; 3392 struct sock *sk; 3393 3394 sock_hold(start_sk); 3395 iter->batch[iter->end_sk++] = start_sk; 3396 3397 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3398 if (sock_net(sk) != seq_file_net(seq)) 3399 continue; 3400 3401 if (iter->end_sk < iter->max_sk) { 3402 sock_hold(sk); 3403 iter->batch[iter->end_sk++] = sk; 3404 } 3405 3406 expected++; 3407 } 3408 3409 spin_unlock(&unix_table_locks[start_sk->sk_hash]); 3410 3411 return expected; 3412 } 3413 3414 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3415 { 3416 while (iter->cur_sk < iter->end_sk) 3417 sock_put(iter->batch[iter->cur_sk++]); 3418 } 3419 3420 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3421 unsigned int new_batch_sz) 3422 { 3423 struct sock **new_batch; 3424 3425 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3426 GFP_USER | __GFP_NOWARN); 3427 if (!new_batch) 3428 return -ENOMEM; 3429 3430 bpf_iter_unix_put_batch(iter); 3431 kvfree(iter->batch); 3432 iter->batch = new_batch; 3433 iter->max_sk = new_batch_sz; 3434 3435 return 0; 3436 } 3437 3438 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3439 loff_t *pos) 3440 { 3441 struct bpf_unix_iter_state *iter = seq->private; 3442 unsigned int expected; 3443 bool resized = false; 3444 struct sock *sk; 3445 3446 if (iter->st_bucket_done) 3447 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3448 3449 again: 3450 /* Get a new batch */ 3451 iter->cur_sk = 0; 3452 iter->end_sk = 0; 3453 3454 sk = unix_get_first(seq, pos); 3455 if (!sk) 3456 return NULL; /* Done */ 3457 3458 expected = bpf_iter_unix_hold_batch(seq, sk); 3459 3460 if (iter->end_sk == expected) { 3461 iter->st_bucket_done = true; 3462 return sk; 3463 } 3464 3465 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3466 resized = true; 3467 goto again; 3468 } 3469 3470 return sk; 3471 } 3472 3473 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3474 { 3475 if (!*pos) 3476 return SEQ_START_TOKEN; 3477 3478 /* bpf iter does not support lseek, so it always 3479 * continue from where it was stop()-ped. 3480 */ 3481 return bpf_iter_unix_batch(seq, pos); 3482 } 3483 3484 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3485 { 3486 struct bpf_unix_iter_state *iter = seq->private; 3487 struct sock *sk; 3488 3489 /* Whenever seq_next() is called, the iter->cur_sk is 3490 * done with seq_show(), so advance to the next sk in 3491 * the batch. 3492 */ 3493 if (iter->cur_sk < iter->end_sk) 3494 sock_put(iter->batch[iter->cur_sk++]); 3495 3496 ++*pos; 3497 3498 if (iter->cur_sk < iter->end_sk) 3499 sk = iter->batch[iter->cur_sk]; 3500 else 3501 sk = bpf_iter_unix_batch(seq, pos); 3502 3503 return sk; 3504 } 3505 3506 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3507 { 3508 struct bpf_iter_meta meta; 3509 struct bpf_prog *prog; 3510 struct sock *sk = v; 3511 uid_t uid; 3512 bool slow; 3513 int ret; 3514 3515 if (v == SEQ_START_TOKEN) 3516 return 0; 3517 3518 slow = lock_sock_fast(sk); 3519 3520 if (unlikely(sk_unhashed(sk))) { 3521 ret = SEQ_SKIP; 3522 goto unlock; 3523 } 3524 3525 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3526 meta.seq = seq; 3527 prog = bpf_iter_get_info(&meta, false); 3528 ret = unix_prog_seq_show(prog, &meta, v, uid); 3529 unlock: 3530 unlock_sock_fast(sk, slow); 3531 return ret; 3532 } 3533 3534 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3535 { 3536 struct bpf_unix_iter_state *iter = seq->private; 3537 struct bpf_iter_meta meta; 3538 struct bpf_prog *prog; 3539 3540 if (!v) { 3541 meta.seq = seq; 3542 prog = bpf_iter_get_info(&meta, true); 3543 if (prog) 3544 (void)unix_prog_seq_show(prog, &meta, v, 0); 3545 } 3546 3547 if (iter->cur_sk < iter->end_sk) 3548 bpf_iter_unix_put_batch(iter); 3549 } 3550 3551 static const struct seq_operations bpf_iter_unix_seq_ops = { 3552 .start = bpf_iter_unix_seq_start, 3553 .next = bpf_iter_unix_seq_next, 3554 .stop = bpf_iter_unix_seq_stop, 3555 .show = bpf_iter_unix_seq_show, 3556 }; 3557 #endif 3558 #endif 3559 3560 static const struct net_proto_family unix_family_ops = { 3561 .family = PF_UNIX, 3562 .create = unix_create, 3563 .owner = THIS_MODULE, 3564 }; 3565 3566 3567 static int __net_init unix_net_init(struct net *net) 3568 { 3569 int error = -ENOMEM; 3570 3571 net->unx.sysctl_max_dgram_qlen = 10; 3572 if (unix_sysctl_register(net)) 3573 goto out; 3574 3575 #ifdef CONFIG_PROC_FS 3576 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3577 sizeof(struct seq_net_private))) { 3578 unix_sysctl_unregister(net); 3579 goto out; 3580 } 3581 #endif 3582 error = 0; 3583 out: 3584 return error; 3585 } 3586 3587 static void __net_exit unix_net_exit(struct net *net) 3588 { 3589 unix_sysctl_unregister(net); 3590 remove_proc_entry("unix", net->proc_net); 3591 } 3592 3593 static struct pernet_operations unix_net_ops = { 3594 .init = unix_net_init, 3595 .exit = unix_net_exit, 3596 }; 3597 3598 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3599 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3600 struct unix_sock *unix_sk, uid_t uid) 3601 3602 #define INIT_BATCH_SZ 16 3603 3604 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3605 { 3606 struct bpf_unix_iter_state *iter = priv_data; 3607 int err; 3608 3609 err = bpf_iter_init_seq_net(priv_data, aux); 3610 if (err) 3611 return err; 3612 3613 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3614 if (err) { 3615 bpf_iter_fini_seq_net(priv_data); 3616 return err; 3617 } 3618 3619 return 0; 3620 } 3621 3622 static void bpf_iter_fini_unix(void *priv_data) 3623 { 3624 struct bpf_unix_iter_state *iter = priv_data; 3625 3626 bpf_iter_fini_seq_net(priv_data); 3627 kvfree(iter->batch); 3628 } 3629 3630 static const struct bpf_iter_seq_info unix_seq_info = { 3631 .seq_ops = &bpf_iter_unix_seq_ops, 3632 .init_seq_private = bpf_iter_init_unix, 3633 .fini_seq_private = bpf_iter_fini_unix, 3634 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3635 }; 3636 3637 static const struct bpf_func_proto * 3638 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3639 const struct bpf_prog *prog) 3640 { 3641 switch (func_id) { 3642 case BPF_FUNC_setsockopt: 3643 return &bpf_sk_setsockopt_proto; 3644 case BPF_FUNC_getsockopt: 3645 return &bpf_sk_getsockopt_proto; 3646 default: 3647 return NULL; 3648 } 3649 } 3650 3651 static struct bpf_iter_reg unix_reg_info = { 3652 .target = "unix", 3653 .ctx_arg_info_size = 1, 3654 .ctx_arg_info = { 3655 { offsetof(struct bpf_iter__unix, unix_sk), 3656 PTR_TO_BTF_ID_OR_NULL }, 3657 }, 3658 .get_func_proto = bpf_iter_unix_get_func_proto, 3659 .seq_info = &unix_seq_info, 3660 }; 3661 3662 static void __init bpf_iter_register(void) 3663 { 3664 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3665 if (bpf_iter_reg_target(&unix_reg_info)) 3666 pr_warn("Warning: could not register bpf iterator unix\n"); 3667 } 3668 #endif 3669 3670 static int __init af_unix_init(void) 3671 { 3672 int i, rc = -1; 3673 3674 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3675 3676 for (i = 0; i < 2 * UNIX_HASH_SIZE; i++) 3677 spin_lock_init(&unix_table_locks[i]); 3678 3679 rc = proto_register(&unix_dgram_proto, 1); 3680 if (rc != 0) { 3681 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3682 goto out; 3683 } 3684 3685 rc = proto_register(&unix_stream_proto, 1); 3686 if (rc != 0) { 3687 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3688 goto out; 3689 } 3690 3691 sock_register(&unix_family_ops); 3692 register_pernet_subsys(&unix_net_ops); 3693 unix_bpf_build_proto(); 3694 3695 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3696 bpf_iter_register(); 3697 #endif 3698 3699 out: 3700 return rc; 3701 } 3702 3703 static void __exit af_unix_exit(void) 3704 { 3705 sock_unregister(PF_UNIX); 3706 proto_unregister(&unix_dgram_proto); 3707 proto_unregister(&unix_stream_proto); 3708 unregister_pernet_subsys(&unix_net_ops); 3709 } 3710 3711 /* Earlier than device_initcall() so that other drivers invoking 3712 request_module() don't end up in a loop when modprobe tries 3713 to use a UNIX socket. But later than subsys_initcall() because 3714 we depend on stuff initialised there */ 3715 fs_initcall(af_unix_init); 3716 module_exit(af_unix_exit); 3717 3718 MODULE_LICENSE("GPL"); 3719 MODULE_ALIAS_NETPROTO(PF_UNIX); 3720