1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/freezer.h> 116 #include <linux/file.h> 117 #include <linux/btf_ids.h> 118 119 #include "scm.h" 120 121 spinlock_t unix_table_locks[2 * UNIX_HASH_SIZE]; 122 EXPORT_SYMBOL_GPL(unix_table_locks); 123 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE]; 124 EXPORT_SYMBOL_GPL(unix_socket_table); 125 static atomic_long_t unix_nr_socks; 126 127 /* SMP locking strategy: 128 * hash table is protected with spinlock unix_table_locks 129 * each socket state is protected by separate spin lock. 130 */ 131 132 static unsigned int unix_unbound_hash(struct sock *sk) 133 { 134 unsigned long hash = (unsigned long)sk; 135 136 hash ^= hash >> 16; 137 hash ^= hash >> 8; 138 hash ^= sk->sk_type; 139 140 return UNIX_HASH_SIZE + (hash & (UNIX_HASH_SIZE - 1)); 141 } 142 143 static unsigned int unix_bsd_hash(struct inode *i) 144 { 145 return i->i_ino & (UNIX_HASH_SIZE - 1); 146 } 147 148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 149 int addr_len, int type) 150 { 151 __wsum csum = csum_partial(sunaddr, addr_len, 0); 152 unsigned int hash; 153 154 hash = (__force unsigned int)csum_fold(csum); 155 hash ^= hash >> 8; 156 hash ^= type; 157 158 return hash & (UNIX_HASH_SIZE - 1); 159 } 160 161 static void unix_table_double_lock(unsigned int hash1, unsigned int hash2) 162 { 163 /* hash1 and hash2 is never the same because 164 * one is between 0 and UNIX_HASH_SIZE - 1, and 165 * another is between UNIX_HASH_SIZE and UNIX_HASH_SIZE * 2. 166 */ 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&unix_table_locks[hash1]); 171 spin_lock_nested(&unix_table_locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(unsigned int hash1, unsigned int hash2) 175 { 176 spin_unlock(&unix_table_locks[hash1]); 177 spin_unlock(&unix_table_locks[hash2]); 178 } 179 180 #ifdef CONFIG_SECURITY_NETWORK 181 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 182 { 183 UNIXCB(skb).secid = scm->secid; 184 } 185 186 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 187 { 188 scm->secid = UNIXCB(skb).secid; 189 } 190 191 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 192 { 193 return (scm->secid == UNIXCB(skb).secid); 194 } 195 #else 196 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 197 { } 198 199 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 200 { } 201 202 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 203 { 204 return true; 205 } 206 #endif /* CONFIG_SECURITY_NETWORK */ 207 208 #define unix_peer(sk) (unix_sk(sk)->peer) 209 210 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 211 { 212 return unix_peer(osk) == sk; 213 } 214 215 static inline int unix_may_send(struct sock *sk, struct sock *osk) 216 { 217 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 218 } 219 220 static inline int unix_recvq_full(const struct sock *sk) 221 { 222 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 223 } 224 225 static inline int unix_recvq_full_lockless(const struct sock *sk) 226 { 227 return skb_queue_len_lockless(&sk->sk_receive_queue) > 228 READ_ONCE(sk->sk_max_ack_backlog); 229 } 230 231 struct sock *unix_peer_get(struct sock *s) 232 { 233 struct sock *peer; 234 235 unix_state_lock(s); 236 peer = unix_peer(s); 237 if (peer) 238 sock_hold(peer); 239 unix_state_unlock(s); 240 return peer; 241 } 242 EXPORT_SYMBOL_GPL(unix_peer_get); 243 244 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 245 int addr_len) 246 { 247 struct unix_address *addr; 248 249 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 250 if (!addr) 251 return NULL; 252 253 refcount_set(&addr->refcnt, 1); 254 addr->len = addr_len; 255 memcpy(addr->name, sunaddr, addr_len); 256 257 return addr; 258 } 259 260 static inline void unix_release_addr(struct unix_address *addr) 261 { 262 if (refcount_dec_and_test(&addr->refcnt)) 263 kfree(addr); 264 } 265 266 /* 267 * Check unix socket name: 268 * - should be not zero length. 269 * - if started by not zero, should be NULL terminated (FS object) 270 * - if started by zero, it is abstract name. 271 */ 272 273 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 274 { 275 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 276 addr_len > sizeof(*sunaddr)) 277 return -EINVAL; 278 279 if (sunaddr->sun_family != AF_UNIX) 280 return -EINVAL; 281 282 return 0; 283 } 284 285 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 286 { 287 /* This may look like an off by one error but it is a bit more 288 * subtle. 108 is the longest valid AF_UNIX path for a binding. 289 * sun_path[108] doesn't as such exist. However in kernel space 290 * we are guaranteed that it is a valid memory location in our 291 * kernel address buffer because syscall functions always pass 292 * a pointer of struct sockaddr_storage which has a bigger buffer 293 * than 108. 294 */ 295 ((char *)sunaddr)[addr_len] = 0; 296 } 297 298 static void __unix_remove_socket(struct sock *sk) 299 { 300 sk_del_node_init(sk); 301 } 302 303 static void __unix_insert_socket(struct sock *sk) 304 { 305 WARN_ON(!sk_unhashed(sk)); 306 sk_add_node(sk, &unix_socket_table[sk->sk_hash]); 307 } 308 309 static void __unix_set_addr_hash(struct sock *sk, struct unix_address *addr, 310 unsigned int hash) 311 { 312 __unix_remove_socket(sk); 313 smp_store_release(&unix_sk(sk)->addr, addr); 314 315 sk->sk_hash = hash; 316 __unix_insert_socket(sk); 317 } 318 319 static void unix_remove_socket(struct sock *sk) 320 { 321 spin_lock(&unix_table_locks[sk->sk_hash]); 322 __unix_remove_socket(sk); 323 spin_unlock(&unix_table_locks[sk->sk_hash]); 324 } 325 326 static void unix_insert_unbound_socket(struct sock *sk) 327 { 328 spin_lock(&unix_table_locks[sk->sk_hash]); 329 __unix_insert_socket(sk); 330 spin_unlock(&unix_table_locks[sk->sk_hash]); 331 } 332 333 static struct sock *__unix_find_socket_byname(struct net *net, 334 struct sockaddr_un *sunname, 335 int len, unsigned int hash) 336 { 337 struct sock *s; 338 339 sk_for_each(s, &unix_socket_table[hash]) { 340 struct unix_sock *u = unix_sk(s); 341 342 if (!net_eq(sock_net(s), net)) 343 continue; 344 345 if (u->addr->len == len && 346 !memcmp(u->addr->name, sunname, len)) 347 return s; 348 } 349 return NULL; 350 } 351 352 static inline struct sock *unix_find_socket_byname(struct net *net, 353 struct sockaddr_un *sunname, 354 int len, unsigned int hash) 355 { 356 struct sock *s; 357 358 spin_lock(&unix_table_locks[hash]); 359 s = __unix_find_socket_byname(net, sunname, len, hash); 360 if (s) 361 sock_hold(s); 362 spin_unlock(&unix_table_locks[hash]); 363 return s; 364 } 365 366 static struct sock *unix_find_socket_byinode(struct inode *i) 367 { 368 unsigned int hash = unix_bsd_hash(i); 369 struct sock *s; 370 371 spin_lock(&unix_table_locks[hash]); 372 sk_for_each(s, &unix_socket_table[hash]) { 373 struct dentry *dentry = unix_sk(s)->path.dentry; 374 375 if (dentry && d_backing_inode(dentry) == i) { 376 sock_hold(s); 377 spin_unlock(&unix_table_locks[hash]); 378 return s; 379 } 380 } 381 spin_unlock(&unix_table_locks[hash]); 382 return NULL; 383 } 384 385 /* Support code for asymmetrically connected dgram sockets 386 * 387 * If a datagram socket is connected to a socket not itself connected 388 * to the first socket (eg, /dev/log), clients may only enqueue more 389 * messages if the present receive queue of the server socket is not 390 * "too large". This means there's a second writeability condition 391 * poll and sendmsg need to test. The dgram recv code will do a wake 392 * up on the peer_wait wait queue of a socket upon reception of a 393 * datagram which needs to be propagated to sleeping would-be writers 394 * since these might not have sent anything so far. This can't be 395 * accomplished via poll_wait because the lifetime of the server 396 * socket might be less than that of its clients if these break their 397 * association with it or if the server socket is closed while clients 398 * are still connected to it and there's no way to inform "a polling 399 * implementation" that it should let go of a certain wait queue 400 * 401 * In order to propagate a wake up, a wait_queue_entry_t of the client 402 * socket is enqueued on the peer_wait queue of the server socket 403 * whose wake function does a wake_up on the ordinary client socket 404 * wait queue. This connection is established whenever a write (or 405 * poll for write) hit the flow control condition and broken when the 406 * association to the server socket is dissolved or after a wake up 407 * was relayed. 408 */ 409 410 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 411 void *key) 412 { 413 struct unix_sock *u; 414 wait_queue_head_t *u_sleep; 415 416 u = container_of(q, struct unix_sock, peer_wake); 417 418 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 419 q); 420 u->peer_wake.private = NULL; 421 422 /* relaying can only happen while the wq still exists */ 423 u_sleep = sk_sleep(&u->sk); 424 if (u_sleep) 425 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 426 427 return 0; 428 } 429 430 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 431 { 432 struct unix_sock *u, *u_other; 433 int rc; 434 435 u = unix_sk(sk); 436 u_other = unix_sk(other); 437 rc = 0; 438 spin_lock(&u_other->peer_wait.lock); 439 440 if (!u->peer_wake.private) { 441 u->peer_wake.private = other; 442 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 443 444 rc = 1; 445 } 446 447 spin_unlock(&u_other->peer_wait.lock); 448 return rc; 449 } 450 451 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 452 struct sock *other) 453 { 454 struct unix_sock *u, *u_other; 455 456 u = unix_sk(sk); 457 u_other = unix_sk(other); 458 spin_lock(&u_other->peer_wait.lock); 459 460 if (u->peer_wake.private == other) { 461 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 462 u->peer_wake.private = NULL; 463 } 464 465 spin_unlock(&u_other->peer_wait.lock); 466 } 467 468 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 469 struct sock *other) 470 { 471 unix_dgram_peer_wake_disconnect(sk, other); 472 wake_up_interruptible_poll(sk_sleep(sk), 473 EPOLLOUT | 474 EPOLLWRNORM | 475 EPOLLWRBAND); 476 } 477 478 /* preconditions: 479 * - unix_peer(sk) == other 480 * - association is stable 481 */ 482 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 483 { 484 int connected; 485 486 connected = unix_dgram_peer_wake_connect(sk, other); 487 488 /* If other is SOCK_DEAD, we want to make sure we signal 489 * POLLOUT, such that a subsequent write() can get a 490 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 491 * to other and its full, we will hang waiting for POLLOUT. 492 */ 493 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 494 return 1; 495 496 if (connected) 497 unix_dgram_peer_wake_disconnect(sk, other); 498 499 return 0; 500 } 501 502 static int unix_writable(const struct sock *sk) 503 { 504 return sk->sk_state != TCP_LISTEN && 505 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 506 } 507 508 static void unix_write_space(struct sock *sk) 509 { 510 struct socket_wq *wq; 511 512 rcu_read_lock(); 513 if (unix_writable(sk)) { 514 wq = rcu_dereference(sk->sk_wq); 515 if (skwq_has_sleeper(wq)) 516 wake_up_interruptible_sync_poll(&wq->wait, 517 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 518 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 519 } 520 rcu_read_unlock(); 521 } 522 523 /* When dgram socket disconnects (or changes its peer), we clear its receive 524 * queue of packets arrived from previous peer. First, it allows to do 525 * flow control based only on wmem_alloc; second, sk connected to peer 526 * may receive messages only from that peer. */ 527 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 528 { 529 if (!skb_queue_empty(&sk->sk_receive_queue)) { 530 skb_queue_purge(&sk->sk_receive_queue); 531 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 532 533 /* If one link of bidirectional dgram pipe is disconnected, 534 * we signal error. Messages are lost. Do not make this, 535 * when peer was not connected to us. 536 */ 537 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 538 other->sk_err = ECONNRESET; 539 sk_error_report(other); 540 } 541 } 542 other->sk_state = TCP_CLOSE; 543 } 544 545 static void unix_sock_destructor(struct sock *sk) 546 { 547 struct unix_sock *u = unix_sk(sk); 548 549 skb_queue_purge(&sk->sk_receive_queue); 550 551 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 552 if (u->oob_skb) { 553 kfree_skb(u->oob_skb); 554 u->oob_skb = NULL; 555 } 556 #endif 557 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 558 WARN_ON(!sk_unhashed(sk)); 559 WARN_ON(sk->sk_socket); 560 if (!sock_flag(sk, SOCK_DEAD)) { 561 pr_info("Attempt to release alive unix socket: %p\n", sk); 562 return; 563 } 564 565 if (u->addr) 566 unix_release_addr(u->addr); 567 568 atomic_long_dec(&unix_nr_socks); 569 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 570 #ifdef UNIX_REFCNT_DEBUG 571 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 572 atomic_long_read(&unix_nr_socks)); 573 #endif 574 } 575 576 static void unix_release_sock(struct sock *sk, int embrion) 577 { 578 struct unix_sock *u = unix_sk(sk); 579 struct path path; 580 struct sock *skpair; 581 struct sk_buff *skb; 582 int state; 583 584 unix_remove_socket(sk); 585 586 /* Clear state */ 587 unix_state_lock(sk); 588 sock_orphan(sk); 589 sk->sk_shutdown = SHUTDOWN_MASK; 590 path = u->path; 591 u->path.dentry = NULL; 592 u->path.mnt = NULL; 593 state = sk->sk_state; 594 sk->sk_state = TCP_CLOSE; 595 596 skpair = unix_peer(sk); 597 unix_peer(sk) = NULL; 598 599 unix_state_unlock(sk); 600 601 wake_up_interruptible_all(&u->peer_wait); 602 603 if (skpair != NULL) { 604 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 605 unix_state_lock(skpair); 606 /* No more writes */ 607 skpair->sk_shutdown = SHUTDOWN_MASK; 608 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 609 skpair->sk_err = ECONNRESET; 610 unix_state_unlock(skpair); 611 skpair->sk_state_change(skpair); 612 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 613 } 614 615 unix_dgram_peer_wake_disconnect(sk, skpair); 616 sock_put(skpair); /* It may now die */ 617 } 618 619 /* Try to flush out this socket. Throw out buffers at least */ 620 621 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 622 if (state == TCP_LISTEN) 623 unix_release_sock(skb->sk, 1); 624 /* passed fds are erased in the kfree_skb hook */ 625 UNIXCB(skb).consumed = skb->len; 626 kfree_skb(skb); 627 } 628 629 if (path.dentry) 630 path_put(&path); 631 632 sock_put(sk); 633 634 /* ---- Socket is dead now and most probably destroyed ---- */ 635 636 /* 637 * Fixme: BSD difference: In BSD all sockets connected to us get 638 * ECONNRESET and we die on the spot. In Linux we behave 639 * like files and pipes do and wait for the last 640 * dereference. 641 * 642 * Can't we simply set sock->err? 643 * 644 * What the above comment does talk about? --ANK(980817) 645 */ 646 647 if (unix_tot_inflight) 648 unix_gc(); /* Garbage collect fds */ 649 } 650 651 static void init_peercred(struct sock *sk) 652 { 653 const struct cred *old_cred; 654 struct pid *old_pid; 655 656 spin_lock(&sk->sk_peer_lock); 657 old_pid = sk->sk_peer_pid; 658 old_cred = sk->sk_peer_cred; 659 sk->sk_peer_pid = get_pid(task_tgid(current)); 660 sk->sk_peer_cred = get_current_cred(); 661 spin_unlock(&sk->sk_peer_lock); 662 663 put_pid(old_pid); 664 put_cred(old_cred); 665 } 666 667 static void copy_peercred(struct sock *sk, struct sock *peersk) 668 { 669 const struct cred *old_cred; 670 struct pid *old_pid; 671 672 if (sk < peersk) { 673 spin_lock(&sk->sk_peer_lock); 674 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 675 } else { 676 spin_lock(&peersk->sk_peer_lock); 677 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 678 } 679 old_pid = sk->sk_peer_pid; 680 old_cred = sk->sk_peer_cred; 681 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 682 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 683 684 spin_unlock(&sk->sk_peer_lock); 685 spin_unlock(&peersk->sk_peer_lock); 686 687 put_pid(old_pid); 688 put_cred(old_cred); 689 } 690 691 static int unix_listen(struct socket *sock, int backlog) 692 { 693 int err; 694 struct sock *sk = sock->sk; 695 struct unix_sock *u = unix_sk(sk); 696 697 err = -EOPNOTSUPP; 698 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 699 goto out; /* Only stream/seqpacket sockets accept */ 700 err = -EINVAL; 701 if (!u->addr) 702 goto out; /* No listens on an unbound socket */ 703 unix_state_lock(sk); 704 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 705 goto out_unlock; 706 if (backlog > sk->sk_max_ack_backlog) 707 wake_up_interruptible_all(&u->peer_wait); 708 sk->sk_max_ack_backlog = backlog; 709 sk->sk_state = TCP_LISTEN; 710 /* set credentials so connect can copy them */ 711 init_peercred(sk); 712 err = 0; 713 714 out_unlock: 715 unix_state_unlock(sk); 716 out: 717 return err; 718 } 719 720 static int unix_release(struct socket *); 721 static int unix_bind(struct socket *, struct sockaddr *, int); 722 static int unix_stream_connect(struct socket *, struct sockaddr *, 723 int addr_len, int flags); 724 static int unix_socketpair(struct socket *, struct socket *); 725 static int unix_accept(struct socket *, struct socket *, int, bool); 726 static int unix_getname(struct socket *, struct sockaddr *, int); 727 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 728 static __poll_t unix_dgram_poll(struct file *, struct socket *, 729 poll_table *); 730 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 731 #ifdef CONFIG_COMPAT 732 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 733 #endif 734 static int unix_shutdown(struct socket *, int); 735 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 736 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 737 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset, 738 size_t size, int flags); 739 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 740 struct pipe_inode_info *, size_t size, 741 unsigned int flags); 742 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 743 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 744 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc, 745 sk_read_actor_t recv_actor); 746 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc, 747 sk_read_actor_t recv_actor); 748 static int unix_dgram_connect(struct socket *, struct sockaddr *, 749 int, int); 750 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 751 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 752 int); 753 754 static int unix_set_peek_off(struct sock *sk, int val) 755 { 756 struct unix_sock *u = unix_sk(sk); 757 758 if (mutex_lock_interruptible(&u->iolock)) 759 return -EINTR; 760 761 sk->sk_peek_off = val; 762 mutex_unlock(&u->iolock); 763 764 return 0; 765 } 766 767 #ifdef CONFIG_PROC_FS 768 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 769 { 770 struct sock *sk = sock->sk; 771 struct unix_sock *u; 772 773 if (sk) { 774 u = unix_sk(sock->sk); 775 seq_printf(m, "scm_fds: %u\n", 776 atomic_read(&u->scm_stat.nr_fds)); 777 } 778 } 779 #else 780 #define unix_show_fdinfo NULL 781 #endif 782 783 static const struct proto_ops unix_stream_ops = { 784 .family = PF_UNIX, 785 .owner = THIS_MODULE, 786 .release = unix_release, 787 .bind = unix_bind, 788 .connect = unix_stream_connect, 789 .socketpair = unix_socketpair, 790 .accept = unix_accept, 791 .getname = unix_getname, 792 .poll = unix_poll, 793 .ioctl = unix_ioctl, 794 #ifdef CONFIG_COMPAT 795 .compat_ioctl = unix_compat_ioctl, 796 #endif 797 .listen = unix_listen, 798 .shutdown = unix_shutdown, 799 .sendmsg = unix_stream_sendmsg, 800 .recvmsg = unix_stream_recvmsg, 801 .read_sock = unix_stream_read_sock, 802 .mmap = sock_no_mmap, 803 .sendpage = unix_stream_sendpage, 804 .splice_read = unix_stream_splice_read, 805 .set_peek_off = unix_set_peek_off, 806 .show_fdinfo = unix_show_fdinfo, 807 }; 808 809 static const struct proto_ops unix_dgram_ops = { 810 .family = PF_UNIX, 811 .owner = THIS_MODULE, 812 .release = unix_release, 813 .bind = unix_bind, 814 .connect = unix_dgram_connect, 815 .socketpair = unix_socketpair, 816 .accept = sock_no_accept, 817 .getname = unix_getname, 818 .poll = unix_dgram_poll, 819 .ioctl = unix_ioctl, 820 #ifdef CONFIG_COMPAT 821 .compat_ioctl = unix_compat_ioctl, 822 #endif 823 .listen = sock_no_listen, 824 .shutdown = unix_shutdown, 825 .sendmsg = unix_dgram_sendmsg, 826 .read_sock = unix_read_sock, 827 .recvmsg = unix_dgram_recvmsg, 828 .mmap = sock_no_mmap, 829 .sendpage = sock_no_sendpage, 830 .set_peek_off = unix_set_peek_off, 831 .show_fdinfo = unix_show_fdinfo, 832 }; 833 834 static const struct proto_ops unix_seqpacket_ops = { 835 .family = PF_UNIX, 836 .owner = THIS_MODULE, 837 .release = unix_release, 838 .bind = unix_bind, 839 .connect = unix_stream_connect, 840 .socketpair = unix_socketpair, 841 .accept = unix_accept, 842 .getname = unix_getname, 843 .poll = unix_dgram_poll, 844 .ioctl = unix_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = unix_compat_ioctl, 847 #endif 848 .listen = unix_listen, 849 .shutdown = unix_shutdown, 850 .sendmsg = unix_seqpacket_sendmsg, 851 .recvmsg = unix_seqpacket_recvmsg, 852 .mmap = sock_no_mmap, 853 .sendpage = sock_no_sendpage, 854 .set_peek_off = unix_set_peek_off, 855 .show_fdinfo = unix_show_fdinfo, 856 }; 857 858 static void unix_close(struct sock *sk, long timeout) 859 { 860 /* Nothing to do here, unix socket does not need a ->close(). 861 * This is merely for sockmap. 862 */ 863 } 864 865 static void unix_unhash(struct sock *sk) 866 { 867 /* Nothing to do here, unix socket does not need a ->unhash(). 868 * This is merely for sockmap. 869 */ 870 } 871 872 struct proto unix_dgram_proto = { 873 .name = "UNIX", 874 .owner = THIS_MODULE, 875 .obj_size = sizeof(struct unix_sock), 876 .close = unix_close, 877 #ifdef CONFIG_BPF_SYSCALL 878 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 879 #endif 880 }; 881 882 struct proto unix_stream_proto = { 883 .name = "UNIX-STREAM", 884 .owner = THIS_MODULE, 885 .obj_size = sizeof(struct unix_sock), 886 .close = unix_close, 887 .unhash = unix_unhash, 888 #ifdef CONFIG_BPF_SYSCALL 889 .psock_update_sk_prot = unix_stream_bpf_update_proto, 890 #endif 891 }; 892 893 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 894 { 895 struct unix_sock *u; 896 struct sock *sk; 897 int err; 898 899 atomic_long_inc(&unix_nr_socks); 900 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 901 err = -ENFILE; 902 goto err; 903 } 904 905 if (type == SOCK_STREAM) 906 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 907 else /*dgram and seqpacket */ 908 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 909 910 if (!sk) { 911 err = -ENOMEM; 912 goto err; 913 } 914 915 sock_init_data(sock, sk); 916 917 sk->sk_hash = unix_unbound_hash(sk); 918 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 919 sk->sk_write_space = unix_write_space; 920 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 921 sk->sk_destruct = unix_sock_destructor; 922 u = unix_sk(sk); 923 u->path.dentry = NULL; 924 u->path.mnt = NULL; 925 spin_lock_init(&u->lock); 926 atomic_long_set(&u->inflight, 0); 927 INIT_LIST_HEAD(&u->link); 928 mutex_init(&u->iolock); /* single task reading lock */ 929 mutex_init(&u->bindlock); /* single task binding lock */ 930 init_waitqueue_head(&u->peer_wait); 931 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 932 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 933 unix_insert_unbound_socket(sk); 934 935 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 936 937 return sk; 938 939 err: 940 atomic_long_dec(&unix_nr_socks); 941 return ERR_PTR(err); 942 } 943 944 static int unix_create(struct net *net, struct socket *sock, int protocol, 945 int kern) 946 { 947 struct sock *sk; 948 949 if (protocol && protocol != PF_UNIX) 950 return -EPROTONOSUPPORT; 951 952 sock->state = SS_UNCONNECTED; 953 954 switch (sock->type) { 955 case SOCK_STREAM: 956 sock->ops = &unix_stream_ops; 957 break; 958 /* 959 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 960 * nothing uses it. 961 */ 962 case SOCK_RAW: 963 sock->type = SOCK_DGRAM; 964 fallthrough; 965 case SOCK_DGRAM: 966 sock->ops = &unix_dgram_ops; 967 break; 968 case SOCK_SEQPACKET: 969 sock->ops = &unix_seqpacket_ops; 970 break; 971 default: 972 return -ESOCKTNOSUPPORT; 973 } 974 975 sk = unix_create1(net, sock, kern, sock->type); 976 if (IS_ERR(sk)) 977 return PTR_ERR(sk); 978 979 return 0; 980 } 981 982 static int unix_release(struct socket *sock) 983 { 984 struct sock *sk = sock->sk; 985 986 if (!sk) 987 return 0; 988 989 sk->sk_prot->close(sk, 0); 990 unix_release_sock(sk, 0); 991 sock->sk = NULL; 992 993 return 0; 994 } 995 996 static struct sock *unix_find_bsd(struct net *net, struct sockaddr_un *sunaddr, 997 int addr_len, int type) 998 { 999 struct inode *inode; 1000 struct path path; 1001 struct sock *sk; 1002 int err; 1003 1004 unix_mkname_bsd(sunaddr, addr_len); 1005 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1006 if (err) 1007 goto fail; 1008 1009 err = path_permission(&path, MAY_WRITE); 1010 if (err) 1011 goto path_put; 1012 1013 err = -ECONNREFUSED; 1014 inode = d_backing_inode(path.dentry); 1015 if (!S_ISSOCK(inode->i_mode)) 1016 goto path_put; 1017 1018 sk = unix_find_socket_byinode(inode); 1019 if (!sk) 1020 goto path_put; 1021 1022 err = -EPROTOTYPE; 1023 if (sk->sk_type == type) 1024 touch_atime(&path); 1025 else 1026 goto sock_put; 1027 1028 path_put(&path); 1029 1030 return sk; 1031 1032 sock_put: 1033 sock_put(sk); 1034 path_put: 1035 path_put(&path); 1036 fail: 1037 return ERR_PTR(err); 1038 } 1039 1040 static struct sock *unix_find_abstract(struct net *net, 1041 struct sockaddr_un *sunaddr, 1042 int addr_len, int type) 1043 { 1044 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1045 struct dentry *dentry; 1046 struct sock *sk; 1047 1048 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1049 if (!sk) 1050 return ERR_PTR(-ECONNREFUSED); 1051 1052 dentry = unix_sk(sk)->path.dentry; 1053 if (dentry) 1054 touch_atime(&unix_sk(sk)->path); 1055 1056 return sk; 1057 } 1058 1059 static struct sock *unix_find_other(struct net *net, 1060 struct sockaddr_un *sunaddr, 1061 int addr_len, int type) 1062 { 1063 struct sock *sk; 1064 1065 if (sunaddr->sun_path[0]) 1066 sk = unix_find_bsd(net, sunaddr, addr_len, type); 1067 else 1068 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1069 1070 return sk; 1071 } 1072 1073 static int unix_autobind(struct sock *sk) 1074 { 1075 unsigned int new_hash, old_hash = sk->sk_hash; 1076 struct unix_sock *u = unix_sk(sk); 1077 struct unix_address *addr; 1078 u32 lastnum, ordernum; 1079 int err; 1080 1081 err = mutex_lock_interruptible(&u->bindlock); 1082 if (err) 1083 return err; 1084 1085 if (u->addr) 1086 goto out; 1087 1088 err = -ENOMEM; 1089 addr = kzalloc(sizeof(*addr) + 1090 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1091 if (!addr) 1092 goto out; 1093 1094 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1095 addr->name->sun_family = AF_UNIX; 1096 refcount_set(&addr->refcnt, 1); 1097 1098 ordernum = prandom_u32(); 1099 lastnum = ordernum & 0xFFFFF; 1100 retry: 1101 ordernum = (ordernum + 1) & 0xFFFFF; 1102 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1103 1104 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1105 unix_table_double_lock(old_hash, new_hash); 1106 1107 if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len, 1108 new_hash)) { 1109 unix_table_double_unlock(old_hash, new_hash); 1110 1111 /* __unix_find_socket_byname() may take long time if many names 1112 * are already in use. 1113 */ 1114 cond_resched(); 1115 1116 if (ordernum == lastnum) { 1117 /* Give up if all names seems to be in use. */ 1118 err = -ENOSPC; 1119 unix_release_addr(addr); 1120 goto out; 1121 } 1122 1123 goto retry; 1124 } 1125 1126 __unix_set_addr_hash(sk, addr, new_hash); 1127 unix_table_double_unlock(old_hash, new_hash); 1128 err = 0; 1129 1130 out: mutex_unlock(&u->bindlock); 1131 return err; 1132 } 1133 1134 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1135 int addr_len) 1136 { 1137 umode_t mode = S_IFSOCK | 1138 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1139 unsigned int new_hash, old_hash = sk->sk_hash; 1140 struct unix_sock *u = unix_sk(sk); 1141 struct user_namespace *ns; // barf... 1142 struct unix_address *addr; 1143 struct dentry *dentry; 1144 struct path parent; 1145 int err; 1146 1147 unix_mkname_bsd(sunaddr, addr_len); 1148 addr_len = strlen(sunaddr->sun_path) + 1149 offsetof(struct sockaddr_un, sun_path) + 1; 1150 1151 addr = unix_create_addr(sunaddr, addr_len); 1152 if (!addr) 1153 return -ENOMEM; 1154 1155 /* 1156 * Get the parent directory, calculate the hash for last 1157 * component. 1158 */ 1159 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1160 if (IS_ERR(dentry)) { 1161 err = PTR_ERR(dentry); 1162 goto out; 1163 } 1164 1165 /* 1166 * All right, let's create it. 1167 */ 1168 ns = mnt_user_ns(parent.mnt); 1169 err = security_path_mknod(&parent, dentry, mode, 0); 1170 if (!err) 1171 err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0); 1172 if (err) 1173 goto out_path; 1174 err = mutex_lock_interruptible(&u->bindlock); 1175 if (err) 1176 goto out_unlink; 1177 if (u->addr) 1178 goto out_unlock; 1179 1180 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1181 unix_table_double_lock(old_hash, new_hash); 1182 u->path.mnt = mntget(parent.mnt); 1183 u->path.dentry = dget(dentry); 1184 __unix_set_addr_hash(sk, addr, new_hash); 1185 unix_table_double_unlock(old_hash, new_hash); 1186 mutex_unlock(&u->bindlock); 1187 done_path_create(&parent, dentry); 1188 return 0; 1189 1190 out_unlock: 1191 mutex_unlock(&u->bindlock); 1192 err = -EINVAL; 1193 out_unlink: 1194 /* failed after successful mknod? unlink what we'd created... */ 1195 vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL); 1196 out_path: 1197 done_path_create(&parent, dentry); 1198 out: 1199 unix_release_addr(addr); 1200 return err == -EEXIST ? -EADDRINUSE : err; 1201 } 1202 1203 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1204 int addr_len) 1205 { 1206 unsigned int new_hash, old_hash = sk->sk_hash; 1207 struct unix_sock *u = unix_sk(sk); 1208 struct unix_address *addr; 1209 int err; 1210 1211 addr = unix_create_addr(sunaddr, addr_len); 1212 if (!addr) 1213 return -ENOMEM; 1214 1215 err = mutex_lock_interruptible(&u->bindlock); 1216 if (err) 1217 goto out; 1218 1219 if (u->addr) { 1220 err = -EINVAL; 1221 goto out_mutex; 1222 } 1223 1224 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1225 unix_table_double_lock(old_hash, new_hash); 1226 1227 if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len, 1228 new_hash)) 1229 goto out_spin; 1230 1231 __unix_set_addr_hash(sk, addr, new_hash); 1232 unix_table_double_unlock(old_hash, new_hash); 1233 mutex_unlock(&u->bindlock); 1234 return 0; 1235 1236 out_spin: 1237 unix_table_double_unlock(old_hash, new_hash); 1238 err = -EADDRINUSE; 1239 out_mutex: 1240 mutex_unlock(&u->bindlock); 1241 out: 1242 unix_release_addr(addr); 1243 return err; 1244 } 1245 1246 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1247 { 1248 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1249 struct sock *sk = sock->sk; 1250 int err; 1251 1252 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1253 sunaddr->sun_family == AF_UNIX) 1254 return unix_autobind(sk); 1255 1256 err = unix_validate_addr(sunaddr, addr_len); 1257 if (err) 1258 return err; 1259 1260 if (sunaddr->sun_path[0]) 1261 err = unix_bind_bsd(sk, sunaddr, addr_len); 1262 else 1263 err = unix_bind_abstract(sk, sunaddr, addr_len); 1264 1265 return err; 1266 } 1267 1268 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1269 { 1270 if (unlikely(sk1 == sk2) || !sk2) { 1271 unix_state_lock(sk1); 1272 return; 1273 } 1274 if (sk1 < sk2) { 1275 unix_state_lock(sk1); 1276 unix_state_lock_nested(sk2); 1277 } else { 1278 unix_state_lock(sk2); 1279 unix_state_lock_nested(sk1); 1280 } 1281 } 1282 1283 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1284 { 1285 if (unlikely(sk1 == sk2) || !sk2) { 1286 unix_state_unlock(sk1); 1287 return; 1288 } 1289 unix_state_unlock(sk1); 1290 unix_state_unlock(sk2); 1291 } 1292 1293 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1294 int alen, int flags) 1295 { 1296 struct sock *sk = sock->sk; 1297 struct net *net = sock_net(sk); 1298 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1299 struct sock *other; 1300 int err; 1301 1302 err = -EINVAL; 1303 if (alen < offsetofend(struct sockaddr, sa_family)) 1304 goto out; 1305 1306 if (addr->sa_family != AF_UNSPEC) { 1307 err = unix_validate_addr(sunaddr, alen); 1308 if (err) 1309 goto out; 1310 1311 if (test_bit(SOCK_PASSCRED, &sock->flags) && 1312 !unix_sk(sk)->addr) { 1313 err = unix_autobind(sk); 1314 if (err) 1315 goto out; 1316 } 1317 1318 restart: 1319 other = unix_find_other(net, sunaddr, alen, sock->type); 1320 if (IS_ERR(other)) { 1321 err = PTR_ERR(other); 1322 goto out; 1323 } 1324 1325 unix_state_double_lock(sk, other); 1326 1327 /* Apparently VFS overslept socket death. Retry. */ 1328 if (sock_flag(other, SOCK_DEAD)) { 1329 unix_state_double_unlock(sk, other); 1330 sock_put(other); 1331 goto restart; 1332 } 1333 1334 err = -EPERM; 1335 if (!unix_may_send(sk, other)) 1336 goto out_unlock; 1337 1338 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1339 if (err) 1340 goto out_unlock; 1341 1342 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1343 } else { 1344 /* 1345 * 1003.1g breaking connected state with AF_UNSPEC 1346 */ 1347 other = NULL; 1348 unix_state_double_lock(sk, other); 1349 } 1350 1351 /* 1352 * If it was connected, reconnect. 1353 */ 1354 if (unix_peer(sk)) { 1355 struct sock *old_peer = unix_peer(sk); 1356 1357 unix_peer(sk) = other; 1358 if (!other) 1359 sk->sk_state = TCP_CLOSE; 1360 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1361 1362 unix_state_double_unlock(sk, other); 1363 1364 if (other != old_peer) 1365 unix_dgram_disconnected(sk, old_peer); 1366 sock_put(old_peer); 1367 } else { 1368 unix_peer(sk) = other; 1369 unix_state_double_unlock(sk, other); 1370 } 1371 1372 return 0; 1373 1374 out_unlock: 1375 unix_state_double_unlock(sk, other); 1376 sock_put(other); 1377 out: 1378 return err; 1379 } 1380 1381 static long unix_wait_for_peer(struct sock *other, long timeo) 1382 __releases(&unix_sk(other)->lock) 1383 { 1384 struct unix_sock *u = unix_sk(other); 1385 int sched; 1386 DEFINE_WAIT(wait); 1387 1388 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1389 1390 sched = !sock_flag(other, SOCK_DEAD) && 1391 !(other->sk_shutdown & RCV_SHUTDOWN) && 1392 unix_recvq_full(other); 1393 1394 unix_state_unlock(other); 1395 1396 if (sched) 1397 timeo = schedule_timeout(timeo); 1398 1399 finish_wait(&u->peer_wait, &wait); 1400 return timeo; 1401 } 1402 1403 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1404 int addr_len, int flags) 1405 { 1406 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1407 struct sock *sk = sock->sk; 1408 struct net *net = sock_net(sk); 1409 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1410 struct sock *newsk = NULL; 1411 struct sock *other = NULL; 1412 struct sk_buff *skb = NULL; 1413 int st; 1414 int err; 1415 long timeo; 1416 1417 err = unix_validate_addr(sunaddr, addr_len); 1418 if (err) 1419 goto out; 1420 1421 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1422 err = unix_autobind(sk); 1423 if (err) 1424 goto out; 1425 } 1426 1427 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1428 1429 /* First of all allocate resources. 1430 If we will make it after state is locked, 1431 we will have to recheck all again in any case. 1432 */ 1433 1434 /* create new sock for complete connection */ 1435 newsk = unix_create1(sock_net(sk), NULL, 0, sock->type); 1436 if (IS_ERR(newsk)) { 1437 err = PTR_ERR(newsk); 1438 newsk = NULL; 1439 goto out; 1440 } 1441 1442 err = -ENOMEM; 1443 1444 /* Allocate skb for sending to listening sock */ 1445 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1446 if (skb == NULL) 1447 goto out; 1448 1449 restart: 1450 /* Find listening sock. */ 1451 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1452 if (IS_ERR(other)) { 1453 err = PTR_ERR(other); 1454 other = NULL; 1455 goto out; 1456 } 1457 1458 /* Latch state of peer */ 1459 unix_state_lock(other); 1460 1461 /* Apparently VFS overslept socket death. Retry. */ 1462 if (sock_flag(other, SOCK_DEAD)) { 1463 unix_state_unlock(other); 1464 sock_put(other); 1465 goto restart; 1466 } 1467 1468 err = -ECONNREFUSED; 1469 if (other->sk_state != TCP_LISTEN) 1470 goto out_unlock; 1471 if (other->sk_shutdown & RCV_SHUTDOWN) 1472 goto out_unlock; 1473 1474 if (unix_recvq_full(other)) { 1475 err = -EAGAIN; 1476 if (!timeo) 1477 goto out_unlock; 1478 1479 timeo = unix_wait_for_peer(other, timeo); 1480 1481 err = sock_intr_errno(timeo); 1482 if (signal_pending(current)) 1483 goto out; 1484 sock_put(other); 1485 goto restart; 1486 } 1487 1488 /* Latch our state. 1489 1490 It is tricky place. We need to grab our state lock and cannot 1491 drop lock on peer. It is dangerous because deadlock is 1492 possible. Connect to self case and simultaneous 1493 attempt to connect are eliminated by checking socket 1494 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1495 check this before attempt to grab lock. 1496 1497 Well, and we have to recheck the state after socket locked. 1498 */ 1499 st = sk->sk_state; 1500 1501 switch (st) { 1502 case TCP_CLOSE: 1503 /* This is ok... continue with connect */ 1504 break; 1505 case TCP_ESTABLISHED: 1506 /* Socket is already connected */ 1507 err = -EISCONN; 1508 goto out_unlock; 1509 default: 1510 err = -EINVAL; 1511 goto out_unlock; 1512 } 1513 1514 unix_state_lock_nested(sk); 1515 1516 if (sk->sk_state != st) { 1517 unix_state_unlock(sk); 1518 unix_state_unlock(other); 1519 sock_put(other); 1520 goto restart; 1521 } 1522 1523 err = security_unix_stream_connect(sk, other, newsk); 1524 if (err) { 1525 unix_state_unlock(sk); 1526 goto out_unlock; 1527 } 1528 1529 /* The way is open! Fastly set all the necessary fields... */ 1530 1531 sock_hold(sk); 1532 unix_peer(newsk) = sk; 1533 newsk->sk_state = TCP_ESTABLISHED; 1534 newsk->sk_type = sk->sk_type; 1535 init_peercred(newsk); 1536 newu = unix_sk(newsk); 1537 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1538 otheru = unix_sk(other); 1539 1540 /* copy address information from listening to new sock 1541 * 1542 * The contents of *(otheru->addr) and otheru->path 1543 * are seen fully set up here, since we have found 1544 * otheru in hash under unix_table_locks. Insertion 1545 * into the hash chain we'd found it in had been done 1546 * in an earlier critical area protected by unix_table_locks, 1547 * the same one where we'd set *(otheru->addr) contents, 1548 * as well as otheru->path and otheru->addr itself. 1549 * 1550 * Using smp_store_release() here to set newu->addr 1551 * is enough to make those stores, as well as stores 1552 * to newu->path visible to anyone who gets newu->addr 1553 * by smp_load_acquire(). IOW, the same warranties 1554 * as for unix_sock instances bound in unix_bind() or 1555 * in unix_autobind(). 1556 */ 1557 if (otheru->path.dentry) { 1558 path_get(&otheru->path); 1559 newu->path = otheru->path; 1560 } 1561 refcount_inc(&otheru->addr->refcnt); 1562 smp_store_release(&newu->addr, otheru->addr); 1563 1564 /* Set credentials */ 1565 copy_peercred(sk, other); 1566 1567 sock->state = SS_CONNECTED; 1568 sk->sk_state = TCP_ESTABLISHED; 1569 sock_hold(newsk); 1570 1571 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1572 unix_peer(sk) = newsk; 1573 1574 unix_state_unlock(sk); 1575 1576 /* take ten and send info to listening sock */ 1577 spin_lock(&other->sk_receive_queue.lock); 1578 __skb_queue_tail(&other->sk_receive_queue, skb); 1579 spin_unlock(&other->sk_receive_queue.lock); 1580 unix_state_unlock(other); 1581 other->sk_data_ready(other); 1582 sock_put(other); 1583 return 0; 1584 1585 out_unlock: 1586 if (other) 1587 unix_state_unlock(other); 1588 1589 out: 1590 kfree_skb(skb); 1591 if (newsk) 1592 unix_release_sock(newsk, 0); 1593 if (other) 1594 sock_put(other); 1595 return err; 1596 } 1597 1598 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1599 { 1600 struct sock *ska = socka->sk, *skb = sockb->sk; 1601 1602 /* Join our sockets back to back */ 1603 sock_hold(ska); 1604 sock_hold(skb); 1605 unix_peer(ska) = skb; 1606 unix_peer(skb) = ska; 1607 init_peercred(ska); 1608 init_peercred(skb); 1609 1610 ska->sk_state = TCP_ESTABLISHED; 1611 skb->sk_state = TCP_ESTABLISHED; 1612 socka->state = SS_CONNECTED; 1613 sockb->state = SS_CONNECTED; 1614 return 0; 1615 } 1616 1617 static void unix_sock_inherit_flags(const struct socket *old, 1618 struct socket *new) 1619 { 1620 if (test_bit(SOCK_PASSCRED, &old->flags)) 1621 set_bit(SOCK_PASSCRED, &new->flags); 1622 if (test_bit(SOCK_PASSSEC, &old->flags)) 1623 set_bit(SOCK_PASSSEC, &new->flags); 1624 } 1625 1626 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1627 bool kern) 1628 { 1629 struct sock *sk = sock->sk; 1630 struct sock *tsk; 1631 struct sk_buff *skb; 1632 int err; 1633 1634 err = -EOPNOTSUPP; 1635 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1636 goto out; 1637 1638 err = -EINVAL; 1639 if (sk->sk_state != TCP_LISTEN) 1640 goto out; 1641 1642 /* If socket state is TCP_LISTEN it cannot change (for now...), 1643 * so that no locks are necessary. 1644 */ 1645 1646 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1647 &err); 1648 if (!skb) { 1649 /* This means receive shutdown. */ 1650 if (err == 0) 1651 err = -EINVAL; 1652 goto out; 1653 } 1654 1655 tsk = skb->sk; 1656 skb_free_datagram(sk, skb); 1657 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1658 1659 /* attach accepted sock to socket */ 1660 unix_state_lock(tsk); 1661 newsock->state = SS_CONNECTED; 1662 unix_sock_inherit_flags(sock, newsock); 1663 sock_graft(tsk, newsock); 1664 unix_state_unlock(tsk); 1665 return 0; 1666 1667 out: 1668 return err; 1669 } 1670 1671 1672 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1673 { 1674 struct sock *sk = sock->sk; 1675 struct unix_address *addr; 1676 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1677 int err = 0; 1678 1679 if (peer) { 1680 sk = unix_peer_get(sk); 1681 1682 err = -ENOTCONN; 1683 if (!sk) 1684 goto out; 1685 err = 0; 1686 } else { 1687 sock_hold(sk); 1688 } 1689 1690 addr = smp_load_acquire(&unix_sk(sk)->addr); 1691 if (!addr) { 1692 sunaddr->sun_family = AF_UNIX; 1693 sunaddr->sun_path[0] = 0; 1694 err = offsetof(struct sockaddr_un, sun_path); 1695 } else { 1696 err = addr->len; 1697 memcpy(sunaddr, addr->name, addr->len); 1698 } 1699 sock_put(sk); 1700 out: 1701 return err; 1702 } 1703 1704 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1705 { 1706 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1707 1708 /* 1709 * Garbage collection of unix sockets starts by selecting a set of 1710 * candidate sockets which have reference only from being in flight 1711 * (total_refs == inflight_refs). This condition is checked once during 1712 * the candidate collection phase, and candidates are marked as such, so 1713 * that non-candidates can later be ignored. While inflight_refs is 1714 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1715 * is an instantaneous decision. 1716 * 1717 * Once a candidate, however, the socket must not be reinstalled into a 1718 * file descriptor while the garbage collection is in progress. 1719 * 1720 * If the above conditions are met, then the directed graph of 1721 * candidates (*) does not change while unix_gc_lock is held. 1722 * 1723 * Any operations that changes the file count through file descriptors 1724 * (dup, close, sendmsg) does not change the graph since candidates are 1725 * not installed in fds. 1726 * 1727 * Dequeing a candidate via recvmsg would install it into an fd, but 1728 * that takes unix_gc_lock to decrement the inflight count, so it's 1729 * serialized with garbage collection. 1730 * 1731 * MSG_PEEK is special in that it does not change the inflight count, 1732 * yet does install the socket into an fd. The following lock/unlock 1733 * pair is to ensure serialization with garbage collection. It must be 1734 * done between incrementing the file count and installing the file into 1735 * an fd. 1736 * 1737 * If garbage collection starts after the barrier provided by the 1738 * lock/unlock, then it will see the elevated refcount and not mark this 1739 * as a candidate. If a garbage collection is already in progress 1740 * before the file count was incremented, then the lock/unlock pair will 1741 * ensure that garbage collection is finished before progressing to 1742 * installing the fd. 1743 * 1744 * (*) A -> B where B is on the queue of A or B is on the queue of C 1745 * which is on the queue of listening socket A. 1746 */ 1747 spin_lock(&unix_gc_lock); 1748 spin_unlock(&unix_gc_lock); 1749 } 1750 1751 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1752 { 1753 int err = 0; 1754 1755 UNIXCB(skb).pid = get_pid(scm->pid); 1756 UNIXCB(skb).uid = scm->creds.uid; 1757 UNIXCB(skb).gid = scm->creds.gid; 1758 UNIXCB(skb).fp = NULL; 1759 unix_get_secdata(scm, skb); 1760 if (scm->fp && send_fds) 1761 err = unix_attach_fds(scm, skb); 1762 1763 skb->destructor = unix_destruct_scm; 1764 return err; 1765 } 1766 1767 static bool unix_passcred_enabled(const struct socket *sock, 1768 const struct sock *other) 1769 { 1770 return test_bit(SOCK_PASSCRED, &sock->flags) || 1771 !other->sk_socket || 1772 test_bit(SOCK_PASSCRED, &other->sk_socket->flags); 1773 } 1774 1775 /* 1776 * Some apps rely on write() giving SCM_CREDENTIALS 1777 * We include credentials if source or destination socket 1778 * asserted SOCK_PASSCRED. 1779 */ 1780 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1781 const struct sock *other) 1782 { 1783 if (UNIXCB(skb).pid) 1784 return; 1785 if (unix_passcred_enabled(sock, other)) { 1786 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1787 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1788 } 1789 } 1790 1791 static int maybe_init_creds(struct scm_cookie *scm, 1792 struct socket *socket, 1793 const struct sock *other) 1794 { 1795 int err; 1796 struct msghdr msg = { .msg_controllen = 0 }; 1797 1798 err = scm_send(socket, &msg, scm, false); 1799 if (err) 1800 return err; 1801 1802 if (unix_passcred_enabled(socket, other)) { 1803 scm->pid = get_pid(task_tgid(current)); 1804 current_uid_gid(&scm->creds.uid, &scm->creds.gid); 1805 } 1806 return err; 1807 } 1808 1809 static bool unix_skb_scm_eq(struct sk_buff *skb, 1810 struct scm_cookie *scm) 1811 { 1812 return UNIXCB(skb).pid == scm->pid && 1813 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1814 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1815 unix_secdata_eq(scm, skb); 1816 } 1817 1818 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1819 { 1820 struct scm_fp_list *fp = UNIXCB(skb).fp; 1821 struct unix_sock *u = unix_sk(sk); 1822 1823 if (unlikely(fp && fp->count)) 1824 atomic_add(fp->count, &u->scm_stat.nr_fds); 1825 } 1826 1827 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1828 { 1829 struct scm_fp_list *fp = UNIXCB(skb).fp; 1830 struct unix_sock *u = unix_sk(sk); 1831 1832 if (unlikely(fp && fp->count)) 1833 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1834 } 1835 1836 /* 1837 * Send AF_UNIX data. 1838 */ 1839 1840 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1841 size_t len) 1842 { 1843 struct sock *sk = sock->sk; 1844 struct net *net = sock_net(sk); 1845 struct unix_sock *u = unix_sk(sk); 1846 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1847 struct sock *other = NULL; 1848 int err; 1849 struct sk_buff *skb; 1850 long timeo; 1851 struct scm_cookie scm; 1852 int data_len = 0; 1853 int sk_locked; 1854 1855 wait_for_unix_gc(); 1856 err = scm_send(sock, msg, &scm, false); 1857 if (err < 0) 1858 return err; 1859 1860 err = -EOPNOTSUPP; 1861 if (msg->msg_flags&MSG_OOB) 1862 goto out; 1863 1864 if (msg->msg_namelen) { 1865 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1866 if (err) 1867 goto out; 1868 } else { 1869 sunaddr = NULL; 1870 err = -ENOTCONN; 1871 other = unix_peer_get(sk); 1872 if (!other) 1873 goto out; 1874 } 1875 1876 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1877 err = unix_autobind(sk); 1878 if (err) 1879 goto out; 1880 } 1881 1882 err = -EMSGSIZE; 1883 if (len > sk->sk_sndbuf - 32) 1884 goto out; 1885 1886 if (len > SKB_MAX_ALLOC) { 1887 data_len = min_t(size_t, 1888 len - SKB_MAX_ALLOC, 1889 MAX_SKB_FRAGS * PAGE_SIZE); 1890 data_len = PAGE_ALIGN(data_len); 1891 1892 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1893 } 1894 1895 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1896 msg->msg_flags & MSG_DONTWAIT, &err, 1897 PAGE_ALLOC_COSTLY_ORDER); 1898 if (skb == NULL) 1899 goto out; 1900 1901 err = unix_scm_to_skb(&scm, skb, true); 1902 if (err < 0) 1903 goto out_free; 1904 1905 skb_put(skb, len - data_len); 1906 skb->data_len = data_len; 1907 skb->len = len; 1908 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1909 if (err) 1910 goto out_free; 1911 1912 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1913 1914 restart: 1915 if (!other) { 1916 err = -ECONNRESET; 1917 if (sunaddr == NULL) 1918 goto out_free; 1919 1920 other = unix_find_other(net, sunaddr, msg->msg_namelen, 1921 sk->sk_type); 1922 if (IS_ERR(other)) { 1923 err = PTR_ERR(other); 1924 other = NULL; 1925 goto out_free; 1926 } 1927 } 1928 1929 if (sk_filter(other, skb) < 0) { 1930 /* Toss the packet but do not return any error to the sender */ 1931 err = len; 1932 goto out_free; 1933 } 1934 1935 sk_locked = 0; 1936 unix_state_lock(other); 1937 restart_locked: 1938 err = -EPERM; 1939 if (!unix_may_send(sk, other)) 1940 goto out_unlock; 1941 1942 if (unlikely(sock_flag(other, SOCK_DEAD))) { 1943 /* 1944 * Check with 1003.1g - what should 1945 * datagram error 1946 */ 1947 unix_state_unlock(other); 1948 sock_put(other); 1949 1950 if (!sk_locked) 1951 unix_state_lock(sk); 1952 1953 err = 0; 1954 if (unix_peer(sk) == other) { 1955 unix_peer(sk) = NULL; 1956 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 1957 1958 unix_state_unlock(sk); 1959 1960 sk->sk_state = TCP_CLOSE; 1961 unix_dgram_disconnected(sk, other); 1962 sock_put(other); 1963 err = -ECONNREFUSED; 1964 } else { 1965 unix_state_unlock(sk); 1966 } 1967 1968 other = NULL; 1969 if (err) 1970 goto out_free; 1971 goto restart; 1972 } 1973 1974 err = -EPIPE; 1975 if (other->sk_shutdown & RCV_SHUTDOWN) 1976 goto out_unlock; 1977 1978 if (sk->sk_type != SOCK_SEQPACKET) { 1979 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1980 if (err) 1981 goto out_unlock; 1982 } 1983 1984 /* other == sk && unix_peer(other) != sk if 1985 * - unix_peer(sk) == NULL, destination address bound to sk 1986 * - unix_peer(sk) == sk by time of get but disconnected before lock 1987 */ 1988 if (other != sk && 1989 unlikely(unix_peer(other) != sk && 1990 unix_recvq_full_lockless(other))) { 1991 if (timeo) { 1992 timeo = unix_wait_for_peer(other, timeo); 1993 1994 err = sock_intr_errno(timeo); 1995 if (signal_pending(current)) 1996 goto out_free; 1997 1998 goto restart; 1999 } 2000 2001 if (!sk_locked) { 2002 unix_state_unlock(other); 2003 unix_state_double_lock(sk, other); 2004 } 2005 2006 if (unix_peer(sk) != other || 2007 unix_dgram_peer_wake_me(sk, other)) { 2008 err = -EAGAIN; 2009 sk_locked = 1; 2010 goto out_unlock; 2011 } 2012 2013 if (!sk_locked) { 2014 sk_locked = 1; 2015 goto restart_locked; 2016 } 2017 } 2018 2019 if (unlikely(sk_locked)) 2020 unix_state_unlock(sk); 2021 2022 if (sock_flag(other, SOCK_RCVTSTAMP)) 2023 __net_timestamp(skb); 2024 maybe_add_creds(skb, sock, other); 2025 scm_stat_add(other, skb); 2026 skb_queue_tail(&other->sk_receive_queue, skb); 2027 unix_state_unlock(other); 2028 other->sk_data_ready(other); 2029 sock_put(other); 2030 scm_destroy(&scm); 2031 return len; 2032 2033 out_unlock: 2034 if (sk_locked) 2035 unix_state_unlock(sk); 2036 unix_state_unlock(other); 2037 out_free: 2038 kfree_skb(skb); 2039 out: 2040 if (other) 2041 sock_put(other); 2042 scm_destroy(&scm); 2043 return err; 2044 } 2045 2046 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2047 * bytes, and a minimum of a full page. 2048 */ 2049 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2050 2051 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2052 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other) 2053 { 2054 struct unix_sock *ousk = unix_sk(other); 2055 struct sk_buff *skb; 2056 int err = 0; 2057 2058 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2059 2060 if (!skb) 2061 return err; 2062 2063 skb_put(skb, 1); 2064 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2065 2066 if (err) { 2067 kfree_skb(skb); 2068 return err; 2069 } 2070 2071 unix_state_lock(other); 2072 2073 if (sock_flag(other, SOCK_DEAD) || 2074 (other->sk_shutdown & RCV_SHUTDOWN)) { 2075 unix_state_unlock(other); 2076 kfree_skb(skb); 2077 return -EPIPE; 2078 } 2079 2080 maybe_add_creds(skb, sock, other); 2081 skb_get(skb); 2082 2083 if (ousk->oob_skb) 2084 consume_skb(ousk->oob_skb); 2085 2086 WRITE_ONCE(ousk->oob_skb, skb); 2087 2088 scm_stat_add(other, skb); 2089 skb_queue_tail(&other->sk_receive_queue, skb); 2090 sk_send_sigurg(other); 2091 unix_state_unlock(other); 2092 other->sk_data_ready(other); 2093 2094 return err; 2095 } 2096 #endif 2097 2098 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2099 size_t len) 2100 { 2101 struct sock *sk = sock->sk; 2102 struct sock *other = NULL; 2103 int err, size; 2104 struct sk_buff *skb; 2105 int sent = 0; 2106 struct scm_cookie scm; 2107 bool fds_sent = false; 2108 int data_len; 2109 2110 wait_for_unix_gc(); 2111 err = scm_send(sock, msg, &scm, false); 2112 if (err < 0) 2113 return err; 2114 2115 err = -EOPNOTSUPP; 2116 if (msg->msg_flags & MSG_OOB) { 2117 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2118 if (len) 2119 len--; 2120 else 2121 #endif 2122 goto out_err; 2123 } 2124 2125 if (msg->msg_namelen) { 2126 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2127 goto out_err; 2128 } else { 2129 err = -ENOTCONN; 2130 other = unix_peer(sk); 2131 if (!other) 2132 goto out_err; 2133 } 2134 2135 if (sk->sk_shutdown & SEND_SHUTDOWN) 2136 goto pipe_err; 2137 2138 while (sent < len) { 2139 size = len - sent; 2140 2141 /* Keep two messages in the pipe so it schedules better */ 2142 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2143 2144 /* allow fallback to order-0 allocations */ 2145 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2146 2147 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2148 2149 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2150 2151 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2152 msg->msg_flags & MSG_DONTWAIT, &err, 2153 get_order(UNIX_SKB_FRAGS_SZ)); 2154 if (!skb) 2155 goto out_err; 2156 2157 /* Only send the fds in the first buffer */ 2158 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2159 if (err < 0) { 2160 kfree_skb(skb); 2161 goto out_err; 2162 } 2163 fds_sent = true; 2164 2165 skb_put(skb, size - data_len); 2166 skb->data_len = data_len; 2167 skb->len = size; 2168 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2169 if (err) { 2170 kfree_skb(skb); 2171 goto out_err; 2172 } 2173 2174 unix_state_lock(other); 2175 2176 if (sock_flag(other, SOCK_DEAD) || 2177 (other->sk_shutdown & RCV_SHUTDOWN)) 2178 goto pipe_err_free; 2179 2180 maybe_add_creds(skb, sock, other); 2181 scm_stat_add(other, skb); 2182 skb_queue_tail(&other->sk_receive_queue, skb); 2183 unix_state_unlock(other); 2184 other->sk_data_ready(other); 2185 sent += size; 2186 } 2187 2188 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2189 if (msg->msg_flags & MSG_OOB) { 2190 err = queue_oob(sock, msg, other); 2191 if (err) 2192 goto out_err; 2193 sent++; 2194 } 2195 #endif 2196 2197 scm_destroy(&scm); 2198 2199 return sent; 2200 2201 pipe_err_free: 2202 unix_state_unlock(other); 2203 kfree_skb(skb); 2204 pipe_err: 2205 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2206 send_sig(SIGPIPE, current, 0); 2207 err = -EPIPE; 2208 out_err: 2209 scm_destroy(&scm); 2210 return sent ? : err; 2211 } 2212 2213 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page, 2214 int offset, size_t size, int flags) 2215 { 2216 int err; 2217 bool send_sigpipe = false; 2218 bool init_scm = true; 2219 struct scm_cookie scm; 2220 struct sock *other, *sk = socket->sk; 2221 struct sk_buff *skb, *newskb = NULL, *tail = NULL; 2222 2223 if (flags & MSG_OOB) 2224 return -EOPNOTSUPP; 2225 2226 other = unix_peer(sk); 2227 if (!other || sk->sk_state != TCP_ESTABLISHED) 2228 return -ENOTCONN; 2229 2230 if (false) { 2231 alloc_skb: 2232 unix_state_unlock(other); 2233 mutex_unlock(&unix_sk(other)->iolock); 2234 newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT, 2235 &err, 0); 2236 if (!newskb) 2237 goto err; 2238 } 2239 2240 /* we must acquire iolock as we modify already present 2241 * skbs in the sk_receive_queue and mess with skb->len 2242 */ 2243 err = mutex_lock_interruptible(&unix_sk(other)->iolock); 2244 if (err) { 2245 err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS; 2246 goto err; 2247 } 2248 2249 if (sk->sk_shutdown & SEND_SHUTDOWN) { 2250 err = -EPIPE; 2251 send_sigpipe = true; 2252 goto err_unlock; 2253 } 2254 2255 unix_state_lock(other); 2256 2257 if (sock_flag(other, SOCK_DEAD) || 2258 other->sk_shutdown & RCV_SHUTDOWN) { 2259 err = -EPIPE; 2260 send_sigpipe = true; 2261 goto err_state_unlock; 2262 } 2263 2264 if (init_scm) { 2265 err = maybe_init_creds(&scm, socket, other); 2266 if (err) 2267 goto err_state_unlock; 2268 init_scm = false; 2269 } 2270 2271 skb = skb_peek_tail(&other->sk_receive_queue); 2272 if (tail && tail == skb) { 2273 skb = newskb; 2274 } else if (!skb || !unix_skb_scm_eq(skb, &scm)) { 2275 if (newskb) { 2276 skb = newskb; 2277 } else { 2278 tail = skb; 2279 goto alloc_skb; 2280 } 2281 } else if (newskb) { 2282 /* this is fast path, we don't necessarily need to 2283 * call to kfree_skb even though with newskb == NULL 2284 * this - does no harm 2285 */ 2286 consume_skb(newskb); 2287 newskb = NULL; 2288 } 2289 2290 if (skb_append_pagefrags(skb, page, offset, size)) { 2291 tail = skb; 2292 goto alloc_skb; 2293 } 2294 2295 skb->len += size; 2296 skb->data_len += size; 2297 skb->truesize += size; 2298 refcount_add(size, &sk->sk_wmem_alloc); 2299 2300 if (newskb) { 2301 err = unix_scm_to_skb(&scm, skb, false); 2302 if (err) 2303 goto err_state_unlock; 2304 spin_lock(&other->sk_receive_queue.lock); 2305 __skb_queue_tail(&other->sk_receive_queue, newskb); 2306 spin_unlock(&other->sk_receive_queue.lock); 2307 } 2308 2309 unix_state_unlock(other); 2310 mutex_unlock(&unix_sk(other)->iolock); 2311 2312 other->sk_data_ready(other); 2313 scm_destroy(&scm); 2314 return size; 2315 2316 err_state_unlock: 2317 unix_state_unlock(other); 2318 err_unlock: 2319 mutex_unlock(&unix_sk(other)->iolock); 2320 err: 2321 kfree_skb(newskb); 2322 if (send_sigpipe && !(flags & MSG_NOSIGNAL)) 2323 send_sig(SIGPIPE, current, 0); 2324 if (!init_scm) 2325 scm_destroy(&scm); 2326 return err; 2327 } 2328 2329 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2330 size_t len) 2331 { 2332 int err; 2333 struct sock *sk = sock->sk; 2334 2335 err = sock_error(sk); 2336 if (err) 2337 return err; 2338 2339 if (sk->sk_state != TCP_ESTABLISHED) 2340 return -ENOTCONN; 2341 2342 if (msg->msg_namelen) 2343 msg->msg_namelen = 0; 2344 2345 return unix_dgram_sendmsg(sock, msg, len); 2346 } 2347 2348 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2349 size_t size, int flags) 2350 { 2351 struct sock *sk = sock->sk; 2352 2353 if (sk->sk_state != TCP_ESTABLISHED) 2354 return -ENOTCONN; 2355 2356 return unix_dgram_recvmsg(sock, msg, size, flags); 2357 } 2358 2359 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2360 { 2361 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2362 2363 if (addr) { 2364 msg->msg_namelen = addr->len; 2365 memcpy(msg->msg_name, addr->name, addr->len); 2366 } 2367 } 2368 2369 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2370 int flags) 2371 { 2372 struct scm_cookie scm; 2373 struct socket *sock = sk->sk_socket; 2374 struct unix_sock *u = unix_sk(sk); 2375 struct sk_buff *skb, *last; 2376 long timeo; 2377 int skip; 2378 int err; 2379 2380 err = -EOPNOTSUPP; 2381 if (flags&MSG_OOB) 2382 goto out; 2383 2384 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2385 2386 do { 2387 mutex_lock(&u->iolock); 2388 2389 skip = sk_peek_offset(sk, flags); 2390 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2391 &skip, &err, &last); 2392 if (skb) { 2393 if (!(flags & MSG_PEEK)) 2394 scm_stat_del(sk, skb); 2395 break; 2396 } 2397 2398 mutex_unlock(&u->iolock); 2399 2400 if (err != -EAGAIN) 2401 break; 2402 } while (timeo && 2403 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2404 &err, &timeo, last)); 2405 2406 if (!skb) { /* implies iolock unlocked */ 2407 unix_state_lock(sk); 2408 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2409 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2410 (sk->sk_shutdown & RCV_SHUTDOWN)) 2411 err = 0; 2412 unix_state_unlock(sk); 2413 goto out; 2414 } 2415 2416 if (wq_has_sleeper(&u->peer_wait)) 2417 wake_up_interruptible_sync_poll(&u->peer_wait, 2418 EPOLLOUT | EPOLLWRNORM | 2419 EPOLLWRBAND); 2420 2421 if (msg->msg_name) 2422 unix_copy_addr(msg, skb->sk); 2423 2424 if (size > skb->len - skip) 2425 size = skb->len - skip; 2426 else if (size < skb->len - skip) 2427 msg->msg_flags |= MSG_TRUNC; 2428 2429 err = skb_copy_datagram_msg(skb, skip, msg, size); 2430 if (err) 2431 goto out_free; 2432 2433 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2434 __sock_recv_timestamp(msg, sk, skb); 2435 2436 memset(&scm, 0, sizeof(scm)); 2437 2438 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2439 unix_set_secdata(&scm, skb); 2440 2441 if (!(flags & MSG_PEEK)) { 2442 if (UNIXCB(skb).fp) 2443 unix_detach_fds(&scm, skb); 2444 2445 sk_peek_offset_bwd(sk, skb->len); 2446 } else { 2447 /* It is questionable: on PEEK we could: 2448 - do not return fds - good, but too simple 8) 2449 - return fds, and do not return them on read (old strategy, 2450 apparently wrong) 2451 - clone fds (I chose it for now, it is the most universal 2452 solution) 2453 2454 POSIX 1003.1g does not actually define this clearly 2455 at all. POSIX 1003.1g doesn't define a lot of things 2456 clearly however! 2457 2458 */ 2459 2460 sk_peek_offset_fwd(sk, size); 2461 2462 if (UNIXCB(skb).fp) 2463 unix_peek_fds(&scm, skb); 2464 } 2465 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2466 2467 scm_recv(sock, msg, &scm, flags); 2468 2469 out_free: 2470 skb_free_datagram(sk, skb); 2471 mutex_unlock(&u->iolock); 2472 out: 2473 return err; 2474 } 2475 2476 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2477 int flags) 2478 { 2479 struct sock *sk = sock->sk; 2480 2481 #ifdef CONFIG_BPF_SYSCALL 2482 const struct proto *prot = READ_ONCE(sk->sk_prot); 2483 2484 if (prot != &unix_dgram_proto) 2485 return prot->recvmsg(sk, msg, size, flags, NULL); 2486 #endif 2487 return __unix_dgram_recvmsg(sk, msg, size, flags); 2488 } 2489 2490 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc, 2491 sk_read_actor_t recv_actor) 2492 { 2493 int copied = 0; 2494 2495 while (1) { 2496 struct unix_sock *u = unix_sk(sk); 2497 struct sk_buff *skb; 2498 int used, err; 2499 2500 mutex_lock(&u->iolock); 2501 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2502 mutex_unlock(&u->iolock); 2503 if (!skb) 2504 return err; 2505 2506 used = recv_actor(desc, skb, 0, skb->len); 2507 if (used <= 0) { 2508 if (!copied) 2509 copied = used; 2510 kfree_skb(skb); 2511 break; 2512 } else if (used <= skb->len) { 2513 copied += used; 2514 } 2515 2516 kfree_skb(skb); 2517 if (!desc->count) 2518 break; 2519 } 2520 2521 return copied; 2522 } 2523 2524 /* 2525 * Sleep until more data has arrived. But check for races.. 2526 */ 2527 static long unix_stream_data_wait(struct sock *sk, long timeo, 2528 struct sk_buff *last, unsigned int last_len, 2529 bool freezable) 2530 { 2531 struct sk_buff *tail; 2532 DEFINE_WAIT(wait); 2533 2534 unix_state_lock(sk); 2535 2536 for (;;) { 2537 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2538 2539 tail = skb_peek_tail(&sk->sk_receive_queue); 2540 if (tail != last || 2541 (tail && tail->len != last_len) || 2542 sk->sk_err || 2543 (sk->sk_shutdown & RCV_SHUTDOWN) || 2544 signal_pending(current) || 2545 !timeo) 2546 break; 2547 2548 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2549 unix_state_unlock(sk); 2550 if (freezable) 2551 timeo = freezable_schedule_timeout(timeo); 2552 else 2553 timeo = schedule_timeout(timeo); 2554 unix_state_lock(sk); 2555 2556 if (sock_flag(sk, SOCK_DEAD)) 2557 break; 2558 2559 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2560 } 2561 2562 finish_wait(sk_sleep(sk), &wait); 2563 unix_state_unlock(sk); 2564 return timeo; 2565 } 2566 2567 static unsigned int unix_skb_len(const struct sk_buff *skb) 2568 { 2569 return skb->len - UNIXCB(skb).consumed; 2570 } 2571 2572 struct unix_stream_read_state { 2573 int (*recv_actor)(struct sk_buff *, int, int, 2574 struct unix_stream_read_state *); 2575 struct socket *socket; 2576 struct msghdr *msg; 2577 struct pipe_inode_info *pipe; 2578 size_t size; 2579 int flags; 2580 unsigned int splice_flags; 2581 }; 2582 2583 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2584 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2585 { 2586 struct socket *sock = state->socket; 2587 struct sock *sk = sock->sk; 2588 struct unix_sock *u = unix_sk(sk); 2589 int chunk = 1; 2590 struct sk_buff *oob_skb; 2591 2592 mutex_lock(&u->iolock); 2593 unix_state_lock(sk); 2594 2595 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2596 unix_state_unlock(sk); 2597 mutex_unlock(&u->iolock); 2598 return -EINVAL; 2599 } 2600 2601 oob_skb = u->oob_skb; 2602 2603 if (!(state->flags & MSG_PEEK)) 2604 WRITE_ONCE(u->oob_skb, NULL); 2605 2606 unix_state_unlock(sk); 2607 2608 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2609 2610 if (!(state->flags & MSG_PEEK)) { 2611 UNIXCB(oob_skb).consumed += 1; 2612 kfree_skb(oob_skb); 2613 } 2614 2615 mutex_unlock(&u->iolock); 2616 2617 if (chunk < 0) 2618 return -EFAULT; 2619 2620 state->msg->msg_flags |= MSG_OOB; 2621 return 1; 2622 } 2623 2624 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2625 int flags, int copied) 2626 { 2627 struct unix_sock *u = unix_sk(sk); 2628 2629 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2630 skb_unlink(skb, &sk->sk_receive_queue); 2631 consume_skb(skb); 2632 skb = NULL; 2633 } else { 2634 if (skb == u->oob_skb) { 2635 if (copied) { 2636 skb = NULL; 2637 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2638 if (!(flags & MSG_PEEK)) { 2639 WRITE_ONCE(u->oob_skb, NULL); 2640 consume_skb(skb); 2641 } 2642 } else if (!(flags & MSG_PEEK)) { 2643 skb_unlink(skb, &sk->sk_receive_queue); 2644 consume_skb(skb); 2645 skb = skb_peek(&sk->sk_receive_queue); 2646 } 2647 } 2648 } 2649 return skb; 2650 } 2651 #endif 2652 2653 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc, 2654 sk_read_actor_t recv_actor) 2655 { 2656 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2657 return -ENOTCONN; 2658 2659 return unix_read_sock(sk, desc, recv_actor); 2660 } 2661 2662 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2663 bool freezable) 2664 { 2665 struct scm_cookie scm; 2666 struct socket *sock = state->socket; 2667 struct sock *sk = sock->sk; 2668 struct unix_sock *u = unix_sk(sk); 2669 int copied = 0; 2670 int flags = state->flags; 2671 int noblock = flags & MSG_DONTWAIT; 2672 bool check_creds = false; 2673 int target; 2674 int err = 0; 2675 long timeo; 2676 int skip; 2677 size_t size = state->size; 2678 unsigned int last_len; 2679 2680 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2681 err = -EINVAL; 2682 goto out; 2683 } 2684 2685 if (unlikely(flags & MSG_OOB)) { 2686 err = -EOPNOTSUPP; 2687 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2688 err = unix_stream_recv_urg(state); 2689 #endif 2690 goto out; 2691 } 2692 2693 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2694 timeo = sock_rcvtimeo(sk, noblock); 2695 2696 memset(&scm, 0, sizeof(scm)); 2697 2698 /* Lock the socket to prevent queue disordering 2699 * while sleeps in memcpy_tomsg 2700 */ 2701 mutex_lock(&u->iolock); 2702 2703 skip = max(sk_peek_offset(sk, flags), 0); 2704 2705 do { 2706 int chunk; 2707 bool drop_skb; 2708 struct sk_buff *skb, *last; 2709 2710 redo: 2711 unix_state_lock(sk); 2712 if (sock_flag(sk, SOCK_DEAD)) { 2713 err = -ECONNRESET; 2714 goto unlock; 2715 } 2716 last = skb = skb_peek(&sk->sk_receive_queue); 2717 last_len = last ? last->len : 0; 2718 2719 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2720 if (skb) { 2721 skb = manage_oob(skb, sk, flags, copied); 2722 if (!skb) { 2723 unix_state_unlock(sk); 2724 if (copied) 2725 break; 2726 goto redo; 2727 } 2728 } 2729 #endif 2730 again: 2731 if (skb == NULL) { 2732 if (copied >= target) 2733 goto unlock; 2734 2735 /* 2736 * POSIX 1003.1g mandates this order. 2737 */ 2738 2739 err = sock_error(sk); 2740 if (err) 2741 goto unlock; 2742 if (sk->sk_shutdown & RCV_SHUTDOWN) 2743 goto unlock; 2744 2745 unix_state_unlock(sk); 2746 if (!timeo) { 2747 err = -EAGAIN; 2748 break; 2749 } 2750 2751 mutex_unlock(&u->iolock); 2752 2753 timeo = unix_stream_data_wait(sk, timeo, last, 2754 last_len, freezable); 2755 2756 if (signal_pending(current)) { 2757 err = sock_intr_errno(timeo); 2758 scm_destroy(&scm); 2759 goto out; 2760 } 2761 2762 mutex_lock(&u->iolock); 2763 goto redo; 2764 unlock: 2765 unix_state_unlock(sk); 2766 break; 2767 } 2768 2769 while (skip >= unix_skb_len(skb)) { 2770 skip -= unix_skb_len(skb); 2771 last = skb; 2772 last_len = skb->len; 2773 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2774 if (!skb) 2775 goto again; 2776 } 2777 2778 unix_state_unlock(sk); 2779 2780 if (check_creds) { 2781 /* Never glue messages from different writers */ 2782 if (!unix_skb_scm_eq(skb, &scm)) 2783 break; 2784 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) { 2785 /* Copy credentials */ 2786 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2787 unix_set_secdata(&scm, skb); 2788 check_creds = true; 2789 } 2790 2791 /* Copy address just once */ 2792 if (state->msg && state->msg->msg_name) { 2793 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2794 state->msg->msg_name); 2795 unix_copy_addr(state->msg, skb->sk); 2796 sunaddr = NULL; 2797 } 2798 2799 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2800 skb_get(skb); 2801 chunk = state->recv_actor(skb, skip, chunk, state); 2802 drop_skb = !unix_skb_len(skb); 2803 /* skb is only safe to use if !drop_skb */ 2804 consume_skb(skb); 2805 if (chunk < 0) { 2806 if (copied == 0) 2807 copied = -EFAULT; 2808 break; 2809 } 2810 copied += chunk; 2811 size -= chunk; 2812 2813 if (drop_skb) { 2814 /* the skb was touched by a concurrent reader; 2815 * we should not expect anything from this skb 2816 * anymore and assume it invalid - we can be 2817 * sure it was dropped from the socket queue 2818 * 2819 * let's report a short read 2820 */ 2821 err = 0; 2822 break; 2823 } 2824 2825 /* Mark read part of skb as used */ 2826 if (!(flags & MSG_PEEK)) { 2827 UNIXCB(skb).consumed += chunk; 2828 2829 sk_peek_offset_bwd(sk, chunk); 2830 2831 if (UNIXCB(skb).fp) { 2832 scm_stat_del(sk, skb); 2833 unix_detach_fds(&scm, skb); 2834 } 2835 2836 if (unix_skb_len(skb)) 2837 break; 2838 2839 skb_unlink(skb, &sk->sk_receive_queue); 2840 consume_skb(skb); 2841 2842 if (scm.fp) 2843 break; 2844 } else { 2845 /* It is questionable, see note in unix_dgram_recvmsg. 2846 */ 2847 if (UNIXCB(skb).fp) 2848 unix_peek_fds(&scm, skb); 2849 2850 sk_peek_offset_fwd(sk, chunk); 2851 2852 if (UNIXCB(skb).fp) 2853 break; 2854 2855 skip = 0; 2856 last = skb; 2857 last_len = skb->len; 2858 unix_state_lock(sk); 2859 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2860 if (skb) 2861 goto again; 2862 unix_state_unlock(sk); 2863 break; 2864 } 2865 } while (size); 2866 2867 mutex_unlock(&u->iolock); 2868 if (state->msg) 2869 scm_recv(sock, state->msg, &scm, flags); 2870 else 2871 scm_destroy(&scm); 2872 out: 2873 return copied ? : err; 2874 } 2875 2876 static int unix_stream_read_actor(struct sk_buff *skb, 2877 int skip, int chunk, 2878 struct unix_stream_read_state *state) 2879 { 2880 int ret; 2881 2882 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2883 state->msg, chunk); 2884 return ret ?: chunk; 2885 } 2886 2887 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2888 size_t size, int flags) 2889 { 2890 struct unix_stream_read_state state = { 2891 .recv_actor = unix_stream_read_actor, 2892 .socket = sk->sk_socket, 2893 .msg = msg, 2894 .size = size, 2895 .flags = flags 2896 }; 2897 2898 return unix_stream_read_generic(&state, true); 2899 } 2900 2901 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2902 size_t size, int flags) 2903 { 2904 struct unix_stream_read_state state = { 2905 .recv_actor = unix_stream_read_actor, 2906 .socket = sock, 2907 .msg = msg, 2908 .size = size, 2909 .flags = flags 2910 }; 2911 2912 #ifdef CONFIG_BPF_SYSCALL 2913 struct sock *sk = sock->sk; 2914 const struct proto *prot = READ_ONCE(sk->sk_prot); 2915 2916 if (prot != &unix_stream_proto) 2917 return prot->recvmsg(sk, msg, size, flags, NULL); 2918 #endif 2919 return unix_stream_read_generic(&state, true); 2920 } 2921 2922 static int unix_stream_splice_actor(struct sk_buff *skb, 2923 int skip, int chunk, 2924 struct unix_stream_read_state *state) 2925 { 2926 return skb_splice_bits(skb, state->socket->sk, 2927 UNIXCB(skb).consumed + skip, 2928 state->pipe, chunk, state->splice_flags); 2929 } 2930 2931 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2932 struct pipe_inode_info *pipe, 2933 size_t size, unsigned int flags) 2934 { 2935 struct unix_stream_read_state state = { 2936 .recv_actor = unix_stream_splice_actor, 2937 .socket = sock, 2938 .pipe = pipe, 2939 .size = size, 2940 .splice_flags = flags, 2941 }; 2942 2943 if (unlikely(*ppos)) 2944 return -ESPIPE; 2945 2946 if (sock->file->f_flags & O_NONBLOCK || 2947 flags & SPLICE_F_NONBLOCK) 2948 state.flags = MSG_DONTWAIT; 2949 2950 return unix_stream_read_generic(&state, false); 2951 } 2952 2953 static int unix_shutdown(struct socket *sock, int mode) 2954 { 2955 struct sock *sk = sock->sk; 2956 struct sock *other; 2957 2958 if (mode < SHUT_RD || mode > SHUT_RDWR) 2959 return -EINVAL; 2960 /* This maps: 2961 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2962 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2963 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2964 */ 2965 ++mode; 2966 2967 unix_state_lock(sk); 2968 sk->sk_shutdown |= mode; 2969 other = unix_peer(sk); 2970 if (other) 2971 sock_hold(other); 2972 unix_state_unlock(sk); 2973 sk->sk_state_change(sk); 2974 2975 if (other && 2976 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2977 2978 int peer_mode = 0; 2979 const struct proto *prot = READ_ONCE(other->sk_prot); 2980 2981 if (prot->unhash) 2982 prot->unhash(other); 2983 if (mode&RCV_SHUTDOWN) 2984 peer_mode |= SEND_SHUTDOWN; 2985 if (mode&SEND_SHUTDOWN) 2986 peer_mode |= RCV_SHUTDOWN; 2987 unix_state_lock(other); 2988 other->sk_shutdown |= peer_mode; 2989 unix_state_unlock(other); 2990 other->sk_state_change(other); 2991 if (peer_mode == SHUTDOWN_MASK) 2992 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2993 else if (peer_mode & RCV_SHUTDOWN) 2994 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2995 } 2996 if (other) 2997 sock_put(other); 2998 2999 return 0; 3000 } 3001 3002 long unix_inq_len(struct sock *sk) 3003 { 3004 struct sk_buff *skb; 3005 long amount = 0; 3006 3007 if (sk->sk_state == TCP_LISTEN) 3008 return -EINVAL; 3009 3010 spin_lock(&sk->sk_receive_queue.lock); 3011 if (sk->sk_type == SOCK_STREAM || 3012 sk->sk_type == SOCK_SEQPACKET) { 3013 skb_queue_walk(&sk->sk_receive_queue, skb) 3014 amount += unix_skb_len(skb); 3015 } else { 3016 skb = skb_peek(&sk->sk_receive_queue); 3017 if (skb) 3018 amount = skb->len; 3019 } 3020 spin_unlock(&sk->sk_receive_queue.lock); 3021 3022 return amount; 3023 } 3024 EXPORT_SYMBOL_GPL(unix_inq_len); 3025 3026 long unix_outq_len(struct sock *sk) 3027 { 3028 return sk_wmem_alloc_get(sk); 3029 } 3030 EXPORT_SYMBOL_GPL(unix_outq_len); 3031 3032 static int unix_open_file(struct sock *sk) 3033 { 3034 struct path path; 3035 struct file *f; 3036 int fd; 3037 3038 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3039 return -EPERM; 3040 3041 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3042 return -ENOENT; 3043 3044 path = unix_sk(sk)->path; 3045 if (!path.dentry) 3046 return -ENOENT; 3047 3048 path_get(&path); 3049 3050 fd = get_unused_fd_flags(O_CLOEXEC); 3051 if (fd < 0) 3052 goto out; 3053 3054 f = dentry_open(&path, O_PATH, current_cred()); 3055 if (IS_ERR(f)) { 3056 put_unused_fd(fd); 3057 fd = PTR_ERR(f); 3058 goto out; 3059 } 3060 3061 fd_install(fd, f); 3062 out: 3063 path_put(&path); 3064 3065 return fd; 3066 } 3067 3068 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3069 { 3070 struct sock *sk = sock->sk; 3071 long amount = 0; 3072 int err; 3073 3074 switch (cmd) { 3075 case SIOCOUTQ: 3076 amount = unix_outq_len(sk); 3077 err = put_user(amount, (int __user *)arg); 3078 break; 3079 case SIOCINQ: 3080 amount = unix_inq_len(sk); 3081 if (amount < 0) 3082 err = amount; 3083 else 3084 err = put_user(amount, (int __user *)arg); 3085 break; 3086 case SIOCUNIXFILE: 3087 err = unix_open_file(sk); 3088 break; 3089 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3090 case SIOCATMARK: 3091 { 3092 struct sk_buff *skb; 3093 int answ = 0; 3094 3095 skb = skb_peek(&sk->sk_receive_queue); 3096 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3097 answ = 1; 3098 err = put_user(answ, (int __user *)arg); 3099 } 3100 break; 3101 #endif 3102 default: 3103 err = -ENOIOCTLCMD; 3104 break; 3105 } 3106 return err; 3107 } 3108 3109 #ifdef CONFIG_COMPAT 3110 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3111 { 3112 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3113 } 3114 #endif 3115 3116 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3117 { 3118 struct sock *sk = sock->sk; 3119 __poll_t mask; 3120 3121 sock_poll_wait(file, sock, wait); 3122 mask = 0; 3123 3124 /* exceptional events? */ 3125 if (sk->sk_err) 3126 mask |= EPOLLERR; 3127 if (sk->sk_shutdown == SHUTDOWN_MASK) 3128 mask |= EPOLLHUP; 3129 if (sk->sk_shutdown & RCV_SHUTDOWN) 3130 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3131 3132 /* readable? */ 3133 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3134 mask |= EPOLLIN | EPOLLRDNORM; 3135 if (sk_is_readable(sk)) 3136 mask |= EPOLLIN | EPOLLRDNORM; 3137 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3138 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3139 mask |= EPOLLPRI; 3140 #endif 3141 3142 /* Connection-based need to check for termination and startup */ 3143 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3144 sk->sk_state == TCP_CLOSE) 3145 mask |= EPOLLHUP; 3146 3147 /* 3148 * we set writable also when the other side has shut down the 3149 * connection. This prevents stuck sockets. 3150 */ 3151 if (unix_writable(sk)) 3152 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3153 3154 return mask; 3155 } 3156 3157 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3158 poll_table *wait) 3159 { 3160 struct sock *sk = sock->sk, *other; 3161 unsigned int writable; 3162 __poll_t mask; 3163 3164 sock_poll_wait(file, sock, wait); 3165 mask = 0; 3166 3167 /* exceptional events? */ 3168 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 3169 mask |= EPOLLERR | 3170 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3171 3172 if (sk->sk_shutdown & RCV_SHUTDOWN) 3173 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3174 if (sk->sk_shutdown == SHUTDOWN_MASK) 3175 mask |= EPOLLHUP; 3176 3177 /* readable? */ 3178 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3179 mask |= EPOLLIN | EPOLLRDNORM; 3180 if (sk_is_readable(sk)) 3181 mask |= EPOLLIN | EPOLLRDNORM; 3182 3183 /* Connection-based need to check for termination and startup */ 3184 if (sk->sk_type == SOCK_SEQPACKET) { 3185 if (sk->sk_state == TCP_CLOSE) 3186 mask |= EPOLLHUP; 3187 /* connection hasn't started yet? */ 3188 if (sk->sk_state == TCP_SYN_SENT) 3189 return mask; 3190 } 3191 3192 /* No write status requested, avoid expensive OUT tests. */ 3193 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3194 return mask; 3195 3196 writable = unix_writable(sk); 3197 if (writable) { 3198 unix_state_lock(sk); 3199 3200 other = unix_peer(sk); 3201 if (other && unix_peer(other) != sk && 3202 unix_recvq_full_lockless(other) && 3203 unix_dgram_peer_wake_me(sk, other)) 3204 writable = 0; 3205 3206 unix_state_unlock(sk); 3207 } 3208 3209 if (writable) 3210 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3211 else 3212 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3213 3214 return mask; 3215 } 3216 3217 #ifdef CONFIG_PROC_FS 3218 3219 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3220 3221 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3222 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3223 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3224 3225 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3226 { 3227 unsigned long offset = get_offset(*pos); 3228 unsigned long bucket = get_bucket(*pos); 3229 struct sock *sk; 3230 unsigned long count = 0; 3231 3232 for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) { 3233 if (sock_net(sk) != seq_file_net(seq)) 3234 continue; 3235 if (++count == offset) 3236 break; 3237 } 3238 3239 return sk; 3240 } 3241 3242 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3243 { 3244 unsigned long bucket = get_bucket(*pos); 3245 struct sock *sk; 3246 3247 while (bucket < ARRAY_SIZE(unix_socket_table)) { 3248 spin_lock(&unix_table_locks[bucket]); 3249 3250 sk = unix_from_bucket(seq, pos); 3251 if (sk) 3252 return sk; 3253 3254 spin_unlock(&unix_table_locks[bucket]); 3255 3256 *pos = set_bucket_offset(++bucket, 1); 3257 } 3258 3259 return NULL; 3260 } 3261 3262 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3263 loff_t *pos) 3264 { 3265 unsigned long bucket = get_bucket(*pos); 3266 3267 for (sk = sk_next(sk); sk; sk = sk_next(sk)) 3268 if (sock_net(sk) == seq_file_net(seq)) 3269 return sk; 3270 3271 spin_unlock(&unix_table_locks[bucket]); 3272 3273 *pos = set_bucket_offset(++bucket, 1); 3274 3275 return unix_get_first(seq, pos); 3276 } 3277 3278 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3279 { 3280 if (!*pos) 3281 return SEQ_START_TOKEN; 3282 3283 return unix_get_first(seq, pos); 3284 } 3285 3286 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3287 { 3288 ++*pos; 3289 3290 if (v == SEQ_START_TOKEN) 3291 return unix_get_first(seq, pos); 3292 3293 return unix_get_next(seq, v, pos); 3294 } 3295 3296 static void unix_seq_stop(struct seq_file *seq, void *v) 3297 { 3298 struct sock *sk = v; 3299 3300 if (sk) 3301 spin_unlock(&unix_table_locks[sk->sk_hash]); 3302 } 3303 3304 static int unix_seq_show(struct seq_file *seq, void *v) 3305 { 3306 3307 if (v == SEQ_START_TOKEN) 3308 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3309 "Inode Path\n"); 3310 else { 3311 struct sock *s = v; 3312 struct unix_sock *u = unix_sk(s); 3313 unix_state_lock(s); 3314 3315 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3316 s, 3317 refcount_read(&s->sk_refcnt), 3318 0, 3319 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3320 s->sk_type, 3321 s->sk_socket ? 3322 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3323 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3324 sock_i_ino(s)); 3325 3326 if (u->addr) { // under unix_table_locks here 3327 int i, len; 3328 seq_putc(seq, ' '); 3329 3330 i = 0; 3331 len = u->addr->len - 3332 offsetof(struct sockaddr_un, sun_path); 3333 if (u->addr->name->sun_path[0]) { 3334 len--; 3335 } else { 3336 seq_putc(seq, '@'); 3337 i++; 3338 } 3339 for ( ; i < len; i++) 3340 seq_putc(seq, u->addr->name->sun_path[i] ?: 3341 '@'); 3342 } 3343 unix_state_unlock(s); 3344 seq_putc(seq, '\n'); 3345 } 3346 3347 return 0; 3348 } 3349 3350 static const struct seq_operations unix_seq_ops = { 3351 .start = unix_seq_start, 3352 .next = unix_seq_next, 3353 .stop = unix_seq_stop, 3354 .show = unix_seq_show, 3355 }; 3356 3357 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) 3358 struct bpf_unix_iter_state { 3359 struct seq_net_private p; 3360 unsigned int cur_sk; 3361 unsigned int end_sk; 3362 unsigned int max_sk; 3363 struct sock **batch; 3364 bool st_bucket_done; 3365 }; 3366 3367 struct bpf_iter__unix { 3368 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3369 __bpf_md_ptr(struct unix_sock *, unix_sk); 3370 uid_t uid __aligned(8); 3371 }; 3372 3373 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3374 struct unix_sock *unix_sk, uid_t uid) 3375 { 3376 struct bpf_iter__unix ctx; 3377 3378 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3379 ctx.meta = meta; 3380 ctx.unix_sk = unix_sk; 3381 ctx.uid = uid; 3382 return bpf_iter_run_prog(prog, &ctx); 3383 } 3384 3385 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3386 3387 { 3388 struct bpf_unix_iter_state *iter = seq->private; 3389 unsigned int expected = 1; 3390 struct sock *sk; 3391 3392 sock_hold(start_sk); 3393 iter->batch[iter->end_sk++] = start_sk; 3394 3395 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3396 if (sock_net(sk) != seq_file_net(seq)) 3397 continue; 3398 3399 if (iter->end_sk < iter->max_sk) { 3400 sock_hold(sk); 3401 iter->batch[iter->end_sk++] = sk; 3402 } 3403 3404 expected++; 3405 } 3406 3407 spin_unlock(&unix_table_locks[start_sk->sk_hash]); 3408 3409 return expected; 3410 } 3411 3412 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3413 { 3414 while (iter->cur_sk < iter->end_sk) 3415 sock_put(iter->batch[iter->cur_sk++]); 3416 } 3417 3418 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3419 unsigned int new_batch_sz) 3420 { 3421 struct sock **new_batch; 3422 3423 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3424 GFP_USER | __GFP_NOWARN); 3425 if (!new_batch) 3426 return -ENOMEM; 3427 3428 bpf_iter_unix_put_batch(iter); 3429 kvfree(iter->batch); 3430 iter->batch = new_batch; 3431 iter->max_sk = new_batch_sz; 3432 3433 return 0; 3434 } 3435 3436 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3437 loff_t *pos) 3438 { 3439 struct bpf_unix_iter_state *iter = seq->private; 3440 unsigned int expected; 3441 bool resized = false; 3442 struct sock *sk; 3443 3444 if (iter->st_bucket_done) 3445 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3446 3447 again: 3448 /* Get a new batch */ 3449 iter->cur_sk = 0; 3450 iter->end_sk = 0; 3451 3452 sk = unix_get_first(seq, pos); 3453 if (!sk) 3454 return NULL; /* Done */ 3455 3456 expected = bpf_iter_unix_hold_batch(seq, sk); 3457 3458 if (iter->end_sk == expected) { 3459 iter->st_bucket_done = true; 3460 return sk; 3461 } 3462 3463 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3464 resized = true; 3465 goto again; 3466 } 3467 3468 return sk; 3469 } 3470 3471 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3472 { 3473 if (!*pos) 3474 return SEQ_START_TOKEN; 3475 3476 /* bpf iter does not support lseek, so it always 3477 * continue from where it was stop()-ped. 3478 */ 3479 return bpf_iter_unix_batch(seq, pos); 3480 } 3481 3482 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3483 { 3484 struct bpf_unix_iter_state *iter = seq->private; 3485 struct sock *sk; 3486 3487 /* Whenever seq_next() is called, the iter->cur_sk is 3488 * done with seq_show(), so advance to the next sk in 3489 * the batch. 3490 */ 3491 if (iter->cur_sk < iter->end_sk) 3492 sock_put(iter->batch[iter->cur_sk++]); 3493 3494 ++*pos; 3495 3496 if (iter->cur_sk < iter->end_sk) 3497 sk = iter->batch[iter->cur_sk]; 3498 else 3499 sk = bpf_iter_unix_batch(seq, pos); 3500 3501 return sk; 3502 } 3503 3504 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3505 { 3506 struct bpf_iter_meta meta; 3507 struct bpf_prog *prog; 3508 struct sock *sk = v; 3509 uid_t uid; 3510 bool slow; 3511 int ret; 3512 3513 if (v == SEQ_START_TOKEN) 3514 return 0; 3515 3516 slow = lock_sock_fast(sk); 3517 3518 if (unlikely(sk_unhashed(sk))) { 3519 ret = SEQ_SKIP; 3520 goto unlock; 3521 } 3522 3523 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3524 meta.seq = seq; 3525 prog = bpf_iter_get_info(&meta, false); 3526 ret = unix_prog_seq_show(prog, &meta, v, uid); 3527 unlock: 3528 unlock_sock_fast(sk, slow); 3529 return ret; 3530 } 3531 3532 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3533 { 3534 struct bpf_unix_iter_state *iter = seq->private; 3535 struct bpf_iter_meta meta; 3536 struct bpf_prog *prog; 3537 3538 if (!v) { 3539 meta.seq = seq; 3540 prog = bpf_iter_get_info(&meta, true); 3541 if (prog) 3542 (void)unix_prog_seq_show(prog, &meta, v, 0); 3543 } 3544 3545 if (iter->cur_sk < iter->end_sk) 3546 bpf_iter_unix_put_batch(iter); 3547 } 3548 3549 static const struct seq_operations bpf_iter_unix_seq_ops = { 3550 .start = bpf_iter_unix_seq_start, 3551 .next = bpf_iter_unix_seq_next, 3552 .stop = bpf_iter_unix_seq_stop, 3553 .show = bpf_iter_unix_seq_show, 3554 }; 3555 #endif 3556 #endif 3557 3558 static const struct net_proto_family unix_family_ops = { 3559 .family = PF_UNIX, 3560 .create = unix_create, 3561 .owner = THIS_MODULE, 3562 }; 3563 3564 3565 static int __net_init unix_net_init(struct net *net) 3566 { 3567 int error = -ENOMEM; 3568 3569 net->unx.sysctl_max_dgram_qlen = 10; 3570 if (unix_sysctl_register(net)) 3571 goto out; 3572 3573 #ifdef CONFIG_PROC_FS 3574 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3575 sizeof(struct seq_net_private))) { 3576 unix_sysctl_unregister(net); 3577 goto out; 3578 } 3579 #endif 3580 error = 0; 3581 out: 3582 return error; 3583 } 3584 3585 static void __net_exit unix_net_exit(struct net *net) 3586 { 3587 unix_sysctl_unregister(net); 3588 remove_proc_entry("unix", net->proc_net); 3589 } 3590 3591 static struct pernet_operations unix_net_ops = { 3592 .init = unix_net_init, 3593 .exit = unix_net_exit, 3594 }; 3595 3596 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3597 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3598 struct unix_sock *unix_sk, uid_t uid) 3599 3600 #define INIT_BATCH_SZ 16 3601 3602 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3603 { 3604 struct bpf_unix_iter_state *iter = priv_data; 3605 int err; 3606 3607 err = bpf_iter_init_seq_net(priv_data, aux); 3608 if (err) 3609 return err; 3610 3611 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3612 if (err) { 3613 bpf_iter_fini_seq_net(priv_data); 3614 return err; 3615 } 3616 3617 return 0; 3618 } 3619 3620 static void bpf_iter_fini_unix(void *priv_data) 3621 { 3622 struct bpf_unix_iter_state *iter = priv_data; 3623 3624 bpf_iter_fini_seq_net(priv_data); 3625 kvfree(iter->batch); 3626 } 3627 3628 static const struct bpf_iter_seq_info unix_seq_info = { 3629 .seq_ops = &bpf_iter_unix_seq_ops, 3630 .init_seq_private = bpf_iter_init_unix, 3631 .fini_seq_private = bpf_iter_fini_unix, 3632 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3633 }; 3634 3635 static const struct bpf_func_proto * 3636 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3637 const struct bpf_prog *prog) 3638 { 3639 switch (func_id) { 3640 case BPF_FUNC_setsockopt: 3641 return &bpf_sk_setsockopt_proto; 3642 case BPF_FUNC_getsockopt: 3643 return &bpf_sk_getsockopt_proto; 3644 default: 3645 return NULL; 3646 } 3647 } 3648 3649 static struct bpf_iter_reg unix_reg_info = { 3650 .target = "unix", 3651 .ctx_arg_info_size = 1, 3652 .ctx_arg_info = { 3653 { offsetof(struct bpf_iter__unix, unix_sk), 3654 PTR_TO_BTF_ID_OR_NULL }, 3655 }, 3656 .get_func_proto = bpf_iter_unix_get_func_proto, 3657 .seq_info = &unix_seq_info, 3658 }; 3659 3660 static void __init bpf_iter_register(void) 3661 { 3662 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3663 if (bpf_iter_reg_target(&unix_reg_info)) 3664 pr_warn("Warning: could not register bpf iterator unix\n"); 3665 } 3666 #endif 3667 3668 static int __init af_unix_init(void) 3669 { 3670 int i, rc = -1; 3671 3672 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3673 3674 for (i = 0; i < 2 * UNIX_HASH_SIZE; i++) 3675 spin_lock_init(&unix_table_locks[i]); 3676 3677 rc = proto_register(&unix_dgram_proto, 1); 3678 if (rc != 0) { 3679 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3680 goto out; 3681 } 3682 3683 rc = proto_register(&unix_stream_proto, 1); 3684 if (rc != 0) { 3685 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3686 goto out; 3687 } 3688 3689 sock_register(&unix_family_ops); 3690 register_pernet_subsys(&unix_net_ops); 3691 unix_bpf_build_proto(); 3692 3693 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3694 bpf_iter_register(); 3695 #endif 3696 3697 out: 3698 return rc; 3699 } 3700 3701 static void __exit af_unix_exit(void) 3702 { 3703 sock_unregister(PF_UNIX); 3704 proto_unregister(&unix_dgram_proto); 3705 proto_unregister(&unix_stream_proto); 3706 unregister_pernet_subsys(&unix_net_ops); 3707 } 3708 3709 /* Earlier than device_initcall() so that other drivers invoking 3710 request_module() don't end up in a loop when modprobe tries 3711 to use a UNIX socket. But later than subsys_initcall() because 3712 we depend on stuff initialised there */ 3713 fs_initcall(af_unix_init); 3714 module_exit(af_unix_exit); 3715 3716 MODULE_LICENSE("GPL"); 3717 MODULE_ALIAS_NETPROTO(PF_UNIX); 3718