xref: /linux/net/unix/af_unix.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/termios.h>
93 #include <linux/sockios.h>
94 #include <linux/net.h>
95 #include <linux/in.h>
96 #include <linux/fs.h>
97 #include <linux/slab.h>
98 #include <linux/uaccess.h>
99 #include <linux/skbuff.h>
100 #include <linux/netdevice.h>
101 #include <net/net_namespace.h>
102 #include <net/sock.h>
103 #include <net/tcp_states.h>
104 #include <net/af_unix.h>
105 #include <linux/proc_fs.h>
106 #include <linux/seq_file.h>
107 #include <net/scm.h>
108 #include <linux/init.h>
109 #include <linux/poll.h>
110 #include <linux/rtnetlink.h>
111 #include <linux/mount.h>
112 #include <net/checksum.h>
113 #include <linux/security.h>
114 #include <linux/freezer.h>
115 #include <linux/file.h>
116 #include <linux/btf_ids.h>
117 
118 #include "scm.h"
119 
120 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE];
121 EXPORT_SYMBOL_GPL(unix_socket_table);
122 DEFINE_SPINLOCK(unix_table_lock);
123 EXPORT_SYMBOL_GPL(unix_table_lock);
124 static atomic_long_t unix_nr_socks;
125 
126 
127 static struct hlist_head *unix_sockets_unbound(void *addr)
128 {
129 	unsigned long hash = (unsigned long)addr;
130 
131 	hash ^= hash >> 16;
132 	hash ^= hash >> 8;
133 	hash %= UNIX_HASH_SIZE;
134 	return &unix_socket_table[UNIX_HASH_SIZE + hash];
135 }
136 
137 #define UNIX_ABSTRACT(sk)	(unix_sk(sk)->addr->hash < UNIX_HASH_SIZE)
138 
139 #ifdef CONFIG_SECURITY_NETWORK
140 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
141 {
142 	UNIXCB(skb).secid = scm->secid;
143 }
144 
145 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
146 {
147 	scm->secid = UNIXCB(skb).secid;
148 }
149 
150 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
151 {
152 	return (scm->secid == UNIXCB(skb).secid);
153 }
154 #else
155 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
156 { }
157 
158 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
159 { }
160 
161 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
162 {
163 	return true;
164 }
165 #endif /* CONFIG_SECURITY_NETWORK */
166 
167 /*
168  *  SMP locking strategy:
169  *    hash table is protected with spinlock unix_table_lock
170  *    each socket state is protected by separate spin lock.
171  */
172 
173 static inline unsigned int unix_hash_fold(__wsum n)
174 {
175 	unsigned int hash = (__force unsigned int)csum_fold(n);
176 
177 	hash ^= hash>>8;
178 	return hash&(UNIX_HASH_SIZE-1);
179 }
180 
181 #define unix_peer(sk) (unix_sk(sk)->peer)
182 
183 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
184 {
185 	return unix_peer(osk) == sk;
186 }
187 
188 static inline int unix_may_send(struct sock *sk, struct sock *osk)
189 {
190 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
191 }
192 
193 static inline int unix_recvq_full(const struct sock *sk)
194 {
195 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
196 }
197 
198 static inline int unix_recvq_full_lockless(const struct sock *sk)
199 {
200 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
201 		READ_ONCE(sk->sk_max_ack_backlog);
202 }
203 
204 struct sock *unix_peer_get(struct sock *s)
205 {
206 	struct sock *peer;
207 
208 	unix_state_lock(s);
209 	peer = unix_peer(s);
210 	if (peer)
211 		sock_hold(peer);
212 	unix_state_unlock(s);
213 	return peer;
214 }
215 EXPORT_SYMBOL_GPL(unix_peer_get);
216 
217 static inline void unix_release_addr(struct unix_address *addr)
218 {
219 	if (refcount_dec_and_test(&addr->refcnt))
220 		kfree(addr);
221 }
222 
223 /*
224  *	Check unix socket name:
225  *		- should be not zero length.
226  *	        - if started by not zero, should be NULL terminated (FS object)
227  *		- if started by zero, it is abstract name.
228  */
229 
230 static int unix_mkname(struct sockaddr_un *sunaddr, int len, unsigned int *hashp)
231 {
232 	*hashp = 0;
233 
234 	if (len <= sizeof(short) || len > sizeof(*sunaddr))
235 		return -EINVAL;
236 	if (!sunaddr || sunaddr->sun_family != AF_UNIX)
237 		return -EINVAL;
238 	if (sunaddr->sun_path[0]) {
239 		/*
240 		 * This may look like an off by one error but it is a bit more
241 		 * subtle. 108 is the longest valid AF_UNIX path for a binding.
242 		 * sun_path[108] doesn't as such exist.  However in kernel space
243 		 * we are guaranteed that it is a valid memory location in our
244 		 * kernel address buffer.
245 		 */
246 		((char *)sunaddr)[len] = 0;
247 		len = strlen(sunaddr->sun_path)+1+sizeof(short);
248 		return len;
249 	}
250 
251 	*hashp = unix_hash_fold(csum_partial(sunaddr, len, 0));
252 	return len;
253 }
254 
255 static void __unix_remove_socket(struct sock *sk)
256 {
257 	sk_del_node_init(sk);
258 }
259 
260 static void __unix_insert_socket(struct hlist_head *list, struct sock *sk)
261 {
262 	WARN_ON(!sk_unhashed(sk));
263 	sk_add_node(sk, list);
264 }
265 
266 static void __unix_set_addr(struct sock *sk, struct unix_address *addr,
267 			    unsigned hash)
268 {
269 	__unix_remove_socket(sk);
270 	smp_store_release(&unix_sk(sk)->addr, addr);
271 	__unix_insert_socket(&unix_socket_table[hash], sk);
272 }
273 
274 static inline void unix_remove_socket(struct sock *sk)
275 {
276 	spin_lock(&unix_table_lock);
277 	__unix_remove_socket(sk);
278 	spin_unlock(&unix_table_lock);
279 }
280 
281 static inline void unix_insert_socket(struct hlist_head *list, struct sock *sk)
282 {
283 	spin_lock(&unix_table_lock);
284 	__unix_insert_socket(list, sk);
285 	spin_unlock(&unix_table_lock);
286 }
287 
288 static struct sock *__unix_find_socket_byname(struct net *net,
289 					      struct sockaddr_un *sunname,
290 					      int len, unsigned int hash)
291 {
292 	struct sock *s;
293 
294 	sk_for_each(s, &unix_socket_table[hash]) {
295 		struct unix_sock *u = unix_sk(s);
296 
297 		if (!net_eq(sock_net(s), net))
298 			continue;
299 
300 		if (u->addr->len == len &&
301 		    !memcmp(u->addr->name, sunname, len))
302 			return s;
303 	}
304 	return NULL;
305 }
306 
307 static inline struct sock *unix_find_socket_byname(struct net *net,
308 						   struct sockaddr_un *sunname,
309 						   int len, unsigned int hash)
310 {
311 	struct sock *s;
312 
313 	spin_lock(&unix_table_lock);
314 	s = __unix_find_socket_byname(net, sunname, len, hash);
315 	if (s)
316 		sock_hold(s);
317 	spin_unlock(&unix_table_lock);
318 	return s;
319 }
320 
321 static struct sock *unix_find_socket_byinode(struct inode *i)
322 {
323 	struct sock *s;
324 
325 	spin_lock(&unix_table_lock);
326 	sk_for_each(s,
327 		    &unix_socket_table[i->i_ino & (UNIX_HASH_SIZE - 1)]) {
328 		struct dentry *dentry = unix_sk(s)->path.dentry;
329 
330 		if (dentry && d_backing_inode(dentry) == i) {
331 			sock_hold(s);
332 			goto found;
333 		}
334 	}
335 	s = NULL;
336 found:
337 	spin_unlock(&unix_table_lock);
338 	return s;
339 }
340 
341 /* Support code for asymmetrically connected dgram sockets
342  *
343  * If a datagram socket is connected to a socket not itself connected
344  * to the first socket (eg, /dev/log), clients may only enqueue more
345  * messages if the present receive queue of the server socket is not
346  * "too large". This means there's a second writeability condition
347  * poll and sendmsg need to test. The dgram recv code will do a wake
348  * up on the peer_wait wait queue of a socket upon reception of a
349  * datagram which needs to be propagated to sleeping would-be writers
350  * since these might not have sent anything so far. This can't be
351  * accomplished via poll_wait because the lifetime of the server
352  * socket might be less than that of its clients if these break their
353  * association with it or if the server socket is closed while clients
354  * are still connected to it and there's no way to inform "a polling
355  * implementation" that it should let go of a certain wait queue
356  *
357  * In order to propagate a wake up, a wait_queue_entry_t of the client
358  * socket is enqueued on the peer_wait queue of the server socket
359  * whose wake function does a wake_up on the ordinary client socket
360  * wait queue. This connection is established whenever a write (or
361  * poll for write) hit the flow control condition and broken when the
362  * association to the server socket is dissolved or after a wake up
363  * was relayed.
364  */
365 
366 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
367 				      void *key)
368 {
369 	struct unix_sock *u;
370 	wait_queue_head_t *u_sleep;
371 
372 	u = container_of(q, struct unix_sock, peer_wake);
373 
374 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
375 			    q);
376 	u->peer_wake.private = NULL;
377 
378 	/* relaying can only happen while the wq still exists */
379 	u_sleep = sk_sleep(&u->sk);
380 	if (u_sleep)
381 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
382 
383 	return 0;
384 }
385 
386 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
387 {
388 	struct unix_sock *u, *u_other;
389 	int rc;
390 
391 	u = unix_sk(sk);
392 	u_other = unix_sk(other);
393 	rc = 0;
394 	spin_lock(&u_other->peer_wait.lock);
395 
396 	if (!u->peer_wake.private) {
397 		u->peer_wake.private = other;
398 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
399 
400 		rc = 1;
401 	}
402 
403 	spin_unlock(&u_other->peer_wait.lock);
404 	return rc;
405 }
406 
407 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
408 					    struct sock *other)
409 {
410 	struct unix_sock *u, *u_other;
411 
412 	u = unix_sk(sk);
413 	u_other = unix_sk(other);
414 	spin_lock(&u_other->peer_wait.lock);
415 
416 	if (u->peer_wake.private == other) {
417 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
418 		u->peer_wake.private = NULL;
419 	}
420 
421 	spin_unlock(&u_other->peer_wait.lock);
422 }
423 
424 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
425 						   struct sock *other)
426 {
427 	unix_dgram_peer_wake_disconnect(sk, other);
428 	wake_up_interruptible_poll(sk_sleep(sk),
429 				   EPOLLOUT |
430 				   EPOLLWRNORM |
431 				   EPOLLWRBAND);
432 }
433 
434 /* preconditions:
435  *	- unix_peer(sk) == other
436  *	- association is stable
437  */
438 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
439 {
440 	int connected;
441 
442 	connected = unix_dgram_peer_wake_connect(sk, other);
443 
444 	/* If other is SOCK_DEAD, we want to make sure we signal
445 	 * POLLOUT, such that a subsequent write() can get a
446 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
447 	 * to other and its full, we will hang waiting for POLLOUT.
448 	 */
449 	if (unix_recvq_full(other) && !sock_flag(other, SOCK_DEAD))
450 		return 1;
451 
452 	if (connected)
453 		unix_dgram_peer_wake_disconnect(sk, other);
454 
455 	return 0;
456 }
457 
458 static int unix_writable(const struct sock *sk)
459 {
460 	return sk->sk_state != TCP_LISTEN &&
461 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
462 }
463 
464 static void unix_write_space(struct sock *sk)
465 {
466 	struct socket_wq *wq;
467 
468 	rcu_read_lock();
469 	if (unix_writable(sk)) {
470 		wq = rcu_dereference(sk->sk_wq);
471 		if (skwq_has_sleeper(wq))
472 			wake_up_interruptible_sync_poll(&wq->wait,
473 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
474 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
475 	}
476 	rcu_read_unlock();
477 }
478 
479 /* When dgram socket disconnects (or changes its peer), we clear its receive
480  * queue of packets arrived from previous peer. First, it allows to do
481  * flow control based only on wmem_alloc; second, sk connected to peer
482  * may receive messages only from that peer. */
483 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
484 {
485 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
486 		skb_queue_purge(&sk->sk_receive_queue);
487 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
488 
489 		/* If one link of bidirectional dgram pipe is disconnected,
490 		 * we signal error. Messages are lost. Do not make this,
491 		 * when peer was not connected to us.
492 		 */
493 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
494 			other->sk_err = ECONNRESET;
495 			sk_error_report(other);
496 		}
497 	}
498 	other->sk_state = TCP_CLOSE;
499 }
500 
501 static void unix_sock_destructor(struct sock *sk)
502 {
503 	struct unix_sock *u = unix_sk(sk);
504 
505 	skb_queue_purge(&sk->sk_receive_queue);
506 
507 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
508 	if (u->oob_skb) {
509 		kfree_skb(u->oob_skb);
510 		u->oob_skb = NULL;
511 	}
512 #endif
513 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
514 	WARN_ON(!sk_unhashed(sk));
515 	WARN_ON(sk->sk_socket);
516 	if (!sock_flag(sk, SOCK_DEAD)) {
517 		pr_info("Attempt to release alive unix socket: %p\n", sk);
518 		return;
519 	}
520 
521 	if (u->addr)
522 		unix_release_addr(u->addr);
523 
524 	atomic_long_dec(&unix_nr_socks);
525 	local_bh_disable();
526 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
527 	local_bh_enable();
528 #ifdef UNIX_REFCNT_DEBUG
529 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
530 		atomic_long_read(&unix_nr_socks));
531 #endif
532 }
533 
534 static void unix_release_sock(struct sock *sk, int embrion)
535 {
536 	struct unix_sock *u = unix_sk(sk);
537 	struct path path;
538 	struct sock *skpair;
539 	struct sk_buff *skb;
540 	int state;
541 
542 	unix_remove_socket(sk);
543 
544 	/* Clear state */
545 	unix_state_lock(sk);
546 	sock_orphan(sk);
547 	sk->sk_shutdown = SHUTDOWN_MASK;
548 	path	     = u->path;
549 	u->path.dentry = NULL;
550 	u->path.mnt = NULL;
551 	state = sk->sk_state;
552 	sk->sk_state = TCP_CLOSE;
553 
554 	skpair = unix_peer(sk);
555 	unix_peer(sk) = NULL;
556 
557 	unix_state_unlock(sk);
558 
559 	wake_up_interruptible_all(&u->peer_wait);
560 
561 	if (skpair != NULL) {
562 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
563 			unix_state_lock(skpair);
564 			/* No more writes */
565 			skpair->sk_shutdown = SHUTDOWN_MASK;
566 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
567 				skpair->sk_err = ECONNRESET;
568 			unix_state_unlock(skpair);
569 			skpair->sk_state_change(skpair);
570 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
571 		}
572 
573 		unix_dgram_peer_wake_disconnect(sk, skpair);
574 		sock_put(skpair); /* It may now die */
575 	}
576 
577 	/* Try to flush out this socket. Throw out buffers at least */
578 
579 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
580 		if (state == TCP_LISTEN)
581 			unix_release_sock(skb->sk, 1);
582 		/* passed fds are erased in the kfree_skb hook	      */
583 		UNIXCB(skb).consumed = skb->len;
584 		kfree_skb(skb);
585 	}
586 
587 	if (path.dentry)
588 		path_put(&path);
589 
590 	sock_put(sk);
591 
592 	/* ---- Socket is dead now and most probably destroyed ---- */
593 
594 	/*
595 	 * Fixme: BSD difference: In BSD all sockets connected to us get
596 	 *	  ECONNRESET and we die on the spot. In Linux we behave
597 	 *	  like files and pipes do and wait for the last
598 	 *	  dereference.
599 	 *
600 	 * Can't we simply set sock->err?
601 	 *
602 	 *	  What the above comment does talk about? --ANK(980817)
603 	 */
604 
605 	if (unix_tot_inflight)
606 		unix_gc();		/* Garbage collect fds */
607 }
608 
609 static void init_peercred(struct sock *sk)
610 {
611 	const struct cred *old_cred;
612 	struct pid *old_pid;
613 
614 	spin_lock(&sk->sk_peer_lock);
615 	old_pid = sk->sk_peer_pid;
616 	old_cred = sk->sk_peer_cred;
617 	sk->sk_peer_pid  = get_pid(task_tgid(current));
618 	sk->sk_peer_cred = get_current_cred();
619 	spin_unlock(&sk->sk_peer_lock);
620 
621 	put_pid(old_pid);
622 	put_cred(old_cred);
623 }
624 
625 static void copy_peercred(struct sock *sk, struct sock *peersk)
626 {
627 	const struct cred *old_cred;
628 	struct pid *old_pid;
629 
630 	if (sk < peersk) {
631 		spin_lock(&sk->sk_peer_lock);
632 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
633 	} else {
634 		spin_lock(&peersk->sk_peer_lock);
635 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
636 	}
637 	old_pid = sk->sk_peer_pid;
638 	old_cred = sk->sk_peer_cred;
639 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
640 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
641 
642 	spin_unlock(&sk->sk_peer_lock);
643 	spin_unlock(&peersk->sk_peer_lock);
644 
645 	put_pid(old_pid);
646 	put_cred(old_cred);
647 }
648 
649 static int unix_listen(struct socket *sock, int backlog)
650 {
651 	int err;
652 	struct sock *sk = sock->sk;
653 	struct unix_sock *u = unix_sk(sk);
654 
655 	err = -EOPNOTSUPP;
656 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
657 		goto out;	/* Only stream/seqpacket sockets accept */
658 	err = -EINVAL;
659 	if (!u->addr)
660 		goto out;	/* No listens on an unbound socket */
661 	unix_state_lock(sk);
662 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
663 		goto out_unlock;
664 	if (backlog > sk->sk_max_ack_backlog)
665 		wake_up_interruptible_all(&u->peer_wait);
666 	sk->sk_max_ack_backlog	= backlog;
667 	sk->sk_state		= TCP_LISTEN;
668 	/* set credentials so connect can copy them */
669 	init_peercred(sk);
670 	err = 0;
671 
672 out_unlock:
673 	unix_state_unlock(sk);
674 out:
675 	return err;
676 }
677 
678 static int unix_release(struct socket *);
679 static int unix_bind(struct socket *, struct sockaddr *, int);
680 static int unix_stream_connect(struct socket *, struct sockaddr *,
681 			       int addr_len, int flags);
682 static int unix_socketpair(struct socket *, struct socket *);
683 static int unix_accept(struct socket *, struct socket *, int, bool);
684 static int unix_getname(struct socket *, struct sockaddr *, int);
685 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
686 static __poll_t unix_dgram_poll(struct file *, struct socket *,
687 				    poll_table *);
688 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
689 #ifdef CONFIG_COMPAT
690 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
691 #endif
692 static int unix_shutdown(struct socket *, int);
693 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
694 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
695 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset,
696 				    size_t size, int flags);
697 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
698 				       struct pipe_inode_info *, size_t size,
699 				       unsigned int flags);
700 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
701 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
702 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc,
703 			  sk_read_actor_t recv_actor);
704 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc,
705 				 sk_read_actor_t recv_actor);
706 static int unix_dgram_connect(struct socket *, struct sockaddr *,
707 			      int, int);
708 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
709 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
710 				  int);
711 
712 static int unix_set_peek_off(struct sock *sk, int val)
713 {
714 	struct unix_sock *u = unix_sk(sk);
715 
716 	if (mutex_lock_interruptible(&u->iolock))
717 		return -EINTR;
718 
719 	sk->sk_peek_off = val;
720 	mutex_unlock(&u->iolock);
721 
722 	return 0;
723 }
724 
725 #ifdef CONFIG_PROC_FS
726 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
727 {
728 	struct sock *sk = sock->sk;
729 	struct unix_sock *u;
730 
731 	if (sk) {
732 		u = unix_sk(sock->sk);
733 		seq_printf(m, "scm_fds: %u\n",
734 			   atomic_read(&u->scm_stat.nr_fds));
735 	}
736 }
737 #else
738 #define unix_show_fdinfo NULL
739 #endif
740 
741 static const struct proto_ops unix_stream_ops = {
742 	.family =	PF_UNIX,
743 	.owner =	THIS_MODULE,
744 	.release =	unix_release,
745 	.bind =		unix_bind,
746 	.connect =	unix_stream_connect,
747 	.socketpair =	unix_socketpair,
748 	.accept =	unix_accept,
749 	.getname =	unix_getname,
750 	.poll =		unix_poll,
751 	.ioctl =	unix_ioctl,
752 #ifdef CONFIG_COMPAT
753 	.compat_ioctl =	unix_compat_ioctl,
754 #endif
755 	.listen =	unix_listen,
756 	.shutdown =	unix_shutdown,
757 	.sendmsg =	unix_stream_sendmsg,
758 	.recvmsg =	unix_stream_recvmsg,
759 	.read_sock =	unix_stream_read_sock,
760 	.mmap =		sock_no_mmap,
761 	.sendpage =	unix_stream_sendpage,
762 	.splice_read =	unix_stream_splice_read,
763 	.set_peek_off =	unix_set_peek_off,
764 	.show_fdinfo =	unix_show_fdinfo,
765 };
766 
767 static const struct proto_ops unix_dgram_ops = {
768 	.family =	PF_UNIX,
769 	.owner =	THIS_MODULE,
770 	.release =	unix_release,
771 	.bind =		unix_bind,
772 	.connect =	unix_dgram_connect,
773 	.socketpair =	unix_socketpair,
774 	.accept =	sock_no_accept,
775 	.getname =	unix_getname,
776 	.poll =		unix_dgram_poll,
777 	.ioctl =	unix_ioctl,
778 #ifdef CONFIG_COMPAT
779 	.compat_ioctl =	unix_compat_ioctl,
780 #endif
781 	.listen =	sock_no_listen,
782 	.shutdown =	unix_shutdown,
783 	.sendmsg =	unix_dgram_sendmsg,
784 	.read_sock =	unix_read_sock,
785 	.recvmsg =	unix_dgram_recvmsg,
786 	.mmap =		sock_no_mmap,
787 	.sendpage =	sock_no_sendpage,
788 	.set_peek_off =	unix_set_peek_off,
789 	.show_fdinfo =	unix_show_fdinfo,
790 };
791 
792 static const struct proto_ops unix_seqpacket_ops = {
793 	.family =	PF_UNIX,
794 	.owner =	THIS_MODULE,
795 	.release =	unix_release,
796 	.bind =		unix_bind,
797 	.connect =	unix_stream_connect,
798 	.socketpair =	unix_socketpair,
799 	.accept =	unix_accept,
800 	.getname =	unix_getname,
801 	.poll =		unix_dgram_poll,
802 	.ioctl =	unix_ioctl,
803 #ifdef CONFIG_COMPAT
804 	.compat_ioctl =	unix_compat_ioctl,
805 #endif
806 	.listen =	unix_listen,
807 	.shutdown =	unix_shutdown,
808 	.sendmsg =	unix_seqpacket_sendmsg,
809 	.recvmsg =	unix_seqpacket_recvmsg,
810 	.mmap =		sock_no_mmap,
811 	.sendpage =	sock_no_sendpage,
812 	.set_peek_off =	unix_set_peek_off,
813 	.show_fdinfo =	unix_show_fdinfo,
814 };
815 
816 static void unix_close(struct sock *sk, long timeout)
817 {
818 	/* Nothing to do here, unix socket does not need a ->close().
819 	 * This is merely for sockmap.
820 	 */
821 }
822 
823 static void unix_unhash(struct sock *sk)
824 {
825 	/* Nothing to do here, unix socket does not need a ->unhash().
826 	 * This is merely for sockmap.
827 	 */
828 }
829 
830 struct proto unix_dgram_proto = {
831 	.name			= "UNIX",
832 	.owner			= THIS_MODULE,
833 	.obj_size		= sizeof(struct unix_sock),
834 	.close			= unix_close,
835 #ifdef CONFIG_BPF_SYSCALL
836 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
837 #endif
838 };
839 
840 struct proto unix_stream_proto = {
841 	.name			= "UNIX-STREAM",
842 	.owner			= THIS_MODULE,
843 	.obj_size		= sizeof(struct unix_sock),
844 	.close			= unix_close,
845 	.unhash			= unix_unhash,
846 #ifdef CONFIG_BPF_SYSCALL
847 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
848 #endif
849 };
850 
851 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
852 {
853 	struct unix_sock *u;
854 	struct sock *sk;
855 	int err;
856 
857 	atomic_long_inc(&unix_nr_socks);
858 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
859 		err = -ENFILE;
860 		goto err;
861 	}
862 
863 	if (type == SOCK_STREAM)
864 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
865 	else /*dgram and  seqpacket */
866 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
867 
868 	if (!sk) {
869 		err = -ENOMEM;
870 		goto err;
871 	}
872 
873 	sock_init_data(sock, sk);
874 
875 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
876 	sk->sk_write_space	= unix_write_space;
877 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
878 	sk->sk_destruct		= unix_sock_destructor;
879 	u	  = unix_sk(sk);
880 	u->path.dentry = NULL;
881 	u->path.mnt = NULL;
882 	spin_lock_init(&u->lock);
883 	atomic_long_set(&u->inflight, 0);
884 	INIT_LIST_HEAD(&u->link);
885 	mutex_init(&u->iolock); /* single task reading lock */
886 	mutex_init(&u->bindlock); /* single task binding lock */
887 	init_waitqueue_head(&u->peer_wait);
888 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
889 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
890 	unix_insert_socket(unix_sockets_unbound(sk), sk);
891 
892 	local_bh_disable();
893 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
894 	local_bh_enable();
895 
896 	return sk;
897 
898 err:
899 	atomic_long_dec(&unix_nr_socks);
900 	return ERR_PTR(err);
901 }
902 
903 static int unix_create(struct net *net, struct socket *sock, int protocol,
904 		       int kern)
905 {
906 	struct sock *sk;
907 
908 	if (protocol && protocol != PF_UNIX)
909 		return -EPROTONOSUPPORT;
910 
911 	sock->state = SS_UNCONNECTED;
912 
913 	switch (sock->type) {
914 	case SOCK_STREAM:
915 		sock->ops = &unix_stream_ops;
916 		break;
917 		/*
918 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
919 		 *	nothing uses it.
920 		 */
921 	case SOCK_RAW:
922 		sock->type = SOCK_DGRAM;
923 		fallthrough;
924 	case SOCK_DGRAM:
925 		sock->ops = &unix_dgram_ops;
926 		break;
927 	case SOCK_SEQPACKET:
928 		sock->ops = &unix_seqpacket_ops;
929 		break;
930 	default:
931 		return -ESOCKTNOSUPPORT;
932 	}
933 
934 	sk = unix_create1(net, sock, kern, sock->type);
935 	if (IS_ERR(sk))
936 		return PTR_ERR(sk);
937 
938 	return 0;
939 }
940 
941 static int unix_release(struct socket *sock)
942 {
943 	struct sock *sk = sock->sk;
944 
945 	if (!sk)
946 		return 0;
947 
948 	sk->sk_prot->close(sk, 0);
949 	unix_release_sock(sk, 0);
950 	sock->sk = NULL;
951 
952 	return 0;
953 }
954 
955 static int unix_autobind(struct socket *sock)
956 {
957 	struct sock *sk = sock->sk;
958 	struct net *net = sock_net(sk);
959 	struct unix_sock *u = unix_sk(sk);
960 	static u32 ordernum = 1;
961 	struct unix_address *addr;
962 	int err;
963 	unsigned int retries = 0;
964 
965 	err = mutex_lock_interruptible(&u->bindlock);
966 	if (err)
967 		return err;
968 
969 	if (u->addr)
970 		goto out;
971 
972 	err = -ENOMEM;
973 	addr = kzalloc(sizeof(*addr) + sizeof(short) + 16, GFP_KERNEL);
974 	if (!addr)
975 		goto out;
976 
977 	addr->name->sun_family = AF_UNIX;
978 	refcount_set(&addr->refcnt, 1);
979 
980 retry:
981 	addr->len = sprintf(addr->name->sun_path+1, "%05x", ordernum) + 1 + sizeof(short);
982 	addr->hash = unix_hash_fold(csum_partial(addr->name, addr->len, 0));
983 	addr->hash ^= sk->sk_type;
984 
985 	spin_lock(&unix_table_lock);
986 	ordernum = (ordernum+1)&0xFFFFF;
987 
988 	if (__unix_find_socket_byname(net, addr->name, addr->len, addr->hash)) {
989 		spin_unlock(&unix_table_lock);
990 		/*
991 		 * __unix_find_socket_byname() may take long time if many names
992 		 * are already in use.
993 		 */
994 		cond_resched();
995 		/* Give up if all names seems to be in use. */
996 		if (retries++ == 0xFFFFF) {
997 			err = -ENOSPC;
998 			kfree(addr);
999 			goto out;
1000 		}
1001 		goto retry;
1002 	}
1003 
1004 	__unix_set_addr(sk, addr, addr->hash);
1005 	spin_unlock(&unix_table_lock);
1006 	err = 0;
1007 
1008 out:	mutex_unlock(&u->bindlock);
1009 	return err;
1010 }
1011 
1012 static struct sock *unix_find_other(struct net *net,
1013 				    struct sockaddr_un *sunname, int len,
1014 				    int type, unsigned int hash, int *error)
1015 {
1016 	struct sock *u;
1017 	struct path path;
1018 	int err = 0;
1019 
1020 	if (sunname->sun_path[0]) {
1021 		struct inode *inode;
1022 		err = kern_path(sunname->sun_path, LOOKUP_FOLLOW, &path);
1023 		if (err)
1024 			goto fail;
1025 		inode = d_backing_inode(path.dentry);
1026 		err = path_permission(&path, MAY_WRITE);
1027 		if (err)
1028 			goto put_fail;
1029 
1030 		err = -ECONNREFUSED;
1031 		if (!S_ISSOCK(inode->i_mode))
1032 			goto put_fail;
1033 		u = unix_find_socket_byinode(inode);
1034 		if (!u)
1035 			goto put_fail;
1036 
1037 		if (u->sk_type == type)
1038 			touch_atime(&path);
1039 
1040 		path_put(&path);
1041 
1042 		err = -EPROTOTYPE;
1043 		if (u->sk_type != type) {
1044 			sock_put(u);
1045 			goto fail;
1046 		}
1047 	} else {
1048 		err = -ECONNREFUSED;
1049 		u = unix_find_socket_byname(net, sunname, len, type ^ hash);
1050 		if (u) {
1051 			struct dentry *dentry;
1052 			dentry = unix_sk(u)->path.dentry;
1053 			if (dentry)
1054 				touch_atime(&unix_sk(u)->path);
1055 		} else
1056 			goto fail;
1057 	}
1058 	return u;
1059 
1060 put_fail:
1061 	path_put(&path);
1062 fail:
1063 	*error = err;
1064 	return NULL;
1065 }
1066 
1067 static int unix_bind_bsd(struct sock *sk, struct unix_address *addr)
1068 {
1069 	struct unix_sock *u = unix_sk(sk);
1070 	umode_t mode = S_IFSOCK |
1071 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1072 	struct user_namespace *ns; // barf...
1073 	struct path parent;
1074 	struct dentry *dentry;
1075 	unsigned int hash;
1076 	int err;
1077 
1078 	/*
1079 	 * Get the parent directory, calculate the hash for last
1080 	 * component.
1081 	 */
1082 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1083 	if (IS_ERR(dentry))
1084 		return PTR_ERR(dentry);
1085 	ns = mnt_user_ns(parent.mnt);
1086 
1087 	/*
1088 	 * All right, let's create it.
1089 	 */
1090 	err = security_path_mknod(&parent, dentry, mode, 0);
1091 	if (!err)
1092 		err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0);
1093 	if (err)
1094 		goto out;
1095 	err = mutex_lock_interruptible(&u->bindlock);
1096 	if (err)
1097 		goto out_unlink;
1098 	if (u->addr)
1099 		goto out_unlock;
1100 
1101 	addr->hash = UNIX_HASH_SIZE;
1102 	hash = d_backing_inode(dentry)->i_ino & (UNIX_HASH_SIZE - 1);
1103 	spin_lock(&unix_table_lock);
1104 	u->path.mnt = mntget(parent.mnt);
1105 	u->path.dentry = dget(dentry);
1106 	__unix_set_addr(sk, addr, hash);
1107 	spin_unlock(&unix_table_lock);
1108 	mutex_unlock(&u->bindlock);
1109 	done_path_create(&parent, dentry);
1110 	return 0;
1111 
1112 out_unlock:
1113 	mutex_unlock(&u->bindlock);
1114 	err = -EINVAL;
1115 out_unlink:
1116 	/* failed after successful mknod?  unlink what we'd created... */
1117 	vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL);
1118 out:
1119 	done_path_create(&parent, dentry);
1120 	return err;
1121 }
1122 
1123 static int unix_bind_abstract(struct sock *sk, struct unix_address *addr)
1124 {
1125 	struct unix_sock *u = unix_sk(sk);
1126 	int err;
1127 
1128 	err = mutex_lock_interruptible(&u->bindlock);
1129 	if (err)
1130 		return err;
1131 
1132 	if (u->addr) {
1133 		mutex_unlock(&u->bindlock);
1134 		return -EINVAL;
1135 	}
1136 
1137 	spin_lock(&unix_table_lock);
1138 	if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len,
1139 				      addr->hash)) {
1140 		spin_unlock(&unix_table_lock);
1141 		mutex_unlock(&u->bindlock);
1142 		return -EADDRINUSE;
1143 	}
1144 	__unix_set_addr(sk, addr, addr->hash);
1145 	spin_unlock(&unix_table_lock);
1146 	mutex_unlock(&u->bindlock);
1147 	return 0;
1148 }
1149 
1150 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1151 {
1152 	struct sock *sk = sock->sk;
1153 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1154 	char *sun_path = sunaddr->sun_path;
1155 	int err;
1156 	unsigned int hash;
1157 	struct unix_address *addr;
1158 
1159 	if (addr_len < offsetofend(struct sockaddr_un, sun_family) ||
1160 	    sunaddr->sun_family != AF_UNIX)
1161 		return -EINVAL;
1162 
1163 	if (addr_len == sizeof(short))
1164 		return unix_autobind(sock);
1165 
1166 	err = unix_mkname(sunaddr, addr_len, &hash);
1167 	if (err < 0)
1168 		return err;
1169 	addr_len = err;
1170 	addr = kmalloc(sizeof(*addr)+addr_len, GFP_KERNEL);
1171 	if (!addr)
1172 		return -ENOMEM;
1173 
1174 	memcpy(addr->name, sunaddr, addr_len);
1175 	addr->len = addr_len;
1176 	addr->hash = hash ^ sk->sk_type;
1177 	refcount_set(&addr->refcnt, 1);
1178 
1179 	if (sun_path[0])
1180 		err = unix_bind_bsd(sk, addr);
1181 	else
1182 		err = unix_bind_abstract(sk, addr);
1183 	if (err)
1184 		unix_release_addr(addr);
1185 	return err == -EEXIST ? -EADDRINUSE : err;
1186 }
1187 
1188 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1189 {
1190 	if (unlikely(sk1 == sk2) || !sk2) {
1191 		unix_state_lock(sk1);
1192 		return;
1193 	}
1194 	if (sk1 < sk2) {
1195 		unix_state_lock(sk1);
1196 		unix_state_lock_nested(sk2);
1197 	} else {
1198 		unix_state_lock(sk2);
1199 		unix_state_lock_nested(sk1);
1200 	}
1201 }
1202 
1203 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1204 {
1205 	if (unlikely(sk1 == sk2) || !sk2) {
1206 		unix_state_unlock(sk1);
1207 		return;
1208 	}
1209 	unix_state_unlock(sk1);
1210 	unix_state_unlock(sk2);
1211 }
1212 
1213 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1214 			      int alen, int flags)
1215 {
1216 	struct sock *sk = sock->sk;
1217 	struct net *net = sock_net(sk);
1218 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1219 	struct sock *other;
1220 	unsigned int hash;
1221 	int err;
1222 
1223 	err = -EINVAL;
1224 	if (alen < offsetofend(struct sockaddr, sa_family))
1225 		goto out;
1226 
1227 	if (addr->sa_family != AF_UNSPEC) {
1228 		err = unix_mkname(sunaddr, alen, &hash);
1229 		if (err < 0)
1230 			goto out;
1231 		alen = err;
1232 
1233 		if (test_bit(SOCK_PASSCRED, &sock->flags) &&
1234 		    !unix_sk(sk)->addr && (err = unix_autobind(sock)) != 0)
1235 			goto out;
1236 
1237 restart:
1238 		other = unix_find_other(net, sunaddr, alen, sock->type, hash, &err);
1239 		if (!other)
1240 			goto out;
1241 
1242 		unix_state_double_lock(sk, other);
1243 
1244 		/* Apparently VFS overslept socket death. Retry. */
1245 		if (sock_flag(other, SOCK_DEAD)) {
1246 			unix_state_double_unlock(sk, other);
1247 			sock_put(other);
1248 			goto restart;
1249 		}
1250 
1251 		err = -EPERM;
1252 		if (!unix_may_send(sk, other))
1253 			goto out_unlock;
1254 
1255 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1256 		if (err)
1257 			goto out_unlock;
1258 
1259 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1260 	} else {
1261 		/*
1262 		 *	1003.1g breaking connected state with AF_UNSPEC
1263 		 */
1264 		other = NULL;
1265 		unix_state_double_lock(sk, other);
1266 	}
1267 
1268 	/*
1269 	 * If it was connected, reconnect.
1270 	 */
1271 	if (unix_peer(sk)) {
1272 		struct sock *old_peer = unix_peer(sk);
1273 
1274 		unix_peer(sk) = other;
1275 		if (!other)
1276 			sk->sk_state = TCP_CLOSE;
1277 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1278 
1279 		unix_state_double_unlock(sk, other);
1280 
1281 		if (other != old_peer)
1282 			unix_dgram_disconnected(sk, old_peer);
1283 		sock_put(old_peer);
1284 	} else {
1285 		unix_peer(sk) = other;
1286 		unix_state_double_unlock(sk, other);
1287 	}
1288 
1289 	return 0;
1290 
1291 out_unlock:
1292 	unix_state_double_unlock(sk, other);
1293 	sock_put(other);
1294 out:
1295 	return err;
1296 }
1297 
1298 static long unix_wait_for_peer(struct sock *other, long timeo)
1299 	__releases(&unix_sk(other)->lock)
1300 {
1301 	struct unix_sock *u = unix_sk(other);
1302 	int sched;
1303 	DEFINE_WAIT(wait);
1304 
1305 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1306 
1307 	sched = !sock_flag(other, SOCK_DEAD) &&
1308 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1309 		unix_recvq_full(other);
1310 
1311 	unix_state_unlock(other);
1312 
1313 	if (sched)
1314 		timeo = schedule_timeout(timeo);
1315 
1316 	finish_wait(&u->peer_wait, &wait);
1317 	return timeo;
1318 }
1319 
1320 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1321 			       int addr_len, int flags)
1322 {
1323 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1324 	struct sock *sk = sock->sk;
1325 	struct net *net = sock_net(sk);
1326 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1327 	struct sock *newsk = NULL;
1328 	struct sock *other = NULL;
1329 	struct sk_buff *skb = NULL;
1330 	unsigned int hash;
1331 	int st;
1332 	int err;
1333 	long timeo;
1334 
1335 	err = unix_mkname(sunaddr, addr_len, &hash);
1336 	if (err < 0)
1337 		goto out;
1338 	addr_len = err;
1339 
1340 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr &&
1341 	    (err = unix_autobind(sock)) != 0)
1342 		goto out;
1343 
1344 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1345 
1346 	/* First of all allocate resources.
1347 	   If we will make it after state is locked,
1348 	   we will have to recheck all again in any case.
1349 	 */
1350 
1351 	/* create new sock for complete connection */
1352 	newsk = unix_create1(sock_net(sk), NULL, 0, sock->type);
1353 	if (IS_ERR(newsk)) {
1354 		err = PTR_ERR(newsk);
1355 		newsk = NULL;
1356 		goto out;
1357 	}
1358 
1359 	err = -ENOMEM;
1360 
1361 	/* Allocate skb for sending to listening sock */
1362 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1363 	if (skb == NULL)
1364 		goto out;
1365 
1366 restart:
1367 	/*  Find listening sock. */
1368 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type, hash, &err);
1369 	if (!other)
1370 		goto out;
1371 
1372 	/* Latch state of peer */
1373 	unix_state_lock(other);
1374 
1375 	/* Apparently VFS overslept socket death. Retry. */
1376 	if (sock_flag(other, SOCK_DEAD)) {
1377 		unix_state_unlock(other);
1378 		sock_put(other);
1379 		goto restart;
1380 	}
1381 
1382 	err = -ECONNREFUSED;
1383 	if (other->sk_state != TCP_LISTEN)
1384 		goto out_unlock;
1385 	if (other->sk_shutdown & RCV_SHUTDOWN)
1386 		goto out_unlock;
1387 
1388 	if (unix_recvq_full(other)) {
1389 		err = -EAGAIN;
1390 		if (!timeo)
1391 			goto out_unlock;
1392 
1393 		timeo = unix_wait_for_peer(other, timeo);
1394 
1395 		err = sock_intr_errno(timeo);
1396 		if (signal_pending(current))
1397 			goto out;
1398 		sock_put(other);
1399 		goto restart;
1400 	}
1401 
1402 	/* Latch our state.
1403 
1404 	   It is tricky place. We need to grab our state lock and cannot
1405 	   drop lock on peer. It is dangerous because deadlock is
1406 	   possible. Connect to self case and simultaneous
1407 	   attempt to connect are eliminated by checking socket
1408 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1409 	   check this before attempt to grab lock.
1410 
1411 	   Well, and we have to recheck the state after socket locked.
1412 	 */
1413 	st = sk->sk_state;
1414 
1415 	switch (st) {
1416 	case TCP_CLOSE:
1417 		/* This is ok... continue with connect */
1418 		break;
1419 	case TCP_ESTABLISHED:
1420 		/* Socket is already connected */
1421 		err = -EISCONN;
1422 		goto out_unlock;
1423 	default:
1424 		err = -EINVAL;
1425 		goto out_unlock;
1426 	}
1427 
1428 	unix_state_lock_nested(sk);
1429 
1430 	if (sk->sk_state != st) {
1431 		unix_state_unlock(sk);
1432 		unix_state_unlock(other);
1433 		sock_put(other);
1434 		goto restart;
1435 	}
1436 
1437 	err = security_unix_stream_connect(sk, other, newsk);
1438 	if (err) {
1439 		unix_state_unlock(sk);
1440 		goto out_unlock;
1441 	}
1442 
1443 	/* The way is open! Fastly set all the necessary fields... */
1444 
1445 	sock_hold(sk);
1446 	unix_peer(newsk)	= sk;
1447 	newsk->sk_state		= TCP_ESTABLISHED;
1448 	newsk->sk_type		= sk->sk_type;
1449 	init_peercred(newsk);
1450 	newu = unix_sk(newsk);
1451 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1452 	otheru = unix_sk(other);
1453 
1454 	/* copy address information from listening to new sock
1455 	 *
1456 	 * The contents of *(otheru->addr) and otheru->path
1457 	 * are seen fully set up here, since we have found
1458 	 * otheru in hash under unix_table_lock.  Insertion
1459 	 * into the hash chain we'd found it in had been done
1460 	 * in an earlier critical area protected by unix_table_lock,
1461 	 * the same one where we'd set *(otheru->addr) contents,
1462 	 * as well as otheru->path and otheru->addr itself.
1463 	 *
1464 	 * Using smp_store_release() here to set newu->addr
1465 	 * is enough to make those stores, as well as stores
1466 	 * to newu->path visible to anyone who gets newu->addr
1467 	 * by smp_load_acquire().  IOW, the same warranties
1468 	 * as for unix_sock instances bound in unix_bind() or
1469 	 * in unix_autobind().
1470 	 */
1471 	if (otheru->path.dentry) {
1472 		path_get(&otheru->path);
1473 		newu->path = otheru->path;
1474 	}
1475 	refcount_inc(&otheru->addr->refcnt);
1476 	smp_store_release(&newu->addr, otheru->addr);
1477 
1478 	/* Set credentials */
1479 	copy_peercred(sk, other);
1480 
1481 	sock->state	= SS_CONNECTED;
1482 	sk->sk_state	= TCP_ESTABLISHED;
1483 	sock_hold(newsk);
1484 
1485 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1486 	unix_peer(sk)	= newsk;
1487 
1488 	unix_state_unlock(sk);
1489 
1490 	/* take ten and send info to listening sock */
1491 	spin_lock(&other->sk_receive_queue.lock);
1492 	__skb_queue_tail(&other->sk_receive_queue, skb);
1493 	spin_unlock(&other->sk_receive_queue.lock);
1494 	unix_state_unlock(other);
1495 	other->sk_data_ready(other);
1496 	sock_put(other);
1497 	return 0;
1498 
1499 out_unlock:
1500 	if (other)
1501 		unix_state_unlock(other);
1502 
1503 out:
1504 	kfree_skb(skb);
1505 	if (newsk)
1506 		unix_release_sock(newsk, 0);
1507 	if (other)
1508 		sock_put(other);
1509 	return err;
1510 }
1511 
1512 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1513 {
1514 	struct sock *ska = socka->sk, *skb = sockb->sk;
1515 
1516 	/* Join our sockets back to back */
1517 	sock_hold(ska);
1518 	sock_hold(skb);
1519 	unix_peer(ska) = skb;
1520 	unix_peer(skb) = ska;
1521 	init_peercred(ska);
1522 	init_peercred(skb);
1523 
1524 	ska->sk_state = TCP_ESTABLISHED;
1525 	skb->sk_state = TCP_ESTABLISHED;
1526 	socka->state  = SS_CONNECTED;
1527 	sockb->state  = SS_CONNECTED;
1528 	return 0;
1529 }
1530 
1531 static void unix_sock_inherit_flags(const struct socket *old,
1532 				    struct socket *new)
1533 {
1534 	if (test_bit(SOCK_PASSCRED, &old->flags))
1535 		set_bit(SOCK_PASSCRED, &new->flags);
1536 	if (test_bit(SOCK_PASSSEC, &old->flags))
1537 		set_bit(SOCK_PASSSEC, &new->flags);
1538 }
1539 
1540 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1541 		       bool kern)
1542 {
1543 	struct sock *sk = sock->sk;
1544 	struct sock *tsk;
1545 	struct sk_buff *skb;
1546 	int err;
1547 
1548 	err = -EOPNOTSUPP;
1549 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1550 		goto out;
1551 
1552 	err = -EINVAL;
1553 	if (sk->sk_state != TCP_LISTEN)
1554 		goto out;
1555 
1556 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1557 	 * so that no locks are necessary.
1558 	 */
1559 
1560 	skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err);
1561 	if (!skb) {
1562 		/* This means receive shutdown. */
1563 		if (err == 0)
1564 			err = -EINVAL;
1565 		goto out;
1566 	}
1567 
1568 	tsk = skb->sk;
1569 	skb_free_datagram(sk, skb);
1570 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1571 
1572 	/* attach accepted sock to socket */
1573 	unix_state_lock(tsk);
1574 	newsock->state = SS_CONNECTED;
1575 	unix_sock_inherit_flags(sock, newsock);
1576 	sock_graft(tsk, newsock);
1577 	unix_state_unlock(tsk);
1578 	return 0;
1579 
1580 out:
1581 	return err;
1582 }
1583 
1584 
1585 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1586 {
1587 	struct sock *sk = sock->sk;
1588 	struct unix_address *addr;
1589 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1590 	int err = 0;
1591 
1592 	if (peer) {
1593 		sk = unix_peer_get(sk);
1594 
1595 		err = -ENOTCONN;
1596 		if (!sk)
1597 			goto out;
1598 		err = 0;
1599 	} else {
1600 		sock_hold(sk);
1601 	}
1602 
1603 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1604 	if (!addr) {
1605 		sunaddr->sun_family = AF_UNIX;
1606 		sunaddr->sun_path[0] = 0;
1607 		err = sizeof(short);
1608 	} else {
1609 		err = addr->len;
1610 		memcpy(sunaddr, addr->name, addr->len);
1611 	}
1612 	sock_put(sk);
1613 out:
1614 	return err;
1615 }
1616 
1617 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1618 {
1619 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1620 
1621 	/*
1622 	 * Garbage collection of unix sockets starts by selecting a set of
1623 	 * candidate sockets which have reference only from being in flight
1624 	 * (total_refs == inflight_refs).  This condition is checked once during
1625 	 * the candidate collection phase, and candidates are marked as such, so
1626 	 * that non-candidates can later be ignored.  While inflight_refs is
1627 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1628 	 * is an instantaneous decision.
1629 	 *
1630 	 * Once a candidate, however, the socket must not be reinstalled into a
1631 	 * file descriptor while the garbage collection is in progress.
1632 	 *
1633 	 * If the above conditions are met, then the directed graph of
1634 	 * candidates (*) does not change while unix_gc_lock is held.
1635 	 *
1636 	 * Any operations that changes the file count through file descriptors
1637 	 * (dup, close, sendmsg) does not change the graph since candidates are
1638 	 * not installed in fds.
1639 	 *
1640 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1641 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1642 	 * serialized with garbage collection.
1643 	 *
1644 	 * MSG_PEEK is special in that it does not change the inflight count,
1645 	 * yet does install the socket into an fd.  The following lock/unlock
1646 	 * pair is to ensure serialization with garbage collection.  It must be
1647 	 * done between incrementing the file count and installing the file into
1648 	 * an fd.
1649 	 *
1650 	 * If garbage collection starts after the barrier provided by the
1651 	 * lock/unlock, then it will see the elevated refcount and not mark this
1652 	 * as a candidate.  If a garbage collection is already in progress
1653 	 * before the file count was incremented, then the lock/unlock pair will
1654 	 * ensure that garbage collection is finished before progressing to
1655 	 * installing the fd.
1656 	 *
1657 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1658 	 * which is on the queue of listening socket A.
1659 	 */
1660 	spin_lock(&unix_gc_lock);
1661 	spin_unlock(&unix_gc_lock);
1662 }
1663 
1664 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1665 {
1666 	int err = 0;
1667 
1668 	UNIXCB(skb).pid  = get_pid(scm->pid);
1669 	UNIXCB(skb).uid = scm->creds.uid;
1670 	UNIXCB(skb).gid = scm->creds.gid;
1671 	UNIXCB(skb).fp = NULL;
1672 	unix_get_secdata(scm, skb);
1673 	if (scm->fp && send_fds)
1674 		err = unix_attach_fds(scm, skb);
1675 
1676 	skb->destructor = unix_destruct_scm;
1677 	return err;
1678 }
1679 
1680 static bool unix_passcred_enabled(const struct socket *sock,
1681 				  const struct sock *other)
1682 {
1683 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1684 	       !other->sk_socket ||
1685 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags);
1686 }
1687 
1688 /*
1689  * Some apps rely on write() giving SCM_CREDENTIALS
1690  * We include credentials if source or destination socket
1691  * asserted SOCK_PASSCRED.
1692  */
1693 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1694 			    const struct sock *other)
1695 {
1696 	if (UNIXCB(skb).pid)
1697 		return;
1698 	if (unix_passcred_enabled(sock, other)) {
1699 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1700 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1701 	}
1702 }
1703 
1704 static int maybe_init_creds(struct scm_cookie *scm,
1705 			    struct socket *socket,
1706 			    const struct sock *other)
1707 {
1708 	int err;
1709 	struct msghdr msg = { .msg_controllen = 0 };
1710 
1711 	err = scm_send(socket, &msg, scm, false);
1712 	if (err)
1713 		return err;
1714 
1715 	if (unix_passcred_enabled(socket, other)) {
1716 		scm->pid = get_pid(task_tgid(current));
1717 		current_uid_gid(&scm->creds.uid, &scm->creds.gid);
1718 	}
1719 	return err;
1720 }
1721 
1722 static bool unix_skb_scm_eq(struct sk_buff *skb,
1723 			    struct scm_cookie *scm)
1724 {
1725 	const struct unix_skb_parms *u = &UNIXCB(skb);
1726 
1727 	return u->pid == scm->pid &&
1728 	       uid_eq(u->uid, scm->creds.uid) &&
1729 	       gid_eq(u->gid, scm->creds.gid) &&
1730 	       unix_secdata_eq(scm, skb);
1731 }
1732 
1733 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1734 {
1735 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1736 	struct unix_sock *u = unix_sk(sk);
1737 
1738 	if (unlikely(fp && fp->count))
1739 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1740 }
1741 
1742 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1743 {
1744 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1745 	struct unix_sock *u = unix_sk(sk);
1746 
1747 	if (unlikely(fp && fp->count))
1748 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1749 }
1750 
1751 /*
1752  *	Send AF_UNIX data.
1753  */
1754 
1755 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1756 			      size_t len)
1757 {
1758 	struct sock *sk = sock->sk;
1759 	struct net *net = sock_net(sk);
1760 	struct unix_sock *u = unix_sk(sk);
1761 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1762 	struct sock *other = NULL;
1763 	int namelen = 0; /* fake GCC */
1764 	int err;
1765 	unsigned int hash;
1766 	struct sk_buff *skb;
1767 	long timeo;
1768 	struct scm_cookie scm;
1769 	int data_len = 0;
1770 	int sk_locked;
1771 
1772 	wait_for_unix_gc();
1773 	err = scm_send(sock, msg, &scm, false);
1774 	if (err < 0)
1775 		return err;
1776 
1777 	err = -EOPNOTSUPP;
1778 	if (msg->msg_flags&MSG_OOB)
1779 		goto out;
1780 
1781 	if (msg->msg_namelen) {
1782 		err = unix_mkname(sunaddr, msg->msg_namelen, &hash);
1783 		if (err < 0)
1784 			goto out;
1785 		namelen = err;
1786 	} else {
1787 		sunaddr = NULL;
1788 		err = -ENOTCONN;
1789 		other = unix_peer_get(sk);
1790 		if (!other)
1791 			goto out;
1792 	}
1793 
1794 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr
1795 	    && (err = unix_autobind(sock)) != 0)
1796 		goto out;
1797 
1798 	err = -EMSGSIZE;
1799 	if (len > sk->sk_sndbuf - 32)
1800 		goto out;
1801 
1802 	if (len > SKB_MAX_ALLOC) {
1803 		data_len = min_t(size_t,
1804 				 len - SKB_MAX_ALLOC,
1805 				 MAX_SKB_FRAGS * PAGE_SIZE);
1806 		data_len = PAGE_ALIGN(data_len);
1807 
1808 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1809 	}
1810 
1811 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1812 				   msg->msg_flags & MSG_DONTWAIT, &err,
1813 				   PAGE_ALLOC_COSTLY_ORDER);
1814 	if (skb == NULL)
1815 		goto out;
1816 
1817 	err = unix_scm_to_skb(&scm, skb, true);
1818 	if (err < 0)
1819 		goto out_free;
1820 
1821 	skb_put(skb, len - data_len);
1822 	skb->data_len = data_len;
1823 	skb->len = len;
1824 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1825 	if (err)
1826 		goto out_free;
1827 
1828 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1829 
1830 restart:
1831 	if (!other) {
1832 		err = -ECONNRESET;
1833 		if (sunaddr == NULL)
1834 			goto out_free;
1835 
1836 		other = unix_find_other(net, sunaddr, namelen, sk->sk_type,
1837 					hash, &err);
1838 		if (other == NULL)
1839 			goto out_free;
1840 	}
1841 
1842 	if (sk_filter(other, skb) < 0) {
1843 		/* Toss the packet but do not return any error to the sender */
1844 		err = len;
1845 		goto out_free;
1846 	}
1847 
1848 	sk_locked = 0;
1849 	unix_state_lock(other);
1850 restart_locked:
1851 	err = -EPERM;
1852 	if (!unix_may_send(sk, other))
1853 		goto out_unlock;
1854 
1855 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
1856 		/*
1857 		 *	Check with 1003.1g - what should
1858 		 *	datagram error
1859 		 */
1860 		unix_state_unlock(other);
1861 		sock_put(other);
1862 
1863 		if (!sk_locked)
1864 			unix_state_lock(sk);
1865 
1866 		err = 0;
1867 		if (unix_peer(sk) == other) {
1868 			unix_peer(sk) = NULL;
1869 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
1870 
1871 			unix_state_unlock(sk);
1872 
1873 			sk->sk_state = TCP_CLOSE;
1874 			unix_dgram_disconnected(sk, other);
1875 			sock_put(other);
1876 			err = -ECONNREFUSED;
1877 		} else {
1878 			unix_state_unlock(sk);
1879 		}
1880 
1881 		other = NULL;
1882 		if (err)
1883 			goto out_free;
1884 		goto restart;
1885 	}
1886 
1887 	err = -EPIPE;
1888 	if (other->sk_shutdown & RCV_SHUTDOWN)
1889 		goto out_unlock;
1890 
1891 	if (sk->sk_type != SOCK_SEQPACKET) {
1892 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1893 		if (err)
1894 			goto out_unlock;
1895 	}
1896 
1897 	/* other == sk && unix_peer(other) != sk if
1898 	 * - unix_peer(sk) == NULL, destination address bound to sk
1899 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
1900 	 */
1901 	if (other != sk &&
1902 	    unlikely(unix_peer(other) != sk &&
1903 	    unix_recvq_full_lockless(other))) {
1904 		if (timeo) {
1905 			timeo = unix_wait_for_peer(other, timeo);
1906 
1907 			err = sock_intr_errno(timeo);
1908 			if (signal_pending(current))
1909 				goto out_free;
1910 
1911 			goto restart;
1912 		}
1913 
1914 		if (!sk_locked) {
1915 			unix_state_unlock(other);
1916 			unix_state_double_lock(sk, other);
1917 		}
1918 
1919 		if (unix_peer(sk) != other ||
1920 		    unix_dgram_peer_wake_me(sk, other)) {
1921 			err = -EAGAIN;
1922 			sk_locked = 1;
1923 			goto out_unlock;
1924 		}
1925 
1926 		if (!sk_locked) {
1927 			sk_locked = 1;
1928 			goto restart_locked;
1929 		}
1930 	}
1931 
1932 	if (unlikely(sk_locked))
1933 		unix_state_unlock(sk);
1934 
1935 	if (sock_flag(other, SOCK_RCVTSTAMP))
1936 		__net_timestamp(skb);
1937 	maybe_add_creds(skb, sock, other);
1938 	scm_stat_add(other, skb);
1939 	skb_queue_tail(&other->sk_receive_queue, skb);
1940 	unix_state_unlock(other);
1941 	other->sk_data_ready(other);
1942 	sock_put(other);
1943 	scm_destroy(&scm);
1944 	return len;
1945 
1946 out_unlock:
1947 	if (sk_locked)
1948 		unix_state_unlock(sk);
1949 	unix_state_unlock(other);
1950 out_free:
1951 	kfree_skb(skb);
1952 out:
1953 	if (other)
1954 		sock_put(other);
1955 	scm_destroy(&scm);
1956 	return err;
1957 }
1958 
1959 /* We use paged skbs for stream sockets, and limit occupancy to 32768
1960  * bytes, and a minimum of a full page.
1961  */
1962 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
1963 
1964 #if (IS_ENABLED(CONFIG_AF_UNIX_OOB))
1965 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other)
1966 {
1967 	struct unix_sock *ousk = unix_sk(other);
1968 	struct sk_buff *skb;
1969 	int err = 0;
1970 
1971 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
1972 
1973 	if (!skb)
1974 		return err;
1975 
1976 	skb_put(skb, 1);
1977 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
1978 
1979 	if (err) {
1980 		kfree_skb(skb);
1981 		return err;
1982 	}
1983 
1984 	unix_state_lock(other);
1985 
1986 	if (sock_flag(other, SOCK_DEAD) ||
1987 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
1988 		unix_state_unlock(other);
1989 		kfree_skb(skb);
1990 		return -EPIPE;
1991 	}
1992 
1993 	maybe_add_creds(skb, sock, other);
1994 	skb_get(skb);
1995 
1996 	if (ousk->oob_skb)
1997 		consume_skb(ousk->oob_skb);
1998 
1999 	ousk->oob_skb = skb;
2000 
2001 	scm_stat_add(other, skb);
2002 	skb_queue_tail(&other->sk_receive_queue, skb);
2003 	sk_send_sigurg(other);
2004 	unix_state_unlock(other);
2005 	other->sk_data_ready(other);
2006 
2007 	return err;
2008 }
2009 #endif
2010 
2011 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2012 			       size_t len)
2013 {
2014 	struct sock *sk = sock->sk;
2015 	struct sock *other = NULL;
2016 	int err, size;
2017 	struct sk_buff *skb;
2018 	int sent = 0;
2019 	struct scm_cookie scm;
2020 	bool fds_sent = false;
2021 	int data_len;
2022 
2023 	wait_for_unix_gc();
2024 	err = scm_send(sock, msg, &scm, false);
2025 	if (err < 0)
2026 		return err;
2027 
2028 	err = -EOPNOTSUPP;
2029 	if (msg->msg_flags & MSG_OOB) {
2030 #if (IS_ENABLED(CONFIG_AF_UNIX_OOB))
2031 		if (len)
2032 			len--;
2033 		else
2034 #endif
2035 			goto out_err;
2036 	}
2037 
2038 	if (msg->msg_namelen) {
2039 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2040 		goto out_err;
2041 	} else {
2042 		err = -ENOTCONN;
2043 		other = unix_peer(sk);
2044 		if (!other)
2045 			goto out_err;
2046 	}
2047 
2048 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2049 		goto pipe_err;
2050 
2051 	while (sent < len) {
2052 		size = len - sent;
2053 
2054 		/* Keep two messages in the pipe so it schedules better */
2055 		size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2056 
2057 		/* allow fallback to order-0 allocations */
2058 		size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2059 
2060 		data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2061 
2062 		data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2063 
2064 		skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2065 					   msg->msg_flags & MSG_DONTWAIT, &err,
2066 					   get_order(UNIX_SKB_FRAGS_SZ));
2067 		if (!skb)
2068 			goto out_err;
2069 
2070 		/* Only send the fds in the first buffer */
2071 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2072 		if (err < 0) {
2073 			kfree_skb(skb);
2074 			goto out_err;
2075 		}
2076 		fds_sent = true;
2077 
2078 		skb_put(skb, size - data_len);
2079 		skb->data_len = data_len;
2080 		skb->len = size;
2081 		err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2082 		if (err) {
2083 			kfree_skb(skb);
2084 			goto out_err;
2085 		}
2086 
2087 		unix_state_lock(other);
2088 
2089 		if (sock_flag(other, SOCK_DEAD) ||
2090 		    (other->sk_shutdown & RCV_SHUTDOWN))
2091 			goto pipe_err_free;
2092 
2093 		maybe_add_creds(skb, sock, other);
2094 		scm_stat_add(other, skb);
2095 		skb_queue_tail(&other->sk_receive_queue, skb);
2096 		unix_state_unlock(other);
2097 		other->sk_data_ready(other);
2098 		sent += size;
2099 	}
2100 
2101 #if (IS_ENABLED(CONFIG_AF_UNIX_OOB))
2102 	if (msg->msg_flags & MSG_OOB) {
2103 		err = queue_oob(sock, msg, other);
2104 		if (err)
2105 			goto out_err;
2106 		sent++;
2107 	}
2108 #endif
2109 
2110 	scm_destroy(&scm);
2111 
2112 	return sent;
2113 
2114 pipe_err_free:
2115 	unix_state_unlock(other);
2116 	kfree_skb(skb);
2117 pipe_err:
2118 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2119 		send_sig(SIGPIPE, current, 0);
2120 	err = -EPIPE;
2121 out_err:
2122 	scm_destroy(&scm);
2123 	return sent ? : err;
2124 }
2125 
2126 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page,
2127 				    int offset, size_t size, int flags)
2128 {
2129 	int err;
2130 	bool send_sigpipe = false;
2131 	bool init_scm = true;
2132 	struct scm_cookie scm;
2133 	struct sock *other, *sk = socket->sk;
2134 	struct sk_buff *skb, *newskb = NULL, *tail = NULL;
2135 
2136 	if (flags & MSG_OOB)
2137 		return -EOPNOTSUPP;
2138 
2139 	other = unix_peer(sk);
2140 	if (!other || sk->sk_state != TCP_ESTABLISHED)
2141 		return -ENOTCONN;
2142 
2143 	if (false) {
2144 alloc_skb:
2145 		unix_state_unlock(other);
2146 		mutex_unlock(&unix_sk(other)->iolock);
2147 		newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT,
2148 					      &err, 0);
2149 		if (!newskb)
2150 			goto err;
2151 	}
2152 
2153 	/* we must acquire iolock as we modify already present
2154 	 * skbs in the sk_receive_queue and mess with skb->len
2155 	 */
2156 	err = mutex_lock_interruptible(&unix_sk(other)->iolock);
2157 	if (err) {
2158 		err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS;
2159 		goto err;
2160 	}
2161 
2162 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
2163 		err = -EPIPE;
2164 		send_sigpipe = true;
2165 		goto err_unlock;
2166 	}
2167 
2168 	unix_state_lock(other);
2169 
2170 	if (sock_flag(other, SOCK_DEAD) ||
2171 	    other->sk_shutdown & RCV_SHUTDOWN) {
2172 		err = -EPIPE;
2173 		send_sigpipe = true;
2174 		goto err_state_unlock;
2175 	}
2176 
2177 	if (init_scm) {
2178 		err = maybe_init_creds(&scm, socket, other);
2179 		if (err)
2180 			goto err_state_unlock;
2181 		init_scm = false;
2182 	}
2183 
2184 	skb = skb_peek_tail(&other->sk_receive_queue);
2185 	if (tail && tail == skb) {
2186 		skb = newskb;
2187 	} else if (!skb || !unix_skb_scm_eq(skb, &scm)) {
2188 		if (newskb) {
2189 			skb = newskb;
2190 		} else {
2191 			tail = skb;
2192 			goto alloc_skb;
2193 		}
2194 	} else if (newskb) {
2195 		/* this is fast path, we don't necessarily need to
2196 		 * call to kfree_skb even though with newskb == NULL
2197 		 * this - does no harm
2198 		 */
2199 		consume_skb(newskb);
2200 		newskb = NULL;
2201 	}
2202 
2203 	if (skb_append_pagefrags(skb, page, offset, size)) {
2204 		tail = skb;
2205 		goto alloc_skb;
2206 	}
2207 
2208 	skb->len += size;
2209 	skb->data_len += size;
2210 	skb->truesize += size;
2211 	refcount_add(size, &sk->sk_wmem_alloc);
2212 
2213 	if (newskb) {
2214 		err = unix_scm_to_skb(&scm, skb, false);
2215 		if (err)
2216 			goto err_state_unlock;
2217 		spin_lock(&other->sk_receive_queue.lock);
2218 		__skb_queue_tail(&other->sk_receive_queue, newskb);
2219 		spin_unlock(&other->sk_receive_queue.lock);
2220 	}
2221 
2222 	unix_state_unlock(other);
2223 	mutex_unlock(&unix_sk(other)->iolock);
2224 
2225 	other->sk_data_ready(other);
2226 	scm_destroy(&scm);
2227 	return size;
2228 
2229 err_state_unlock:
2230 	unix_state_unlock(other);
2231 err_unlock:
2232 	mutex_unlock(&unix_sk(other)->iolock);
2233 err:
2234 	kfree_skb(newskb);
2235 	if (send_sigpipe && !(flags & MSG_NOSIGNAL))
2236 		send_sig(SIGPIPE, current, 0);
2237 	if (!init_scm)
2238 		scm_destroy(&scm);
2239 	return err;
2240 }
2241 
2242 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2243 				  size_t len)
2244 {
2245 	int err;
2246 	struct sock *sk = sock->sk;
2247 
2248 	err = sock_error(sk);
2249 	if (err)
2250 		return err;
2251 
2252 	if (sk->sk_state != TCP_ESTABLISHED)
2253 		return -ENOTCONN;
2254 
2255 	if (msg->msg_namelen)
2256 		msg->msg_namelen = 0;
2257 
2258 	return unix_dgram_sendmsg(sock, msg, len);
2259 }
2260 
2261 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2262 				  size_t size, int flags)
2263 {
2264 	struct sock *sk = sock->sk;
2265 
2266 	if (sk->sk_state != TCP_ESTABLISHED)
2267 		return -ENOTCONN;
2268 
2269 	return unix_dgram_recvmsg(sock, msg, size, flags);
2270 }
2271 
2272 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2273 {
2274 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2275 
2276 	if (addr) {
2277 		msg->msg_namelen = addr->len;
2278 		memcpy(msg->msg_name, addr->name, addr->len);
2279 	}
2280 }
2281 
2282 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2283 			 int flags)
2284 {
2285 	struct scm_cookie scm;
2286 	struct socket *sock = sk->sk_socket;
2287 	struct unix_sock *u = unix_sk(sk);
2288 	struct sk_buff *skb, *last;
2289 	long timeo;
2290 	int skip;
2291 	int err;
2292 
2293 	err = -EOPNOTSUPP;
2294 	if (flags&MSG_OOB)
2295 		goto out;
2296 
2297 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2298 
2299 	do {
2300 		mutex_lock(&u->iolock);
2301 
2302 		skip = sk_peek_offset(sk, flags);
2303 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2304 					      &skip, &err, &last);
2305 		if (skb) {
2306 			if (!(flags & MSG_PEEK))
2307 				scm_stat_del(sk, skb);
2308 			break;
2309 		}
2310 
2311 		mutex_unlock(&u->iolock);
2312 
2313 		if (err != -EAGAIN)
2314 			break;
2315 	} while (timeo &&
2316 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2317 					      &err, &timeo, last));
2318 
2319 	if (!skb) { /* implies iolock unlocked */
2320 		unix_state_lock(sk);
2321 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2322 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2323 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2324 			err = 0;
2325 		unix_state_unlock(sk);
2326 		goto out;
2327 	}
2328 
2329 	if (wq_has_sleeper(&u->peer_wait))
2330 		wake_up_interruptible_sync_poll(&u->peer_wait,
2331 						EPOLLOUT | EPOLLWRNORM |
2332 						EPOLLWRBAND);
2333 
2334 	if (msg->msg_name)
2335 		unix_copy_addr(msg, skb->sk);
2336 
2337 	if (size > skb->len - skip)
2338 		size = skb->len - skip;
2339 	else if (size < skb->len - skip)
2340 		msg->msg_flags |= MSG_TRUNC;
2341 
2342 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2343 	if (err)
2344 		goto out_free;
2345 
2346 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2347 		__sock_recv_timestamp(msg, sk, skb);
2348 
2349 	memset(&scm, 0, sizeof(scm));
2350 
2351 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2352 	unix_set_secdata(&scm, skb);
2353 
2354 	if (!(flags & MSG_PEEK)) {
2355 		if (UNIXCB(skb).fp)
2356 			unix_detach_fds(&scm, skb);
2357 
2358 		sk_peek_offset_bwd(sk, skb->len);
2359 	} else {
2360 		/* It is questionable: on PEEK we could:
2361 		   - do not return fds - good, but too simple 8)
2362 		   - return fds, and do not return them on read (old strategy,
2363 		     apparently wrong)
2364 		   - clone fds (I chose it for now, it is the most universal
2365 		     solution)
2366 
2367 		   POSIX 1003.1g does not actually define this clearly
2368 		   at all. POSIX 1003.1g doesn't define a lot of things
2369 		   clearly however!
2370 
2371 		*/
2372 
2373 		sk_peek_offset_fwd(sk, size);
2374 
2375 		if (UNIXCB(skb).fp)
2376 			unix_peek_fds(&scm, skb);
2377 	}
2378 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2379 
2380 	scm_recv(sock, msg, &scm, flags);
2381 
2382 out_free:
2383 	skb_free_datagram(sk, skb);
2384 	mutex_unlock(&u->iolock);
2385 out:
2386 	return err;
2387 }
2388 
2389 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2390 			      int flags)
2391 {
2392 	struct sock *sk = sock->sk;
2393 
2394 #ifdef CONFIG_BPF_SYSCALL
2395 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2396 
2397 	if (prot != &unix_dgram_proto)
2398 		return prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2399 					    flags & ~MSG_DONTWAIT, NULL);
2400 #endif
2401 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2402 }
2403 
2404 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc,
2405 			  sk_read_actor_t recv_actor)
2406 {
2407 	int copied = 0;
2408 
2409 	while (1) {
2410 		struct unix_sock *u = unix_sk(sk);
2411 		struct sk_buff *skb;
2412 		int used, err;
2413 
2414 		mutex_lock(&u->iolock);
2415 		skb = skb_recv_datagram(sk, 0, 1, &err);
2416 		mutex_unlock(&u->iolock);
2417 		if (!skb)
2418 			return err;
2419 
2420 		used = recv_actor(desc, skb, 0, skb->len);
2421 		if (used <= 0) {
2422 			if (!copied)
2423 				copied = used;
2424 			kfree_skb(skb);
2425 			break;
2426 		} else if (used <= skb->len) {
2427 			copied += used;
2428 		}
2429 
2430 		kfree_skb(skb);
2431 		if (!desc->count)
2432 			break;
2433 	}
2434 
2435 	return copied;
2436 }
2437 
2438 /*
2439  *	Sleep until more data has arrived. But check for races..
2440  */
2441 static long unix_stream_data_wait(struct sock *sk, long timeo,
2442 				  struct sk_buff *last, unsigned int last_len,
2443 				  bool freezable)
2444 {
2445 	struct sk_buff *tail;
2446 	DEFINE_WAIT(wait);
2447 
2448 	unix_state_lock(sk);
2449 
2450 	for (;;) {
2451 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2452 
2453 		tail = skb_peek_tail(&sk->sk_receive_queue);
2454 		if (tail != last ||
2455 		    (tail && tail->len != last_len) ||
2456 		    sk->sk_err ||
2457 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2458 		    signal_pending(current) ||
2459 		    !timeo)
2460 			break;
2461 
2462 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2463 		unix_state_unlock(sk);
2464 		if (freezable)
2465 			timeo = freezable_schedule_timeout(timeo);
2466 		else
2467 			timeo = schedule_timeout(timeo);
2468 		unix_state_lock(sk);
2469 
2470 		if (sock_flag(sk, SOCK_DEAD))
2471 			break;
2472 
2473 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2474 	}
2475 
2476 	finish_wait(sk_sleep(sk), &wait);
2477 	unix_state_unlock(sk);
2478 	return timeo;
2479 }
2480 
2481 static unsigned int unix_skb_len(const struct sk_buff *skb)
2482 {
2483 	return skb->len - UNIXCB(skb).consumed;
2484 }
2485 
2486 struct unix_stream_read_state {
2487 	int (*recv_actor)(struct sk_buff *, int, int,
2488 			  struct unix_stream_read_state *);
2489 	struct socket *socket;
2490 	struct msghdr *msg;
2491 	struct pipe_inode_info *pipe;
2492 	size_t size;
2493 	int flags;
2494 	unsigned int splice_flags;
2495 };
2496 
2497 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2498 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2499 {
2500 	struct socket *sock = state->socket;
2501 	struct sock *sk = sock->sk;
2502 	struct unix_sock *u = unix_sk(sk);
2503 	int chunk = 1;
2504 	struct sk_buff *oob_skb;
2505 
2506 	mutex_lock(&u->iolock);
2507 	unix_state_lock(sk);
2508 
2509 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2510 		unix_state_unlock(sk);
2511 		mutex_unlock(&u->iolock);
2512 		return -EINVAL;
2513 	}
2514 
2515 	oob_skb = u->oob_skb;
2516 
2517 	if (!(state->flags & MSG_PEEK)) {
2518 		u->oob_skb = NULL;
2519 	}
2520 
2521 	unix_state_unlock(sk);
2522 
2523 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2524 
2525 	if (!(state->flags & MSG_PEEK)) {
2526 		UNIXCB(oob_skb).consumed += 1;
2527 		kfree_skb(oob_skb);
2528 	}
2529 
2530 	mutex_unlock(&u->iolock);
2531 
2532 	if (chunk < 0)
2533 		return -EFAULT;
2534 
2535 	state->msg->msg_flags |= MSG_OOB;
2536 	return 1;
2537 }
2538 
2539 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2540 				  int flags, int copied)
2541 {
2542 	struct unix_sock *u = unix_sk(sk);
2543 
2544 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2545 		skb_unlink(skb, &sk->sk_receive_queue);
2546 		consume_skb(skb);
2547 		skb = NULL;
2548 	} else {
2549 		if (skb == u->oob_skb) {
2550 			if (copied) {
2551 				skb = NULL;
2552 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2553 				if (!(flags & MSG_PEEK)) {
2554 					u->oob_skb = NULL;
2555 					consume_skb(skb);
2556 				}
2557 			} else if (!(flags & MSG_PEEK)) {
2558 				skb_unlink(skb, &sk->sk_receive_queue);
2559 				consume_skb(skb);
2560 				skb = skb_peek(&sk->sk_receive_queue);
2561 			}
2562 		}
2563 	}
2564 	return skb;
2565 }
2566 #endif
2567 
2568 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc,
2569 				 sk_read_actor_t recv_actor)
2570 {
2571 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2572 		return -ENOTCONN;
2573 
2574 	return unix_read_sock(sk, desc, recv_actor);
2575 }
2576 
2577 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2578 				    bool freezable)
2579 {
2580 	struct scm_cookie scm;
2581 	struct socket *sock = state->socket;
2582 	struct sock *sk = sock->sk;
2583 	struct unix_sock *u = unix_sk(sk);
2584 	int copied = 0;
2585 	int flags = state->flags;
2586 	int noblock = flags & MSG_DONTWAIT;
2587 	bool check_creds = false;
2588 	int target;
2589 	int err = 0;
2590 	long timeo;
2591 	int skip;
2592 	size_t size = state->size;
2593 	unsigned int last_len;
2594 
2595 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2596 		err = -EINVAL;
2597 		goto out;
2598 	}
2599 
2600 	if (unlikely(flags & MSG_OOB)) {
2601 		err = -EOPNOTSUPP;
2602 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2603 		err = unix_stream_recv_urg(state);
2604 #endif
2605 		goto out;
2606 	}
2607 
2608 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2609 	timeo = sock_rcvtimeo(sk, noblock);
2610 
2611 	memset(&scm, 0, sizeof(scm));
2612 
2613 	/* Lock the socket to prevent queue disordering
2614 	 * while sleeps in memcpy_tomsg
2615 	 */
2616 	mutex_lock(&u->iolock);
2617 
2618 	skip = max(sk_peek_offset(sk, flags), 0);
2619 
2620 	do {
2621 		int chunk;
2622 		bool drop_skb;
2623 		struct sk_buff *skb, *last;
2624 
2625 redo:
2626 		unix_state_lock(sk);
2627 		if (sock_flag(sk, SOCK_DEAD)) {
2628 			err = -ECONNRESET;
2629 			goto unlock;
2630 		}
2631 		last = skb = skb_peek(&sk->sk_receive_queue);
2632 		last_len = last ? last->len : 0;
2633 
2634 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2635 		if (skb) {
2636 			skb = manage_oob(skb, sk, flags, copied);
2637 			if (!skb) {
2638 				unix_state_unlock(sk);
2639 				if (copied)
2640 					break;
2641 				goto redo;
2642 			}
2643 		}
2644 #endif
2645 again:
2646 		if (skb == NULL) {
2647 			if (copied >= target)
2648 				goto unlock;
2649 
2650 			/*
2651 			 *	POSIX 1003.1g mandates this order.
2652 			 */
2653 
2654 			err = sock_error(sk);
2655 			if (err)
2656 				goto unlock;
2657 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2658 				goto unlock;
2659 
2660 			unix_state_unlock(sk);
2661 			if (!timeo) {
2662 				err = -EAGAIN;
2663 				break;
2664 			}
2665 
2666 			mutex_unlock(&u->iolock);
2667 
2668 			timeo = unix_stream_data_wait(sk, timeo, last,
2669 						      last_len, freezable);
2670 
2671 			if (signal_pending(current)) {
2672 				err = sock_intr_errno(timeo);
2673 				scm_destroy(&scm);
2674 				goto out;
2675 			}
2676 
2677 			mutex_lock(&u->iolock);
2678 			goto redo;
2679 unlock:
2680 			unix_state_unlock(sk);
2681 			break;
2682 		}
2683 
2684 		while (skip >= unix_skb_len(skb)) {
2685 			skip -= unix_skb_len(skb);
2686 			last = skb;
2687 			last_len = skb->len;
2688 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2689 			if (!skb)
2690 				goto again;
2691 		}
2692 
2693 		unix_state_unlock(sk);
2694 
2695 		if (check_creds) {
2696 			/* Never glue messages from different writers */
2697 			if (!unix_skb_scm_eq(skb, &scm))
2698 				break;
2699 		} else if (test_bit(SOCK_PASSCRED, &sock->flags)) {
2700 			/* Copy credentials */
2701 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2702 			unix_set_secdata(&scm, skb);
2703 			check_creds = true;
2704 		}
2705 
2706 		/* Copy address just once */
2707 		if (state->msg && state->msg->msg_name) {
2708 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2709 					 state->msg->msg_name);
2710 			unix_copy_addr(state->msg, skb->sk);
2711 			sunaddr = NULL;
2712 		}
2713 
2714 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2715 		skb_get(skb);
2716 		chunk = state->recv_actor(skb, skip, chunk, state);
2717 		drop_skb = !unix_skb_len(skb);
2718 		/* skb is only safe to use if !drop_skb */
2719 		consume_skb(skb);
2720 		if (chunk < 0) {
2721 			if (copied == 0)
2722 				copied = -EFAULT;
2723 			break;
2724 		}
2725 		copied += chunk;
2726 		size -= chunk;
2727 
2728 		if (drop_skb) {
2729 			/* the skb was touched by a concurrent reader;
2730 			 * we should not expect anything from this skb
2731 			 * anymore and assume it invalid - we can be
2732 			 * sure it was dropped from the socket queue
2733 			 *
2734 			 * let's report a short read
2735 			 */
2736 			err = 0;
2737 			break;
2738 		}
2739 
2740 		/* Mark read part of skb as used */
2741 		if (!(flags & MSG_PEEK)) {
2742 			UNIXCB(skb).consumed += chunk;
2743 
2744 			sk_peek_offset_bwd(sk, chunk);
2745 
2746 			if (UNIXCB(skb).fp) {
2747 				scm_stat_del(sk, skb);
2748 				unix_detach_fds(&scm, skb);
2749 			}
2750 
2751 			if (unix_skb_len(skb))
2752 				break;
2753 
2754 			skb_unlink(skb, &sk->sk_receive_queue);
2755 			consume_skb(skb);
2756 
2757 			if (scm.fp)
2758 				break;
2759 		} else {
2760 			/* It is questionable, see note in unix_dgram_recvmsg.
2761 			 */
2762 			if (UNIXCB(skb).fp)
2763 				unix_peek_fds(&scm, skb);
2764 
2765 			sk_peek_offset_fwd(sk, chunk);
2766 
2767 			if (UNIXCB(skb).fp)
2768 				break;
2769 
2770 			skip = 0;
2771 			last = skb;
2772 			last_len = skb->len;
2773 			unix_state_lock(sk);
2774 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2775 			if (skb)
2776 				goto again;
2777 			unix_state_unlock(sk);
2778 			break;
2779 		}
2780 	} while (size);
2781 
2782 	mutex_unlock(&u->iolock);
2783 	if (state->msg)
2784 		scm_recv(sock, state->msg, &scm, flags);
2785 	else
2786 		scm_destroy(&scm);
2787 out:
2788 	return copied ? : err;
2789 }
2790 
2791 static int unix_stream_read_actor(struct sk_buff *skb,
2792 				  int skip, int chunk,
2793 				  struct unix_stream_read_state *state)
2794 {
2795 	int ret;
2796 
2797 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2798 				    state->msg, chunk);
2799 	return ret ?: chunk;
2800 }
2801 
2802 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2803 			  size_t size, int flags)
2804 {
2805 	struct unix_stream_read_state state = {
2806 		.recv_actor = unix_stream_read_actor,
2807 		.socket = sk->sk_socket,
2808 		.msg = msg,
2809 		.size = size,
2810 		.flags = flags
2811 	};
2812 
2813 	return unix_stream_read_generic(&state, true);
2814 }
2815 
2816 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2817 			       size_t size, int flags)
2818 {
2819 	struct unix_stream_read_state state = {
2820 		.recv_actor = unix_stream_read_actor,
2821 		.socket = sock,
2822 		.msg = msg,
2823 		.size = size,
2824 		.flags = flags
2825 	};
2826 
2827 #ifdef CONFIG_BPF_SYSCALL
2828 	struct sock *sk = sock->sk;
2829 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2830 
2831 	if (prot != &unix_stream_proto)
2832 		return prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2833 					    flags & ~MSG_DONTWAIT, NULL);
2834 #endif
2835 	return unix_stream_read_generic(&state, true);
2836 }
2837 
2838 static int unix_stream_splice_actor(struct sk_buff *skb,
2839 				    int skip, int chunk,
2840 				    struct unix_stream_read_state *state)
2841 {
2842 	return skb_splice_bits(skb, state->socket->sk,
2843 			       UNIXCB(skb).consumed + skip,
2844 			       state->pipe, chunk, state->splice_flags);
2845 }
2846 
2847 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2848 				       struct pipe_inode_info *pipe,
2849 				       size_t size, unsigned int flags)
2850 {
2851 	struct unix_stream_read_state state = {
2852 		.recv_actor = unix_stream_splice_actor,
2853 		.socket = sock,
2854 		.pipe = pipe,
2855 		.size = size,
2856 		.splice_flags = flags,
2857 	};
2858 
2859 	if (unlikely(*ppos))
2860 		return -ESPIPE;
2861 
2862 	if (sock->file->f_flags & O_NONBLOCK ||
2863 	    flags & SPLICE_F_NONBLOCK)
2864 		state.flags = MSG_DONTWAIT;
2865 
2866 	return unix_stream_read_generic(&state, false);
2867 }
2868 
2869 static int unix_shutdown(struct socket *sock, int mode)
2870 {
2871 	struct sock *sk = sock->sk;
2872 	struct sock *other;
2873 
2874 	if (mode < SHUT_RD || mode > SHUT_RDWR)
2875 		return -EINVAL;
2876 	/* This maps:
2877 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
2878 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
2879 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
2880 	 */
2881 	++mode;
2882 
2883 	unix_state_lock(sk);
2884 	sk->sk_shutdown |= mode;
2885 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
2886 	    mode == SHUTDOWN_MASK)
2887 		sk->sk_state = TCP_CLOSE;
2888 	other = unix_peer(sk);
2889 	if (other)
2890 		sock_hold(other);
2891 	unix_state_unlock(sk);
2892 	sk->sk_state_change(sk);
2893 
2894 	if (other &&
2895 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
2896 
2897 		int peer_mode = 0;
2898 		const struct proto *prot = READ_ONCE(other->sk_prot);
2899 
2900 		if (prot->unhash)
2901 			prot->unhash(other);
2902 		if (mode&RCV_SHUTDOWN)
2903 			peer_mode |= SEND_SHUTDOWN;
2904 		if (mode&SEND_SHUTDOWN)
2905 			peer_mode |= RCV_SHUTDOWN;
2906 		unix_state_lock(other);
2907 		other->sk_shutdown |= peer_mode;
2908 		unix_state_unlock(other);
2909 		other->sk_state_change(other);
2910 		if (peer_mode == SHUTDOWN_MASK)
2911 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
2912 		else if (peer_mode & RCV_SHUTDOWN)
2913 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
2914 	}
2915 	if (other)
2916 		sock_put(other);
2917 
2918 	return 0;
2919 }
2920 
2921 long unix_inq_len(struct sock *sk)
2922 {
2923 	struct sk_buff *skb;
2924 	long amount = 0;
2925 
2926 	if (sk->sk_state == TCP_LISTEN)
2927 		return -EINVAL;
2928 
2929 	spin_lock(&sk->sk_receive_queue.lock);
2930 	if (sk->sk_type == SOCK_STREAM ||
2931 	    sk->sk_type == SOCK_SEQPACKET) {
2932 		skb_queue_walk(&sk->sk_receive_queue, skb)
2933 			amount += unix_skb_len(skb);
2934 	} else {
2935 		skb = skb_peek(&sk->sk_receive_queue);
2936 		if (skb)
2937 			amount = skb->len;
2938 	}
2939 	spin_unlock(&sk->sk_receive_queue.lock);
2940 
2941 	return amount;
2942 }
2943 EXPORT_SYMBOL_GPL(unix_inq_len);
2944 
2945 long unix_outq_len(struct sock *sk)
2946 {
2947 	return sk_wmem_alloc_get(sk);
2948 }
2949 EXPORT_SYMBOL_GPL(unix_outq_len);
2950 
2951 static int unix_open_file(struct sock *sk)
2952 {
2953 	struct path path;
2954 	struct file *f;
2955 	int fd;
2956 
2957 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2958 		return -EPERM;
2959 
2960 	if (!smp_load_acquire(&unix_sk(sk)->addr))
2961 		return -ENOENT;
2962 
2963 	path = unix_sk(sk)->path;
2964 	if (!path.dentry)
2965 		return -ENOENT;
2966 
2967 	path_get(&path);
2968 
2969 	fd = get_unused_fd_flags(O_CLOEXEC);
2970 	if (fd < 0)
2971 		goto out;
2972 
2973 	f = dentry_open(&path, O_PATH, current_cred());
2974 	if (IS_ERR(f)) {
2975 		put_unused_fd(fd);
2976 		fd = PTR_ERR(f);
2977 		goto out;
2978 	}
2979 
2980 	fd_install(fd, f);
2981 out:
2982 	path_put(&path);
2983 
2984 	return fd;
2985 }
2986 
2987 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2988 {
2989 	struct sock *sk = sock->sk;
2990 	long amount = 0;
2991 	int err;
2992 
2993 	switch (cmd) {
2994 	case SIOCOUTQ:
2995 		amount = unix_outq_len(sk);
2996 		err = put_user(amount, (int __user *)arg);
2997 		break;
2998 	case SIOCINQ:
2999 		amount = unix_inq_len(sk);
3000 		if (amount < 0)
3001 			err = amount;
3002 		else
3003 			err = put_user(amount, (int __user *)arg);
3004 		break;
3005 	case SIOCUNIXFILE:
3006 		err = unix_open_file(sk);
3007 		break;
3008 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3009 	case SIOCATMARK:
3010 		{
3011 			struct sk_buff *skb;
3012 			struct unix_sock *u = unix_sk(sk);
3013 			int answ = 0;
3014 
3015 			skb = skb_peek(&sk->sk_receive_queue);
3016 			if (skb && skb == u->oob_skb)
3017 				answ = 1;
3018 			err = put_user(answ, (int __user *)arg);
3019 		}
3020 		break;
3021 #endif
3022 	default:
3023 		err = -ENOIOCTLCMD;
3024 		break;
3025 	}
3026 	return err;
3027 }
3028 
3029 #ifdef CONFIG_COMPAT
3030 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3031 {
3032 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3033 }
3034 #endif
3035 
3036 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3037 {
3038 	struct sock *sk = sock->sk;
3039 	__poll_t mask;
3040 
3041 	sock_poll_wait(file, sock, wait);
3042 	mask = 0;
3043 
3044 	/* exceptional events? */
3045 	if (sk->sk_err)
3046 		mask |= EPOLLERR;
3047 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3048 		mask |= EPOLLHUP;
3049 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3050 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3051 
3052 	/* readable? */
3053 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3054 		mask |= EPOLLIN | EPOLLRDNORM;
3055 	if (sk_is_readable(sk))
3056 		mask |= EPOLLIN | EPOLLRDNORM;
3057 
3058 	/* Connection-based need to check for termination and startup */
3059 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3060 	    sk->sk_state == TCP_CLOSE)
3061 		mask |= EPOLLHUP;
3062 
3063 	/*
3064 	 * we set writable also when the other side has shut down the
3065 	 * connection. This prevents stuck sockets.
3066 	 */
3067 	if (unix_writable(sk))
3068 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3069 
3070 	return mask;
3071 }
3072 
3073 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3074 				    poll_table *wait)
3075 {
3076 	struct sock *sk = sock->sk, *other;
3077 	unsigned int writable;
3078 	__poll_t mask;
3079 
3080 	sock_poll_wait(file, sock, wait);
3081 	mask = 0;
3082 
3083 	/* exceptional events? */
3084 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
3085 		mask |= EPOLLERR |
3086 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3087 
3088 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3089 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3090 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3091 		mask |= EPOLLHUP;
3092 
3093 	/* readable? */
3094 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3095 		mask |= EPOLLIN | EPOLLRDNORM;
3096 	if (sk_is_readable(sk))
3097 		mask |= EPOLLIN | EPOLLRDNORM;
3098 
3099 	/* Connection-based need to check for termination and startup */
3100 	if (sk->sk_type == SOCK_SEQPACKET) {
3101 		if (sk->sk_state == TCP_CLOSE)
3102 			mask |= EPOLLHUP;
3103 		/* connection hasn't started yet? */
3104 		if (sk->sk_state == TCP_SYN_SENT)
3105 			return mask;
3106 	}
3107 
3108 	/* No write status requested, avoid expensive OUT tests. */
3109 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3110 		return mask;
3111 
3112 	writable = unix_writable(sk);
3113 	if (writable) {
3114 		unix_state_lock(sk);
3115 
3116 		other = unix_peer(sk);
3117 		if (other && unix_peer(other) != sk &&
3118 		    unix_recvq_full_lockless(other) &&
3119 		    unix_dgram_peer_wake_me(sk, other))
3120 			writable = 0;
3121 
3122 		unix_state_unlock(sk);
3123 	}
3124 
3125 	if (writable)
3126 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3127 	else
3128 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3129 
3130 	return mask;
3131 }
3132 
3133 #ifdef CONFIG_PROC_FS
3134 
3135 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3136 
3137 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3138 #define get_offset(x) ((x) & ((1L << BUCKET_SPACE) - 1))
3139 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3140 
3141 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3142 {
3143 	unsigned long offset = get_offset(*pos);
3144 	unsigned long bucket = get_bucket(*pos);
3145 	struct sock *sk;
3146 	unsigned long count = 0;
3147 
3148 	for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) {
3149 		if (sock_net(sk) != seq_file_net(seq))
3150 			continue;
3151 		if (++count == offset)
3152 			break;
3153 	}
3154 
3155 	return sk;
3156 }
3157 
3158 static struct sock *unix_next_socket(struct seq_file *seq,
3159 				     struct sock *sk,
3160 				     loff_t *pos)
3161 {
3162 	unsigned long bucket;
3163 
3164 	while (sk > (struct sock *)SEQ_START_TOKEN) {
3165 		sk = sk_next(sk);
3166 		if (!sk)
3167 			goto next_bucket;
3168 		if (sock_net(sk) == seq_file_net(seq))
3169 			return sk;
3170 	}
3171 
3172 	do {
3173 		sk = unix_from_bucket(seq, pos);
3174 		if (sk)
3175 			return sk;
3176 
3177 next_bucket:
3178 		bucket = get_bucket(*pos) + 1;
3179 		*pos = set_bucket_offset(bucket, 1);
3180 	} while (bucket < ARRAY_SIZE(unix_socket_table));
3181 
3182 	return NULL;
3183 }
3184 
3185 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3186 	__acquires(unix_table_lock)
3187 {
3188 	spin_lock(&unix_table_lock);
3189 
3190 	if (!*pos)
3191 		return SEQ_START_TOKEN;
3192 
3193 	if (get_bucket(*pos) >= ARRAY_SIZE(unix_socket_table))
3194 		return NULL;
3195 
3196 	return unix_next_socket(seq, NULL, pos);
3197 }
3198 
3199 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3200 {
3201 	++*pos;
3202 	return unix_next_socket(seq, v, pos);
3203 }
3204 
3205 static void unix_seq_stop(struct seq_file *seq, void *v)
3206 	__releases(unix_table_lock)
3207 {
3208 	spin_unlock(&unix_table_lock);
3209 }
3210 
3211 static int unix_seq_show(struct seq_file *seq, void *v)
3212 {
3213 
3214 	if (v == SEQ_START_TOKEN)
3215 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3216 			 "Inode Path\n");
3217 	else {
3218 		struct sock *s = v;
3219 		struct unix_sock *u = unix_sk(s);
3220 		unix_state_lock(s);
3221 
3222 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3223 			s,
3224 			refcount_read(&s->sk_refcnt),
3225 			0,
3226 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3227 			s->sk_type,
3228 			s->sk_socket ?
3229 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3230 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3231 			sock_i_ino(s));
3232 
3233 		if (u->addr) {	// under unix_table_lock here
3234 			int i, len;
3235 			seq_putc(seq, ' ');
3236 
3237 			i = 0;
3238 			len = u->addr->len - sizeof(short);
3239 			if (!UNIX_ABSTRACT(s))
3240 				len--;
3241 			else {
3242 				seq_putc(seq, '@');
3243 				i++;
3244 			}
3245 			for ( ; i < len; i++)
3246 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3247 					 '@');
3248 		}
3249 		unix_state_unlock(s);
3250 		seq_putc(seq, '\n');
3251 	}
3252 
3253 	return 0;
3254 }
3255 
3256 static const struct seq_operations unix_seq_ops = {
3257 	.start  = unix_seq_start,
3258 	.next   = unix_seq_next,
3259 	.stop   = unix_seq_stop,
3260 	.show   = unix_seq_show,
3261 };
3262 
3263 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL)
3264 struct bpf_iter__unix {
3265 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3266 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3267 	uid_t uid __aligned(8);
3268 };
3269 
3270 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3271 			      struct unix_sock *unix_sk, uid_t uid)
3272 {
3273 	struct bpf_iter__unix ctx;
3274 
3275 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3276 	ctx.meta = meta;
3277 	ctx.unix_sk = unix_sk;
3278 	ctx.uid = uid;
3279 	return bpf_iter_run_prog(prog, &ctx);
3280 }
3281 
3282 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3283 {
3284 	struct bpf_iter_meta meta;
3285 	struct bpf_prog *prog;
3286 	struct sock *sk = v;
3287 	uid_t uid;
3288 
3289 	if (v == SEQ_START_TOKEN)
3290 		return 0;
3291 
3292 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3293 	meta.seq = seq;
3294 	prog = bpf_iter_get_info(&meta, false);
3295 	return unix_prog_seq_show(prog, &meta, v, uid);
3296 }
3297 
3298 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3299 {
3300 	struct bpf_iter_meta meta;
3301 	struct bpf_prog *prog;
3302 
3303 	if (!v) {
3304 		meta.seq = seq;
3305 		prog = bpf_iter_get_info(&meta, true);
3306 		if (prog)
3307 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3308 	}
3309 
3310 	unix_seq_stop(seq, v);
3311 }
3312 
3313 static const struct seq_operations bpf_iter_unix_seq_ops = {
3314 	.start	= unix_seq_start,
3315 	.next	= unix_seq_next,
3316 	.stop	= bpf_iter_unix_seq_stop,
3317 	.show	= bpf_iter_unix_seq_show,
3318 };
3319 #endif
3320 #endif
3321 
3322 static const struct net_proto_family unix_family_ops = {
3323 	.family = PF_UNIX,
3324 	.create = unix_create,
3325 	.owner	= THIS_MODULE,
3326 };
3327 
3328 
3329 static int __net_init unix_net_init(struct net *net)
3330 {
3331 	int error = -ENOMEM;
3332 
3333 	net->unx.sysctl_max_dgram_qlen = 10;
3334 	if (unix_sysctl_register(net))
3335 		goto out;
3336 
3337 #ifdef CONFIG_PROC_FS
3338 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3339 			sizeof(struct seq_net_private))) {
3340 		unix_sysctl_unregister(net);
3341 		goto out;
3342 	}
3343 #endif
3344 	error = 0;
3345 out:
3346 	return error;
3347 }
3348 
3349 static void __net_exit unix_net_exit(struct net *net)
3350 {
3351 	unix_sysctl_unregister(net);
3352 	remove_proc_entry("unix", net->proc_net);
3353 }
3354 
3355 static struct pernet_operations unix_net_ops = {
3356 	.init = unix_net_init,
3357 	.exit = unix_net_exit,
3358 };
3359 
3360 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3361 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3362 		     struct unix_sock *unix_sk, uid_t uid)
3363 
3364 static const struct bpf_iter_seq_info unix_seq_info = {
3365 	.seq_ops		= &bpf_iter_unix_seq_ops,
3366 	.init_seq_private	= bpf_iter_init_seq_net,
3367 	.fini_seq_private	= bpf_iter_fini_seq_net,
3368 	.seq_priv_size		= sizeof(struct seq_net_private),
3369 };
3370 
3371 static struct bpf_iter_reg unix_reg_info = {
3372 	.target			= "unix",
3373 	.ctx_arg_info_size	= 1,
3374 	.ctx_arg_info		= {
3375 		{ offsetof(struct bpf_iter__unix, unix_sk),
3376 		  PTR_TO_BTF_ID_OR_NULL },
3377 	},
3378 	.seq_info		= &unix_seq_info,
3379 };
3380 
3381 static void __init bpf_iter_register(void)
3382 {
3383 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3384 	if (bpf_iter_reg_target(&unix_reg_info))
3385 		pr_warn("Warning: could not register bpf iterator unix\n");
3386 }
3387 #endif
3388 
3389 static int __init af_unix_init(void)
3390 {
3391 	int rc = -1;
3392 
3393 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3394 
3395 	rc = proto_register(&unix_dgram_proto, 1);
3396 	if (rc != 0) {
3397 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3398 		goto out;
3399 	}
3400 
3401 	rc = proto_register(&unix_stream_proto, 1);
3402 	if (rc != 0) {
3403 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3404 		goto out;
3405 	}
3406 
3407 	sock_register(&unix_family_ops);
3408 	register_pernet_subsys(&unix_net_ops);
3409 	unix_bpf_build_proto();
3410 
3411 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3412 	bpf_iter_register();
3413 #endif
3414 
3415 out:
3416 	return rc;
3417 }
3418 
3419 static void __exit af_unix_exit(void)
3420 {
3421 	sock_unregister(PF_UNIX);
3422 	proto_unregister(&unix_dgram_proto);
3423 	proto_unregister(&unix_stream_proto);
3424 	unregister_pernet_subsys(&unix_net_ops);
3425 }
3426 
3427 /* Earlier than device_initcall() so that other drivers invoking
3428    request_module() don't end up in a loop when modprobe tries
3429    to use a UNIX socket. But later than subsys_initcall() because
3430    we depend on stuff initialised there */
3431 fs_initcall(af_unix_init);
3432 module_exit(af_unix_exit);
3433 
3434 MODULE_LICENSE("GPL");
3435 MODULE_ALIAS_NETPROTO(PF_UNIX);
3436