xref: /linux/net/unix/af_unix.c (revision 5832c4a77d6931cebf9ba737129ae8f14b66ee1d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/filter.h>
93 #include <linux/termios.h>
94 #include <linux/sockios.h>
95 #include <linux/net.h>
96 #include <linux/in.h>
97 #include <linux/fs.h>
98 #include <linux/slab.h>
99 #include <linux/uaccess.h>
100 #include <linux/skbuff.h>
101 #include <linux/netdevice.h>
102 #include <net/net_namespace.h>
103 #include <net/sock.h>
104 #include <net/tcp_states.h>
105 #include <net/af_unix.h>
106 #include <linux/proc_fs.h>
107 #include <linux/seq_file.h>
108 #include <net/scm.h>
109 #include <linux/init.h>
110 #include <linux/poll.h>
111 #include <linux/rtnetlink.h>
112 #include <linux/mount.h>
113 #include <net/checksum.h>
114 #include <linux/security.h>
115 #include <linux/splice.h>
116 #include <linux/freezer.h>
117 #include <linux/file.h>
118 #include <linux/btf_ids.h>
119 #include <linux/bpf-cgroup.h>
120 
121 static atomic_long_t unix_nr_socks;
122 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2];
123 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2];
124 
125 /* SMP locking strategy:
126  *    hash table is protected with spinlock.
127  *    each socket state is protected by separate spinlock.
128  */
129 
130 static unsigned int unix_unbound_hash(struct sock *sk)
131 {
132 	unsigned long hash = (unsigned long)sk;
133 
134 	hash ^= hash >> 16;
135 	hash ^= hash >> 8;
136 	hash ^= sk->sk_type;
137 
138 	return hash & UNIX_HASH_MOD;
139 }
140 
141 static unsigned int unix_bsd_hash(struct inode *i)
142 {
143 	return i->i_ino & UNIX_HASH_MOD;
144 }
145 
146 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr,
147 				       int addr_len, int type)
148 {
149 	__wsum csum = csum_partial(sunaddr, addr_len, 0);
150 	unsigned int hash;
151 
152 	hash = (__force unsigned int)csum_fold(csum);
153 	hash ^= hash >> 8;
154 	hash ^= type;
155 
156 	return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD);
157 }
158 
159 static void unix_table_double_lock(struct net *net,
160 				   unsigned int hash1, unsigned int hash2)
161 {
162 	if (hash1 == hash2) {
163 		spin_lock(&net->unx.table.locks[hash1]);
164 		return;
165 	}
166 
167 	if (hash1 > hash2)
168 		swap(hash1, hash2);
169 
170 	spin_lock(&net->unx.table.locks[hash1]);
171 	spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING);
172 }
173 
174 static void unix_table_double_unlock(struct net *net,
175 				     unsigned int hash1, unsigned int hash2)
176 {
177 	if (hash1 == hash2) {
178 		spin_unlock(&net->unx.table.locks[hash1]);
179 		return;
180 	}
181 
182 	spin_unlock(&net->unx.table.locks[hash1]);
183 	spin_unlock(&net->unx.table.locks[hash2]);
184 }
185 
186 #ifdef CONFIG_SECURITY_NETWORK
187 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
188 {
189 	UNIXCB(skb).secid = scm->secid;
190 }
191 
192 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
193 {
194 	scm->secid = UNIXCB(skb).secid;
195 }
196 
197 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
198 {
199 	return (scm->secid == UNIXCB(skb).secid);
200 }
201 #else
202 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
203 { }
204 
205 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
206 { }
207 
208 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
209 {
210 	return true;
211 }
212 #endif /* CONFIG_SECURITY_NETWORK */
213 
214 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
215 {
216 	return unix_peer(osk) == sk;
217 }
218 
219 static inline int unix_may_send(struct sock *sk, struct sock *osk)
220 {
221 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
222 }
223 
224 static inline int unix_recvq_full(const struct sock *sk)
225 {
226 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
227 }
228 
229 static inline int unix_recvq_full_lockless(const struct sock *sk)
230 {
231 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
232 		READ_ONCE(sk->sk_max_ack_backlog);
233 }
234 
235 struct sock *unix_peer_get(struct sock *s)
236 {
237 	struct sock *peer;
238 
239 	unix_state_lock(s);
240 	peer = unix_peer(s);
241 	if (peer)
242 		sock_hold(peer);
243 	unix_state_unlock(s);
244 	return peer;
245 }
246 EXPORT_SYMBOL_GPL(unix_peer_get);
247 
248 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr,
249 					     int addr_len)
250 {
251 	struct unix_address *addr;
252 
253 	addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL);
254 	if (!addr)
255 		return NULL;
256 
257 	refcount_set(&addr->refcnt, 1);
258 	addr->len = addr_len;
259 	memcpy(addr->name, sunaddr, addr_len);
260 
261 	return addr;
262 }
263 
264 static inline void unix_release_addr(struct unix_address *addr)
265 {
266 	if (refcount_dec_and_test(&addr->refcnt))
267 		kfree(addr);
268 }
269 
270 /*
271  *	Check unix socket name:
272  *		- should be not zero length.
273  *	        - if started by not zero, should be NULL terminated (FS object)
274  *		- if started by zero, it is abstract name.
275  */
276 
277 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len)
278 {
279 	if (addr_len <= offsetof(struct sockaddr_un, sun_path) ||
280 	    addr_len > sizeof(*sunaddr))
281 		return -EINVAL;
282 
283 	if (sunaddr->sun_family != AF_UNIX)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 
289 static int unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len)
290 {
291 	struct sockaddr_storage *addr = (struct sockaddr_storage *)sunaddr;
292 	short offset = offsetof(struct sockaddr_storage, __data);
293 
294 	BUILD_BUG_ON(offset != offsetof(struct sockaddr_un, sun_path));
295 
296 	/* This may look like an off by one error but it is a bit more
297 	 * subtle.  108 is the longest valid AF_UNIX path for a binding.
298 	 * sun_path[108] doesn't as such exist.  However in kernel space
299 	 * we are guaranteed that it is a valid memory location in our
300 	 * kernel address buffer because syscall functions always pass
301 	 * a pointer of struct sockaddr_storage which has a bigger buffer
302 	 * than 108.  Also, we must terminate sun_path for strlen() in
303 	 * getname_kernel().
304 	 */
305 	addr->__data[addr_len - offset] = 0;
306 
307 	/* Don't pass sunaddr->sun_path to strlen().  Otherwise, 108 will
308 	 * cause panic if CONFIG_FORTIFY_SOURCE=y.  Let __fortify_strlen()
309 	 * know the actual buffer.
310 	 */
311 	return strlen(addr->__data) + offset + 1;
312 }
313 
314 static void __unix_remove_socket(struct sock *sk)
315 {
316 	sk_del_node_init(sk);
317 }
318 
319 static void __unix_insert_socket(struct net *net, struct sock *sk)
320 {
321 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
322 	sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]);
323 }
324 
325 static void __unix_set_addr_hash(struct net *net, struct sock *sk,
326 				 struct unix_address *addr, unsigned int hash)
327 {
328 	__unix_remove_socket(sk);
329 	smp_store_release(&unix_sk(sk)->addr, addr);
330 
331 	sk->sk_hash = hash;
332 	__unix_insert_socket(net, sk);
333 }
334 
335 static void unix_remove_socket(struct net *net, struct sock *sk)
336 {
337 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
338 	__unix_remove_socket(sk);
339 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
340 }
341 
342 static void unix_insert_unbound_socket(struct net *net, struct sock *sk)
343 {
344 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
345 	__unix_insert_socket(net, sk);
346 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
347 }
348 
349 static void unix_insert_bsd_socket(struct sock *sk)
350 {
351 	spin_lock(&bsd_socket_locks[sk->sk_hash]);
352 	sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]);
353 	spin_unlock(&bsd_socket_locks[sk->sk_hash]);
354 }
355 
356 static void unix_remove_bsd_socket(struct sock *sk)
357 {
358 	if (!hlist_unhashed(&sk->sk_bind_node)) {
359 		spin_lock(&bsd_socket_locks[sk->sk_hash]);
360 		__sk_del_bind_node(sk);
361 		spin_unlock(&bsd_socket_locks[sk->sk_hash]);
362 
363 		sk_node_init(&sk->sk_bind_node);
364 	}
365 }
366 
367 static struct sock *__unix_find_socket_byname(struct net *net,
368 					      struct sockaddr_un *sunname,
369 					      int len, unsigned int hash)
370 {
371 	struct sock *s;
372 
373 	sk_for_each(s, &net->unx.table.buckets[hash]) {
374 		struct unix_sock *u = unix_sk(s);
375 
376 		if (u->addr->len == len &&
377 		    !memcmp(u->addr->name, sunname, len))
378 			return s;
379 	}
380 	return NULL;
381 }
382 
383 static inline struct sock *unix_find_socket_byname(struct net *net,
384 						   struct sockaddr_un *sunname,
385 						   int len, unsigned int hash)
386 {
387 	struct sock *s;
388 
389 	spin_lock(&net->unx.table.locks[hash]);
390 	s = __unix_find_socket_byname(net, sunname, len, hash);
391 	if (s)
392 		sock_hold(s);
393 	spin_unlock(&net->unx.table.locks[hash]);
394 	return s;
395 }
396 
397 static struct sock *unix_find_socket_byinode(struct inode *i)
398 {
399 	unsigned int hash = unix_bsd_hash(i);
400 	struct sock *s;
401 
402 	spin_lock(&bsd_socket_locks[hash]);
403 	sk_for_each_bound(s, &bsd_socket_buckets[hash]) {
404 		struct dentry *dentry = unix_sk(s)->path.dentry;
405 
406 		if (dentry && d_backing_inode(dentry) == i) {
407 			sock_hold(s);
408 			spin_unlock(&bsd_socket_locks[hash]);
409 			return s;
410 		}
411 	}
412 	spin_unlock(&bsd_socket_locks[hash]);
413 	return NULL;
414 }
415 
416 /* Support code for asymmetrically connected dgram sockets
417  *
418  * If a datagram socket is connected to a socket not itself connected
419  * to the first socket (eg, /dev/log), clients may only enqueue more
420  * messages if the present receive queue of the server socket is not
421  * "too large". This means there's a second writeability condition
422  * poll and sendmsg need to test. The dgram recv code will do a wake
423  * up on the peer_wait wait queue of a socket upon reception of a
424  * datagram which needs to be propagated to sleeping would-be writers
425  * since these might not have sent anything so far. This can't be
426  * accomplished via poll_wait because the lifetime of the server
427  * socket might be less than that of its clients if these break their
428  * association with it or if the server socket is closed while clients
429  * are still connected to it and there's no way to inform "a polling
430  * implementation" that it should let go of a certain wait queue
431  *
432  * In order to propagate a wake up, a wait_queue_entry_t of the client
433  * socket is enqueued on the peer_wait queue of the server socket
434  * whose wake function does a wake_up on the ordinary client socket
435  * wait queue. This connection is established whenever a write (or
436  * poll for write) hit the flow control condition and broken when the
437  * association to the server socket is dissolved or after a wake up
438  * was relayed.
439  */
440 
441 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
442 				      void *key)
443 {
444 	struct unix_sock *u;
445 	wait_queue_head_t *u_sleep;
446 
447 	u = container_of(q, struct unix_sock, peer_wake);
448 
449 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
450 			    q);
451 	u->peer_wake.private = NULL;
452 
453 	/* relaying can only happen while the wq still exists */
454 	u_sleep = sk_sleep(&u->sk);
455 	if (u_sleep)
456 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
457 
458 	return 0;
459 }
460 
461 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
462 {
463 	struct unix_sock *u, *u_other;
464 	int rc;
465 
466 	u = unix_sk(sk);
467 	u_other = unix_sk(other);
468 	rc = 0;
469 	spin_lock(&u_other->peer_wait.lock);
470 
471 	if (!u->peer_wake.private) {
472 		u->peer_wake.private = other;
473 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
474 
475 		rc = 1;
476 	}
477 
478 	spin_unlock(&u_other->peer_wait.lock);
479 	return rc;
480 }
481 
482 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
483 					    struct sock *other)
484 {
485 	struct unix_sock *u, *u_other;
486 
487 	u = unix_sk(sk);
488 	u_other = unix_sk(other);
489 	spin_lock(&u_other->peer_wait.lock);
490 
491 	if (u->peer_wake.private == other) {
492 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
493 		u->peer_wake.private = NULL;
494 	}
495 
496 	spin_unlock(&u_other->peer_wait.lock);
497 }
498 
499 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
500 						   struct sock *other)
501 {
502 	unix_dgram_peer_wake_disconnect(sk, other);
503 	wake_up_interruptible_poll(sk_sleep(sk),
504 				   EPOLLOUT |
505 				   EPOLLWRNORM |
506 				   EPOLLWRBAND);
507 }
508 
509 /* preconditions:
510  *	- unix_peer(sk) == other
511  *	- association is stable
512  */
513 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
514 {
515 	int connected;
516 
517 	connected = unix_dgram_peer_wake_connect(sk, other);
518 
519 	/* If other is SOCK_DEAD, we want to make sure we signal
520 	 * POLLOUT, such that a subsequent write() can get a
521 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
522 	 * to other and its full, we will hang waiting for POLLOUT.
523 	 */
524 	if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD))
525 		return 1;
526 
527 	if (connected)
528 		unix_dgram_peer_wake_disconnect(sk, other);
529 
530 	return 0;
531 }
532 
533 static int unix_writable(const struct sock *sk)
534 {
535 	return sk->sk_state != TCP_LISTEN &&
536 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
537 }
538 
539 static void unix_write_space(struct sock *sk)
540 {
541 	struct socket_wq *wq;
542 
543 	rcu_read_lock();
544 	if (unix_writable(sk)) {
545 		wq = rcu_dereference(sk->sk_wq);
546 		if (skwq_has_sleeper(wq))
547 			wake_up_interruptible_sync_poll(&wq->wait,
548 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
549 		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
550 	}
551 	rcu_read_unlock();
552 }
553 
554 /* When dgram socket disconnects (or changes its peer), we clear its receive
555  * queue of packets arrived from previous peer. First, it allows to do
556  * flow control based only on wmem_alloc; second, sk connected to peer
557  * may receive messages only from that peer. */
558 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
559 {
560 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
561 		skb_queue_purge(&sk->sk_receive_queue);
562 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
563 
564 		/* If one link of bidirectional dgram pipe is disconnected,
565 		 * we signal error. Messages are lost. Do not make this,
566 		 * when peer was not connected to us.
567 		 */
568 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
569 			WRITE_ONCE(other->sk_err, ECONNRESET);
570 			sk_error_report(other);
571 		}
572 	}
573 	other->sk_state = TCP_CLOSE;
574 }
575 
576 static void unix_sock_destructor(struct sock *sk)
577 {
578 	struct unix_sock *u = unix_sk(sk);
579 
580 	skb_queue_purge(&sk->sk_receive_queue);
581 
582 	DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
583 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
584 	DEBUG_NET_WARN_ON_ONCE(sk->sk_socket);
585 	if (!sock_flag(sk, SOCK_DEAD)) {
586 		pr_info("Attempt to release alive unix socket: %p\n", sk);
587 		return;
588 	}
589 
590 	if (u->addr)
591 		unix_release_addr(u->addr);
592 
593 	atomic_long_dec(&unix_nr_socks);
594 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
595 #ifdef UNIX_REFCNT_DEBUG
596 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
597 		atomic_long_read(&unix_nr_socks));
598 #endif
599 }
600 
601 static void unix_release_sock(struct sock *sk, int embrion)
602 {
603 	struct unix_sock *u = unix_sk(sk);
604 	struct sock *skpair;
605 	struct sk_buff *skb;
606 	struct path path;
607 	int state;
608 
609 	unix_remove_socket(sock_net(sk), sk);
610 	unix_remove_bsd_socket(sk);
611 
612 	/* Clear state */
613 	unix_state_lock(sk);
614 	sock_orphan(sk);
615 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
616 	path	     = u->path;
617 	u->path.dentry = NULL;
618 	u->path.mnt = NULL;
619 	state = sk->sk_state;
620 	sk->sk_state = TCP_CLOSE;
621 
622 	skpair = unix_peer(sk);
623 	unix_peer(sk) = NULL;
624 
625 	unix_state_unlock(sk);
626 
627 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
628 	if (u->oob_skb) {
629 		kfree_skb(u->oob_skb);
630 		u->oob_skb = NULL;
631 	}
632 #endif
633 
634 	wake_up_interruptible_all(&u->peer_wait);
635 
636 	if (skpair != NULL) {
637 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
638 			unix_state_lock(skpair);
639 			/* No more writes */
640 			WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK);
641 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
642 				WRITE_ONCE(skpair->sk_err, ECONNRESET);
643 			unix_state_unlock(skpair);
644 			skpair->sk_state_change(skpair);
645 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
646 		}
647 
648 		unix_dgram_peer_wake_disconnect(sk, skpair);
649 		sock_put(skpair); /* It may now die */
650 	}
651 
652 	/* Try to flush out this socket. Throw out buffers at least */
653 
654 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
655 		if (state == TCP_LISTEN)
656 			unix_release_sock(skb->sk, 1);
657 		/* passed fds are erased in the kfree_skb hook	      */
658 		UNIXCB(skb).consumed = skb->len;
659 		kfree_skb(skb);
660 	}
661 
662 	if (path.dentry)
663 		path_put(&path);
664 
665 	sock_put(sk);
666 
667 	/* ---- Socket is dead now and most probably destroyed ---- */
668 
669 	/*
670 	 * Fixme: BSD difference: In BSD all sockets connected to us get
671 	 *	  ECONNRESET and we die on the spot. In Linux we behave
672 	 *	  like files and pipes do and wait for the last
673 	 *	  dereference.
674 	 *
675 	 * Can't we simply set sock->err?
676 	 *
677 	 *	  What the above comment does talk about? --ANK(980817)
678 	 */
679 
680 	if (READ_ONCE(unix_tot_inflight))
681 		unix_gc();		/* Garbage collect fds */
682 }
683 
684 static void init_peercred(struct sock *sk)
685 {
686 	const struct cred *old_cred;
687 	struct pid *old_pid;
688 
689 	spin_lock(&sk->sk_peer_lock);
690 	old_pid = sk->sk_peer_pid;
691 	old_cred = sk->sk_peer_cred;
692 	sk->sk_peer_pid  = get_pid(task_tgid(current));
693 	sk->sk_peer_cred = get_current_cred();
694 	spin_unlock(&sk->sk_peer_lock);
695 
696 	put_pid(old_pid);
697 	put_cred(old_cred);
698 }
699 
700 static void copy_peercred(struct sock *sk, struct sock *peersk)
701 {
702 	const struct cred *old_cred;
703 	struct pid *old_pid;
704 
705 	if (sk < peersk) {
706 		spin_lock(&sk->sk_peer_lock);
707 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
708 	} else {
709 		spin_lock(&peersk->sk_peer_lock);
710 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
711 	}
712 	old_pid = sk->sk_peer_pid;
713 	old_cred = sk->sk_peer_cred;
714 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
715 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
716 
717 	spin_unlock(&sk->sk_peer_lock);
718 	spin_unlock(&peersk->sk_peer_lock);
719 
720 	put_pid(old_pid);
721 	put_cred(old_cred);
722 }
723 
724 static int unix_listen(struct socket *sock, int backlog)
725 {
726 	int err;
727 	struct sock *sk = sock->sk;
728 	struct unix_sock *u = unix_sk(sk);
729 
730 	err = -EOPNOTSUPP;
731 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
732 		goto out;	/* Only stream/seqpacket sockets accept */
733 	err = -EINVAL;
734 	if (!u->addr)
735 		goto out;	/* No listens on an unbound socket */
736 	unix_state_lock(sk);
737 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
738 		goto out_unlock;
739 	if (backlog > sk->sk_max_ack_backlog)
740 		wake_up_interruptible_all(&u->peer_wait);
741 	sk->sk_max_ack_backlog	= backlog;
742 	sk->sk_state		= TCP_LISTEN;
743 	/* set credentials so connect can copy them */
744 	init_peercred(sk);
745 	err = 0;
746 
747 out_unlock:
748 	unix_state_unlock(sk);
749 out:
750 	return err;
751 }
752 
753 static int unix_release(struct socket *);
754 static int unix_bind(struct socket *, struct sockaddr *, int);
755 static int unix_stream_connect(struct socket *, struct sockaddr *,
756 			       int addr_len, int flags);
757 static int unix_socketpair(struct socket *, struct socket *);
758 static int unix_accept(struct socket *, struct socket *, int, bool);
759 static int unix_getname(struct socket *, struct sockaddr *, int);
760 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
761 static __poll_t unix_dgram_poll(struct file *, struct socket *,
762 				    poll_table *);
763 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
764 #ifdef CONFIG_COMPAT
765 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
766 #endif
767 static int unix_shutdown(struct socket *, int);
768 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
769 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
770 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
771 				       struct pipe_inode_info *, size_t size,
772 				       unsigned int flags);
773 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
774 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
775 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
776 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
777 static int unix_dgram_connect(struct socket *, struct sockaddr *,
778 			      int, int);
779 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
780 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
781 				  int);
782 
783 #ifdef CONFIG_PROC_FS
784 static int unix_count_nr_fds(struct sock *sk)
785 {
786 	struct sk_buff *skb;
787 	struct unix_sock *u;
788 	int nr_fds = 0;
789 
790 	spin_lock(&sk->sk_receive_queue.lock);
791 	skb = skb_peek(&sk->sk_receive_queue);
792 	while (skb) {
793 		u = unix_sk(skb->sk);
794 		nr_fds += atomic_read(&u->scm_stat.nr_fds);
795 		skb = skb_peek_next(skb, &sk->sk_receive_queue);
796 	}
797 	spin_unlock(&sk->sk_receive_queue.lock);
798 
799 	return nr_fds;
800 }
801 
802 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
803 {
804 	struct sock *sk = sock->sk;
805 	unsigned char s_state;
806 	struct unix_sock *u;
807 	int nr_fds = 0;
808 
809 	if (sk) {
810 		s_state = READ_ONCE(sk->sk_state);
811 		u = unix_sk(sk);
812 
813 		/* SOCK_STREAM and SOCK_SEQPACKET sockets never change their
814 		 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN.
815 		 * SOCK_DGRAM is ordinary. So, no lock is needed.
816 		 */
817 		if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED)
818 			nr_fds = atomic_read(&u->scm_stat.nr_fds);
819 		else if (s_state == TCP_LISTEN)
820 			nr_fds = unix_count_nr_fds(sk);
821 
822 		seq_printf(m, "scm_fds: %u\n", nr_fds);
823 	}
824 }
825 #else
826 #define unix_show_fdinfo NULL
827 #endif
828 
829 static const struct proto_ops unix_stream_ops = {
830 	.family =	PF_UNIX,
831 	.owner =	THIS_MODULE,
832 	.release =	unix_release,
833 	.bind =		unix_bind,
834 	.connect =	unix_stream_connect,
835 	.socketpair =	unix_socketpair,
836 	.accept =	unix_accept,
837 	.getname =	unix_getname,
838 	.poll =		unix_poll,
839 	.ioctl =	unix_ioctl,
840 #ifdef CONFIG_COMPAT
841 	.compat_ioctl =	unix_compat_ioctl,
842 #endif
843 	.listen =	unix_listen,
844 	.shutdown =	unix_shutdown,
845 	.sendmsg =	unix_stream_sendmsg,
846 	.recvmsg =	unix_stream_recvmsg,
847 	.read_skb =	unix_stream_read_skb,
848 	.mmap =		sock_no_mmap,
849 	.splice_read =	unix_stream_splice_read,
850 	.set_peek_off =	sk_set_peek_off,
851 	.show_fdinfo =	unix_show_fdinfo,
852 };
853 
854 static const struct proto_ops unix_dgram_ops = {
855 	.family =	PF_UNIX,
856 	.owner =	THIS_MODULE,
857 	.release =	unix_release,
858 	.bind =		unix_bind,
859 	.connect =	unix_dgram_connect,
860 	.socketpair =	unix_socketpair,
861 	.accept =	sock_no_accept,
862 	.getname =	unix_getname,
863 	.poll =		unix_dgram_poll,
864 	.ioctl =	unix_ioctl,
865 #ifdef CONFIG_COMPAT
866 	.compat_ioctl =	unix_compat_ioctl,
867 #endif
868 	.listen =	sock_no_listen,
869 	.shutdown =	unix_shutdown,
870 	.sendmsg =	unix_dgram_sendmsg,
871 	.read_skb =	unix_read_skb,
872 	.recvmsg =	unix_dgram_recvmsg,
873 	.mmap =		sock_no_mmap,
874 	.set_peek_off =	sk_set_peek_off,
875 	.show_fdinfo =	unix_show_fdinfo,
876 };
877 
878 static const struct proto_ops unix_seqpacket_ops = {
879 	.family =	PF_UNIX,
880 	.owner =	THIS_MODULE,
881 	.release =	unix_release,
882 	.bind =		unix_bind,
883 	.connect =	unix_stream_connect,
884 	.socketpair =	unix_socketpair,
885 	.accept =	unix_accept,
886 	.getname =	unix_getname,
887 	.poll =		unix_dgram_poll,
888 	.ioctl =	unix_ioctl,
889 #ifdef CONFIG_COMPAT
890 	.compat_ioctl =	unix_compat_ioctl,
891 #endif
892 	.listen =	unix_listen,
893 	.shutdown =	unix_shutdown,
894 	.sendmsg =	unix_seqpacket_sendmsg,
895 	.recvmsg =	unix_seqpacket_recvmsg,
896 	.mmap =		sock_no_mmap,
897 	.set_peek_off =	sk_set_peek_off,
898 	.show_fdinfo =	unix_show_fdinfo,
899 };
900 
901 static void unix_close(struct sock *sk, long timeout)
902 {
903 	/* Nothing to do here, unix socket does not need a ->close().
904 	 * This is merely for sockmap.
905 	 */
906 }
907 
908 static void unix_unhash(struct sock *sk)
909 {
910 	/* Nothing to do here, unix socket does not need a ->unhash().
911 	 * This is merely for sockmap.
912 	 */
913 }
914 
915 static bool unix_bpf_bypass_getsockopt(int level, int optname)
916 {
917 	if (level == SOL_SOCKET) {
918 		switch (optname) {
919 		case SO_PEERPIDFD:
920 			return true;
921 		default:
922 			return false;
923 		}
924 	}
925 
926 	return false;
927 }
928 
929 struct proto unix_dgram_proto = {
930 	.name			= "UNIX",
931 	.owner			= THIS_MODULE,
932 	.obj_size		= sizeof(struct unix_sock),
933 	.close			= unix_close,
934 	.bpf_bypass_getsockopt	= unix_bpf_bypass_getsockopt,
935 #ifdef CONFIG_BPF_SYSCALL
936 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
937 #endif
938 };
939 
940 struct proto unix_stream_proto = {
941 	.name			= "UNIX-STREAM",
942 	.owner			= THIS_MODULE,
943 	.obj_size		= sizeof(struct unix_sock),
944 	.close			= unix_close,
945 	.unhash			= unix_unhash,
946 	.bpf_bypass_getsockopt	= unix_bpf_bypass_getsockopt,
947 #ifdef CONFIG_BPF_SYSCALL
948 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
949 #endif
950 };
951 
952 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
953 {
954 	struct unix_sock *u;
955 	struct sock *sk;
956 	int err;
957 
958 	atomic_long_inc(&unix_nr_socks);
959 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
960 		err = -ENFILE;
961 		goto err;
962 	}
963 
964 	if (type == SOCK_STREAM)
965 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
966 	else /*dgram and  seqpacket */
967 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
968 
969 	if (!sk) {
970 		err = -ENOMEM;
971 		goto err;
972 	}
973 
974 	sock_init_data(sock, sk);
975 
976 	sk->sk_hash		= unix_unbound_hash(sk);
977 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
978 	sk->sk_write_space	= unix_write_space;
979 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
980 	sk->sk_destruct		= unix_sock_destructor;
981 	u = unix_sk(sk);
982 	u->listener = NULL;
983 	u->vertex = NULL;
984 	u->path.dentry = NULL;
985 	u->path.mnt = NULL;
986 	spin_lock_init(&u->lock);
987 	mutex_init(&u->iolock); /* single task reading lock */
988 	mutex_init(&u->bindlock); /* single task binding lock */
989 	init_waitqueue_head(&u->peer_wait);
990 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
991 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
992 	unix_insert_unbound_socket(net, sk);
993 
994 	sock_prot_inuse_add(net, sk->sk_prot, 1);
995 
996 	return sk;
997 
998 err:
999 	atomic_long_dec(&unix_nr_socks);
1000 	return ERR_PTR(err);
1001 }
1002 
1003 static int unix_create(struct net *net, struct socket *sock, int protocol,
1004 		       int kern)
1005 {
1006 	struct sock *sk;
1007 
1008 	if (protocol && protocol != PF_UNIX)
1009 		return -EPROTONOSUPPORT;
1010 
1011 	sock->state = SS_UNCONNECTED;
1012 
1013 	switch (sock->type) {
1014 	case SOCK_STREAM:
1015 		sock->ops = &unix_stream_ops;
1016 		break;
1017 		/*
1018 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
1019 		 *	nothing uses it.
1020 		 */
1021 	case SOCK_RAW:
1022 		sock->type = SOCK_DGRAM;
1023 		fallthrough;
1024 	case SOCK_DGRAM:
1025 		sock->ops = &unix_dgram_ops;
1026 		break;
1027 	case SOCK_SEQPACKET:
1028 		sock->ops = &unix_seqpacket_ops;
1029 		break;
1030 	default:
1031 		return -ESOCKTNOSUPPORT;
1032 	}
1033 
1034 	sk = unix_create1(net, sock, kern, sock->type);
1035 	if (IS_ERR(sk))
1036 		return PTR_ERR(sk);
1037 
1038 	return 0;
1039 }
1040 
1041 static int unix_release(struct socket *sock)
1042 {
1043 	struct sock *sk = sock->sk;
1044 
1045 	if (!sk)
1046 		return 0;
1047 
1048 	sk->sk_prot->close(sk, 0);
1049 	unix_release_sock(sk, 0);
1050 	sock->sk = NULL;
1051 
1052 	return 0;
1053 }
1054 
1055 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len,
1056 				  int type)
1057 {
1058 	struct inode *inode;
1059 	struct path path;
1060 	struct sock *sk;
1061 	int err;
1062 
1063 	unix_mkname_bsd(sunaddr, addr_len);
1064 	err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path);
1065 	if (err)
1066 		goto fail;
1067 
1068 	err = path_permission(&path, MAY_WRITE);
1069 	if (err)
1070 		goto path_put;
1071 
1072 	err = -ECONNREFUSED;
1073 	inode = d_backing_inode(path.dentry);
1074 	if (!S_ISSOCK(inode->i_mode))
1075 		goto path_put;
1076 
1077 	sk = unix_find_socket_byinode(inode);
1078 	if (!sk)
1079 		goto path_put;
1080 
1081 	err = -EPROTOTYPE;
1082 	if (sk->sk_type == type)
1083 		touch_atime(&path);
1084 	else
1085 		goto sock_put;
1086 
1087 	path_put(&path);
1088 
1089 	return sk;
1090 
1091 sock_put:
1092 	sock_put(sk);
1093 path_put:
1094 	path_put(&path);
1095 fail:
1096 	return ERR_PTR(err);
1097 }
1098 
1099 static struct sock *unix_find_abstract(struct net *net,
1100 				       struct sockaddr_un *sunaddr,
1101 				       int addr_len, int type)
1102 {
1103 	unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type);
1104 	struct dentry *dentry;
1105 	struct sock *sk;
1106 
1107 	sk = unix_find_socket_byname(net, sunaddr, addr_len, hash);
1108 	if (!sk)
1109 		return ERR_PTR(-ECONNREFUSED);
1110 
1111 	dentry = unix_sk(sk)->path.dentry;
1112 	if (dentry)
1113 		touch_atime(&unix_sk(sk)->path);
1114 
1115 	return sk;
1116 }
1117 
1118 static struct sock *unix_find_other(struct net *net,
1119 				    struct sockaddr_un *sunaddr,
1120 				    int addr_len, int type)
1121 {
1122 	struct sock *sk;
1123 
1124 	if (sunaddr->sun_path[0])
1125 		sk = unix_find_bsd(sunaddr, addr_len, type);
1126 	else
1127 		sk = unix_find_abstract(net, sunaddr, addr_len, type);
1128 
1129 	return sk;
1130 }
1131 
1132 static int unix_autobind(struct sock *sk)
1133 {
1134 	unsigned int new_hash, old_hash = sk->sk_hash;
1135 	struct unix_sock *u = unix_sk(sk);
1136 	struct net *net = sock_net(sk);
1137 	struct unix_address *addr;
1138 	u32 lastnum, ordernum;
1139 	int err;
1140 
1141 	err = mutex_lock_interruptible(&u->bindlock);
1142 	if (err)
1143 		return err;
1144 
1145 	if (u->addr)
1146 		goto out;
1147 
1148 	err = -ENOMEM;
1149 	addr = kzalloc(sizeof(*addr) +
1150 		       offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL);
1151 	if (!addr)
1152 		goto out;
1153 
1154 	addr->len = offsetof(struct sockaddr_un, sun_path) + 6;
1155 	addr->name->sun_family = AF_UNIX;
1156 	refcount_set(&addr->refcnt, 1);
1157 
1158 	ordernum = get_random_u32();
1159 	lastnum = ordernum & 0xFFFFF;
1160 retry:
1161 	ordernum = (ordernum + 1) & 0xFFFFF;
1162 	sprintf(addr->name->sun_path + 1, "%05x", ordernum);
1163 
1164 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1165 	unix_table_double_lock(net, old_hash, new_hash);
1166 
1167 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) {
1168 		unix_table_double_unlock(net, old_hash, new_hash);
1169 
1170 		/* __unix_find_socket_byname() may take long time if many names
1171 		 * are already in use.
1172 		 */
1173 		cond_resched();
1174 
1175 		if (ordernum == lastnum) {
1176 			/* Give up if all names seems to be in use. */
1177 			err = -ENOSPC;
1178 			unix_release_addr(addr);
1179 			goto out;
1180 		}
1181 
1182 		goto retry;
1183 	}
1184 
1185 	__unix_set_addr_hash(net, sk, addr, new_hash);
1186 	unix_table_double_unlock(net, old_hash, new_hash);
1187 	err = 0;
1188 
1189 out:	mutex_unlock(&u->bindlock);
1190 	return err;
1191 }
1192 
1193 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr,
1194 			 int addr_len)
1195 {
1196 	umode_t mode = S_IFSOCK |
1197 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1198 	unsigned int new_hash, old_hash = sk->sk_hash;
1199 	struct unix_sock *u = unix_sk(sk);
1200 	struct net *net = sock_net(sk);
1201 	struct mnt_idmap *idmap;
1202 	struct unix_address *addr;
1203 	struct dentry *dentry;
1204 	struct path parent;
1205 	int err;
1206 
1207 	addr_len = unix_mkname_bsd(sunaddr, addr_len);
1208 	addr = unix_create_addr(sunaddr, addr_len);
1209 	if (!addr)
1210 		return -ENOMEM;
1211 
1212 	/*
1213 	 * Get the parent directory, calculate the hash for last
1214 	 * component.
1215 	 */
1216 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1217 	if (IS_ERR(dentry)) {
1218 		err = PTR_ERR(dentry);
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * All right, let's create it.
1224 	 */
1225 	idmap = mnt_idmap(parent.mnt);
1226 	err = security_path_mknod(&parent, dentry, mode, 0);
1227 	if (!err)
1228 		err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0);
1229 	if (err)
1230 		goto out_path;
1231 	err = mutex_lock_interruptible(&u->bindlock);
1232 	if (err)
1233 		goto out_unlink;
1234 	if (u->addr)
1235 		goto out_unlock;
1236 
1237 	new_hash = unix_bsd_hash(d_backing_inode(dentry));
1238 	unix_table_double_lock(net, old_hash, new_hash);
1239 	u->path.mnt = mntget(parent.mnt);
1240 	u->path.dentry = dget(dentry);
1241 	__unix_set_addr_hash(net, sk, addr, new_hash);
1242 	unix_table_double_unlock(net, old_hash, new_hash);
1243 	unix_insert_bsd_socket(sk);
1244 	mutex_unlock(&u->bindlock);
1245 	done_path_create(&parent, dentry);
1246 	return 0;
1247 
1248 out_unlock:
1249 	mutex_unlock(&u->bindlock);
1250 	err = -EINVAL;
1251 out_unlink:
1252 	/* failed after successful mknod?  unlink what we'd created... */
1253 	vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL);
1254 out_path:
1255 	done_path_create(&parent, dentry);
1256 out:
1257 	unix_release_addr(addr);
1258 	return err == -EEXIST ? -EADDRINUSE : err;
1259 }
1260 
1261 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr,
1262 			      int addr_len)
1263 {
1264 	unsigned int new_hash, old_hash = sk->sk_hash;
1265 	struct unix_sock *u = unix_sk(sk);
1266 	struct net *net = sock_net(sk);
1267 	struct unix_address *addr;
1268 	int err;
1269 
1270 	addr = unix_create_addr(sunaddr, addr_len);
1271 	if (!addr)
1272 		return -ENOMEM;
1273 
1274 	err = mutex_lock_interruptible(&u->bindlock);
1275 	if (err)
1276 		goto out;
1277 
1278 	if (u->addr) {
1279 		err = -EINVAL;
1280 		goto out_mutex;
1281 	}
1282 
1283 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1284 	unix_table_double_lock(net, old_hash, new_hash);
1285 
1286 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash))
1287 		goto out_spin;
1288 
1289 	__unix_set_addr_hash(net, sk, addr, new_hash);
1290 	unix_table_double_unlock(net, old_hash, new_hash);
1291 	mutex_unlock(&u->bindlock);
1292 	return 0;
1293 
1294 out_spin:
1295 	unix_table_double_unlock(net, old_hash, new_hash);
1296 	err = -EADDRINUSE;
1297 out_mutex:
1298 	mutex_unlock(&u->bindlock);
1299 out:
1300 	unix_release_addr(addr);
1301 	return err;
1302 }
1303 
1304 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1305 {
1306 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1307 	struct sock *sk = sock->sk;
1308 	int err;
1309 
1310 	if (addr_len == offsetof(struct sockaddr_un, sun_path) &&
1311 	    sunaddr->sun_family == AF_UNIX)
1312 		return unix_autobind(sk);
1313 
1314 	err = unix_validate_addr(sunaddr, addr_len);
1315 	if (err)
1316 		return err;
1317 
1318 	if (sunaddr->sun_path[0])
1319 		err = unix_bind_bsd(sk, sunaddr, addr_len);
1320 	else
1321 		err = unix_bind_abstract(sk, sunaddr, addr_len);
1322 
1323 	return err;
1324 }
1325 
1326 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1327 {
1328 	if (unlikely(sk1 == sk2) || !sk2) {
1329 		unix_state_lock(sk1);
1330 		return;
1331 	}
1332 	if (sk1 > sk2)
1333 		swap(sk1, sk2);
1334 
1335 	unix_state_lock(sk1);
1336 	unix_state_lock_nested(sk2, U_LOCK_SECOND);
1337 }
1338 
1339 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1340 {
1341 	if (unlikely(sk1 == sk2) || !sk2) {
1342 		unix_state_unlock(sk1);
1343 		return;
1344 	}
1345 	unix_state_unlock(sk1);
1346 	unix_state_unlock(sk2);
1347 }
1348 
1349 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1350 			      int alen, int flags)
1351 {
1352 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1353 	struct sock *sk = sock->sk;
1354 	struct sock *other;
1355 	int err;
1356 
1357 	err = -EINVAL;
1358 	if (alen < offsetofend(struct sockaddr, sa_family))
1359 		goto out;
1360 
1361 	if (addr->sa_family != AF_UNSPEC) {
1362 		err = unix_validate_addr(sunaddr, alen);
1363 		if (err)
1364 			goto out;
1365 
1366 		err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, addr, &alen);
1367 		if (err)
1368 			goto out;
1369 
1370 		if ((test_bit(SOCK_PASSCRED, &sock->flags) ||
1371 		     test_bit(SOCK_PASSPIDFD, &sock->flags)) &&
1372 		    !unix_sk(sk)->addr) {
1373 			err = unix_autobind(sk);
1374 			if (err)
1375 				goto out;
1376 		}
1377 
1378 restart:
1379 		other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type);
1380 		if (IS_ERR(other)) {
1381 			err = PTR_ERR(other);
1382 			goto out;
1383 		}
1384 
1385 		unix_state_double_lock(sk, other);
1386 
1387 		/* Apparently VFS overslept socket death. Retry. */
1388 		if (sock_flag(other, SOCK_DEAD)) {
1389 			unix_state_double_unlock(sk, other);
1390 			sock_put(other);
1391 			goto restart;
1392 		}
1393 
1394 		err = -EPERM;
1395 		if (!unix_may_send(sk, other))
1396 			goto out_unlock;
1397 
1398 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1399 		if (err)
1400 			goto out_unlock;
1401 
1402 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1403 	} else {
1404 		/*
1405 		 *	1003.1g breaking connected state with AF_UNSPEC
1406 		 */
1407 		other = NULL;
1408 		unix_state_double_lock(sk, other);
1409 	}
1410 
1411 	/*
1412 	 * If it was connected, reconnect.
1413 	 */
1414 	if (unix_peer(sk)) {
1415 		struct sock *old_peer = unix_peer(sk);
1416 
1417 		unix_peer(sk) = other;
1418 		if (!other)
1419 			sk->sk_state = TCP_CLOSE;
1420 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1421 
1422 		unix_state_double_unlock(sk, other);
1423 
1424 		if (other != old_peer)
1425 			unix_dgram_disconnected(sk, old_peer);
1426 		sock_put(old_peer);
1427 	} else {
1428 		unix_peer(sk) = other;
1429 		unix_state_double_unlock(sk, other);
1430 	}
1431 
1432 	return 0;
1433 
1434 out_unlock:
1435 	unix_state_double_unlock(sk, other);
1436 	sock_put(other);
1437 out:
1438 	return err;
1439 }
1440 
1441 static long unix_wait_for_peer(struct sock *other, long timeo)
1442 	__releases(&unix_sk(other)->lock)
1443 {
1444 	struct unix_sock *u = unix_sk(other);
1445 	int sched;
1446 	DEFINE_WAIT(wait);
1447 
1448 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1449 
1450 	sched = !sock_flag(other, SOCK_DEAD) &&
1451 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1452 		unix_recvq_full_lockless(other);
1453 
1454 	unix_state_unlock(other);
1455 
1456 	if (sched)
1457 		timeo = schedule_timeout(timeo);
1458 
1459 	finish_wait(&u->peer_wait, &wait);
1460 	return timeo;
1461 }
1462 
1463 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1464 			       int addr_len, int flags)
1465 {
1466 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1467 	struct sock *sk = sock->sk, *newsk = NULL, *other = NULL;
1468 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1469 	struct net *net = sock_net(sk);
1470 	struct sk_buff *skb = NULL;
1471 	long timeo;
1472 	int err;
1473 	int st;
1474 
1475 	err = unix_validate_addr(sunaddr, addr_len);
1476 	if (err)
1477 		goto out;
1478 
1479 	err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, uaddr, &addr_len);
1480 	if (err)
1481 		goto out;
1482 
1483 	if ((test_bit(SOCK_PASSCRED, &sock->flags) ||
1484 	     test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) {
1485 		err = unix_autobind(sk);
1486 		if (err)
1487 			goto out;
1488 	}
1489 
1490 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1491 
1492 	/* First of all allocate resources.
1493 	   If we will make it after state is locked,
1494 	   we will have to recheck all again in any case.
1495 	 */
1496 
1497 	/* create new sock for complete connection */
1498 	newsk = unix_create1(net, NULL, 0, sock->type);
1499 	if (IS_ERR(newsk)) {
1500 		err = PTR_ERR(newsk);
1501 		newsk = NULL;
1502 		goto out;
1503 	}
1504 
1505 	err = -ENOMEM;
1506 
1507 	/* Allocate skb for sending to listening sock */
1508 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1509 	if (skb == NULL)
1510 		goto out;
1511 
1512 restart:
1513 	/*  Find listening sock. */
1514 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type);
1515 	if (IS_ERR(other)) {
1516 		err = PTR_ERR(other);
1517 		other = NULL;
1518 		goto out;
1519 	}
1520 
1521 	/* Latch state of peer */
1522 	unix_state_lock(other);
1523 
1524 	/* Apparently VFS overslept socket death. Retry. */
1525 	if (sock_flag(other, SOCK_DEAD)) {
1526 		unix_state_unlock(other);
1527 		sock_put(other);
1528 		goto restart;
1529 	}
1530 
1531 	err = -ECONNREFUSED;
1532 	if (other->sk_state != TCP_LISTEN)
1533 		goto out_unlock;
1534 	if (other->sk_shutdown & RCV_SHUTDOWN)
1535 		goto out_unlock;
1536 
1537 	if (unix_recvq_full(other)) {
1538 		err = -EAGAIN;
1539 		if (!timeo)
1540 			goto out_unlock;
1541 
1542 		timeo = unix_wait_for_peer(other, timeo);
1543 
1544 		err = sock_intr_errno(timeo);
1545 		if (signal_pending(current))
1546 			goto out;
1547 		sock_put(other);
1548 		goto restart;
1549 	}
1550 
1551 	/* Latch our state.
1552 
1553 	   It is tricky place. We need to grab our state lock and cannot
1554 	   drop lock on peer. It is dangerous because deadlock is
1555 	   possible. Connect to self case and simultaneous
1556 	   attempt to connect are eliminated by checking socket
1557 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1558 	   check this before attempt to grab lock.
1559 
1560 	   Well, and we have to recheck the state after socket locked.
1561 	 */
1562 	st = sk->sk_state;
1563 
1564 	switch (st) {
1565 	case TCP_CLOSE:
1566 		/* This is ok... continue with connect */
1567 		break;
1568 	case TCP_ESTABLISHED:
1569 		/* Socket is already connected */
1570 		err = -EISCONN;
1571 		goto out_unlock;
1572 	default:
1573 		err = -EINVAL;
1574 		goto out_unlock;
1575 	}
1576 
1577 	unix_state_lock_nested(sk, U_LOCK_SECOND);
1578 
1579 	if (sk->sk_state != st) {
1580 		unix_state_unlock(sk);
1581 		unix_state_unlock(other);
1582 		sock_put(other);
1583 		goto restart;
1584 	}
1585 
1586 	err = security_unix_stream_connect(sk, other, newsk);
1587 	if (err) {
1588 		unix_state_unlock(sk);
1589 		goto out_unlock;
1590 	}
1591 
1592 	/* The way is open! Fastly set all the necessary fields... */
1593 
1594 	sock_hold(sk);
1595 	unix_peer(newsk)	= sk;
1596 	newsk->sk_state		= TCP_ESTABLISHED;
1597 	newsk->sk_type		= sk->sk_type;
1598 	init_peercred(newsk);
1599 	newu = unix_sk(newsk);
1600 	newu->listener = other;
1601 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1602 	otheru = unix_sk(other);
1603 
1604 	/* copy address information from listening to new sock
1605 	 *
1606 	 * The contents of *(otheru->addr) and otheru->path
1607 	 * are seen fully set up here, since we have found
1608 	 * otheru in hash under its lock.  Insertion into the
1609 	 * hash chain we'd found it in had been done in an
1610 	 * earlier critical area protected by the chain's lock,
1611 	 * the same one where we'd set *(otheru->addr) contents,
1612 	 * as well as otheru->path and otheru->addr itself.
1613 	 *
1614 	 * Using smp_store_release() here to set newu->addr
1615 	 * is enough to make those stores, as well as stores
1616 	 * to newu->path visible to anyone who gets newu->addr
1617 	 * by smp_load_acquire().  IOW, the same warranties
1618 	 * as for unix_sock instances bound in unix_bind() or
1619 	 * in unix_autobind().
1620 	 */
1621 	if (otheru->path.dentry) {
1622 		path_get(&otheru->path);
1623 		newu->path = otheru->path;
1624 	}
1625 	refcount_inc(&otheru->addr->refcnt);
1626 	smp_store_release(&newu->addr, otheru->addr);
1627 
1628 	/* Set credentials */
1629 	copy_peercred(sk, other);
1630 
1631 	sock->state	= SS_CONNECTED;
1632 	sk->sk_state	= TCP_ESTABLISHED;
1633 	sock_hold(newsk);
1634 
1635 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1636 	unix_peer(sk)	= newsk;
1637 
1638 	unix_state_unlock(sk);
1639 
1640 	/* take ten and send info to listening sock */
1641 	spin_lock(&other->sk_receive_queue.lock);
1642 	__skb_queue_tail(&other->sk_receive_queue, skb);
1643 	spin_unlock(&other->sk_receive_queue.lock);
1644 	unix_state_unlock(other);
1645 	other->sk_data_ready(other);
1646 	sock_put(other);
1647 	return 0;
1648 
1649 out_unlock:
1650 	if (other)
1651 		unix_state_unlock(other);
1652 
1653 out:
1654 	kfree_skb(skb);
1655 	if (newsk)
1656 		unix_release_sock(newsk, 0);
1657 	if (other)
1658 		sock_put(other);
1659 	return err;
1660 }
1661 
1662 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1663 {
1664 	struct sock *ska = socka->sk, *skb = sockb->sk;
1665 
1666 	/* Join our sockets back to back */
1667 	sock_hold(ska);
1668 	sock_hold(skb);
1669 	unix_peer(ska) = skb;
1670 	unix_peer(skb) = ska;
1671 	init_peercred(ska);
1672 	init_peercred(skb);
1673 
1674 	ska->sk_state = TCP_ESTABLISHED;
1675 	skb->sk_state = TCP_ESTABLISHED;
1676 	socka->state  = SS_CONNECTED;
1677 	sockb->state  = SS_CONNECTED;
1678 	return 0;
1679 }
1680 
1681 static void unix_sock_inherit_flags(const struct socket *old,
1682 				    struct socket *new)
1683 {
1684 	if (test_bit(SOCK_PASSCRED, &old->flags))
1685 		set_bit(SOCK_PASSCRED, &new->flags);
1686 	if (test_bit(SOCK_PASSPIDFD, &old->flags))
1687 		set_bit(SOCK_PASSPIDFD, &new->flags);
1688 	if (test_bit(SOCK_PASSSEC, &old->flags))
1689 		set_bit(SOCK_PASSSEC, &new->flags);
1690 }
1691 
1692 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1693 		       bool kern)
1694 {
1695 	struct sock *sk = sock->sk;
1696 	struct sk_buff *skb;
1697 	struct sock *tsk;
1698 	int err;
1699 
1700 	err = -EOPNOTSUPP;
1701 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1702 		goto out;
1703 
1704 	err = -EINVAL;
1705 	if (sk->sk_state != TCP_LISTEN)
1706 		goto out;
1707 
1708 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1709 	 * so that no locks are necessary.
1710 	 */
1711 
1712 	skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0,
1713 				&err);
1714 	if (!skb) {
1715 		/* This means receive shutdown. */
1716 		if (err == 0)
1717 			err = -EINVAL;
1718 		goto out;
1719 	}
1720 
1721 	tsk = skb->sk;
1722 	unix_update_edges(unix_sk(tsk));
1723 	skb_free_datagram(sk, skb);
1724 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1725 
1726 	/* attach accepted sock to socket */
1727 	unix_state_lock(tsk);
1728 	newsock->state = SS_CONNECTED;
1729 	unix_sock_inherit_flags(sock, newsock);
1730 	sock_graft(tsk, newsock);
1731 	unix_state_unlock(tsk);
1732 	return 0;
1733 
1734 out:
1735 	return err;
1736 }
1737 
1738 
1739 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1740 {
1741 	struct sock *sk = sock->sk;
1742 	struct unix_address *addr;
1743 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1744 	int err = 0;
1745 
1746 	if (peer) {
1747 		sk = unix_peer_get(sk);
1748 
1749 		err = -ENOTCONN;
1750 		if (!sk)
1751 			goto out;
1752 		err = 0;
1753 	} else {
1754 		sock_hold(sk);
1755 	}
1756 
1757 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1758 	if (!addr) {
1759 		sunaddr->sun_family = AF_UNIX;
1760 		sunaddr->sun_path[0] = 0;
1761 		err = offsetof(struct sockaddr_un, sun_path);
1762 	} else {
1763 		err = addr->len;
1764 		memcpy(sunaddr, addr->name, addr->len);
1765 
1766 		if (peer)
1767 			BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err,
1768 					       CGROUP_UNIX_GETPEERNAME);
1769 		else
1770 			BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err,
1771 					       CGROUP_UNIX_GETSOCKNAME);
1772 	}
1773 	sock_put(sk);
1774 out:
1775 	return err;
1776 }
1777 
1778 /* The "user->unix_inflight" variable is protected by the garbage
1779  * collection lock, and we just read it locklessly here. If you go
1780  * over the limit, there might be a tiny race in actually noticing
1781  * it across threads. Tough.
1782  */
1783 static inline bool too_many_unix_fds(struct task_struct *p)
1784 {
1785 	struct user_struct *user = current_user();
1786 
1787 	if (unlikely(READ_ONCE(user->unix_inflight) > task_rlimit(p, RLIMIT_NOFILE)))
1788 		return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
1789 	return false;
1790 }
1791 
1792 static int unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb)
1793 {
1794 	if (too_many_unix_fds(current))
1795 		return -ETOOMANYREFS;
1796 
1797 	/* Need to duplicate file references for the sake of garbage
1798 	 * collection.  Otherwise a socket in the fps might become a
1799 	 * candidate for GC while the skb is not yet queued.
1800 	 */
1801 	UNIXCB(skb).fp = scm_fp_dup(scm->fp);
1802 	if (!UNIXCB(skb).fp)
1803 		return -ENOMEM;
1804 
1805 	if (unix_prepare_fpl(UNIXCB(skb).fp))
1806 		return -ENOMEM;
1807 
1808 	return 0;
1809 }
1810 
1811 static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb)
1812 {
1813 	scm->fp = UNIXCB(skb).fp;
1814 	UNIXCB(skb).fp = NULL;
1815 
1816 	unix_destroy_fpl(scm->fp);
1817 }
1818 
1819 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1820 {
1821 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1822 
1823 	/*
1824 	 * Garbage collection of unix sockets starts by selecting a set of
1825 	 * candidate sockets which have reference only from being in flight
1826 	 * (total_refs == inflight_refs).  This condition is checked once during
1827 	 * the candidate collection phase, and candidates are marked as such, so
1828 	 * that non-candidates can later be ignored.  While inflight_refs is
1829 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1830 	 * is an instantaneous decision.
1831 	 *
1832 	 * Once a candidate, however, the socket must not be reinstalled into a
1833 	 * file descriptor while the garbage collection is in progress.
1834 	 *
1835 	 * If the above conditions are met, then the directed graph of
1836 	 * candidates (*) does not change while unix_gc_lock is held.
1837 	 *
1838 	 * Any operations that changes the file count through file descriptors
1839 	 * (dup, close, sendmsg) does not change the graph since candidates are
1840 	 * not installed in fds.
1841 	 *
1842 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1843 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1844 	 * serialized with garbage collection.
1845 	 *
1846 	 * MSG_PEEK is special in that it does not change the inflight count,
1847 	 * yet does install the socket into an fd.  The following lock/unlock
1848 	 * pair is to ensure serialization with garbage collection.  It must be
1849 	 * done between incrementing the file count and installing the file into
1850 	 * an fd.
1851 	 *
1852 	 * If garbage collection starts after the barrier provided by the
1853 	 * lock/unlock, then it will see the elevated refcount and not mark this
1854 	 * as a candidate.  If a garbage collection is already in progress
1855 	 * before the file count was incremented, then the lock/unlock pair will
1856 	 * ensure that garbage collection is finished before progressing to
1857 	 * installing the fd.
1858 	 *
1859 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1860 	 * which is on the queue of listening socket A.
1861 	 */
1862 	spin_lock(&unix_gc_lock);
1863 	spin_unlock(&unix_gc_lock);
1864 }
1865 
1866 static void unix_destruct_scm(struct sk_buff *skb)
1867 {
1868 	struct scm_cookie scm;
1869 
1870 	memset(&scm, 0, sizeof(scm));
1871 	scm.pid  = UNIXCB(skb).pid;
1872 	if (UNIXCB(skb).fp)
1873 		unix_detach_fds(&scm, skb);
1874 
1875 	/* Alas, it calls VFS */
1876 	/* So fscking what? fput() had been SMP-safe since the last Summer */
1877 	scm_destroy(&scm);
1878 	sock_wfree(skb);
1879 }
1880 
1881 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1882 {
1883 	int err = 0;
1884 
1885 	UNIXCB(skb).pid  = get_pid(scm->pid);
1886 	UNIXCB(skb).uid = scm->creds.uid;
1887 	UNIXCB(skb).gid = scm->creds.gid;
1888 	UNIXCB(skb).fp = NULL;
1889 	unix_get_secdata(scm, skb);
1890 	if (scm->fp && send_fds)
1891 		err = unix_attach_fds(scm, skb);
1892 
1893 	skb->destructor = unix_destruct_scm;
1894 	return err;
1895 }
1896 
1897 static bool unix_passcred_enabled(const struct socket *sock,
1898 				  const struct sock *other)
1899 {
1900 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1901 	       test_bit(SOCK_PASSPIDFD, &sock->flags) ||
1902 	       !other->sk_socket ||
1903 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags) ||
1904 	       test_bit(SOCK_PASSPIDFD, &other->sk_socket->flags);
1905 }
1906 
1907 /*
1908  * Some apps rely on write() giving SCM_CREDENTIALS
1909  * We include credentials if source or destination socket
1910  * asserted SOCK_PASSCRED.
1911  */
1912 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1913 			    const struct sock *other)
1914 {
1915 	if (UNIXCB(skb).pid)
1916 		return;
1917 	if (unix_passcred_enabled(sock, other)) {
1918 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1919 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1920 	}
1921 }
1922 
1923 static bool unix_skb_scm_eq(struct sk_buff *skb,
1924 			    struct scm_cookie *scm)
1925 {
1926 	return UNIXCB(skb).pid == scm->pid &&
1927 	       uid_eq(UNIXCB(skb).uid, scm->creds.uid) &&
1928 	       gid_eq(UNIXCB(skb).gid, scm->creds.gid) &&
1929 	       unix_secdata_eq(scm, skb);
1930 }
1931 
1932 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1933 {
1934 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1935 	struct unix_sock *u = unix_sk(sk);
1936 
1937 	if (unlikely(fp && fp->count)) {
1938 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1939 		unix_add_edges(fp, u);
1940 	}
1941 }
1942 
1943 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1944 {
1945 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1946 	struct unix_sock *u = unix_sk(sk);
1947 
1948 	if (unlikely(fp && fp->count)) {
1949 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1950 		unix_del_edges(fp);
1951 	}
1952 }
1953 
1954 /*
1955  *	Send AF_UNIX data.
1956  */
1957 
1958 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1959 			      size_t len)
1960 {
1961 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1962 	struct sock *sk = sock->sk, *other = NULL;
1963 	struct unix_sock *u = unix_sk(sk);
1964 	struct scm_cookie scm;
1965 	struct sk_buff *skb;
1966 	int data_len = 0;
1967 	int sk_locked;
1968 	long timeo;
1969 	int err;
1970 
1971 	err = scm_send(sock, msg, &scm, false);
1972 	if (err < 0)
1973 		return err;
1974 
1975 	wait_for_unix_gc(scm.fp);
1976 
1977 	err = -EOPNOTSUPP;
1978 	if (msg->msg_flags&MSG_OOB)
1979 		goto out;
1980 
1981 	if (msg->msg_namelen) {
1982 		err = unix_validate_addr(sunaddr, msg->msg_namelen);
1983 		if (err)
1984 			goto out;
1985 
1986 		err = BPF_CGROUP_RUN_PROG_UNIX_SENDMSG_LOCK(sk,
1987 							    msg->msg_name,
1988 							    &msg->msg_namelen,
1989 							    NULL);
1990 		if (err)
1991 			goto out;
1992 	} else {
1993 		sunaddr = NULL;
1994 		err = -ENOTCONN;
1995 		other = unix_peer_get(sk);
1996 		if (!other)
1997 			goto out;
1998 	}
1999 
2000 	if ((test_bit(SOCK_PASSCRED, &sock->flags) ||
2001 	     test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) {
2002 		err = unix_autobind(sk);
2003 		if (err)
2004 			goto out;
2005 	}
2006 
2007 	err = -EMSGSIZE;
2008 	if (len > sk->sk_sndbuf - 32)
2009 		goto out;
2010 
2011 	if (len > SKB_MAX_ALLOC) {
2012 		data_len = min_t(size_t,
2013 				 len - SKB_MAX_ALLOC,
2014 				 MAX_SKB_FRAGS * PAGE_SIZE);
2015 		data_len = PAGE_ALIGN(data_len);
2016 
2017 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
2018 	}
2019 
2020 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
2021 				   msg->msg_flags & MSG_DONTWAIT, &err,
2022 				   PAGE_ALLOC_COSTLY_ORDER);
2023 	if (skb == NULL)
2024 		goto out;
2025 
2026 	err = unix_scm_to_skb(&scm, skb, true);
2027 	if (err < 0)
2028 		goto out_free;
2029 
2030 	skb_put(skb, len - data_len);
2031 	skb->data_len = data_len;
2032 	skb->len = len;
2033 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
2034 	if (err)
2035 		goto out_free;
2036 
2037 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2038 
2039 restart:
2040 	if (!other) {
2041 		err = -ECONNRESET;
2042 		if (sunaddr == NULL)
2043 			goto out_free;
2044 
2045 		other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen,
2046 					sk->sk_type);
2047 		if (IS_ERR(other)) {
2048 			err = PTR_ERR(other);
2049 			other = NULL;
2050 			goto out_free;
2051 		}
2052 	}
2053 
2054 	if (sk_filter(other, skb) < 0) {
2055 		/* Toss the packet but do not return any error to the sender */
2056 		err = len;
2057 		goto out_free;
2058 	}
2059 
2060 	sk_locked = 0;
2061 	unix_state_lock(other);
2062 restart_locked:
2063 	err = -EPERM;
2064 	if (!unix_may_send(sk, other))
2065 		goto out_unlock;
2066 
2067 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
2068 		/*
2069 		 *	Check with 1003.1g - what should
2070 		 *	datagram error
2071 		 */
2072 		unix_state_unlock(other);
2073 		sock_put(other);
2074 
2075 		if (!sk_locked)
2076 			unix_state_lock(sk);
2077 
2078 		err = 0;
2079 		if (sk->sk_type == SOCK_SEQPACKET) {
2080 			/* We are here only when racing with unix_release_sock()
2081 			 * is clearing @other. Never change state to TCP_CLOSE
2082 			 * unlike SOCK_DGRAM wants.
2083 			 */
2084 			unix_state_unlock(sk);
2085 			err = -EPIPE;
2086 		} else if (unix_peer(sk) == other) {
2087 			unix_peer(sk) = NULL;
2088 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
2089 
2090 			sk->sk_state = TCP_CLOSE;
2091 			unix_state_unlock(sk);
2092 
2093 			unix_dgram_disconnected(sk, other);
2094 			sock_put(other);
2095 			err = -ECONNREFUSED;
2096 		} else {
2097 			unix_state_unlock(sk);
2098 		}
2099 
2100 		other = NULL;
2101 		if (err)
2102 			goto out_free;
2103 		goto restart;
2104 	}
2105 
2106 	err = -EPIPE;
2107 	if (other->sk_shutdown & RCV_SHUTDOWN)
2108 		goto out_unlock;
2109 
2110 	if (sk->sk_type != SOCK_SEQPACKET) {
2111 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
2112 		if (err)
2113 			goto out_unlock;
2114 	}
2115 
2116 	/* other == sk && unix_peer(other) != sk if
2117 	 * - unix_peer(sk) == NULL, destination address bound to sk
2118 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
2119 	 */
2120 	if (other != sk &&
2121 	    unlikely(unix_peer(other) != sk &&
2122 	    unix_recvq_full_lockless(other))) {
2123 		if (timeo) {
2124 			timeo = unix_wait_for_peer(other, timeo);
2125 
2126 			err = sock_intr_errno(timeo);
2127 			if (signal_pending(current))
2128 				goto out_free;
2129 
2130 			goto restart;
2131 		}
2132 
2133 		if (!sk_locked) {
2134 			unix_state_unlock(other);
2135 			unix_state_double_lock(sk, other);
2136 		}
2137 
2138 		if (unix_peer(sk) != other ||
2139 		    unix_dgram_peer_wake_me(sk, other)) {
2140 			err = -EAGAIN;
2141 			sk_locked = 1;
2142 			goto out_unlock;
2143 		}
2144 
2145 		if (!sk_locked) {
2146 			sk_locked = 1;
2147 			goto restart_locked;
2148 		}
2149 	}
2150 
2151 	if (unlikely(sk_locked))
2152 		unix_state_unlock(sk);
2153 
2154 	if (sock_flag(other, SOCK_RCVTSTAMP))
2155 		__net_timestamp(skb);
2156 	maybe_add_creds(skb, sock, other);
2157 	scm_stat_add(other, skb);
2158 	skb_queue_tail(&other->sk_receive_queue, skb);
2159 	unix_state_unlock(other);
2160 	other->sk_data_ready(other);
2161 	sock_put(other);
2162 	scm_destroy(&scm);
2163 	return len;
2164 
2165 out_unlock:
2166 	if (sk_locked)
2167 		unix_state_unlock(sk);
2168 	unix_state_unlock(other);
2169 out_free:
2170 	kfree_skb(skb);
2171 out:
2172 	if (other)
2173 		sock_put(other);
2174 	scm_destroy(&scm);
2175 	return err;
2176 }
2177 
2178 /* We use paged skbs for stream sockets, and limit occupancy to 32768
2179  * bytes, and a minimum of a full page.
2180  */
2181 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
2182 
2183 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2184 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other,
2185 		     struct scm_cookie *scm, bool fds_sent)
2186 {
2187 	struct unix_sock *ousk = unix_sk(other);
2188 	struct sk_buff *skb;
2189 	int err = 0;
2190 
2191 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
2192 
2193 	if (!skb)
2194 		return err;
2195 
2196 	err = unix_scm_to_skb(scm, skb, !fds_sent);
2197 	if (err < 0) {
2198 		kfree_skb(skb);
2199 		return err;
2200 	}
2201 	skb_put(skb, 1);
2202 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
2203 
2204 	if (err) {
2205 		kfree_skb(skb);
2206 		return err;
2207 	}
2208 
2209 	unix_state_lock(other);
2210 
2211 	if (sock_flag(other, SOCK_DEAD) ||
2212 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
2213 		unix_state_unlock(other);
2214 		kfree_skb(skb);
2215 		return -EPIPE;
2216 	}
2217 
2218 	maybe_add_creds(skb, sock, other);
2219 	skb_get(skb);
2220 
2221 	if (ousk->oob_skb)
2222 		consume_skb(ousk->oob_skb);
2223 
2224 	WRITE_ONCE(ousk->oob_skb, skb);
2225 
2226 	scm_stat_add(other, skb);
2227 	skb_queue_tail(&other->sk_receive_queue, skb);
2228 	sk_send_sigurg(other);
2229 	unix_state_unlock(other);
2230 	other->sk_data_ready(other);
2231 
2232 	return err;
2233 }
2234 #endif
2235 
2236 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2237 			       size_t len)
2238 {
2239 	struct sock *sk = sock->sk;
2240 	struct sock *other = NULL;
2241 	int err, size;
2242 	struct sk_buff *skb;
2243 	int sent = 0;
2244 	struct scm_cookie scm;
2245 	bool fds_sent = false;
2246 	int data_len;
2247 
2248 	err = scm_send(sock, msg, &scm, false);
2249 	if (err < 0)
2250 		return err;
2251 
2252 	wait_for_unix_gc(scm.fp);
2253 
2254 	err = -EOPNOTSUPP;
2255 	if (msg->msg_flags & MSG_OOB) {
2256 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2257 		if (len)
2258 			len--;
2259 		else
2260 #endif
2261 			goto out_err;
2262 	}
2263 
2264 	if (msg->msg_namelen) {
2265 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2266 		goto out_err;
2267 	} else {
2268 		err = -ENOTCONN;
2269 		other = unix_peer(sk);
2270 		if (!other)
2271 			goto out_err;
2272 	}
2273 
2274 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2275 		goto pipe_err;
2276 
2277 	while (sent < len) {
2278 		size = len - sent;
2279 
2280 		if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) {
2281 			skb = sock_alloc_send_pskb(sk, 0, 0,
2282 						   msg->msg_flags & MSG_DONTWAIT,
2283 						   &err, 0);
2284 		} else {
2285 			/* Keep two messages in the pipe so it schedules better */
2286 			size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2287 
2288 			/* allow fallback to order-0 allocations */
2289 			size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2290 
2291 			data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2292 
2293 			data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2294 
2295 			skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2296 						   msg->msg_flags & MSG_DONTWAIT, &err,
2297 						   get_order(UNIX_SKB_FRAGS_SZ));
2298 		}
2299 		if (!skb)
2300 			goto out_err;
2301 
2302 		/* Only send the fds in the first buffer */
2303 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2304 		if (err < 0) {
2305 			kfree_skb(skb);
2306 			goto out_err;
2307 		}
2308 		fds_sent = true;
2309 
2310 		if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) {
2311 			err = skb_splice_from_iter(skb, &msg->msg_iter, size,
2312 						   sk->sk_allocation);
2313 			if (err < 0) {
2314 				kfree_skb(skb);
2315 				goto out_err;
2316 			}
2317 			size = err;
2318 			refcount_add(size, &sk->sk_wmem_alloc);
2319 		} else {
2320 			skb_put(skb, size - data_len);
2321 			skb->data_len = data_len;
2322 			skb->len = size;
2323 			err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2324 			if (err) {
2325 				kfree_skb(skb);
2326 				goto out_err;
2327 			}
2328 		}
2329 
2330 		unix_state_lock(other);
2331 
2332 		if (sock_flag(other, SOCK_DEAD) ||
2333 		    (other->sk_shutdown & RCV_SHUTDOWN))
2334 			goto pipe_err_free;
2335 
2336 		maybe_add_creds(skb, sock, other);
2337 		scm_stat_add(other, skb);
2338 		skb_queue_tail(&other->sk_receive_queue, skb);
2339 		unix_state_unlock(other);
2340 		other->sk_data_ready(other);
2341 		sent += size;
2342 	}
2343 
2344 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2345 	if (msg->msg_flags & MSG_OOB) {
2346 		err = queue_oob(sock, msg, other, &scm, fds_sent);
2347 		if (err)
2348 			goto out_err;
2349 		sent++;
2350 	}
2351 #endif
2352 
2353 	scm_destroy(&scm);
2354 
2355 	return sent;
2356 
2357 pipe_err_free:
2358 	unix_state_unlock(other);
2359 	kfree_skb(skb);
2360 pipe_err:
2361 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2362 		send_sig(SIGPIPE, current, 0);
2363 	err = -EPIPE;
2364 out_err:
2365 	scm_destroy(&scm);
2366 	return sent ? : err;
2367 }
2368 
2369 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2370 				  size_t len)
2371 {
2372 	int err;
2373 	struct sock *sk = sock->sk;
2374 
2375 	err = sock_error(sk);
2376 	if (err)
2377 		return err;
2378 
2379 	if (sk->sk_state != TCP_ESTABLISHED)
2380 		return -ENOTCONN;
2381 
2382 	if (msg->msg_namelen)
2383 		msg->msg_namelen = 0;
2384 
2385 	return unix_dgram_sendmsg(sock, msg, len);
2386 }
2387 
2388 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2389 				  size_t size, int flags)
2390 {
2391 	struct sock *sk = sock->sk;
2392 
2393 	if (sk->sk_state != TCP_ESTABLISHED)
2394 		return -ENOTCONN;
2395 
2396 	return unix_dgram_recvmsg(sock, msg, size, flags);
2397 }
2398 
2399 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2400 {
2401 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2402 
2403 	if (addr) {
2404 		msg->msg_namelen = addr->len;
2405 		memcpy(msg->msg_name, addr->name, addr->len);
2406 	}
2407 }
2408 
2409 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2410 			 int flags)
2411 {
2412 	struct scm_cookie scm;
2413 	struct socket *sock = sk->sk_socket;
2414 	struct unix_sock *u = unix_sk(sk);
2415 	struct sk_buff *skb, *last;
2416 	long timeo;
2417 	int skip;
2418 	int err;
2419 
2420 	err = -EOPNOTSUPP;
2421 	if (flags&MSG_OOB)
2422 		goto out;
2423 
2424 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2425 
2426 	do {
2427 		mutex_lock(&u->iolock);
2428 
2429 		skip = sk_peek_offset(sk, flags);
2430 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2431 					      &skip, &err, &last);
2432 		if (skb) {
2433 			if (!(flags & MSG_PEEK))
2434 				scm_stat_del(sk, skb);
2435 			break;
2436 		}
2437 
2438 		mutex_unlock(&u->iolock);
2439 
2440 		if (err != -EAGAIN)
2441 			break;
2442 	} while (timeo &&
2443 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2444 					      &err, &timeo, last));
2445 
2446 	if (!skb) { /* implies iolock unlocked */
2447 		unix_state_lock(sk);
2448 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2449 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2450 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2451 			err = 0;
2452 		unix_state_unlock(sk);
2453 		goto out;
2454 	}
2455 
2456 	if (wq_has_sleeper(&u->peer_wait))
2457 		wake_up_interruptible_sync_poll(&u->peer_wait,
2458 						EPOLLOUT | EPOLLWRNORM |
2459 						EPOLLWRBAND);
2460 
2461 	if (msg->msg_name) {
2462 		unix_copy_addr(msg, skb->sk);
2463 
2464 		BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk,
2465 						      msg->msg_name,
2466 						      &msg->msg_namelen);
2467 	}
2468 
2469 	if (size > skb->len - skip)
2470 		size = skb->len - skip;
2471 	else if (size < skb->len - skip)
2472 		msg->msg_flags |= MSG_TRUNC;
2473 
2474 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2475 	if (err)
2476 		goto out_free;
2477 
2478 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2479 		__sock_recv_timestamp(msg, sk, skb);
2480 
2481 	memset(&scm, 0, sizeof(scm));
2482 
2483 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2484 	unix_set_secdata(&scm, skb);
2485 
2486 	if (!(flags & MSG_PEEK)) {
2487 		if (UNIXCB(skb).fp)
2488 			unix_detach_fds(&scm, skb);
2489 
2490 		sk_peek_offset_bwd(sk, skb->len);
2491 	} else {
2492 		/* It is questionable: on PEEK we could:
2493 		   - do not return fds - good, but too simple 8)
2494 		   - return fds, and do not return them on read (old strategy,
2495 		     apparently wrong)
2496 		   - clone fds (I chose it for now, it is the most universal
2497 		     solution)
2498 
2499 		   POSIX 1003.1g does not actually define this clearly
2500 		   at all. POSIX 1003.1g doesn't define a lot of things
2501 		   clearly however!
2502 
2503 		*/
2504 
2505 		sk_peek_offset_fwd(sk, size);
2506 
2507 		if (UNIXCB(skb).fp)
2508 			unix_peek_fds(&scm, skb);
2509 	}
2510 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2511 
2512 	scm_recv_unix(sock, msg, &scm, flags);
2513 
2514 out_free:
2515 	skb_free_datagram(sk, skb);
2516 	mutex_unlock(&u->iolock);
2517 out:
2518 	return err;
2519 }
2520 
2521 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2522 			      int flags)
2523 {
2524 	struct sock *sk = sock->sk;
2525 
2526 #ifdef CONFIG_BPF_SYSCALL
2527 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2528 
2529 	if (prot != &unix_dgram_proto)
2530 		return prot->recvmsg(sk, msg, size, flags, NULL);
2531 #endif
2532 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2533 }
2534 
2535 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2536 {
2537 	struct unix_sock *u = unix_sk(sk);
2538 	struct sk_buff *skb;
2539 	int err;
2540 
2541 	mutex_lock(&u->iolock);
2542 	skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err);
2543 	mutex_unlock(&u->iolock);
2544 	if (!skb)
2545 		return err;
2546 
2547 	return recv_actor(sk, skb);
2548 }
2549 
2550 /*
2551  *	Sleep until more data has arrived. But check for races..
2552  */
2553 static long unix_stream_data_wait(struct sock *sk, long timeo,
2554 				  struct sk_buff *last, unsigned int last_len,
2555 				  bool freezable)
2556 {
2557 	unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE;
2558 	struct sk_buff *tail;
2559 	DEFINE_WAIT(wait);
2560 
2561 	unix_state_lock(sk);
2562 
2563 	for (;;) {
2564 		prepare_to_wait(sk_sleep(sk), &wait, state);
2565 
2566 		tail = skb_peek_tail(&sk->sk_receive_queue);
2567 		if (tail != last ||
2568 		    (tail && tail->len != last_len) ||
2569 		    sk->sk_err ||
2570 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2571 		    signal_pending(current) ||
2572 		    !timeo)
2573 			break;
2574 
2575 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2576 		unix_state_unlock(sk);
2577 		timeo = schedule_timeout(timeo);
2578 		unix_state_lock(sk);
2579 
2580 		if (sock_flag(sk, SOCK_DEAD))
2581 			break;
2582 
2583 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2584 	}
2585 
2586 	finish_wait(sk_sleep(sk), &wait);
2587 	unix_state_unlock(sk);
2588 	return timeo;
2589 }
2590 
2591 static unsigned int unix_skb_len(const struct sk_buff *skb)
2592 {
2593 	return skb->len - UNIXCB(skb).consumed;
2594 }
2595 
2596 struct unix_stream_read_state {
2597 	int (*recv_actor)(struct sk_buff *, int, int,
2598 			  struct unix_stream_read_state *);
2599 	struct socket *socket;
2600 	struct msghdr *msg;
2601 	struct pipe_inode_info *pipe;
2602 	size_t size;
2603 	int flags;
2604 	unsigned int splice_flags;
2605 };
2606 
2607 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2608 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2609 {
2610 	struct socket *sock = state->socket;
2611 	struct sock *sk = sock->sk;
2612 	struct unix_sock *u = unix_sk(sk);
2613 	int chunk = 1;
2614 	struct sk_buff *oob_skb;
2615 
2616 	mutex_lock(&u->iolock);
2617 	unix_state_lock(sk);
2618 
2619 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2620 		unix_state_unlock(sk);
2621 		mutex_unlock(&u->iolock);
2622 		return -EINVAL;
2623 	}
2624 
2625 	oob_skb = u->oob_skb;
2626 
2627 	if (!(state->flags & MSG_PEEK))
2628 		WRITE_ONCE(u->oob_skb, NULL);
2629 	else
2630 		skb_get(oob_skb);
2631 	unix_state_unlock(sk);
2632 
2633 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2634 
2635 	if (!(state->flags & MSG_PEEK))
2636 		UNIXCB(oob_skb).consumed += 1;
2637 
2638 	consume_skb(oob_skb);
2639 
2640 	mutex_unlock(&u->iolock);
2641 
2642 	if (chunk < 0)
2643 		return -EFAULT;
2644 
2645 	state->msg->msg_flags |= MSG_OOB;
2646 	return 1;
2647 }
2648 
2649 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2650 				  int flags, int copied)
2651 {
2652 	struct unix_sock *u = unix_sk(sk);
2653 
2654 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2655 		skb_unlink(skb, &sk->sk_receive_queue);
2656 		consume_skb(skb);
2657 		skb = NULL;
2658 	} else {
2659 		if (skb == u->oob_skb) {
2660 			if (copied) {
2661 				skb = NULL;
2662 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2663 				if (!(flags & MSG_PEEK)) {
2664 					WRITE_ONCE(u->oob_skb, NULL);
2665 					consume_skb(skb);
2666 				}
2667 			} else if (!(flags & MSG_PEEK)) {
2668 				skb_unlink(skb, &sk->sk_receive_queue);
2669 				consume_skb(skb);
2670 				skb = skb_peek(&sk->sk_receive_queue);
2671 			}
2672 		}
2673 	}
2674 	return skb;
2675 }
2676 #endif
2677 
2678 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2679 {
2680 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2681 		return -ENOTCONN;
2682 
2683 	return unix_read_skb(sk, recv_actor);
2684 }
2685 
2686 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2687 				    bool freezable)
2688 {
2689 	struct scm_cookie scm;
2690 	struct socket *sock = state->socket;
2691 	struct sock *sk = sock->sk;
2692 	struct unix_sock *u = unix_sk(sk);
2693 	int copied = 0;
2694 	int flags = state->flags;
2695 	int noblock = flags & MSG_DONTWAIT;
2696 	bool check_creds = false;
2697 	int target;
2698 	int err = 0;
2699 	long timeo;
2700 	int skip;
2701 	size_t size = state->size;
2702 	unsigned int last_len;
2703 
2704 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2705 		err = -EINVAL;
2706 		goto out;
2707 	}
2708 
2709 	if (unlikely(flags & MSG_OOB)) {
2710 		err = -EOPNOTSUPP;
2711 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2712 		err = unix_stream_recv_urg(state);
2713 #endif
2714 		goto out;
2715 	}
2716 
2717 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2718 	timeo = sock_rcvtimeo(sk, noblock);
2719 
2720 	memset(&scm, 0, sizeof(scm));
2721 
2722 	/* Lock the socket to prevent queue disordering
2723 	 * while sleeps in memcpy_tomsg
2724 	 */
2725 	mutex_lock(&u->iolock);
2726 
2727 	skip = max(sk_peek_offset(sk, flags), 0);
2728 
2729 	do {
2730 		int chunk;
2731 		bool drop_skb;
2732 		struct sk_buff *skb, *last;
2733 
2734 redo:
2735 		unix_state_lock(sk);
2736 		if (sock_flag(sk, SOCK_DEAD)) {
2737 			err = -ECONNRESET;
2738 			goto unlock;
2739 		}
2740 		last = skb = skb_peek(&sk->sk_receive_queue);
2741 		last_len = last ? last->len : 0;
2742 
2743 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2744 		if (skb) {
2745 			skb = manage_oob(skb, sk, flags, copied);
2746 			if (!skb) {
2747 				unix_state_unlock(sk);
2748 				if (copied)
2749 					break;
2750 				goto redo;
2751 			}
2752 		}
2753 #endif
2754 again:
2755 		if (skb == NULL) {
2756 			if (copied >= target)
2757 				goto unlock;
2758 
2759 			/*
2760 			 *	POSIX 1003.1g mandates this order.
2761 			 */
2762 
2763 			err = sock_error(sk);
2764 			if (err)
2765 				goto unlock;
2766 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2767 				goto unlock;
2768 
2769 			unix_state_unlock(sk);
2770 			if (!timeo) {
2771 				err = -EAGAIN;
2772 				break;
2773 			}
2774 
2775 			mutex_unlock(&u->iolock);
2776 
2777 			timeo = unix_stream_data_wait(sk, timeo, last,
2778 						      last_len, freezable);
2779 
2780 			if (signal_pending(current)) {
2781 				err = sock_intr_errno(timeo);
2782 				scm_destroy(&scm);
2783 				goto out;
2784 			}
2785 
2786 			mutex_lock(&u->iolock);
2787 			goto redo;
2788 unlock:
2789 			unix_state_unlock(sk);
2790 			break;
2791 		}
2792 
2793 		while (skip >= unix_skb_len(skb)) {
2794 			skip -= unix_skb_len(skb);
2795 			last = skb;
2796 			last_len = skb->len;
2797 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2798 			if (!skb)
2799 				goto again;
2800 		}
2801 
2802 		unix_state_unlock(sk);
2803 
2804 		if (check_creds) {
2805 			/* Never glue messages from different writers */
2806 			if (!unix_skb_scm_eq(skb, &scm))
2807 				break;
2808 		} else if (test_bit(SOCK_PASSCRED, &sock->flags) ||
2809 			   test_bit(SOCK_PASSPIDFD, &sock->flags)) {
2810 			/* Copy credentials */
2811 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2812 			unix_set_secdata(&scm, skb);
2813 			check_creds = true;
2814 		}
2815 
2816 		/* Copy address just once */
2817 		if (state->msg && state->msg->msg_name) {
2818 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2819 					 state->msg->msg_name);
2820 			unix_copy_addr(state->msg, skb->sk);
2821 
2822 			BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk,
2823 							      state->msg->msg_name,
2824 							      &state->msg->msg_namelen);
2825 
2826 			sunaddr = NULL;
2827 		}
2828 
2829 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2830 		skb_get(skb);
2831 		chunk = state->recv_actor(skb, skip, chunk, state);
2832 		drop_skb = !unix_skb_len(skb);
2833 		/* skb is only safe to use if !drop_skb */
2834 		consume_skb(skb);
2835 		if (chunk < 0) {
2836 			if (copied == 0)
2837 				copied = -EFAULT;
2838 			break;
2839 		}
2840 		copied += chunk;
2841 		size -= chunk;
2842 
2843 		if (drop_skb) {
2844 			/* the skb was touched by a concurrent reader;
2845 			 * we should not expect anything from this skb
2846 			 * anymore and assume it invalid - we can be
2847 			 * sure it was dropped from the socket queue
2848 			 *
2849 			 * let's report a short read
2850 			 */
2851 			err = 0;
2852 			break;
2853 		}
2854 
2855 		/* Mark read part of skb as used */
2856 		if (!(flags & MSG_PEEK)) {
2857 			UNIXCB(skb).consumed += chunk;
2858 
2859 			sk_peek_offset_bwd(sk, chunk);
2860 
2861 			if (UNIXCB(skb).fp) {
2862 				scm_stat_del(sk, skb);
2863 				unix_detach_fds(&scm, skb);
2864 			}
2865 
2866 			if (unix_skb_len(skb))
2867 				break;
2868 
2869 			skb_unlink(skb, &sk->sk_receive_queue);
2870 			consume_skb(skb);
2871 
2872 			if (scm.fp)
2873 				break;
2874 		} else {
2875 			/* It is questionable, see note in unix_dgram_recvmsg.
2876 			 */
2877 			if (UNIXCB(skb).fp)
2878 				unix_peek_fds(&scm, skb);
2879 
2880 			sk_peek_offset_fwd(sk, chunk);
2881 
2882 			if (UNIXCB(skb).fp)
2883 				break;
2884 
2885 			skip = 0;
2886 			last = skb;
2887 			last_len = skb->len;
2888 			unix_state_lock(sk);
2889 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2890 			if (skb)
2891 				goto again;
2892 			unix_state_unlock(sk);
2893 			break;
2894 		}
2895 	} while (size);
2896 
2897 	mutex_unlock(&u->iolock);
2898 	if (state->msg)
2899 		scm_recv_unix(sock, state->msg, &scm, flags);
2900 	else
2901 		scm_destroy(&scm);
2902 out:
2903 	return copied ? : err;
2904 }
2905 
2906 static int unix_stream_read_actor(struct sk_buff *skb,
2907 				  int skip, int chunk,
2908 				  struct unix_stream_read_state *state)
2909 {
2910 	int ret;
2911 
2912 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2913 				    state->msg, chunk);
2914 	return ret ?: chunk;
2915 }
2916 
2917 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2918 			  size_t size, int flags)
2919 {
2920 	struct unix_stream_read_state state = {
2921 		.recv_actor = unix_stream_read_actor,
2922 		.socket = sk->sk_socket,
2923 		.msg = msg,
2924 		.size = size,
2925 		.flags = flags
2926 	};
2927 
2928 	return unix_stream_read_generic(&state, true);
2929 }
2930 
2931 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2932 			       size_t size, int flags)
2933 {
2934 	struct unix_stream_read_state state = {
2935 		.recv_actor = unix_stream_read_actor,
2936 		.socket = sock,
2937 		.msg = msg,
2938 		.size = size,
2939 		.flags = flags
2940 	};
2941 
2942 #ifdef CONFIG_BPF_SYSCALL
2943 	struct sock *sk = sock->sk;
2944 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2945 
2946 	if (prot != &unix_stream_proto)
2947 		return prot->recvmsg(sk, msg, size, flags, NULL);
2948 #endif
2949 	return unix_stream_read_generic(&state, true);
2950 }
2951 
2952 static int unix_stream_splice_actor(struct sk_buff *skb,
2953 				    int skip, int chunk,
2954 				    struct unix_stream_read_state *state)
2955 {
2956 	return skb_splice_bits(skb, state->socket->sk,
2957 			       UNIXCB(skb).consumed + skip,
2958 			       state->pipe, chunk, state->splice_flags);
2959 }
2960 
2961 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2962 				       struct pipe_inode_info *pipe,
2963 				       size_t size, unsigned int flags)
2964 {
2965 	struct unix_stream_read_state state = {
2966 		.recv_actor = unix_stream_splice_actor,
2967 		.socket = sock,
2968 		.pipe = pipe,
2969 		.size = size,
2970 		.splice_flags = flags,
2971 	};
2972 
2973 	if (unlikely(*ppos))
2974 		return -ESPIPE;
2975 
2976 	if (sock->file->f_flags & O_NONBLOCK ||
2977 	    flags & SPLICE_F_NONBLOCK)
2978 		state.flags = MSG_DONTWAIT;
2979 
2980 	return unix_stream_read_generic(&state, false);
2981 }
2982 
2983 static int unix_shutdown(struct socket *sock, int mode)
2984 {
2985 	struct sock *sk = sock->sk;
2986 	struct sock *other;
2987 
2988 	if (mode < SHUT_RD || mode > SHUT_RDWR)
2989 		return -EINVAL;
2990 	/* This maps:
2991 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
2992 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
2993 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
2994 	 */
2995 	++mode;
2996 
2997 	unix_state_lock(sk);
2998 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode);
2999 	other = unix_peer(sk);
3000 	if (other)
3001 		sock_hold(other);
3002 	unix_state_unlock(sk);
3003 	sk->sk_state_change(sk);
3004 
3005 	if (other &&
3006 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
3007 
3008 		int peer_mode = 0;
3009 		const struct proto *prot = READ_ONCE(other->sk_prot);
3010 
3011 		if (prot->unhash)
3012 			prot->unhash(other);
3013 		if (mode&RCV_SHUTDOWN)
3014 			peer_mode |= SEND_SHUTDOWN;
3015 		if (mode&SEND_SHUTDOWN)
3016 			peer_mode |= RCV_SHUTDOWN;
3017 		unix_state_lock(other);
3018 		WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode);
3019 		unix_state_unlock(other);
3020 		other->sk_state_change(other);
3021 		if (peer_mode == SHUTDOWN_MASK)
3022 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
3023 		else if (peer_mode & RCV_SHUTDOWN)
3024 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
3025 	}
3026 	if (other)
3027 		sock_put(other);
3028 
3029 	return 0;
3030 }
3031 
3032 long unix_inq_len(struct sock *sk)
3033 {
3034 	struct sk_buff *skb;
3035 	long amount = 0;
3036 
3037 	if (sk->sk_state == TCP_LISTEN)
3038 		return -EINVAL;
3039 
3040 	spin_lock(&sk->sk_receive_queue.lock);
3041 	if (sk->sk_type == SOCK_STREAM ||
3042 	    sk->sk_type == SOCK_SEQPACKET) {
3043 		skb_queue_walk(&sk->sk_receive_queue, skb)
3044 			amount += unix_skb_len(skb);
3045 	} else {
3046 		skb = skb_peek(&sk->sk_receive_queue);
3047 		if (skb)
3048 			amount = skb->len;
3049 	}
3050 	spin_unlock(&sk->sk_receive_queue.lock);
3051 
3052 	return amount;
3053 }
3054 EXPORT_SYMBOL_GPL(unix_inq_len);
3055 
3056 long unix_outq_len(struct sock *sk)
3057 {
3058 	return sk_wmem_alloc_get(sk);
3059 }
3060 EXPORT_SYMBOL_GPL(unix_outq_len);
3061 
3062 static int unix_open_file(struct sock *sk)
3063 {
3064 	struct path path;
3065 	struct file *f;
3066 	int fd;
3067 
3068 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
3069 		return -EPERM;
3070 
3071 	if (!smp_load_acquire(&unix_sk(sk)->addr))
3072 		return -ENOENT;
3073 
3074 	path = unix_sk(sk)->path;
3075 	if (!path.dentry)
3076 		return -ENOENT;
3077 
3078 	path_get(&path);
3079 
3080 	fd = get_unused_fd_flags(O_CLOEXEC);
3081 	if (fd < 0)
3082 		goto out;
3083 
3084 	f = dentry_open(&path, O_PATH, current_cred());
3085 	if (IS_ERR(f)) {
3086 		put_unused_fd(fd);
3087 		fd = PTR_ERR(f);
3088 		goto out;
3089 	}
3090 
3091 	fd_install(fd, f);
3092 out:
3093 	path_put(&path);
3094 
3095 	return fd;
3096 }
3097 
3098 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3099 {
3100 	struct sock *sk = sock->sk;
3101 	long amount = 0;
3102 	int err;
3103 
3104 	switch (cmd) {
3105 	case SIOCOUTQ:
3106 		amount = unix_outq_len(sk);
3107 		err = put_user(amount, (int __user *)arg);
3108 		break;
3109 	case SIOCINQ:
3110 		amount = unix_inq_len(sk);
3111 		if (amount < 0)
3112 			err = amount;
3113 		else
3114 			err = put_user(amount, (int __user *)arg);
3115 		break;
3116 	case SIOCUNIXFILE:
3117 		err = unix_open_file(sk);
3118 		break;
3119 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3120 	case SIOCATMARK:
3121 		{
3122 			struct sk_buff *skb;
3123 			int answ = 0;
3124 
3125 			skb = skb_peek(&sk->sk_receive_queue);
3126 			if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb))
3127 				answ = 1;
3128 			err = put_user(answ, (int __user *)arg);
3129 		}
3130 		break;
3131 #endif
3132 	default:
3133 		err = -ENOIOCTLCMD;
3134 		break;
3135 	}
3136 	return err;
3137 }
3138 
3139 #ifdef CONFIG_COMPAT
3140 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3141 {
3142 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3143 }
3144 #endif
3145 
3146 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3147 {
3148 	struct sock *sk = sock->sk;
3149 	__poll_t mask;
3150 	u8 shutdown;
3151 
3152 	sock_poll_wait(file, sock, wait);
3153 	mask = 0;
3154 	shutdown = READ_ONCE(sk->sk_shutdown);
3155 
3156 	/* exceptional events? */
3157 	if (READ_ONCE(sk->sk_err))
3158 		mask |= EPOLLERR;
3159 	if (shutdown == SHUTDOWN_MASK)
3160 		mask |= EPOLLHUP;
3161 	if (shutdown & RCV_SHUTDOWN)
3162 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3163 
3164 	/* readable? */
3165 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3166 		mask |= EPOLLIN | EPOLLRDNORM;
3167 	if (sk_is_readable(sk))
3168 		mask |= EPOLLIN | EPOLLRDNORM;
3169 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3170 	if (READ_ONCE(unix_sk(sk)->oob_skb))
3171 		mask |= EPOLLPRI;
3172 #endif
3173 
3174 	/* Connection-based need to check for termination and startup */
3175 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3176 	    sk->sk_state == TCP_CLOSE)
3177 		mask |= EPOLLHUP;
3178 
3179 	/*
3180 	 * we set writable also when the other side has shut down the
3181 	 * connection. This prevents stuck sockets.
3182 	 */
3183 	if (unix_writable(sk))
3184 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3185 
3186 	return mask;
3187 }
3188 
3189 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3190 				    poll_table *wait)
3191 {
3192 	struct sock *sk = sock->sk, *other;
3193 	unsigned int writable;
3194 	__poll_t mask;
3195 	u8 shutdown;
3196 
3197 	sock_poll_wait(file, sock, wait);
3198 	mask = 0;
3199 	shutdown = READ_ONCE(sk->sk_shutdown);
3200 
3201 	/* exceptional events? */
3202 	if (READ_ONCE(sk->sk_err) ||
3203 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
3204 		mask |= EPOLLERR |
3205 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3206 
3207 	if (shutdown & RCV_SHUTDOWN)
3208 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3209 	if (shutdown == SHUTDOWN_MASK)
3210 		mask |= EPOLLHUP;
3211 
3212 	/* readable? */
3213 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3214 		mask |= EPOLLIN | EPOLLRDNORM;
3215 	if (sk_is_readable(sk))
3216 		mask |= EPOLLIN | EPOLLRDNORM;
3217 
3218 	/* Connection-based need to check for termination and startup */
3219 	if (sk->sk_type == SOCK_SEQPACKET) {
3220 		if (sk->sk_state == TCP_CLOSE)
3221 			mask |= EPOLLHUP;
3222 		/* connection hasn't started yet? */
3223 		if (sk->sk_state == TCP_SYN_SENT)
3224 			return mask;
3225 	}
3226 
3227 	/* No write status requested, avoid expensive OUT tests. */
3228 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3229 		return mask;
3230 
3231 	writable = unix_writable(sk);
3232 	if (writable) {
3233 		unix_state_lock(sk);
3234 
3235 		other = unix_peer(sk);
3236 		if (other && unix_peer(other) != sk &&
3237 		    unix_recvq_full_lockless(other) &&
3238 		    unix_dgram_peer_wake_me(sk, other))
3239 			writable = 0;
3240 
3241 		unix_state_unlock(sk);
3242 	}
3243 
3244 	if (writable)
3245 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3246 	else
3247 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3248 
3249 	return mask;
3250 }
3251 
3252 #ifdef CONFIG_PROC_FS
3253 
3254 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3255 
3256 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3257 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1))
3258 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3259 
3260 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3261 {
3262 	unsigned long offset = get_offset(*pos);
3263 	unsigned long bucket = get_bucket(*pos);
3264 	unsigned long count = 0;
3265 	struct sock *sk;
3266 
3267 	for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]);
3268 	     sk; sk = sk_next(sk)) {
3269 		if (++count == offset)
3270 			break;
3271 	}
3272 
3273 	return sk;
3274 }
3275 
3276 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos)
3277 {
3278 	unsigned long bucket = get_bucket(*pos);
3279 	struct net *net = seq_file_net(seq);
3280 	struct sock *sk;
3281 
3282 	while (bucket < UNIX_HASH_SIZE) {
3283 		spin_lock(&net->unx.table.locks[bucket]);
3284 
3285 		sk = unix_from_bucket(seq, pos);
3286 		if (sk)
3287 			return sk;
3288 
3289 		spin_unlock(&net->unx.table.locks[bucket]);
3290 
3291 		*pos = set_bucket_offset(++bucket, 1);
3292 	}
3293 
3294 	return NULL;
3295 }
3296 
3297 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk,
3298 				  loff_t *pos)
3299 {
3300 	unsigned long bucket = get_bucket(*pos);
3301 
3302 	sk = sk_next(sk);
3303 	if (sk)
3304 		return sk;
3305 
3306 
3307 	spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]);
3308 
3309 	*pos = set_bucket_offset(++bucket, 1);
3310 
3311 	return unix_get_first(seq, pos);
3312 }
3313 
3314 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3315 {
3316 	if (!*pos)
3317 		return SEQ_START_TOKEN;
3318 
3319 	return unix_get_first(seq, pos);
3320 }
3321 
3322 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3323 {
3324 	++*pos;
3325 
3326 	if (v == SEQ_START_TOKEN)
3327 		return unix_get_first(seq, pos);
3328 
3329 	return unix_get_next(seq, v, pos);
3330 }
3331 
3332 static void unix_seq_stop(struct seq_file *seq, void *v)
3333 {
3334 	struct sock *sk = v;
3335 
3336 	if (sk)
3337 		spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]);
3338 }
3339 
3340 static int unix_seq_show(struct seq_file *seq, void *v)
3341 {
3342 
3343 	if (v == SEQ_START_TOKEN)
3344 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3345 			 "Inode Path\n");
3346 	else {
3347 		struct sock *s = v;
3348 		struct unix_sock *u = unix_sk(s);
3349 		unix_state_lock(s);
3350 
3351 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3352 			s,
3353 			refcount_read(&s->sk_refcnt),
3354 			0,
3355 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3356 			s->sk_type,
3357 			s->sk_socket ?
3358 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3359 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3360 			sock_i_ino(s));
3361 
3362 		if (u->addr) {	// under a hash table lock here
3363 			int i, len;
3364 			seq_putc(seq, ' ');
3365 
3366 			i = 0;
3367 			len = u->addr->len -
3368 				offsetof(struct sockaddr_un, sun_path);
3369 			if (u->addr->name->sun_path[0]) {
3370 				len--;
3371 			} else {
3372 				seq_putc(seq, '@');
3373 				i++;
3374 			}
3375 			for ( ; i < len; i++)
3376 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3377 					 '@');
3378 		}
3379 		unix_state_unlock(s);
3380 		seq_putc(seq, '\n');
3381 	}
3382 
3383 	return 0;
3384 }
3385 
3386 static const struct seq_operations unix_seq_ops = {
3387 	.start  = unix_seq_start,
3388 	.next   = unix_seq_next,
3389 	.stop   = unix_seq_stop,
3390 	.show   = unix_seq_show,
3391 };
3392 
3393 #ifdef CONFIG_BPF_SYSCALL
3394 struct bpf_unix_iter_state {
3395 	struct seq_net_private p;
3396 	unsigned int cur_sk;
3397 	unsigned int end_sk;
3398 	unsigned int max_sk;
3399 	struct sock **batch;
3400 	bool st_bucket_done;
3401 };
3402 
3403 struct bpf_iter__unix {
3404 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3405 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3406 	uid_t uid __aligned(8);
3407 };
3408 
3409 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3410 			      struct unix_sock *unix_sk, uid_t uid)
3411 {
3412 	struct bpf_iter__unix ctx;
3413 
3414 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3415 	ctx.meta = meta;
3416 	ctx.unix_sk = unix_sk;
3417 	ctx.uid = uid;
3418 	return bpf_iter_run_prog(prog, &ctx);
3419 }
3420 
3421 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk)
3422 
3423 {
3424 	struct bpf_unix_iter_state *iter = seq->private;
3425 	unsigned int expected = 1;
3426 	struct sock *sk;
3427 
3428 	sock_hold(start_sk);
3429 	iter->batch[iter->end_sk++] = start_sk;
3430 
3431 	for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) {
3432 		if (iter->end_sk < iter->max_sk) {
3433 			sock_hold(sk);
3434 			iter->batch[iter->end_sk++] = sk;
3435 		}
3436 
3437 		expected++;
3438 	}
3439 
3440 	spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]);
3441 
3442 	return expected;
3443 }
3444 
3445 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter)
3446 {
3447 	while (iter->cur_sk < iter->end_sk)
3448 		sock_put(iter->batch[iter->cur_sk++]);
3449 }
3450 
3451 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter,
3452 				       unsigned int new_batch_sz)
3453 {
3454 	struct sock **new_batch;
3455 
3456 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3457 			     GFP_USER | __GFP_NOWARN);
3458 	if (!new_batch)
3459 		return -ENOMEM;
3460 
3461 	bpf_iter_unix_put_batch(iter);
3462 	kvfree(iter->batch);
3463 	iter->batch = new_batch;
3464 	iter->max_sk = new_batch_sz;
3465 
3466 	return 0;
3467 }
3468 
3469 static struct sock *bpf_iter_unix_batch(struct seq_file *seq,
3470 					loff_t *pos)
3471 {
3472 	struct bpf_unix_iter_state *iter = seq->private;
3473 	unsigned int expected;
3474 	bool resized = false;
3475 	struct sock *sk;
3476 
3477 	if (iter->st_bucket_done)
3478 		*pos = set_bucket_offset(get_bucket(*pos) + 1, 1);
3479 
3480 again:
3481 	/* Get a new batch */
3482 	iter->cur_sk = 0;
3483 	iter->end_sk = 0;
3484 
3485 	sk = unix_get_first(seq, pos);
3486 	if (!sk)
3487 		return NULL; /* Done */
3488 
3489 	expected = bpf_iter_unix_hold_batch(seq, sk);
3490 
3491 	if (iter->end_sk == expected) {
3492 		iter->st_bucket_done = true;
3493 		return sk;
3494 	}
3495 
3496 	if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) {
3497 		resized = true;
3498 		goto again;
3499 	}
3500 
3501 	return sk;
3502 }
3503 
3504 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos)
3505 {
3506 	if (!*pos)
3507 		return SEQ_START_TOKEN;
3508 
3509 	/* bpf iter does not support lseek, so it always
3510 	 * continue from where it was stop()-ped.
3511 	 */
3512 	return bpf_iter_unix_batch(seq, pos);
3513 }
3514 
3515 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3516 {
3517 	struct bpf_unix_iter_state *iter = seq->private;
3518 	struct sock *sk;
3519 
3520 	/* Whenever seq_next() is called, the iter->cur_sk is
3521 	 * done with seq_show(), so advance to the next sk in
3522 	 * the batch.
3523 	 */
3524 	if (iter->cur_sk < iter->end_sk)
3525 		sock_put(iter->batch[iter->cur_sk++]);
3526 
3527 	++*pos;
3528 
3529 	if (iter->cur_sk < iter->end_sk)
3530 		sk = iter->batch[iter->cur_sk];
3531 	else
3532 		sk = bpf_iter_unix_batch(seq, pos);
3533 
3534 	return sk;
3535 }
3536 
3537 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3538 {
3539 	struct bpf_iter_meta meta;
3540 	struct bpf_prog *prog;
3541 	struct sock *sk = v;
3542 	uid_t uid;
3543 	bool slow;
3544 	int ret;
3545 
3546 	if (v == SEQ_START_TOKEN)
3547 		return 0;
3548 
3549 	slow = lock_sock_fast(sk);
3550 
3551 	if (unlikely(sk_unhashed(sk))) {
3552 		ret = SEQ_SKIP;
3553 		goto unlock;
3554 	}
3555 
3556 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3557 	meta.seq = seq;
3558 	prog = bpf_iter_get_info(&meta, false);
3559 	ret = unix_prog_seq_show(prog, &meta, v, uid);
3560 unlock:
3561 	unlock_sock_fast(sk, slow);
3562 	return ret;
3563 }
3564 
3565 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3566 {
3567 	struct bpf_unix_iter_state *iter = seq->private;
3568 	struct bpf_iter_meta meta;
3569 	struct bpf_prog *prog;
3570 
3571 	if (!v) {
3572 		meta.seq = seq;
3573 		prog = bpf_iter_get_info(&meta, true);
3574 		if (prog)
3575 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3576 	}
3577 
3578 	if (iter->cur_sk < iter->end_sk)
3579 		bpf_iter_unix_put_batch(iter);
3580 }
3581 
3582 static const struct seq_operations bpf_iter_unix_seq_ops = {
3583 	.start	= bpf_iter_unix_seq_start,
3584 	.next	= bpf_iter_unix_seq_next,
3585 	.stop	= bpf_iter_unix_seq_stop,
3586 	.show	= bpf_iter_unix_seq_show,
3587 };
3588 #endif
3589 #endif
3590 
3591 static const struct net_proto_family unix_family_ops = {
3592 	.family = PF_UNIX,
3593 	.create = unix_create,
3594 	.owner	= THIS_MODULE,
3595 };
3596 
3597 
3598 static int __net_init unix_net_init(struct net *net)
3599 {
3600 	int i;
3601 
3602 	net->unx.sysctl_max_dgram_qlen = 10;
3603 	if (unix_sysctl_register(net))
3604 		goto out;
3605 
3606 #ifdef CONFIG_PROC_FS
3607 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3608 			     sizeof(struct seq_net_private)))
3609 		goto err_sysctl;
3610 #endif
3611 
3612 	net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE,
3613 					      sizeof(spinlock_t), GFP_KERNEL);
3614 	if (!net->unx.table.locks)
3615 		goto err_proc;
3616 
3617 	net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE,
3618 						sizeof(struct hlist_head),
3619 						GFP_KERNEL);
3620 	if (!net->unx.table.buckets)
3621 		goto free_locks;
3622 
3623 	for (i = 0; i < UNIX_HASH_SIZE; i++) {
3624 		spin_lock_init(&net->unx.table.locks[i]);
3625 		INIT_HLIST_HEAD(&net->unx.table.buckets[i]);
3626 	}
3627 
3628 	return 0;
3629 
3630 free_locks:
3631 	kvfree(net->unx.table.locks);
3632 err_proc:
3633 #ifdef CONFIG_PROC_FS
3634 	remove_proc_entry("unix", net->proc_net);
3635 err_sysctl:
3636 #endif
3637 	unix_sysctl_unregister(net);
3638 out:
3639 	return -ENOMEM;
3640 }
3641 
3642 static void __net_exit unix_net_exit(struct net *net)
3643 {
3644 	kvfree(net->unx.table.buckets);
3645 	kvfree(net->unx.table.locks);
3646 	unix_sysctl_unregister(net);
3647 	remove_proc_entry("unix", net->proc_net);
3648 }
3649 
3650 static struct pernet_operations unix_net_ops = {
3651 	.init = unix_net_init,
3652 	.exit = unix_net_exit,
3653 };
3654 
3655 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3656 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3657 		     struct unix_sock *unix_sk, uid_t uid)
3658 
3659 #define INIT_BATCH_SZ 16
3660 
3661 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux)
3662 {
3663 	struct bpf_unix_iter_state *iter = priv_data;
3664 	int err;
3665 
3666 	err = bpf_iter_init_seq_net(priv_data, aux);
3667 	if (err)
3668 		return err;
3669 
3670 	err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ);
3671 	if (err) {
3672 		bpf_iter_fini_seq_net(priv_data);
3673 		return err;
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 static void bpf_iter_fini_unix(void *priv_data)
3680 {
3681 	struct bpf_unix_iter_state *iter = priv_data;
3682 
3683 	bpf_iter_fini_seq_net(priv_data);
3684 	kvfree(iter->batch);
3685 }
3686 
3687 static const struct bpf_iter_seq_info unix_seq_info = {
3688 	.seq_ops		= &bpf_iter_unix_seq_ops,
3689 	.init_seq_private	= bpf_iter_init_unix,
3690 	.fini_seq_private	= bpf_iter_fini_unix,
3691 	.seq_priv_size		= sizeof(struct bpf_unix_iter_state),
3692 };
3693 
3694 static const struct bpf_func_proto *
3695 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id,
3696 			     const struct bpf_prog *prog)
3697 {
3698 	switch (func_id) {
3699 	case BPF_FUNC_setsockopt:
3700 		return &bpf_sk_setsockopt_proto;
3701 	case BPF_FUNC_getsockopt:
3702 		return &bpf_sk_getsockopt_proto;
3703 	default:
3704 		return NULL;
3705 	}
3706 }
3707 
3708 static struct bpf_iter_reg unix_reg_info = {
3709 	.target			= "unix",
3710 	.ctx_arg_info_size	= 1,
3711 	.ctx_arg_info		= {
3712 		{ offsetof(struct bpf_iter__unix, unix_sk),
3713 		  PTR_TO_BTF_ID_OR_NULL },
3714 	},
3715 	.get_func_proto         = bpf_iter_unix_get_func_proto,
3716 	.seq_info		= &unix_seq_info,
3717 };
3718 
3719 static void __init bpf_iter_register(void)
3720 {
3721 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3722 	if (bpf_iter_reg_target(&unix_reg_info))
3723 		pr_warn("Warning: could not register bpf iterator unix\n");
3724 }
3725 #endif
3726 
3727 static int __init af_unix_init(void)
3728 {
3729 	int i, rc = -1;
3730 
3731 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3732 
3733 	for (i = 0; i < UNIX_HASH_SIZE / 2; i++) {
3734 		spin_lock_init(&bsd_socket_locks[i]);
3735 		INIT_HLIST_HEAD(&bsd_socket_buckets[i]);
3736 	}
3737 
3738 	rc = proto_register(&unix_dgram_proto, 1);
3739 	if (rc != 0) {
3740 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3741 		goto out;
3742 	}
3743 
3744 	rc = proto_register(&unix_stream_proto, 1);
3745 	if (rc != 0) {
3746 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3747 		proto_unregister(&unix_dgram_proto);
3748 		goto out;
3749 	}
3750 
3751 	sock_register(&unix_family_ops);
3752 	register_pernet_subsys(&unix_net_ops);
3753 	unix_bpf_build_proto();
3754 
3755 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3756 	bpf_iter_register();
3757 #endif
3758 
3759 out:
3760 	return rc;
3761 }
3762 
3763 /* Later than subsys_initcall() because we depend on stuff initialised there */
3764 fs_initcall(af_unix_init);
3765