xref: /linux/net/unix/af_unix.c (revision 20a72af11f411bb74c14bd424f33b02e03937cf6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/filter.h>
93 #include <linux/termios.h>
94 #include <linux/sockios.h>
95 #include <linux/net.h>
96 #include <linux/in.h>
97 #include <linux/fs.h>
98 #include <linux/slab.h>
99 #include <linux/uaccess.h>
100 #include <linux/skbuff.h>
101 #include <linux/netdevice.h>
102 #include <net/net_namespace.h>
103 #include <net/sock.h>
104 #include <net/tcp_states.h>
105 #include <net/af_unix.h>
106 #include <linux/proc_fs.h>
107 #include <linux/seq_file.h>
108 #include <net/scm.h>
109 #include <linux/init.h>
110 #include <linux/poll.h>
111 #include <linux/rtnetlink.h>
112 #include <linux/mount.h>
113 #include <net/checksum.h>
114 #include <linux/security.h>
115 #include <linux/splice.h>
116 #include <linux/freezer.h>
117 #include <linux/file.h>
118 #include <linux/btf_ids.h>
119 
120 #include "scm.h"
121 
122 static atomic_long_t unix_nr_socks;
123 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2];
124 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2];
125 
126 /* SMP locking strategy:
127  *    hash table is protected with spinlock.
128  *    each socket state is protected by separate spinlock.
129  */
130 
131 static unsigned int unix_unbound_hash(struct sock *sk)
132 {
133 	unsigned long hash = (unsigned long)sk;
134 
135 	hash ^= hash >> 16;
136 	hash ^= hash >> 8;
137 	hash ^= sk->sk_type;
138 
139 	return hash & UNIX_HASH_MOD;
140 }
141 
142 static unsigned int unix_bsd_hash(struct inode *i)
143 {
144 	return i->i_ino & UNIX_HASH_MOD;
145 }
146 
147 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr,
148 				       int addr_len, int type)
149 {
150 	__wsum csum = csum_partial(sunaddr, addr_len, 0);
151 	unsigned int hash;
152 
153 	hash = (__force unsigned int)csum_fold(csum);
154 	hash ^= hash >> 8;
155 	hash ^= type;
156 
157 	return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD);
158 }
159 
160 static void unix_table_double_lock(struct net *net,
161 				   unsigned int hash1, unsigned int hash2)
162 {
163 	if (hash1 == hash2) {
164 		spin_lock(&net->unx.table.locks[hash1]);
165 		return;
166 	}
167 
168 	if (hash1 > hash2)
169 		swap(hash1, hash2);
170 
171 	spin_lock(&net->unx.table.locks[hash1]);
172 	spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING);
173 }
174 
175 static void unix_table_double_unlock(struct net *net,
176 				     unsigned int hash1, unsigned int hash2)
177 {
178 	if (hash1 == hash2) {
179 		spin_unlock(&net->unx.table.locks[hash1]);
180 		return;
181 	}
182 
183 	spin_unlock(&net->unx.table.locks[hash1]);
184 	spin_unlock(&net->unx.table.locks[hash2]);
185 }
186 
187 #ifdef CONFIG_SECURITY_NETWORK
188 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
189 {
190 	UNIXCB(skb).secid = scm->secid;
191 }
192 
193 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
194 {
195 	scm->secid = UNIXCB(skb).secid;
196 }
197 
198 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
199 {
200 	return (scm->secid == UNIXCB(skb).secid);
201 }
202 #else
203 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
204 { }
205 
206 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
207 { }
208 
209 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
210 {
211 	return true;
212 }
213 #endif /* CONFIG_SECURITY_NETWORK */
214 
215 #define unix_peer(sk) (unix_sk(sk)->peer)
216 
217 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
218 {
219 	return unix_peer(osk) == sk;
220 }
221 
222 static inline int unix_may_send(struct sock *sk, struct sock *osk)
223 {
224 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
225 }
226 
227 static inline int unix_recvq_full(const struct sock *sk)
228 {
229 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
230 }
231 
232 static inline int unix_recvq_full_lockless(const struct sock *sk)
233 {
234 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
235 		READ_ONCE(sk->sk_max_ack_backlog);
236 }
237 
238 struct sock *unix_peer_get(struct sock *s)
239 {
240 	struct sock *peer;
241 
242 	unix_state_lock(s);
243 	peer = unix_peer(s);
244 	if (peer)
245 		sock_hold(peer);
246 	unix_state_unlock(s);
247 	return peer;
248 }
249 EXPORT_SYMBOL_GPL(unix_peer_get);
250 
251 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr,
252 					     int addr_len)
253 {
254 	struct unix_address *addr;
255 
256 	addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL);
257 	if (!addr)
258 		return NULL;
259 
260 	refcount_set(&addr->refcnt, 1);
261 	addr->len = addr_len;
262 	memcpy(addr->name, sunaddr, addr_len);
263 
264 	return addr;
265 }
266 
267 static inline void unix_release_addr(struct unix_address *addr)
268 {
269 	if (refcount_dec_and_test(&addr->refcnt))
270 		kfree(addr);
271 }
272 
273 /*
274  *	Check unix socket name:
275  *		- should be not zero length.
276  *	        - if started by not zero, should be NULL terminated (FS object)
277  *		- if started by zero, it is abstract name.
278  */
279 
280 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len)
281 {
282 	if (addr_len <= offsetof(struct sockaddr_un, sun_path) ||
283 	    addr_len > sizeof(*sunaddr))
284 		return -EINVAL;
285 
286 	if (sunaddr->sun_family != AF_UNIX)
287 		return -EINVAL;
288 
289 	return 0;
290 }
291 
292 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len)
293 {
294 	/* This may look like an off by one error but it is a bit more
295 	 * subtle.  108 is the longest valid AF_UNIX path for a binding.
296 	 * sun_path[108] doesn't as such exist.  However in kernel space
297 	 * we are guaranteed that it is a valid memory location in our
298 	 * kernel address buffer because syscall functions always pass
299 	 * a pointer of struct sockaddr_storage which has a bigger buffer
300 	 * than 108.
301 	 */
302 	((char *)sunaddr)[addr_len] = 0;
303 }
304 
305 static void __unix_remove_socket(struct sock *sk)
306 {
307 	sk_del_node_init(sk);
308 }
309 
310 static void __unix_insert_socket(struct net *net, struct sock *sk)
311 {
312 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
313 	sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]);
314 }
315 
316 static void __unix_set_addr_hash(struct net *net, struct sock *sk,
317 				 struct unix_address *addr, unsigned int hash)
318 {
319 	__unix_remove_socket(sk);
320 	smp_store_release(&unix_sk(sk)->addr, addr);
321 
322 	sk->sk_hash = hash;
323 	__unix_insert_socket(net, sk);
324 }
325 
326 static void unix_remove_socket(struct net *net, struct sock *sk)
327 {
328 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
329 	__unix_remove_socket(sk);
330 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
331 }
332 
333 static void unix_insert_unbound_socket(struct net *net, struct sock *sk)
334 {
335 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
336 	__unix_insert_socket(net, sk);
337 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
338 }
339 
340 static void unix_insert_bsd_socket(struct sock *sk)
341 {
342 	spin_lock(&bsd_socket_locks[sk->sk_hash]);
343 	sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]);
344 	spin_unlock(&bsd_socket_locks[sk->sk_hash]);
345 }
346 
347 static void unix_remove_bsd_socket(struct sock *sk)
348 {
349 	if (!hlist_unhashed(&sk->sk_bind_node)) {
350 		spin_lock(&bsd_socket_locks[sk->sk_hash]);
351 		__sk_del_bind_node(sk);
352 		spin_unlock(&bsd_socket_locks[sk->sk_hash]);
353 
354 		sk_node_init(&sk->sk_bind_node);
355 	}
356 }
357 
358 static struct sock *__unix_find_socket_byname(struct net *net,
359 					      struct sockaddr_un *sunname,
360 					      int len, unsigned int hash)
361 {
362 	struct sock *s;
363 
364 	sk_for_each(s, &net->unx.table.buckets[hash]) {
365 		struct unix_sock *u = unix_sk(s);
366 
367 		if (u->addr->len == len &&
368 		    !memcmp(u->addr->name, sunname, len))
369 			return s;
370 	}
371 	return NULL;
372 }
373 
374 static inline struct sock *unix_find_socket_byname(struct net *net,
375 						   struct sockaddr_un *sunname,
376 						   int len, unsigned int hash)
377 {
378 	struct sock *s;
379 
380 	spin_lock(&net->unx.table.locks[hash]);
381 	s = __unix_find_socket_byname(net, sunname, len, hash);
382 	if (s)
383 		sock_hold(s);
384 	spin_unlock(&net->unx.table.locks[hash]);
385 	return s;
386 }
387 
388 static struct sock *unix_find_socket_byinode(struct inode *i)
389 {
390 	unsigned int hash = unix_bsd_hash(i);
391 	struct sock *s;
392 
393 	spin_lock(&bsd_socket_locks[hash]);
394 	sk_for_each_bound(s, &bsd_socket_buckets[hash]) {
395 		struct dentry *dentry = unix_sk(s)->path.dentry;
396 
397 		if (dentry && d_backing_inode(dentry) == i) {
398 			sock_hold(s);
399 			spin_unlock(&bsd_socket_locks[hash]);
400 			return s;
401 		}
402 	}
403 	spin_unlock(&bsd_socket_locks[hash]);
404 	return NULL;
405 }
406 
407 /* Support code for asymmetrically connected dgram sockets
408  *
409  * If a datagram socket is connected to a socket not itself connected
410  * to the first socket (eg, /dev/log), clients may only enqueue more
411  * messages if the present receive queue of the server socket is not
412  * "too large". This means there's a second writeability condition
413  * poll and sendmsg need to test. The dgram recv code will do a wake
414  * up on the peer_wait wait queue of a socket upon reception of a
415  * datagram which needs to be propagated to sleeping would-be writers
416  * since these might not have sent anything so far. This can't be
417  * accomplished via poll_wait because the lifetime of the server
418  * socket might be less than that of its clients if these break their
419  * association with it or if the server socket is closed while clients
420  * are still connected to it and there's no way to inform "a polling
421  * implementation" that it should let go of a certain wait queue
422  *
423  * In order to propagate a wake up, a wait_queue_entry_t of the client
424  * socket is enqueued on the peer_wait queue of the server socket
425  * whose wake function does a wake_up on the ordinary client socket
426  * wait queue. This connection is established whenever a write (or
427  * poll for write) hit the flow control condition and broken when the
428  * association to the server socket is dissolved or after a wake up
429  * was relayed.
430  */
431 
432 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
433 				      void *key)
434 {
435 	struct unix_sock *u;
436 	wait_queue_head_t *u_sleep;
437 
438 	u = container_of(q, struct unix_sock, peer_wake);
439 
440 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
441 			    q);
442 	u->peer_wake.private = NULL;
443 
444 	/* relaying can only happen while the wq still exists */
445 	u_sleep = sk_sleep(&u->sk);
446 	if (u_sleep)
447 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
448 
449 	return 0;
450 }
451 
452 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
453 {
454 	struct unix_sock *u, *u_other;
455 	int rc;
456 
457 	u = unix_sk(sk);
458 	u_other = unix_sk(other);
459 	rc = 0;
460 	spin_lock(&u_other->peer_wait.lock);
461 
462 	if (!u->peer_wake.private) {
463 		u->peer_wake.private = other;
464 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
465 
466 		rc = 1;
467 	}
468 
469 	spin_unlock(&u_other->peer_wait.lock);
470 	return rc;
471 }
472 
473 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
474 					    struct sock *other)
475 {
476 	struct unix_sock *u, *u_other;
477 
478 	u = unix_sk(sk);
479 	u_other = unix_sk(other);
480 	spin_lock(&u_other->peer_wait.lock);
481 
482 	if (u->peer_wake.private == other) {
483 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
484 		u->peer_wake.private = NULL;
485 	}
486 
487 	spin_unlock(&u_other->peer_wait.lock);
488 }
489 
490 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
491 						   struct sock *other)
492 {
493 	unix_dgram_peer_wake_disconnect(sk, other);
494 	wake_up_interruptible_poll(sk_sleep(sk),
495 				   EPOLLOUT |
496 				   EPOLLWRNORM |
497 				   EPOLLWRBAND);
498 }
499 
500 /* preconditions:
501  *	- unix_peer(sk) == other
502  *	- association is stable
503  */
504 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
505 {
506 	int connected;
507 
508 	connected = unix_dgram_peer_wake_connect(sk, other);
509 
510 	/* If other is SOCK_DEAD, we want to make sure we signal
511 	 * POLLOUT, such that a subsequent write() can get a
512 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
513 	 * to other and its full, we will hang waiting for POLLOUT.
514 	 */
515 	if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD))
516 		return 1;
517 
518 	if (connected)
519 		unix_dgram_peer_wake_disconnect(sk, other);
520 
521 	return 0;
522 }
523 
524 static int unix_writable(const struct sock *sk)
525 {
526 	return sk->sk_state != TCP_LISTEN &&
527 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
528 }
529 
530 static void unix_write_space(struct sock *sk)
531 {
532 	struct socket_wq *wq;
533 
534 	rcu_read_lock();
535 	if (unix_writable(sk)) {
536 		wq = rcu_dereference(sk->sk_wq);
537 		if (skwq_has_sleeper(wq))
538 			wake_up_interruptible_sync_poll(&wq->wait,
539 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
540 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
541 	}
542 	rcu_read_unlock();
543 }
544 
545 /* When dgram socket disconnects (or changes its peer), we clear its receive
546  * queue of packets arrived from previous peer. First, it allows to do
547  * flow control based only on wmem_alloc; second, sk connected to peer
548  * may receive messages only from that peer. */
549 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
550 {
551 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
552 		skb_queue_purge(&sk->sk_receive_queue);
553 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
554 
555 		/* If one link of bidirectional dgram pipe is disconnected,
556 		 * we signal error. Messages are lost. Do not make this,
557 		 * when peer was not connected to us.
558 		 */
559 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
560 			other->sk_err = ECONNRESET;
561 			sk_error_report(other);
562 		}
563 	}
564 	other->sk_state = TCP_CLOSE;
565 }
566 
567 static void unix_sock_destructor(struct sock *sk)
568 {
569 	struct unix_sock *u = unix_sk(sk);
570 
571 	skb_queue_purge(&sk->sk_receive_queue);
572 
573 	DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
574 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
575 	DEBUG_NET_WARN_ON_ONCE(sk->sk_socket);
576 	if (!sock_flag(sk, SOCK_DEAD)) {
577 		pr_info("Attempt to release alive unix socket: %p\n", sk);
578 		return;
579 	}
580 
581 	if (u->addr)
582 		unix_release_addr(u->addr);
583 
584 	atomic_long_dec(&unix_nr_socks);
585 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
586 #ifdef UNIX_REFCNT_DEBUG
587 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
588 		atomic_long_read(&unix_nr_socks));
589 #endif
590 }
591 
592 static void unix_release_sock(struct sock *sk, int embrion)
593 {
594 	struct unix_sock *u = unix_sk(sk);
595 	struct sock *skpair;
596 	struct sk_buff *skb;
597 	struct path path;
598 	int state;
599 
600 	unix_remove_socket(sock_net(sk), sk);
601 	unix_remove_bsd_socket(sk);
602 
603 	/* Clear state */
604 	unix_state_lock(sk);
605 	sock_orphan(sk);
606 	sk->sk_shutdown = SHUTDOWN_MASK;
607 	path	     = u->path;
608 	u->path.dentry = NULL;
609 	u->path.mnt = NULL;
610 	state = sk->sk_state;
611 	sk->sk_state = TCP_CLOSE;
612 
613 	skpair = unix_peer(sk);
614 	unix_peer(sk) = NULL;
615 
616 	unix_state_unlock(sk);
617 
618 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
619 	if (u->oob_skb) {
620 		kfree_skb(u->oob_skb);
621 		u->oob_skb = NULL;
622 	}
623 #endif
624 
625 	wake_up_interruptible_all(&u->peer_wait);
626 
627 	if (skpair != NULL) {
628 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
629 			unix_state_lock(skpair);
630 			/* No more writes */
631 			skpair->sk_shutdown = SHUTDOWN_MASK;
632 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
633 				skpair->sk_err = ECONNRESET;
634 			unix_state_unlock(skpair);
635 			skpair->sk_state_change(skpair);
636 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
637 		}
638 
639 		unix_dgram_peer_wake_disconnect(sk, skpair);
640 		sock_put(skpair); /* It may now die */
641 	}
642 
643 	/* Try to flush out this socket. Throw out buffers at least */
644 
645 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
646 		if (state == TCP_LISTEN)
647 			unix_release_sock(skb->sk, 1);
648 		/* passed fds are erased in the kfree_skb hook	      */
649 		UNIXCB(skb).consumed = skb->len;
650 		kfree_skb(skb);
651 	}
652 
653 	if (path.dentry)
654 		path_put(&path);
655 
656 	sock_put(sk);
657 
658 	/* ---- Socket is dead now and most probably destroyed ---- */
659 
660 	/*
661 	 * Fixme: BSD difference: In BSD all sockets connected to us get
662 	 *	  ECONNRESET and we die on the spot. In Linux we behave
663 	 *	  like files and pipes do and wait for the last
664 	 *	  dereference.
665 	 *
666 	 * Can't we simply set sock->err?
667 	 *
668 	 *	  What the above comment does talk about? --ANK(980817)
669 	 */
670 
671 	if (unix_tot_inflight)
672 		unix_gc();		/* Garbage collect fds */
673 }
674 
675 static void init_peercred(struct sock *sk)
676 {
677 	const struct cred *old_cred;
678 	struct pid *old_pid;
679 
680 	spin_lock(&sk->sk_peer_lock);
681 	old_pid = sk->sk_peer_pid;
682 	old_cred = sk->sk_peer_cred;
683 	sk->sk_peer_pid  = get_pid(task_tgid(current));
684 	sk->sk_peer_cred = get_current_cred();
685 	spin_unlock(&sk->sk_peer_lock);
686 
687 	put_pid(old_pid);
688 	put_cred(old_cred);
689 }
690 
691 static void copy_peercred(struct sock *sk, struct sock *peersk)
692 {
693 	const struct cred *old_cred;
694 	struct pid *old_pid;
695 
696 	if (sk < peersk) {
697 		spin_lock(&sk->sk_peer_lock);
698 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
699 	} else {
700 		spin_lock(&peersk->sk_peer_lock);
701 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
702 	}
703 	old_pid = sk->sk_peer_pid;
704 	old_cred = sk->sk_peer_cred;
705 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
706 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
707 
708 	spin_unlock(&sk->sk_peer_lock);
709 	spin_unlock(&peersk->sk_peer_lock);
710 
711 	put_pid(old_pid);
712 	put_cred(old_cred);
713 }
714 
715 static int unix_listen(struct socket *sock, int backlog)
716 {
717 	int err;
718 	struct sock *sk = sock->sk;
719 	struct unix_sock *u = unix_sk(sk);
720 
721 	err = -EOPNOTSUPP;
722 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
723 		goto out;	/* Only stream/seqpacket sockets accept */
724 	err = -EINVAL;
725 	if (!u->addr)
726 		goto out;	/* No listens on an unbound socket */
727 	unix_state_lock(sk);
728 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
729 		goto out_unlock;
730 	if (backlog > sk->sk_max_ack_backlog)
731 		wake_up_interruptible_all(&u->peer_wait);
732 	sk->sk_max_ack_backlog	= backlog;
733 	sk->sk_state		= TCP_LISTEN;
734 	/* set credentials so connect can copy them */
735 	init_peercred(sk);
736 	err = 0;
737 
738 out_unlock:
739 	unix_state_unlock(sk);
740 out:
741 	return err;
742 }
743 
744 static int unix_release(struct socket *);
745 static int unix_bind(struct socket *, struct sockaddr *, int);
746 static int unix_stream_connect(struct socket *, struct sockaddr *,
747 			       int addr_len, int flags);
748 static int unix_socketpair(struct socket *, struct socket *);
749 static int unix_accept(struct socket *, struct socket *, int, bool);
750 static int unix_getname(struct socket *, struct sockaddr *, int);
751 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
752 static __poll_t unix_dgram_poll(struct file *, struct socket *,
753 				    poll_table *);
754 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
755 #ifdef CONFIG_COMPAT
756 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
757 #endif
758 static int unix_shutdown(struct socket *, int);
759 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
760 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
761 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset,
762 				    size_t size, int flags);
763 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
764 				       struct pipe_inode_info *, size_t size,
765 				       unsigned int flags);
766 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
767 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
768 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
769 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
770 static int unix_dgram_connect(struct socket *, struct sockaddr *,
771 			      int, int);
772 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
773 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
774 				  int);
775 
776 static int unix_set_peek_off(struct sock *sk, int val)
777 {
778 	struct unix_sock *u = unix_sk(sk);
779 
780 	if (mutex_lock_interruptible(&u->iolock))
781 		return -EINTR;
782 
783 	sk->sk_peek_off = val;
784 	mutex_unlock(&u->iolock);
785 
786 	return 0;
787 }
788 
789 #ifdef CONFIG_PROC_FS
790 static int unix_count_nr_fds(struct sock *sk)
791 {
792 	struct sk_buff *skb;
793 	struct unix_sock *u;
794 	int nr_fds = 0;
795 
796 	spin_lock(&sk->sk_receive_queue.lock);
797 	skb = skb_peek(&sk->sk_receive_queue);
798 	while (skb) {
799 		u = unix_sk(skb->sk);
800 		nr_fds += atomic_read(&u->scm_stat.nr_fds);
801 		skb = skb_peek_next(skb, &sk->sk_receive_queue);
802 	}
803 	spin_unlock(&sk->sk_receive_queue.lock);
804 
805 	return nr_fds;
806 }
807 
808 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
809 {
810 	struct sock *sk = sock->sk;
811 	unsigned char s_state;
812 	struct unix_sock *u;
813 	int nr_fds = 0;
814 
815 	if (sk) {
816 		s_state = READ_ONCE(sk->sk_state);
817 		u = unix_sk(sk);
818 
819 		/* SOCK_STREAM and SOCK_SEQPACKET sockets never change their
820 		 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN.
821 		 * SOCK_DGRAM is ordinary. So, no lock is needed.
822 		 */
823 		if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED)
824 			nr_fds = atomic_read(&u->scm_stat.nr_fds);
825 		else if (s_state == TCP_LISTEN)
826 			nr_fds = unix_count_nr_fds(sk);
827 
828 		seq_printf(m, "scm_fds: %u\n", nr_fds);
829 	}
830 }
831 #else
832 #define unix_show_fdinfo NULL
833 #endif
834 
835 static const struct proto_ops unix_stream_ops = {
836 	.family =	PF_UNIX,
837 	.owner =	THIS_MODULE,
838 	.release =	unix_release,
839 	.bind =		unix_bind,
840 	.connect =	unix_stream_connect,
841 	.socketpair =	unix_socketpair,
842 	.accept =	unix_accept,
843 	.getname =	unix_getname,
844 	.poll =		unix_poll,
845 	.ioctl =	unix_ioctl,
846 #ifdef CONFIG_COMPAT
847 	.compat_ioctl =	unix_compat_ioctl,
848 #endif
849 	.listen =	unix_listen,
850 	.shutdown =	unix_shutdown,
851 	.sendmsg =	unix_stream_sendmsg,
852 	.recvmsg =	unix_stream_recvmsg,
853 	.read_skb =	unix_stream_read_skb,
854 	.mmap =		sock_no_mmap,
855 	.sendpage =	unix_stream_sendpage,
856 	.splice_read =	unix_stream_splice_read,
857 	.set_peek_off =	unix_set_peek_off,
858 	.show_fdinfo =	unix_show_fdinfo,
859 };
860 
861 static const struct proto_ops unix_dgram_ops = {
862 	.family =	PF_UNIX,
863 	.owner =	THIS_MODULE,
864 	.release =	unix_release,
865 	.bind =		unix_bind,
866 	.connect =	unix_dgram_connect,
867 	.socketpair =	unix_socketpair,
868 	.accept =	sock_no_accept,
869 	.getname =	unix_getname,
870 	.poll =		unix_dgram_poll,
871 	.ioctl =	unix_ioctl,
872 #ifdef CONFIG_COMPAT
873 	.compat_ioctl =	unix_compat_ioctl,
874 #endif
875 	.listen =	sock_no_listen,
876 	.shutdown =	unix_shutdown,
877 	.sendmsg =	unix_dgram_sendmsg,
878 	.read_skb =	unix_read_skb,
879 	.recvmsg =	unix_dgram_recvmsg,
880 	.mmap =		sock_no_mmap,
881 	.sendpage =	sock_no_sendpage,
882 	.set_peek_off =	unix_set_peek_off,
883 	.show_fdinfo =	unix_show_fdinfo,
884 };
885 
886 static const struct proto_ops unix_seqpacket_ops = {
887 	.family =	PF_UNIX,
888 	.owner =	THIS_MODULE,
889 	.release =	unix_release,
890 	.bind =		unix_bind,
891 	.connect =	unix_stream_connect,
892 	.socketpair =	unix_socketpair,
893 	.accept =	unix_accept,
894 	.getname =	unix_getname,
895 	.poll =		unix_dgram_poll,
896 	.ioctl =	unix_ioctl,
897 #ifdef CONFIG_COMPAT
898 	.compat_ioctl =	unix_compat_ioctl,
899 #endif
900 	.listen =	unix_listen,
901 	.shutdown =	unix_shutdown,
902 	.sendmsg =	unix_seqpacket_sendmsg,
903 	.recvmsg =	unix_seqpacket_recvmsg,
904 	.mmap =		sock_no_mmap,
905 	.sendpage =	sock_no_sendpage,
906 	.set_peek_off =	unix_set_peek_off,
907 	.show_fdinfo =	unix_show_fdinfo,
908 };
909 
910 static void unix_close(struct sock *sk, long timeout)
911 {
912 	/* Nothing to do here, unix socket does not need a ->close().
913 	 * This is merely for sockmap.
914 	 */
915 }
916 
917 static void unix_unhash(struct sock *sk)
918 {
919 	/* Nothing to do here, unix socket does not need a ->unhash().
920 	 * This is merely for sockmap.
921 	 */
922 }
923 
924 struct proto unix_dgram_proto = {
925 	.name			= "UNIX",
926 	.owner			= THIS_MODULE,
927 	.obj_size		= sizeof(struct unix_sock),
928 	.close			= unix_close,
929 #ifdef CONFIG_BPF_SYSCALL
930 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
931 #endif
932 };
933 
934 struct proto unix_stream_proto = {
935 	.name			= "UNIX-STREAM",
936 	.owner			= THIS_MODULE,
937 	.obj_size		= sizeof(struct unix_sock),
938 	.close			= unix_close,
939 	.unhash			= unix_unhash,
940 #ifdef CONFIG_BPF_SYSCALL
941 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
942 #endif
943 };
944 
945 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
946 {
947 	struct unix_sock *u;
948 	struct sock *sk;
949 	int err;
950 
951 	atomic_long_inc(&unix_nr_socks);
952 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
953 		err = -ENFILE;
954 		goto err;
955 	}
956 
957 	if (type == SOCK_STREAM)
958 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
959 	else /*dgram and  seqpacket */
960 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
961 
962 	if (!sk) {
963 		err = -ENOMEM;
964 		goto err;
965 	}
966 
967 	sock_init_data(sock, sk);
968 
969 	sk->sk_hash		= unix_unbound_hash(sk);
970 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
971 	sk->sk_write_space	= unix_write_space;
972 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
973 	sk->sk_destruct		= unix_sock_destructor;
974 	u	  = unix_sk(sk);
975 	u->path.dentry = NULL;
976 	u->path.mnt = NULL;
977 	spin_lock_init(&u->lock);
978 	atomic_long_set(&u->inflight, 0);
979 	INIT_LIST_HEAD(&u->link);
980 	mutex_init(&u->iolock); /* single task reading lock */
981 	mutex_init(&u->bindlock); /* single task binding lock */
982 	init_waitqueue_head(&u->peer_wait);
983 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
984 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
985 	unix_insert_unbound_socket(net, sk);
986 
987 	sock_prot_inuse_add(net, sk->sk_prot, 1);
988 
989 	return sk;
990 
991 err:
992 	atomic_long_dec(&unix_nr_socks);
993 	return ERR_PTR(err);
994 }
995 
996 static int unix_create(struct net *net, struct socket *sock, int protocol,
997 		       int kern)
998 {
999 	struct sock *sk;
1000 
1001 	if (protocol && protocol != PF_UNIX)
1002 		return -EPROTONOSUPPORT;
1003 
1004 	sock->state = SS_UNCONNECTED;
1005 
1006 	switch (sock->type) {
1007 	case SOCK_STREAM:
1008 		sock->ops = &unix_stream_ops;
1009 		break;
1010 		/*
1011 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
1012 		 *	nothing uses it.
1013 		 */
1014 	case SOCK_RAW:
1015 		sock->type = SOCK_DGRAM;
1016 		fallthrough;
1017 	case SOCK_DGRAM:
1018 		sock->ops = &unix_dgram_ops;
1019 		break;
1020 	case SOCK_SEQPACKET:
1021 		sock->ops = &unix_seqpacket_ops;
1022 		break;
1023 	default:
1024 		return -ESOCKTNOSUPPORT;
1025 	}
1026 
1027 	sk = unix_create1(net, sock, kern, sock->type);
1028 	if (IS_ERR(sk))
1029 		return PTR_ERR(sk);
1030 
1031 	return 0;
1032 }
1033 
1034 static int unix_release(struct socket *sock)
1035 {
1036 	struct sock *sk = sock->sk;
1037 
1038 	if (!sk)
1039 		return 0;
1040 
1041 	sk->sk_prot->close(sk, 0);
1042 	unix_release_sock(sk, 0);
1043 	sock->sk = NULL;
1044 
1045 	return 0;
1046 }
1047 
1048 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len,
1049 				  int type)
1050 {
1051 	struct inode *inode;
1052 	struct path path;
1053 	struct sock *sk;
1054 	int err;
1055 
1056 	unix_mkname_bsd(sunaddr, addr_len);
1057 	err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path);
1058 	if (err)
1059 		goto fail;
1060 
1061 	err = path_permission(&path, MAY_WRITE);
1062 	if (err)
1063 		goto path_put;
1064 
1065 	err = -ECONNREFUSED;
1066 	inode = d_backing_inode(path.dentry);
1067 	if (!S_ISSOCK(inode->i_mode))
1068 		goto path_put;
1069 
1070 	sk = unix_find_socket_byinode(inode);
1071 	if (!sk)
1072 		goto path_put;
1073 
1074 	err = -EPROTOTYPE;
1075 	if (sk->sk_type == type)
1076 		touch_atime(&path);
1077 	else
1078 		goto sock_put;
1079 
1080 	path_put(&path);
1081 
1082 	return sk;
1083 
1084 sock_put:
1085 	sock_put(sk);
1086 path_put:
1087 	path_put(&path);
1088 fail:
1089 	return ERR_PTR(err);
1090 }
1091 
1092 static struct sock *unix_find_abstract(struct net *net,
1093 				       struct sockaddr_un *sunaddr,
1094 				       int addr_len, int type)
1095 {
1096 	unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type);
1097 	struct dentry *dentry;
1098 	struct sock *sk;
1099 
1100 	sk = unix_find_socket_byname(net, sunaddr, addr_len, hash);
1101 	if (!sk)
1102 		return ERR_PTR(-ECONNREFUSED);
1103 
1104 	dentry = unix_sk(sk)->path.dentry;
1105 	if (dentry)
1106 		touch_atime(&unix_sk(sk)->path);
1107 
1108 	return sk;
1109 }
1110 
1111 static struct sock *unix_find_other(struct net *net,
1112 				    struct sockaddr_un *sunaddr,
1113 				    int addr_len, int type)
1114 {
1115 	struct sock *sk;
1116 
1117 	if (sunaddr->sun_path[0])
1118 		sk = unix_find_bsd(sunaddr, addr_len, type);
1119 	else
1120 		sk = unix_find_abstract(net, sunaddr, addr_len, type);
1121 
1122 	return sk;
1123 }
1124 
1125 static int unix_autobind(struct sock *sk)
1126 {
1127 	unsigned int new_hash, old_hash = sk->sk_hash;
1128 	struct unix_sock *u = unix_sk(sk);
1129 	struct net *net = sock_net(sk);
1130 	struct unix_address *addr;
1131 	u32 lastnum, ordernum;
1132 	int err;
1133 
1134 	err = mutex_lock_interruptible(&u->bindlock);
1135 	if (err)
1136 		return err;
1137 
1138 	if (u->addr)
1139 		goto out;
1140 
1141 	err = -ENOMEM;
1142 	addr = kzalloc(sizeof(*addr) +
1143 		       offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL);
1144 	if (!addr)
1145 		goto out;
1146 
1147 	addr->len = offsetof(struct sockaddr_un, sun_path) + 6;
1148 	addr->name->sun_family = AF_UNIX;
1149 	refcount_set(&addr->refcnt, 1);
1150 
1151 	ordernum = get_random_u32();
1152 	lastnum = ordernum & 0xFFFFF;
1153 retry:
1154 	ordernum = (ordernum + 1) & 0xFFFFF;
1155 	sprintf(addr->name->sun_path + 1, "%05x", ordernum);
1156 
1157 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1158 	unix_table_double_lock(net, old_hash, new_hash);
1159 
1160 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) {
1161 		unix_table_double_unlock(net, old_hash, new_hash);
1162 
1163 		/* __unix_find_socket_byname() may take long time if many names
1164 		 * are already in use.
1165 		 */
1166 		cond_resched();
1167 
1168 		if (ordernum == lastnum) {
1169 			/* Give up if all names seems to be in use. */
1170 			err = -ENOSPC;
1171 			unix_release_addr(addr);
1172 			goto out;
1173 		}
1174 
1175 		goto retry;
1176 	}
1177 
1178 	__unix_set_addr_hash(net, sk, addr, new_hash);
1179 	unix_table_double_unlock(net, old_hash, new_hash);
1180 	err = 0;
1181 
1182 out:	mutex_unlock(&u->bindlock);
1183 	return err;
1184 }
1185 
1186 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr,
1187 			 int addr_len)
1188 {
1189 	umode_t mode = S_IFSOCK |
1190 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1191 	unsigned int new_hash, old_hash = sk->sk_hash;
1192 	struct unix_sock *u = unix_sk(sk);
1193 	struct net *net = sock_net(sk);
1194 	struct mnt_idmap *idmap;
1195 	struct unix_address *addr;
1196 	struct dentry *dentry;
1197 	struct path parent;
1198 	int err;
1199 
1200 	unix_mkname_bsd(sunaddr, addr_len);
1201 	addr_len = strlen(sunaddr->sun_path) +
1202 		offsetof(struct sockaddr_un, sun_path) + 1;
1203 
1204 	addr = unix_create_addr(sunaddr, addr_len);
1205 	if (!addr)
1206 		return -ENOMEM;
1207 
1208 	/*
1209 	 * Get the parent directory, calculate the hash for last
1210 	 * component.
1211 	 */
1212 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1213 	if (IS_ERR(dentry)) {
1214 		err = PTR_ERR(dentry);
1215 		goto out;
1216 	}
1217 
1218 	/*
1219 	 * All right, let's create it.
1220 	 */
1221 	idmap = mnt_idmap(parent.mnt);
1222 	err = security_path_mknod(&parent, dentry, mode, 0);
1223 	if (!err)
1224 		err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0);
1225 	if (err)
1226 		goto out_path;
1227 	err = mutex_lock_interruptible(&u->bindlock);
1228 	if (err)
1229 		goto out_unlink;
1230 	if (u->addr)
1231 		goto out_unlock;
1232 
1233 	new_hash = unix_bsd_hash(d_backing_inode(dentry));
1234 	unix_table_double_lock(net, old_hash, new_hash);
1235 	u->path.mnt = mntget(parent.mnt);
1236 	u->path.dentry = dget(dentry);
1237 	__unix_set_addr_hash(net, sk, addr, new_hash);
1238 	unix_table_double_unlock(net, old_hash, new_hash);
1239 	unix_insert_bsd_socket(sk);
1240 	mutex_unlock(&u->bindlock);
1241 	done_path_create(&parent, dentry);
1242 	return 0;
1243 
1244 out_unlock:
1245 	mutex_unlock(&u->bindlock);
1246 	err = -EINVAL;
1247 out_unlink:
1248 	/* failed after successful mknod?  unlink what we'd created... */
1249 	vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL);
1250 out_path:
1251 	done_path_create(&parent, dentry);
1252 out:
1253 	unix_release_addr(addr);
1254 	return err == -EEXIST ? -EADDRINUSE : err;
1255 }
1256 
1257 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr,
1258 			      int addr_len)
1259 {
1260 	unsigned int new_hash, old_hash = sk->sk_hash;
1261 	struct unix_sock *u = unix_sk(sk);
1262 	struct net *net = sock_net(sk);
1263 	struct unix_address *addr;
1264 	int err;
1265 
1266 	addr = unix_create_addr(sunaddr, addr_len);
1267 	if (!addr)
1268 		return -ENOMEM;
1269 
1270 	err = mutex_lock_interruptible(&u->bindlock);
1271 	if (err)
1272 		goto out;
1273 
1274 	if (u->addr) {
1275 		err = -EINVAL;
1276 		goto out_mutex;
1277 	}
1278 
1279 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1280 	unix_table_double_lock(net, old_hash, new_hash);
1281 
1282 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash))
1283 		goto out_spin;
1284 
1285 	__unix_set_addr_hash(net, sk, addr, new_hash);
1286 	unix_table_double_unlock(net, old_hash, new_hash);
1287 	mutex_unlock(&u->bindlock);
1288 	return 0;
1289 
1290 out_spin:
1291 	unix_table_double_unlock(net, old_hash, new_hash);
1292 	err = -EADDRINUSE;
1293 out_mutex:
1294 	mutex_unlock(&u->bindlock);
1295 out:
1296 	unix_release_addr(addr);
1297 	return err;
1298 }
1299 
1300 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1301 {
1302 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1303 	struct sock *sk = sock->sk;
1304 	int err;
1305 
1306 	if (addr_len == offsetof(struct sockaddr_un, sun_path) &&
1307 	    sunaddr->sun_family == AF_UNIX)
1308 		return unix_autobind(sk);
1309 
1310 	err = unix_validate_addr(sunaddr, addr_len);
1311 	if (err)
1312 		return err;
1313 
1314 	if (sunaddr->sun_path[0])
1315 		err = unix_bind_bsd(sk, sunaddr, addr_len);
1316 	else
1317 		err = unix_bind_abstract(sk, sunaddr, addr_len);
1318 
1319 	return err;
1320 }
1321 
1322 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1323 {
1324 	if (unlikely(sk1 == sk2) || !sk2) {
1325 		unix_state_lock(sk1);
1326 		return;
1327 	}
1328 	if (sk1 < sk2) {
1329 		unix_state_lock(sk1);
1330 		unix_state_lock_nested(sk2);
1331 	} else {
1332 		unix_state_lock(sk2);
1333 		unix_state_lock_nested(sk1);
1334 	}
1335 }
1336 
1337 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1338 {
1339 	if (unlikely(sk1 == sk2) || !sk2) {
1340 		unix_state_unlock(sk1);
1341 		return;
1342 	}
1343 	unix_state_unlock(sk1);
1344 	unix_state_unlock(sk2);
1345 }
1346 
1347 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1348 			      int alen, int flags)
1349 {
1350 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1351 	struct sock *sk = sock->sk;
1352 	struct sock *other;
1353 	int err;
1354 
1355 	err = -EINVAL;
1356 	if (alen < offsetofend(struct sockaddr, sa_family))
1357 		goto out;
1358 
1359 	if (addr->sa_family != AF_UNSPEC) {
1360 		err = unix_validate_addr(sunaddr, alen);
1361 		if (err)
1362 			goto out;
1363 
1364 		if (test_bit(SOCK_PASSCRED, &sock->flags) &&
1365 		    !unix_sk(sk)->addr) {
1366 			err = unix_autobind(sk);
1367 			if (err)
1368 				goto out;
1369 		}
1370 
1371 restart:
1372 		other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type);
1373 		if (IS_ERR(other)) {
1374 			err = PTR_ERR(other);
1375 			goto out;
1376 		}
1377 
1378 		unix_state_double_lock(sk, other);
1379 
1380 		/* Apparently VFS overslept socket death. Retry. */
1381 		if (sock_flag(other, SOCK_DEAD)) {
1382 			unix_state_double_unlock(sk, other);
1383 			sock_put(other);
1384 			goto restart;
1385 		}
1386 
1387 		err = -EPERM;
1388 		if (!unix_may_send(sk, other))
1389 			goto out_unlock;
1390 
1391 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1392 		if (err)
1393 			goto out_unlock;
1394 
1395 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1396 	} else {
1397 		/*
1398 		 *	1003.1g breaking connected state with AF_UNSPEC
1399 		 */
1400 		other = NULL;
1401 		unix_state_double_lock(sk, other);
1402 	}
1403 
1404 	/*
1405 	 * If it was connected, reconnect.
1406 	 */
1407 	if (unix_peer(sk)) {
1408 		struct sock *old_peer = unix_peer(sk);
1409 
1410 		unix_peer(sk) = other;
1411 		if (!other)
1412 			sk->sk_state = TCP_CLOSE;
1413 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1414 
1415 		unix_state_double_unlock(sk, other);
1416 
1417 		if (other != old_peer)
1418 			unix_dgram_disconnected(sk, old_peer);
1419 		sock_put(old_peer);
1420 	} else {
1421 		unix_peer(sk) = other;
1422 		unix_state_double_unlock(sk, other);
1423 	}
1424 
1425 	return 0;
1426 
1427 out_unlock:
1428 	unix_state_double_unlock(sk, other);
1429 	sock_put(other);
1430 out:
1431 	return err;
1432 }
1433 
1434 static long unix_wait_for_peer(struct sock *other, long timeo)
1435 	__releases(&unix_sk(other)->lock)
1436 {
1437 	struct unix_sock *u = unix_sk(other);
1438 	int sched;
1439 	DEFINE_WAIT(wait);
1440 
1441 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1442 
1443 	sched = !sock_flag(other, SOCK_DEAD) &&
1444 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1445 		unix_recvq_full(other);
1446 
1447 	unix_state_unlock(other);
1448 
1449 	if (sched)
1450 		timeo = schedule_timeout(timeo);
1451 
1452 	finish_wait(&u->peer_wait, &wait);
1453 	return timeo;
1454 }
1455 
1456 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1457 			       int addr_len, int flags)
1458 {
1459 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1460 	struct sock *sk = sock->sk, *newsk = NULL, *other = NULL;
1461 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1462 	struct net *net = sock_net(sk);
1463 	struct sk_buff *skb = NULL;
1464 	long timeo;
1465 	int err;
1466 	int st;
1467 
1468 	err = unix_validate_addr(sunaddr, addr_len);
1469 	if (err)
1470 		goto out;
1471 
1472 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1473 		err = unix_autobind(sk);
1474 		if (err)
1475 			goto out;
1476 	}
1477 
1478 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1479 
1480 	/* First of all allocate resources.
1481 	   If we will make it after state is locked,
1482 	   we will have to recheck all again in any case.
1483 	 */
1484 
1485 	/* create new sock for complete connection */
1486 	newsk = unix_create1(net, NULL, 0, sock->type);
1487 	if (IS_ERR(newsk)) {
1488 		err = PTR_ERR(newsk);
1489 		newsk = NULL;
1490 		goto out;
1491 	}
1492 
1493 	err = -ENOMEM;
1494 
1495 	/* Allocate skb for sending to listening sock */
1496 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1497 	if (skb == NULL)
1498 		goto out;
1499 
1500 restart:
1501 	/*  Find listening sock. */
1502 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type);
1503 	if (IS_ERR(other)) {
1504 		err = PTR_ERR(other);
1505 		other = NULL;
1506 		goto out;
1507 	}
1508 
1509 	/* Latch state of peer */
1510 	unix_state_lock(other);
1511 
1512 	/* Apparently VFS overslept socket death. Retry. */
1513 	if (sock_flag(other, SOCK_DEAD)) {
1514 		unix_state_unlock(other);
1515 		sock_put(other);
1516 		goto restart;
1517 	}
1518 
1519 	err = -ECONNREFUSED;
1520 	if (other->sk_state != TCP_LISTEN)
1521 		goto out_unlock;
1522 	if (other->sk_shutdown & RCV_SHUTDOWN)
1523 		goto out_unlock;
1524 
1525 	if (unix_recvq_full(other)) {
1526 		err = -EAGAIN;
1527 		if (!timeo)
1528 			goto out_unlock;
1529 
1530 		timeo = unix_wait_for_peer(other, timeo);
1531 
1532 		err = sock_intr_errno(timeo);
1533 		if (signal_pending(current))
1534 			goto out;
1535 		sock_put(other);
1536 		goto restart;
1537 	}
1538 
1539 	/* Latch our state.
1540 
1541 	   It is tricky place. We need to grab our state lock and cannot
1542 	   drop lock on peer. It is dangerous because deadlock is
1543 	   possible. Connect to self case and simultaneous
1544 	   attempt to connect are eliminated by checking socket
1545 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1546 	   check this before attempt to grab lock.
1547 
1548 	   Well, and we have to recheck the state after socket locked.
1549 	 */
1550 	st = sk->sk_state;
1551 
1552 	switch (st) {
1553 	case TCP_CLOSE:
1554 		/* This is ok... continue with connect */
1555 		break;
1556 	case TCP_ESTABLISHED:
1557 		/* Socket is already connected */
1558 		err = -EISCONN;
1559 		goto out_unlock;
1560 	default:
1561 		err = -EINVAL;
1562 		goto out_unlock;
1563 	}
1564 
1565 	unix_state_lock_nested(sk);
1566 
1567 	if (sk->sk_state != st) {
1568 		unix_state_unlock(sk);
1569 		unix_state_unlock(other);
1570 		sock_put(other);
1571 		goto restart;
1572 	}
1573 
1574 	err = security_unix_stream_connect(sk, other, newsk);
1575 	if (err) {
1576 		unix_state_unlock(sk);
1577 		goto out_unlock;
1578 	}
1579 
1580 	/* The way is open! Fastly set all the necessary fields... */
1581 
1582 	sock_hold(sk);
1583 	unix_peer(newsk)	= sk;
1584 	newsk->sk_state		= TCP_ESTABLISHED;
1585 	newsk->sk_type		= sk->sk_type;
1586 	init_peercred(newsk);
1587 	newu = unix_sk(newsk);
1588 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1589 	otheru = unix_sk(other);
1590 
1591 	/* copy address information from listening to new sock
1592 	 *
1593 	 * The contents of *(otheru->addr) and otheru->path
1594 	 * are seen fully set up here, since we have found
1595 	 * otheru in hash under its lock.  Insertion into the
1596 	 * hash chain we'd found it in had been done in an
1597 	 * earlier critical area protected by the chain's lock,
1598 	 * the same one where we'd set *(otheru->addr) contents,
1599 	 * as well as otheru->path and otheru->addr itself.
1600 	 *
1601 	 * Using smp_store_release() here to set newu->addr
1602 	 * is enough to make those stores, as well as stores
1603 	 * to newu->path visible to anyone who gets newu->addr
1604 	 * by smp_load_acquire().  IOW, the same warranties
1605 	 * as for unix_sock instances bound in unix_bind() or
1606 	 * in unix_autobind().
1607 	 */
1608 	if (otheru->path.dentry) {
1609 		path_get(&otheru->path);
1610 		newu->path = otheru->path;
1611 	}
1612 	refcount_inc(&otheru->addr->refcnt);
1613 	smp_store_release(&newu->addr, otheru->addr);
1614 
1615 	/* Set credentials */
1616 	copy_peercred(sk, other);
1617 
1618 	sock->state	= SS_CONNECTED;
1619 	sk->sk_state	= TCP_ESTABLISHED;
1620 	sock_hold(newsk);
1621 
1622 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1623 	unix_peer(sk)	= newsk;
1624 
1625 	unix_state_unlock(sk);
1626 
1627 	/* take ten and send info to listening sock */
1628 	spin_lock(&other->sk_receive_queue.lock);
1629 	__skb_queue_tail(&other->sk_receive_queue, skb);
1630 	spin_unlock(&other->sk_receive_queue.lock);
1631 	unix_state_unlock(other);
1632 	other->sk_data_ready(other);
1633 	sock_put(other);
1634 	return 0;
1635 
1636 out_unlock:
1637 	if (other)
1638 		unix_state_unlock(other);
1639 
1640 out:
1641 	kfree_skb(skb);
1642 	if (newsk)
1643 		unix_release_sock(newsk, 0);
1644 	if (other)
1645 		sock_put(other);
1646 	return err;
1647 }
1648 
1649 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1650 {
1651 	struct sock *ska = socka->sk, *skb = sockb->sk;
1652 
1653 	/* Join our sockets back to back */
1654 	sock_hold(ska);
1655 	sock_hold(skb);
1656 	unix_peer(ska) = skb;
1657 	unix_peer(skb) = ska;
1658 	init_peercred(ska);
1659 	init_peercred(skb);
1660 
1661 	ska->sk_state = TCP_ESTABLISHED;
1662 	skb->sk_state = TCP_ESTABLISHED;
1663 	socka->state  = SS_CONNECTED;
1664 	sockb->state  = SS_CONNECTED;
1665 	return 0;
1666 }
1667 
1668 static void unix_sock_inherit_flags(const struct socket *old,
1669 				    struct socket *new)
1670 {
1671 	if (test_bit(SOCK_PASSCRED, &old->flags))
1672 		set_bit(SOCK_PASSCRED, &new->flags);
1673 	if (test_bit(SOCK_PASSSEC, &old->flags))
1674 		set_bit(SOCK_PASSSEC, &new->flags);
1675 }
1676 
1677 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1678 		       bool kern)
1679 {
1680 	struct sock *sk = sock->sk;
1681 	struct sock *tsk;
1682 	struct sk_buff *skb;
1683 	int err;
1684 
1685 	err = -EOPNOTSUPP;
1686 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1687 		goto out;
1688 
1689 	err = -EINVAL;
1690 	if (sk->sk_state != TCP_LISTEN)
1691 		goto out;
1692 
1693 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1694 	 * so that no locks are necessary.
1695 	 */
1696 
1697 	skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0,
1698 				&err);
1699 	if (!skb) {
1700 		/* This means receive shutdown. */
1701 		if (err == 0)
1702 			err = -EINVAL;
1703 		goto out;
1704 	}
1705 
1706 	tsk = skb->sk;
1707 	skb_free_datagram(sk, skb);
1708 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1709 
1710 	/* attach accepted sock to socket */
1711 	unix_state_lock(tsk);
1712 	newsock->state = SS_CONNECTED;
1713 	unix_sock_inherit_flags(sock, newsock);
1714 	sock_graft(tsk, newsock);
1715 	unix_state_unlock(tsk);
1716 	return 0;
1717 
1718 out:
1719 	return err;
1720 }
1721 
1722 
1723 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1724 {
1725 	struct sock *sk = sock->sk;
1726 	struct unix_address *addr;
1727 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1728 	int err = 0;
1729 
1730 	if (peer) {
1731 		sk = unix_peer_get(sk);
1732 
1733 		err = -ENOTCONN;
1734 		if (!sk)
1735 			goto out;
1736 		err = 0;
1737 	} else {
1738 		sock_hold(sk);
1739 	}
1740 
1741 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1742 	if (!addr) {
1743 		sunaddr->sun_family = AF_UNIX;
1744 		sunaddr->sun_path[0] = 0;
1745 		err = offsetof(struct sockaddr_un, sun_path);
1746 	} else {
1747 		err = addr->len;
1748 		memcpy(sunaddr, addr->name, addr->len);
1749 	}
1750 	sock_put(sk);
1751 out:
1752 	return err;
1753 }
1754 
1755 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1756 {
1757 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1758 
1759 	/*
1760 	 * Garbage collection of unix sockets starts by selecting a set of
1761 	 * candidate sockets which have reference only from being in flight
1762 	 * (total_refs == inflight_refs).  This condition is checked once during
1763 	 * the candidate collection phase, and candidates are marked as such, so
1764 	 * that non-candidates can later be ignored.  While inflight_refs is
1765 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1766 	 * is an instantaneous decision.
1767 	 *
1768 	 * Once a candidate, however, the socket must not be reinstalled into a
1769 	 * file descriptor while the garbage collection is in progress.
1770 	 *
1771 	 * If the above conditions are met, then the directed graph of
1772 	 * candidates (*) does not change while unix_gc_lock is held.
1773 	 *
1774 	 * Any operations that changes the file count through file descriptors
1775 	 * (dup, close, sendmsg) does not change the graph since candidates are
1776 	 * not installed in fds.
1777 	 *
1778 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1779 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1780 	 * serialized with garbage collection.
1781 	 *
1782 	 * MSG_PEEK is special in that it does not change the inflight count,
1783 	 * yet does install the socket into an fd.  The following lock/unlock
1784 	 * pair is to ensure serialization with garbage collection.  It must be
1785 	 * done between incrementing the file count and installing the file into
1786 	 * an fd.
1787 	 *
1788 	 * If garbage collection starts after the barrier provided by the
1789 	 * lock/unlock, then it will see the elevated refcount and not mark this
1790 	 * as a candidate.  If a garbage collection is already in progress
1791 	 * before the file count was incremented, then the lock/unlock pair will
1792 	 * ensure that garbage collection is finished before progressing to
1793 	 * installing the fd.
1794 	 *
1795 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1796 	 * which is on the queue of listening socket A.
1797 	 */
1798 	spin_lock(&unix_gc_lock);
1799 	spin_unlock(&unix_gc_lock);
1800 }
1801 
1802 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1803 {
1804 	int err = 0;
1805 
1806 	UNIXCB(skb).pid  = get_pid(scm->pid);
1807 	UNIXCB(skb).uid = scm->creds.uid;
1808 	UNIXCB(skb).gid = scm->creds.gid;
1809 	UNIXCB(skb).fp = NULL;
1810 	unix_get_secdata(scm, skb);
1811 	if (scm->fp && send_fds)
1812 		err = unix_attach_fds(scm, skb);
1813 
1814 	skb->destructor = unix_destruct_scm;
1815 	return err;
1816 }
1817 
1818 static bool unix_passcred_enabled(const struct socket *sock,
1819 				  const struct sock *other)
1820 {
1821 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1822 	       !other->sk_socket ||
1823 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags);
1824 }
1825 
1826 /*
1827  * Some apps rely on write() giving SCM_CREDENTIALS
1828  * We include credentials if source or destination socket
1829  * asserted SOCK_PASSCRED.
1830  */
1831 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1832 			    const struct sock *other)
1833 {
1834 	if (UNIXCB(skb).pid)
1835 		return;
1836 	if (unix_passcred_enabled(sock, other)) {
1837 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1838 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1839 	}
1840 }
1841 
1842 static int maybe_init_creds(struct scm_cookie *scm,
1843 			    struct socket *socket,
1844 			    const struct sock *other)
1845 {
1846 	int err;
1847 	struct msghdr msg = { .msg_controllen = 0 };
1848 
1849 	err = scm_send(socket, &msg, scm, false);
1850 	if (err)
1851 		return err;
1852 
1853 	if (unix_passcred_enabled(socket, other)) {
1854 		scm->pid = get_pid(task_tgid(current));
1855 		current_uid_gid(&scm->creds.uid, &scm->creds.gid);
1856 	}
1857 	return err;
1858 }
1859 
1860 static bool unix_skb_scm_eq(struct sk_buff *skb,
1861 			    struct scm_cookie *scm)
1862 {
1863 	return UNIXCB(skb).pid == scm->pid &&
1864 	       uid_eq(UNIXCB(skb).uid, scm->creds.uid) &&
1865 	       gid_eq(UNIXCB(skb).gid, scm->creds.gid) &&
1866 	       unix_secdata_eq(scm, skb);
1867 }
1868 
1869 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1870 {
1871 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1872 	struct unix_sock *u = unix_sk(sk);
1873 
1874 	if (unlikely(fp && fp->count))
1875 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1876 }
1877 
1878 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1879 {
1880 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1881 	struct unix_sock *u = unix_sk(sk);
1882 
1883 	if (unlikely(fp && fp->count))
1884 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1885 }
1886 
1887 /*
1888  *	Send AF_UNIX data.
1889  */
1890 
1891 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1892 			      size_t len)
1893 {
1894 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1895 	struct sock *sk = sock->sk, *other = NULL;
1896 	struct unix_sock *u = unix_sk(sk);
1897 	struct scm_cookie scm;
1898 	struct sk_buff *skb;
1899 	int data_len = 0;
1900 	int sk_locked;
1901 	long timeo;
1902 	int err;
1903 
1904 	wait_for_unix_gc();
1905 	err = scm_send(sock, msg, &scm, false);
1906 	if (err < 0)
1907 		return err;
1908 
1909 	err = -EOPNOTSUPP;
1910 	if (msg->msg_flags&MSG_OOB)
1911 		goto out;
1912 
1913 	if (msg->msg_namelen) {
1914 		err = unix_validate_addr(sunaddr, msg->msg_namelen);
1915 		if (err)
1916 			goto out;
1917 	} else {
1918 		sunaddr = NULL;
1919 		err = -ENOTCONN;
1920 		other = unix_peer_get(sk);
1921 		if (!other)
1922 			goto out;
1923 	}
1924 
1925 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1926 		err = unix_autobind(sk);
1927 		if (err)
1928 			goto out;
1929 	}
1930 
1931 	err = -EMSGSIZE;
1932 	if (len > sk->sk_sndbuf - 32)
1933 		goto out;
1934 
1935 	if (len > SKB_MAX_ALLOC) {
1936 		data_len = min_t(size_t,
1937 				 len - SKB_MAX_ALLOC,
1938 				 MAX_SKB_FRAGS * PAGE_SIZE);
1939 		data_len = PAGE_ALIGN(data_len);
1940 
1941 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1942 	}
1943 
1944 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1945 				   msg->msg_flags & MSG_DONTWAIT, &err,
1946 				   PAGE_ALLOC_COSTLY_ORDER);
1947 	if (skb == NULL)
1948 		goto out;
1949 
1950 	err = unix_scm_to_skb(&scm, skb, true);
1951 	if (err < 0)
1952 		goto out_free;
1953 
1954 	skb_put(skb, len - data_len);
1955 	skb->data_len = data_len;
1956 	skb->len = len;
1957 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1958 	if (err)
1959 		goto out_free;
1960 
1961 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1962 
1963 restart:
1964 	if (!other) {
1965 		err = -ECONNRESET;
1966 		if (sunaddr == NULL)
1967 			goto out_free;
1968 
1969 		other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen,
1970 					sk->sk_type);
1971 		if (IS_ERR(other)) {
1972 			err = PTR_ERR(other);
1973 			other = NULL;
1974 			goto out_free;
1975 		}
1976 	}
1977 
1978 	if (sk_filter(other, skb) < 0) {
1979 		/* Toss the packet but do not return any error to the sender */
1980 		err = len;
1981 		goto out_free;
1982 	}
1983 
1984 	sk_locked = 0;
1985 	unix_state_lock(other);
1986 restart_locked:
1987 	err = -EPERM;
1988 	if (!unix_may_send(sk, other))
1989 		goto out_unlock;
1990 
1991 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
1992 		/*
1993 		 *	Check with 1003.1g - what should
1994 		 *	datagram error
1995 		 */
1996 		unix_state_unlock(other);
1997 		sock_put(other);
1998 
1999 		if (!sk_locked)
2000 			unix_state_lock(sk);
2001 
2002 		err = 0;
2003 		if (sk->sk_type == SOCK_SEQPACKET) {
2004 			/* We are here only when racing with unix_release_sock()
2005 			 * is clearing @other. Never change state to TCP_CLOSE
2006 			 * unlike SOCK_DGRAM wants.
2007 			 */
2008 			unix_state_unlock(sk);
2009 			err = -EPIPE;
2010 		} else if (unix_peer(sk) == other) {
2011 			unix_peer(sk) = NULL;
2012 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
2013 
2014 			sk->sk_state = TCP_CLOSE;
2015 			unix_state_unlock(sk);
2016 
2017 			unix_dgram_disconnected(sk, other);
2018 			sock_put(other);
2019 			err = -ECONNREFUSED;
2020 		} else {
2021 			unix_state_unlock(sk);
2022 		}
2023 
2024 		other = NULL;
2025 		if (err)
2026 			goto out_free;
2027 		goto restart;
2028 	}
2029 
2030 	err = -EPIPE;
2031 	if (other->sk_shutdown & RCV_SHUTDOWN)
2032 		goto out_unlock;
2033 
2034 	if (sk->sk_type != SOCK_SEQPACKET) {
2035 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
2036 		if (err)
2037 			goto out_unlock;
2038 	}
2039 
2040 	/* other == sk && unix_peer(other) != sk if
2041 	 * - unix_peer(sk) == NULL, destination address bound to sk
2042 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
2043 	 */
2044 	if (other != sk &&
2045 	    unlikely(unix_peer(other) != sk &&
2046 	    unix_recvq_full_lockless(other))) {
2047 		if (timeo) {
2048 			timeo = unix_wait_for_peer(other, timeo);
2049 
2050 			err = sock_intr_errno(timeo);
2051 			if (signal_pending(current))
2052 				goto out_free;
2053 
2054 			goto restart;
2055 		}
2056 
2057 		if (!sk_locked) {
2058 			unix_state_unlock(other);
2059 			unix_state_double_lock(sk, other);
2060 		}
2061 
2062 		if (unix_peer(sk) != other ||
2063 		    unix_dgram_peer_wake_me(sk, other)) {
2064 			err = -EAGAIN;
2065 			sk_locked = 1;
2066 			goto out_unlock;
2067 		}
2068 
2069 		if (!sk_locked) {
2070 			sk_locked = 1;
2071 			goto restart_locked;
2072 		}
2073 	}
2074 
2075 	if (unlikely(sk_locked))
2076 		unix_state_unlock(sk);
2077 
2078 	if (sock_flag(other, SOCK_RCVTSTAMP))
2079 		__net_timestamp(skb);
2080 	maybe_add_creds(skb, sock, other);
2081 	scm_stat_add(other, skb);
2082 	skb_queue_tail(&other->sk_receive_queue, skb);
2083 	unix_state_unlock(other);
2084 	other->sk_data_ready(other);
2085 	sock_put(other);
2086 	scm_destroy(&scm);
2087 	return len;
2088 
2089 out_unlock:
2090 	if (sk_locked)
2091 		unix_state_unlock(sk);
2092 	unix_state_unlock(other);
2093 out_free:
2094 	kfree_skb(skb);
2095 out:
2096 	if (other)
2097 		sock_put(other);
2098 	scm_destroy(&scm);
2099 	return err;
2100 }
2101 
2102 /* We use paged skbs for stream sockets, and limit occupancy to 32768
2103  * bytes, and a minimum of a full page.
2104  */
2105 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
2106 
2107 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2108 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other)
2109 {
2110 	struct unix_sock *ousk = unix_sk(other);
2111 	struct sk_buff *skb;
2112 	int err = 0;
2113 
2114 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
2115 
2116 	if (!skb)
2117 		return err;
2118 
2119 	skb_put(skb, 1);
2120 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
2121 
2122 	if (err) {
2123 		kfree_skb(skb);
2124 		return err;
2125 	}
2126 
2127 	unix_state_lock(other);
2128 
2129 	if (sock_flag(other, SOCK_DEAD) ||
2130 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
2131 		unix_state_unlock(other);
2132 		kfree_skb(skb);
2133 		return -EPIPE;
2134 	}
2135 
2136 	maybe_add_creds(skb, sock, other);
2137 	skb_get(skb);
2138 
2139 	if (ousk->oob_skb)
2140 		consume_skb(ousk->oob_skb);
2141 
2142 	WRITE_ONCE(ousk->oob_skb, skb);
2143 
2144 	scm_stat_add(other, skb);
2145 	skb_queue_tail(&other->sk_receive_queue, skb);
2146 	sk_send_sigurg(other);
2147 	unix_state_unlock(other);
2148 	other->sk_data_ready(other);
2149 
2150 	return err;
2151 }
2152 #endif
2153 
2154 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2155 			       size_t len)
2156 {
2157 	struct sock *sk = sock->sk;
2158 	struct sock *other = NULL;
2159 	int err, size;
2160 	struct sk_buff *skb;
2161 	int sent = 0;
2162 	struct scm_cookie scm;
2163 	bool fds_sent = false;
2164 	int data_len;
2165 
2166 	wait_for_unix_gc();
2167 	err = scm_send(sock, msg, &scm, false);
2168 	if (err < 0)
2169 		return err;
2170 
2171 	err = -EOPNOTSUPP;
2172 	if (msg->msg_flags & MSG_OOB) {
2173 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2174 		if (len)
2175 			len--;
2176 		else
2177 #endif
2178 			goto out_err;
2179 	}
2180 
2181 	if (msg->msg_namelen) {
2182 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2183 		goto out_err;
2184 	} else {
2185 		err = -ENOTCONN;
2186 		other = unix_peer(sk);
2187 		if (!other)
2188 			goto out_err;
2189 	}
2190 
2191 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2192 		goto pipe_err;
2193 
2194 	while (sent < len) {
2195 		size = len - sent;
2196 
2197 		/* Keep two messages in the pipe so it schedules better */
2198 		size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2199 
2200 		/* allow fallback to order-0 allocations */
2201 		size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2202 
2203 		data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2204 
2205 		data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2206 
2207 		skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2208 					   msg->msg_flags & MSG_DONTWAIT, &err,
2209 					   get_order(UNIX_SKB_FRAGS_SZ));
2210 		if (!skb)
2211 			goto out_err;
2212 
2213 		/* Only send the fds in the first buffer */
2214 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2215 		if (err < 0) {
2216 			kfree_skb(skb);
2217 			goto out_err;
2218 		}
2219 		fds_sent = true;
2220 
2221 		skb_put(skb, size - data_len);
2222 		skb->data_len = data_len;
2223 		skb->len = size;
2224 		err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2225 		if (err) {
2226 			kfree_skb(skb);
2227 			goto out_err;
2228 		}
2229 
2230 		unix_state_lock(other);
2231 
2232 		if (sock_flag(other, SOCK_DEAD) ||
2233 		    (other->sk_shutdown & RCV_SHUTDOWN))
2234 			goto pipe_err_free;
2235 
2236 		maybe_add_creds(skb, sock, other);
2237 		scm_stat_add(other, skb);
2238 		skb_queue_tail(&other->sk_receive_queue, skb);
2239 		unix_state_unlock(other);
2240 		other->sk_data_ready(other);
2241 		sent += size;
2242 	}
2243 
2244 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2245 	if (msg->msg_flags & MSG_OOB) {
2246 		err = queue_oob(sock, msg, other);
2247 		if (err)
2248 			goto out_err;
2249 		sent++;
2250 	}
2251 #endif
2252 
2253 	scm_destroy(&scm);
2254 
2255 	return sent;
2256 
2257 pipe_err_free:
2258 	unix_state_unlock(other);
2259 	kfree_skb(skb);
2260 pipe_err:
2261 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2262 		send_sig(SIGPIPE, current, 0);
2263 	err = -EPIPE;
2264 out_err:
2265 	scm_destroy(&scm);
2266 	return sent ? : err;
2267 }
2268 
2269 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page,
2270 				    int offset, size_t size, int flags)
2271 {
2272 	int err;
2273 	bool send_sigpipe = false;
2274 	bool init_scm = true;
2275 	struct scm_cookie scm;
2276 	struct sock *other, *sk = socket->sk;
2277 	struct sk_buff *skb, *newskb = NULL, *tail = NULL;
2278 
2279 	if (flags & MSG_OOB)
2280 		return -EOPNOTSUPP;
2281 
2282 	other = unix_peer(sk);
2283 	if (!other || sk->sk_state != TCP_ESTABLISHED)
2284 		return -ENOTCONN;
2285 
2286 	if (false) {
2287 alloc_skb:
2288 		unix_state_unlock(other);
2289 		mutex_unlock(&unix_sk(other)->iolock);
2290 		newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT,
2291 					      &err, 0);
2292 		if (!newskb)
2293 			goto err;
2294 	}
2295 
2296 	/* we must acquire iolock as we modify already present
2297 	 * skbs in the sk_receive_queue and mess with skb->len
2298 	 */
2299 	err = mutex_lock_interruptible(&unix_sk(other)->iolock);
2300 	if (err) {
2301 		err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS;
2302 		goto err;
2303 	}
2304 
2305 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
2306 		err = -EPIPE;
2307 		send_sigpipe = true;
2308 		goto err_unlock;
2309 	}
2310 
2311 	unix_state_lock(other);
2312 
2313 	if (sock_flag(other, SOCK_DEAD) ||
2314 	    other->sk_shutdown & RCV_SHUTDOWN) {
2315 		err = -EPIPE;
2316 		send_sigpipe = true;
2317 		goto err_state_unlock;
2318 	}
2319 
2320 	if (init_scm) {
2321 		err = maybe_init_creds(&scm, socket, other);
2322 		if (err)
2323 			goto err_state_unlock;
2324 		init_scm = false;
2325 	}
2326 
2327 	skb = skb_peek_tail(&other->sk_receive_queue);
2328 	if (tail && tail == skb) {
2329 		skb = newskb;
2330 	} else if (!skb || !unix_skb_scm_eq(skb, &scm)) {
2331 		if (newskb) {
2332 			skb = newskb;
2333 		} else {
2334 			tail = skb;
2335 			goto alloc_skb;
2336 		}
2337 	} else if (newskb) {
2338 		/* this is fast path, we don't necessarily need to
2339 		 * call to kfree_skb even though with newskb == NULL
2340 		 * this - does no harm
2341 		 */
2342 		consume_skb(newskb);
2343 		newskb = NULL;
2344 	}
2345 
2346 	if (skb_append_pagefrags(skb, page, offset, size)) {
2347 		tail = skb;
2348 		goto alloc_skb;
2349 	}
2350 
2351 	skb->len += size;
2352 	skb->data_len += size;
2353 	skb->truesize += size;
2354 	refcount_add(size, &sk->sk_wmem_alloc);
2355 
2356 	if (newskb) {
2357 		err = unix_scm_to_skb(&scm, skb, false);
2358 		if (err)
2359 			goto err_state_unlock;
2360 		spin_lock(&other->sk_receive_queue.lock);
2361 		__skb_queue_tail(&other->sk_receive_queue, newskb);
2362 		spin_unlock(&other->sk_receive_queue.lock);
2363 	}
2364 
2365 	unix_state_unlock(other);
2366 	mutex_unlock(&unix_sk(other)->iolock);
2367 
2368 	other->sk_data_ready(other);
2369 	scm_destroy(&scm);
2370 	return size;
2371 
2372 err_state_unlock:
2373 	unix_state_unlock(other);
2374 err_unlock:
2375 	mutex_unlock(&unix_sk(other)->iolock);
2376 err:
2377 	kfree_skb(newskb);
2378 	if (send_sigpipe && !(flags & MSG_NOSIGNAL))
2379 		send_sig(SIGPIPE, current, 0);
2380 	if (!init_scm)
2381 		scm_destroy(&scm);
2382 	return err;
2383 }
2384 
2385 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2386 				  size_t len)
2387 {
2388 	int err;
2389 	struct sock *sk = sock->sk;
2390 
2391 	err = sock_error(sk);
2392 	if (err)
2393 		return err;
2394 
2395 	if (sk->sk_state != TCP_ESTABLISHED)
2396 		return -ENOTCONN;
2397 
2398 	if (msg->msg_namelen)
2399 		msg->msg_namelen = 0;
2400 
2401 	return unix_dgram_sendmsg(sock, msg, len);
2402 }
2403 
2404 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2405 				  size_t size, int flags)
2406 {
2407 	struct sock *sk = sock->sk;
2408 
2409 	if (sk->sk_state != TCP_ESTABLISHED)
2410 		return -ENOTCONN;
2411 
2412 	return unix_dgram_recvmsg(sock, msg, size, flags);
2413 }
2414 
2415 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2416 {
2417 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2418 
2419 	if (addr) {
2420 		msg->msg_namelen = addr->len;
2421 		memcpy(msg->msg_name, addr->name, addr->len);
2422 	}
2423 }
2424 
2425 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2426 			 int flags)
2427 {
2428 	struct scm_cookie scm;
2429 	struct socket *sock = sk->sk_socket;
2430 	struct unix_sock *u = unix_sk(sk);
2431 	struct sk_buff *skb, *last;
2432 	long timeo;
2433 	int skip;
2434 	int err;
2435 
2436 	err = -EOPNOTSUPP;
2437 	if (flags&MSG_OOB)
2438 		goto out;
2439 
2440 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2441 
2442 	do {
2443 		mutex_lock(&u->iolock);
2444 
2445 		skip = sk_peek_offset(sk, flags);
2446 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2447 					      &skip, &err, &last);
2448 		if (skb) {
2449 			if (!(flags & MSG_PEEK))
2450 				scm_stat_del(sk, skb);
2451 			break;
2452 		}
2453 
2454 		mutex_unlock(&u->iolock);
2455 
2456 		if (err != -EAGAIN)
2457 			break;
2458 	} while (timeo &&
2459 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2460 					      &err, &timeo, last));
2461 
2462 	if (!skb) { /* implies iolock unlocked */
2463 		unix_state_lock(sk);
2464 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2465 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2466 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2467 			err = 0;
2468 		unix_state_unlock(sk);
2469 		goto out;
2470 	}
2471 
2472 	if (wq_has_sleeper(&u->peer_wait))
2473 		wake_up_interruptible_sync_poll(&u->peer_wait,
2474 						EPOLLOUT | EPOLLWRNORM |
2475 						EPOLLWRBAND);
2476 
2477 	if (msg->msg_name)
2478 		unix_copy_addr(msg, skb->sk);
2479 
2480 	if (size > skb->len - skip)
2481 		size = skb->len - skip;
2482 	else if (size < skb->len - skip)
2483 		msg->msg_flags |= MSG_TRUNC;
2484 
2485 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2486 	if (err)
2487 		goto out_free;
2488 
2489 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2490 		__sock_recv_timestamp(msg, sk, skb);
2491 
2492 	memset(&scm, 0, sizeof(scm));
2493 
2494 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2495 	unix_set_secdata(&scm, skb);
2496 
2497 	if (!(flags & MSG_PEEK)) {
2498 		if (UNIXCB(skb).fp)
2499 			unix_detach_fds(&scm, skb);
2500 
2501 		sk_peek_offset_bwd(sk, skb->len);
2502 	} else {
2503 		/* It is questionable: on PEEK we could:
2504 		   - do not return fds - good, but too simple 8)
2505 		   - return fds, and do not return them on read (old strategy,
2506 		     apparently wrong)
2507 		   - clone fds (I chose it for now, it is the most universal
2508 		     solution)
2509 
2510 		   POSIX 1003.1g does not actually define this clearly
2511 		   at all. POSIX 1003.1g doesn't define a lot of things
2512 		   clearly however!
2513 
2514 		*/
2515 
2516 		sk_peek_offset_fwd(sk, size);
2517 
2518 		if (UNIXCB(skb).fp)
2519 			unix_peek_fds(&scm, skb);
2520 	}
2521 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2522 
2523 	scm_recv(sock, msg, &scm, flags);
2524 
2525 out_free:
2526 	skb_free_datagram(sk, skb);
2527 	mutex_unlock(&u->iolock);
2528 out:
2529 	return err;
2530 }
2531 
2532 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2533 			      int flags)
2534 {
2535 	struct sock *sk = sock->sk;
2536 
2537 #ifdef CONFIG_BPF_SYSCALL
2538 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2539 
2540 	if (prot != &unix_dgram_proto)
2541 		return prot->recvmsg(sk, msg, size, flags, NULL);
2542 #endif
2543 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2544 }
2545 
2546 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2547 {
2548 	struct unix_sock *u = unix_sk(sk);
2549 	struct sk_buff *skb;
2550 	int err, copied;
2551 
2552 	mutex_lock(&u->iolock);
2553 	skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err);
2554 	mutex_unlock(&u->iolock);
2555 	if (!skb)
2556 		return err;
2557 
2558 	copied = recv_actor(sk, skb);
2559 	kfree_skb(skb);
2560 
2561 	return copied;
2562 }
2563 
2564 /*
2565  *	Sleep until more data has arrived. But check for races..
2566  */
2567 static long unix_stream_data_wait(struct sock *sk, long timeo,
2568 				  struct sk_buff *last, unsigned int last_len,
2569 				  bool freezable)
2570 {
2571 	unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE;
2572 	struct sk_buff *tail;
2573 	DEFINE_WAIT(wait);
2574 
2575 	unix_state_lock(sk);
2576 
2577 	for (;;) {
2578 		prepare_to_wait(sk_sleep(sk), &wait, state);
2579 
2580 		tail = skb_peek_tail(&sk->sk_receive_queue);
2581 		if (tail != last ||
2582 		    (tail && tail->len != last_len) ||
2583 		    sk->sk_err ||
2584 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2585 		    signal_pending(current) ||
2586 		    !timeo)
2587 			break;
2588 
2589 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2590 		unix_state_unlock(sk);
2591 		timeo = schedule_timeout(timeo);
2592 		unix_state_lock(sk);
2593 
2594 		if (sock_flag(sk, SOCK_DEAD))
2595 			break;
2596 
2597 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2598 	}
2599 
2600 	finish_wait(sk_sleep(sk), &wait);
2601 	unix_state_unlock(sk);
2602 	return timeo;
2603 }
2604 
2605 static unsigned int unix_skb_len(const struct sk_buff *skb)
2606 {
2607 	return skb->len - UNIXCB(skb).consumed;
2608 }
2609 
2610 struct unix_stream_read_state {
2611 	int (*recv_actor)(struct sk_buff *, int, int,
2612 			  struct unix_stream_read_state *);
2613 	struct socket *socket;
2614 	struct msghdr *msg;
2615 	struct pipe_inode_info *pipe;
2616 	size_t size;
2617 	int flags;
2618 	unsigned int splice_flags;
2619 };
2620 
2621 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2622 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2623 {
2624 	struct socket *sock = state->socket;
2625 	struct sock *sk = sock->sk;
2626 	struct unix_sock *u = unix_sk(sk);
2627 	int chunk = 1;
2628 	struct sk_buff *oob_skb;
2629 
2630 	mutex_lock(&u->iolock);
2631 	unix_state_lock(sk);
2632 
2633 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2634 		unix_state_unlock(sk);
2635 		mutex_unlock(&u->iolock);
2636 		return -EINVAL;
2637 	}
2638 
2639 	oob_skb = u->oob_skb;
2640 
2641 	if (!(state->flags & MSG_PEEK))
2642 		WRITE_ONCE(u->oob_skb, NULL);
2643 
2644 	unix_state_unlock(sk);
2645 
2646 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2647 
2648 	if (!(state->flags & MSG_PEEK)) {
2649 		UNIXCB(oob_skb).consumed += 1;
2650 		kfree_skb(oob_skb);
2651 	}
2652 
2653 	mutex_unlock(&u->iolock);
2654 
2655 	if (chunk < 0)
2656 		return -EFAULT;
2657 
2658 	state->msg->msg_flags |= MSG_OOB;
2659 	return 1;
2660 }
2661 
2662 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2663 				  int flags, int copied)
2664 {
2665 	struct unix_sock *u = unix_sk(sk);
2666 
2667 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2668 		skb_unlink(skb, &sk->sk_receive_queue);
2669 		consume_skb(skb);
2670 		skb = NULL;
2671 	} else {
2672 		if (skb == u->oob_skb) {
2673 			if (copied) {
2674 				skb = NULL;
2675 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2676 				if (!(flags & MSG_PEEK)) {
2677 					WRITE_ONCE(u->oob_skb, NULL);
2678 					consume_skb(skb);
2679 				}
2680 			} else if (!(flags & MSG_PEEK)) {
2681 				skb_unlink(skb, &sk->sk_receive_queue);
2682 				consume_skb(skb);
2683 				skb = skb_peek(&sk->sk_receive_queue);
2684 			}
2685 		}
2686 	}
2687 	return skb;
2688 }
2689 #endif
2690 
2691 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2692 {
2693 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2694 		return -ENOTCONN;
2695 
2696 	return unix_read_skb(sk, recv_actor);
2697 }
2698 
2699 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2700 				    bool freezable)
2701 {
2702 	struct scm_cookie scm;
2703 	struct socket *sock = state->socket;
2704 	struct sock *sk = sock->sk;
2705 	struct unix_sock *u = unix_sk(sk);
2706 	int copied = 0;
2707 	int flags = state->flags;
2708 	int noblock = flags & MSG_DONTWAIT;
2709 	bool check_creds = false;
2710 	int target;
2711 	int err = 0;
2712 	long timeo;
2713 	int skip;
2714 	size_t size = state->size;
2715 	unsigned int last_len;
2716 
2717 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2718 		err = -EINVAL;
2719 		goto out;
2720 	}
2721 
2722 	if (unlikely(flags & MSG_OOB)) {
2723 		err = -EOPNOTSUPP;
2724 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2725 		err = unix_stream_recv_urg(state);
2726 #endif
2727 		goto out;
2728 	}
2729 
2730 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2731 	timeo = sock_rcvtimeo(sk, noblock);
2732 
2733 	memset(&scm, 0, sizeof(scm));
2734 
2735 	/* Lock the socket to prevent queue disordering
2736 	 * while sleeps in memcpy_tomsg
2737 	 */
2738 	mutex_lock(&u->iolock);
2739 
2740 	skip = max(sk_peek_offset(sk, flags), 0);
2741 
2742 	do {
2743 		int chunk;
2744 		bool drop_skb;
2745 		struct sk_buff *skb, *last;
2746 
2747 redo:
2748 		unix_state_lock(sk);
2749 		if (sock_flag(sk, SOCK_DEAD)) {
2750 			err = -ECONNRESET;
2751 			goto unlock;
2752 		}
2753 		last = skb = skb_peek(&sk->sk_receive_queue);
2754 		last_len = last ? last->len : 0;
2755 
2756 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2757 		if (skb) {
2758 			skb = manage_oob(skb, sk, flags, copied);
2759 			if (!skb) {
2760 				unix_state_unlock(sk);
2761 				if (copied)
2762 					break;
2763 				goto redo;
2764 			}
2765 		}
2766 #endif
2767 again:
2768 		if (skb == NULL) {
2769 			if (copied >= target)
2770 				goto unlock;
2771 
2772 			/*
2773 			 *	POSIX 1003.1g mandates this order.
2774 			 */
2775 
2776 			err = sock_error(sk);
2777 			if (err)
2778 				goto unlock;
2779 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2780 				goto unlock;
2781 
2782 			unix_state_unlock(sk);
2783 			if (!timeo) {
2784 				err = -EAGAIN;
2785 				break;
2786 			}
2787 
2788 			mutex_unlock(&u->iolock);
2789 
2790 			timeo = unix_stream_data_wait(sk, timeo, last,
2791 						      last_len, freezable);
2792 
2793 			if (signal_pending(current)) {
2794 				err = sock_intr_errno(timeo);
2795 				scm_destroy(&scm);
2796 				goto out;
2797 			}
2798 
2799 			mutex_lock(&u->iolock);
2800 			goto redo;
2801 unlock:
2802 			unix_state_unlock(sk);
2803 			break;
2804 		}
2805 
2806 		while (skip >= unix_skb_len(skb)) {
2807 			skip -= unix_skb_len(skb);
2808 			last = skb;
2809 			last_len = skb->len;
2810 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2811 			if (!skb)
2812 				goto again;
2813 		}
2814 
2815 		unix_state_unlock(sk);
2816 
2817 		if (check_creds) {
2818 			/* Never glue messages from different writers */
2819 			if (!unix_skb_scm_eq(skb, &scm))
2820 				break;
2821 		} else if (test_bit(SOCK_PASSCRED, &sock->flags)) {
2822 			/* Copy credentials */
2823 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2824 			unix_set_secdata(&scm, skb);
2825 			check_creds = true;
2826 		}
2827 
2828 		/* Copy address just once */
2829 		if (state->msg && state->msg->msg_name) {
2830 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2831 					 state->msg->msg_name);
2832 			unix_copy_addr(state->msg, skb->sk);
2833 			sunaddr = NULL;
2834 		}
2835 
2836 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2837 		skb_get(skb);
2838 		chunk = state->recv_actor(skb, skip, chunk, state);
2839 		drop_skb = !unix_skb_len(skb);
2840 		/* skb is only safe to use if !drop_skb */
2841 		consume_skb(skb);
2842 		if (chunk < 0) {
2843 			if (copied == 0)
2844 				copied = -EFAULT;
2845 			break;
2846 		}
2847 		copied += chunk;
2848 		size -= chunk;
2849 
2850 		if (drop_skb) {
2851 			/* the skb was touched by a concurrent reader;
2852 			 * we should not expect anything from this skb
2853 			 * anymore and assume it invalid - we can be
2854 			 * sure it was dropped from the socket queue
2855 			 *
2856 			 * let's report a short read
2857 			 */
2858 			err = 0;
2859 			break;
2860 		}
2861 
2862 		/* Mark read part of skb as used */
2863 		if (!(flags & MSG_PEEK)) {
2864 			UNIXCB(skb).consumed += chunk;
2865 
2866 			sk_peek_offset_bwd(sk, chunk);
2867 
2868 			if (UNIXCB(skb).fp) {
2869 				scm_stat_del(sk, skb);
2870 				unix_detach_fds(&scm, skb);
2871 			}
2872 
2873 			if (unix_skb_len(skb))
2874 				break;
2875 
2876 			skb_unlink(skb, &sk->sk_receive_queue);
2877 			consume_skb(skb);
2878 
2879 			if (scm.fp)
2880 				break;
2881 		} else {
2882 			/* It is questionable, see note in unix_dgram_recvmsg.
2883 			 */
2884 			if (UNIXCB(skb).fp)
2885 				unix_peek_fds(&scm, skb);
2886 
2887 			sk_peek_offset_fwd(sk, chunk);
2888 
2889 			if (UNIXCB(skb).fp)
2890 				break;
2891 
2892 			skip = 0;
2893 			last = skb;
2894 			last_len = skb->len;
2895 			unix_state_lock(sk);
2896 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2897 			if (skb)
2898 				goto again;
2899 			unix_state_unlock(sk);
2900 			break;
2901 		}
2902 	} while (size);
2903 
2904 	mutex_unlock(&u->iolock);
2905 	if (state->msg)
2906 		scm_recv(sock, state->msg, &scm, flags);
2907 	else
2908 		scm_destroy(&scm);
2909 out:
2910 	return copied ? : err;
2911 }
2912 
2913 static int unix_stream_read_actor(struct sk_buff *skb,
2914 				  int skip, int chunk,
2915 				  struct unix_stream_read_state *state)
2916 {
2917 	int ret;
2918 
2919 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2920 				    state->msg, chunk);
2921 	return ret ?: chunk;
2922 }
2923 
2924 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2925 			  size_t size, int flags)
2926 {
2927 	struct unix_stream_read_state state = {
2928 		.recv_actor = unix_stream_read_actor,
2929 		.socket = sk->sk_socket,
2930 		.msg = msg,
2931 		.size = size,
2932 		.flags = flags
2933 	};
2934 
2935 	return unix_stream_read_generic(&state, true);
2936 }
2937 
2938 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2939 			       size_t size, int flags)
2940 {
2941 	struct unix_stream_read_state state = {
2942 		.recv_actor = unix_stream_read_actor,
2943 		.socket = sock,
2944 		.msg = msg,
2945 		.size = size,
2946 		.flags = flags
2947 	};
2948 
2949 #ifdef CONFIG_BPF_SYSCALL
2950 	struct sock *sk = sock->sk;
2951 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2952 
2953 	if (prot != &unix_stream_proto)
2954 		return prot->recvmsg(sk, msg, size, flags, NULL);
2955 #endif
2956 	return unix_stream_read_generic(&state, true);
2957 }
2958 
2959 static int unix_stream_splice_actor(struct sk_buff *skb,
2960 				    int skip, int chunk,
2961 				    struct unix_stream_read_state *state)
2962 {
2963 	return skb_splice_bits(skb, state->socket->sk,
2964 			       UNIXCB(skb).consumed + skip,
2965 			       state->pipe, chunk, state->splice_flags);
2966 }
2967 
2968 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2969 				       struct pipe_inode_info *pipe,
2970 				       size_t size, unsigned int flags)
2971 {
2972 	struct unix_stream_read_state state = {
2973 		.recv_actor = unix_stream_splice_actor,
2974 		.socket = sock,
2975 		.pipe = pipe,
2976 		.size = size,
2977 		.splice_flags = flags,
2978 	};
2979 
2980 	if (unlikely(*ppos))
2981 		return -ESPIPE;
2982 
2983 	if (sock->file->f_flags & O_NONBLOCK ||
2984 	    flags & SPLICE_F_NONBLOCK)
2985 		state.flags = MSG_DONTWAIT;
2986 
2987 	return unix_stream_read_generic(&state, false);
2988 }
2989 
2990 static int unix_shutdown(struct socket *sock, int mode)
2991 {
2992 	struct sock *sk = sock->sk;
2993 	struct sock *other;
2994 
2995 	if (mode < SHUT_RD || mode > SHUT_RDWR)
2996 		return -EINVAL;
2997 	/* This maps:
2998 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
2999 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
3000 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
3001 	 */
3002 	++mode;
3003 
3004 	unix_state_lock(sk);
3005 	sk->sk_shutdown |= mode;
3006 	other = unix_peer(sk);
3007 	if (other)
3008 		sock_hold(other);
3009 	unix_state_unlock(sk);
3010 	sk->sk_state_change(sk);
3011 
3012 	if (other &&
3013 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
3014 
3015 		int peer_mode = 0;
3016 		const struct proto *prot = READ_ONCE(other->sk_prot);
3017 
3018 		if (prot->unhash)
3019 			prot->unhash(other);
3020 		if (mode&RCV_SHUTDOWN)
3021 			peer_mode |= SEND_SHUTDOWN;
3022 		if (mode&SEND_SHUTDOWN)
3023 			peer_mode |= RCV_SHUTDOWN;
3024 		unix_state_lock(other);
3025 		other->sk_shutdown |= peer_mode;
3026 		unix_state_unlock(other);
3027 		other->sk_state_change(other);
3028 		if (peer_mode == SHUTDOWN_MASK)
3029 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
3030 		else if (peer_mode & RCV_SHUTDOWN)
3031 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
3032 	}
3033 	if (other)
3034 		sock_put(other);
3035 
3036 	return 0;
3037 }
3038 
3039 long unix_inq_len(struct sock *sk)
3040 {
3041 	struct sk_buff *skb;
3042 	long amount = 0;
3043 
3044 	if (sk->sk_state == TCP_LISTEN)
3045 		return -EINVAL;
3046 
3047 	spin_lock(&sk->sk_receive_queue.lock);
3048 	if (sk->sk_type == SOCK_STREAM ||
3049 	    sk->sk_type == SOCK_SEQPACKET) {
3050 		skb_queue_walk(&sk->sk_receive_queue, skb)
3051 			amount += unix_skb_len(skb);
3052 	} else {
3053 		skb = skb_peek(&sk->sk_receive_queue);
3054 		if (skb)
3055 			amount = skb->len;
3056 	}
3057 	spin_unlock(&sk->sk_receive_queue.lock);
3058 
3059 	return amount;
3060 }
3061 EXPORT_SYMBOL_GPL(unix_inq_len);
3062 
3063 long unix_outq_len(struct sock *sk)
3064 {
3065 	return sk_wmem_alloc_get(sk);
3066 }
3067 EXPORT_SYMBOL_GPL(unix_outq_len);
3068 
3069 static int unix_open_file(struct sock *sk)
3070 {
3071 	struct path path;
3072 	struct file *f;
3073 	int fd;
3074 
3075 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
3076 		return -EPERM;
3077 
3078 	if (!smp_load_acquire(&unix_sk(sk)->addr))
3079 		return -ENOENT;
3080 
3081 	path = unix_sk(sk)->path;
3082 	if (!path.dentry)
3083 		return -ENOENT;
3084 
3085 	path_get(&path);
3086 
3087 	fd = get_unused_fd_flags(O_CLOEXEC);
3088 	if (fd < 0)
3089 		goto out;
3090 
3091 	f = dentry_open(&path, O_PATH, current_cred());
3092 	if (IS_ERR(f)) {
3093 		put_unused_fd(fd);
3094 		fd = PTR_ERR(f);
3095 		goto out;
3096 	}
3097 
3098 	fd_install(fd, f);
3099 out:
3100 	path_put(&path);
3101 
3102 	return fd;
3103 }
3104 
3105 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3106 {
3107 	struct sock *sk = sock->sk;
3108 	long amount = 0;
3109 	int err;
3110 
3111 	switch (cmd) {
3112 	case SIOCOUTQ:
3113 		amount = unix_outq_len(sk);
3114 		err = put_user(amount, (int __user *)arg);
3115 		break;
3116 	case SIOCINQ:
3117 		amount = unix_inq_len(sk);
3118 		if (amount < 0)
3119 			err = amount;
3120 		else
3121 			err = put_user(amount, (int __user *)arg);
3122 		break;
3123 	case SIOCUNIXFILE:
3124 		err = unix_open_file(sk);
3125 		break;
3126 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3127 	case SIOCATMARK:
3128 		{
3129 			struct sk_buff *skb;
3130 			int answ = 0;
3131 
3132 			skb = skb_peek(&sk->sk_receive_queue);
3133 			if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb))
3134 				answ = 1;
3135 			err = put_user(answ, (int __user *)arg);
3136 		}
3137 		break;
3138 #endif
3139 	default:
3140 		err = -ENOIOCTLCMD;
3141 		break;
3142 	}
3143 	return err;
3144 }
3145 
3146 #ifdef CONFIG_COMPAT
3147 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3148 {
3149 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3150 }
3151 #endif
3152 
3153 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3154 {
3155 	struct sock *sk = sock->sk;
3156 	__poll_t mask;
3157 
3158 	sock_poll_wait(file, sock, wait);
3159 	mask = 0;
3160 
3161 	/* exceptional events? */
3162 	if (sk->sk_err)
3163 		mask |= EPOLLERR;
3164 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3165 		mask |= EPOLLHUP;
3166 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3167 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3168 
3169 	/* readable? */
3170 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3171 		mask |= EPOLLIN | EPOLLRDNORM;
3172 	if (sk_is_readable(sk))
3173 		mask |= EPOLLIN | EPOLLRDNORM;
3174 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3175 	if (READ_ONCE(unix_sk(sk)->oob_skb))
3176 		mask |= EPOLLPRI;
3177 #endif
3178 
3179 	/* Connection-based need to check for termination and startup */
3180 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3181 	    sk->sk_state == TCP_CLOSE)
3182 		mask |= EPOLLHUP;
3183 
3184 	/*
3185 	 * we set writable also when the other side has shut down the
3186 	 * connection. This prevents stuck sockets.
3187 	 */
3188 	if (unix_writable(sk))
3189 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3190 
3191 	return mask;
3192 }
3193 
3194 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3195 				    poll_table *wait)
3196 {
3197 	struct sock *sk = sock->sk, *other;
3198 	unsigned int writable;
3199 	__poll_t mask;
3200 
3201 	sock_poll_wait(file, sock, wait);
3202 	mask = 0;
3203 
3204 	/* exceptional events? */
3205 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
3206 		mask |= EPOLLERR |
3207 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3208 
3209 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3210 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3211 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3212 		mask |= EPOLLHUP;
3213 
3214 	/* readable? */
3215 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3216 		mask |= EPOLLIN | EPOLLRDNORM;
3217 	if (sk_is_readable(sk))
3218 		mask |= EPOLLIN | EPOLLRDNORM;
3219 
3220 	/* Connection-based need to check for termination and startup */
3221 	if (sk->sk_type == SOCK_SEQPACKET) {
3222 		if (sk->sk_state == TCP_CLOSE)
3223 			mask |= EPOLLHUP;
3224 		/* connection hasn't started yet? */
3225 		if (sk->sk_state == TCP_SYN_SENT)
3226 			return mask;
3227 	}
3228 
3229 	/* No write status requested, avoid expensive OUT tests. */
3230 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3231 		return mask;
3232 
3233 	writable = unix_writable(sk);
3234 	if (writable) {
3235 		unix_state_lock(sk);
3236 
3237 		other = unix_peer(sk);
3238 		if (other && unix_peer(other) != sk &&
3239 		    unix_recvq_full_lockless(other) &&
3240 		    unix_dgram_peer_wake_me(sk, other))
3241 			writable = 0;
3242 
3243 		unix_state_unlock(sk);
3244 	}
3245 
3246 	if (writable)
3247 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3248 	else
3249 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3250 
3251 	return mask;
3252 }
3253 
3254 #ifdef CONFIG_PROC_FS
3255 
3256 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3257 
3258 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3259 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1))
3260 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3261 
3262 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3263 {
3264 	unsigned long offset = get_offset(*pos);
3265 	unsigned long bucket = get_bucket(*pos);
3266 	unsigned long count = 0;
3267 	struct sock *sk;
3268 
3269 	for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]);
3270 	     sk; sk = sk_next(sk)) {
3271 		if (++count == offset)
3272 			break;
3273 	}
3274 
3275 	return sk;
3276 }
3277 
3278 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos)
3279 {
3280 	unsigned long bucket = get_bucket(*pos);
3281 	struct net *net = seq_file_net(seq);
3282 	struct sock *sk;
3283 
3284 	while (bucket < UNIX_HASH_SIZE) {
3285 		spin_lock(&net->unx.table.locks[bucket]);
3286 
3287 		sk = unix_from_bucket(seq, pos);
3288 		if (sk)
3289 			return sk;
3290 
3291 		spin_unlock(&net->unx.table.locks[bucket]);
3292 
3293 		*pos = set_bucket_offset(++bucket, 1);
3294 	}
3295 
3296 	return NULL;
3297 }
3298 
3299 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk,
3300 				  loff_t *pos)
3301 {
3302 	unsigned long bucket = get_bucket(*pos);
3303 
3304 	sk = sk_next(sk);
3305 	if (sk)
3306 		return sk;
3307 
3308 
3309 	spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]);
3310 
3311 	*pos = set_bucket_offset(++bucket, 1);
3312 
3313 	return unix_get_first(seq, pos);
3314 }
3315 
3316 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3317 {
3318 	if (!*pos)
3319 		return SEQ_START_TOKEN;
3320 
3321 	return unix_get_first(seq, pos);
3322 }
3323 
3324 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3325 {
3326 	++*pos;
3327 
3328 	if (v == SEQ_START_TOKEN)
3329 		return unix_get_first(seq, pos);
3330 
3331 	return unix_get_next(seq, v, pos);
3332 }
3333 
3334 static void unix_seq_stop(struct seq_file *seq, void *v)
3335 {
3336 	struct sock *sk = v;
3337 
3338 	if (sk)
3339 		spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]);
3340 }
3341 
3342 static int unix_seq_show(struct seq_file *seq, void *v)
3343 {
3344 
3345 	if (v == SEQ_START_TOKEN)
3346 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3347 			 "Inode Path\n");
3348 	else {
3349 		struct sock *s = v;
3350 		struct unix_sock *u = unix_sk(s);
3351 		unix_state_lock(s);
3352 
3353 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3354 			s,
3355 			refcount_read(&s->sk_refcnt),
3356 			0,
3357 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3358 			s->sk_type,
3359 			s->sk_socket ?
3360 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3361 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3362 			sock_i_ino(s));
3363 
3364 		if (u->addr) {	// under a hash table lock here
3365 			int i, len;
3366 			seq_putc(seq, ' ');
3367 
3368 			i = 0;
3369 			len = u->addr->len -
3370 				offsetof(struct sockaddr_un, sun_path);
3371 			if (u->addr->name->sun_path[0]) {
3372 				len--;
3373 			} else {
3374 				seq_putc(seq, '@');
3375 				i++;
3376 			}
3377 			for ( ; i < len; i++)
3378 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3379 					 '@');
3380 		}
3381 		unix_state_unlock(s);
3382 		seq_putc(seq, '\n');
3383 	}
3384 
3385 	return 0;
3386 }
3387 
3388 static const struct seq_operations unix_seq_ops = {
3389 	.start  = unix_seq_start,
3390 	.next   = unix_seq_next,
3391 	.stop   = unix_seq_stop,
3392 	.show   = unix_seq_show,
3393 };
3394 
3395 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL)
3396 struct bpf_unix_iter_state {
3397 	struct seq_net_private p;
3398 	unsigned int cur_sk;
3399 	unsigned int end_sk;
3400 	unsigned int max_sk;
3401 	struct sock **batch;
3402 	bool st_bucket_done;
3403 };
3404 
3405 struct bpf_iter__unix {
3406 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3407 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3408 	uid_t uid __aligned(8);
3409 };
3410 
3411 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3412 			      struct unix_sock *unix_sk, uid_t uid)
3413 {
3414 	struct bpf_iter__unix ctx;
3415 
3416 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3417 	ctx.meta = meta;
3418 	ctx.unix_sk = unix_sk;
3419 	ctx.uid = uid;
3420 	return bpf_iter_run_prog(prog, &ctx);
3421 }
3422 
3423 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk)
3424 
3425 {
3426 	struct bpf_unix_iter_state *iter = seq->private;
3427 	unsigned int expected = 1;
3428 	struct sock *sk;
3429 
3430 	sock_hold(start_sk);
3431 	iter->batch[iter->end_sk++] = start_sk;
3432 
3433 	for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) {
3434 		if (iter->end_sk < iter->max_sk) {
3435 			sock_hold(sk);
3436 			iter->batch[iter->end_sk++] = sk;
3437 		}
3438 
3439 		expected++;
3440 	}
3441 
3442 	spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]);
3443 
3444 	return expected;
3445 }
3446 
3447 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter)
3448 {
3449 	while (iter->cur_sk < iter->end_sk)
3450 		sock_put(iter->batch[iter->cur_sk++]);
3451 }
3452 
3453 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter,
3454 				       unsigned int new_batch_sz)
3455 {
3456 	struct sock **new_batch;
3457 
3458 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3459 			     GFP_USER | __GFP_NOWARN);
3460 	if (!new_batch)
3461 		return -ENOMEM;
3462 
3463 	bpf_iter_unix_put_batch(iter);
3464 	kvfree(iter->batch);
3465 	iter->batch = new_batch;
3466 	iter->max_sk = new_batch_sz;
3467 
3468 	return 0;
3469 }
3470 
3471 static struct sock *bpf_iter_unix_batch(struct seq_file *seq,
3472 					loff_t *pos)
3473 {
3474 	struct bpf_unix_iter_state *iter = seq->private;
3475 	unsigned int expected;
3476 	bool resized = false;
3477 	struct sock *sk;
3478 
3479 	if (iter->st_bucket_done)
3480 		*pos = set_bucket_offset(get_bucket(*pos) + 1, 1);
3481 
3482 again:
3483 	/* Get a new batch */
3484 	iter->cur_sk = 0;
3485 	iter->end_sk = 0;
3486 
3487 	sk = unix_get_first(seq, pos);
3488 	if (!sk)
3489 		return NULL; /* Done */
3490 
3491 	expected = bpf_iter_unix_hold_batch(seq, sk);
3492 
3493 	if (iter->end_sk == expected) {
3494 		iter->st_bucket_done = true;
3495 		return sk;
3496 	}
3497 
3498 	if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) {
3499 		resized = true;
3500 		goto again;
3501 	}
3502 
3503 	return sk;
3504 }
3505 
3506 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos)
3507 {
3508 	if (!*pos)
3509 		return SEQ_START_TOKEN;
3510 
3511 	/* bpf iter does not support lseek, so it always
3512 	 * continue from where it was stop()-ped.
3513 	 */
3514 	return bpf_iter_unix_batch(seq, pos);
3515 }
3516 
3517 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3518 {
3519 	struct bpf_unix_iter_state *iter = seq->private;
3520 	struct sock *sk;
3521 
3522 	/* Whenever seq_next() is called, the iter->cur_sk is
3523 	 * done with seq_show(), so advance to the next sk in
3524 	 * the batch.
3525 	 */
3526 	if (iter->cur_sk < iter->end_sk)
3527 		sock_put(iter->batch[iter->cur_sk++]);
3528 
3529 	++*pos;
3530 
3531 	if (iter->cur_sk < iter->end_sk)
3532 		sk = iter->batch[iter->cur_sk];
3533 	else
3534 		sk = bpf_iter_unix_batch(seq, pos);
3535 
3536 	return sk;
3537 }
3538 
3539 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3540 {
3541 	struct bpf_iter_meta meta;
3542 	struct bpf_prog *prog;
3543 	struct sock *sk = v;
3544 	uid_t uid;
3545 	bool slow;
3546 	int ret;
3547 
3548 	if (v == SEQ_START_TOKEN)
3549 		return 0;
3550 
3551 	slow = lock_sock_fast(sk);
3552 
3553 	if (unlikely(sk_unhashed(sk))) {
3554 		ret = SEQ_SKIP;
3555 		goto unlock;
3556 	}
3557 
3558 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3559 	meta.seq = seq;
3560 	prog = bpf_iter_get_info(&meta, false);
3561 	ret = unix_prog_seq_show(prog, &meta, v, uid);
3562 unlock:
3563 	unlock_sock_fast(sk, slow);
3564 	return ret;
3565 }
3566 
3567 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3568 {
3569 	struct bpf_unix_iter_state *iter = seq->private;
3570 	struct bpf_iter_meta meta;
3571 	struct bpf_prog *prog;
3572 
3573 	if (!v) {
3574 		meta.seq = seq;
3575 		prog = bpf_iter_get_info(&meta, true);
3576 		if (prog)
3577 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3578 	}
3579 
3580 	if (iter->cur_sk < iter->end_sk)
3581 		bpf_iter_unix_put_batch(iter);
3582 }
3583 
3584 static const struct seq_operations bpf_iter_unix_seq_ops = {
3585 	.start	= bpf_iter_unix_seq_start,
3586 	.next	= bpf_iter_unix_seq_next,
3587 	.stop	= bpf_iter_unix_seq_stop,
3588 	.show	= bpf_iter_unix_seq_show,
3589 };
3590 #endif
3591 #endif
3592 
3593 static const struct net_proto_family unix_family_ops = {
3594 	.family = PF_UNIX,
3595 	.create = unix_create,
3596 	.owner	= THIS_MODULE,
3597 };
3598 
3599 
3600 static int __net_init unix_net_init(struct net *net)
3601 {
3602 	int i;
3603 
3604 	net->unx.sysctl_max_dgram_qlen = 10;
3605 	if (unix_sysctl_register(net))
3606 		goto out;
3607 
3608 #ifdef CONFIG_PROC_FS
3609 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3610 			     sizeof(struct seq_net_private)))
3611 		goto err_sysctl;
3612 #endif
3613 
3614 	net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE,
3615 					      sizeof(spinlock_t), GFP_KERNEL);
3616 	if (!net->unx.table.locks)
3617 		goto err_proc;
3618 
3619 	net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE,
3620 						sizeof(struct hlist_head),
3621 						GFP_KERNEL);
3622 	if (!net->unx.table.buckets)
3623 		goto free_locks;
3624 
3625 	for (i = 0; i < UNIX_HASH_SIZE; i++) {
3626 		spin_lock_init(&net->unx.table.locks[i]);
3627 		INIT_HLIST_HEAD(&net->unx.table.buckets[i]);
3628 	}
3629 
3630 	return 0;
3631 
3632 free_locks:
3633 	kvfree(net->unx.table.locks);
3634 err_proc:
3635 #ifdef CONFIG_PROC_FS
3636 	remove_proc_entry("unix", net->proc_net);
3637 err_sysctl:
3638 #endif
3639 	unix_sysctl_unregister(net);
3640 out:
3641 	return -ENOMEM;
3642 }
3643 
3644 static void __net_exit unix_net_exit(struct net *net)
3645 {
3646 	kvfree(net->unx.table.buckets);
3647 	kvfree(net->unx.table.locks);
3648 	unix_sysctl_unregister(net);
3649 	remove_proc_entry("unix", net->proc_net);
3650 }
3651 
3652 static struct pernet_operations unix_net_ops = {
3653 	.init = unix_net_init,
3654 	.exit = unix_net_exit,
3655 };
3656 
3657 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3658 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3659 		     struct unix_sock *unix_sk, uid_t uid)
3660 
3661 #define INIT_BATCH_SZ 16
3662 
3663 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux)
3664 {
3665 	struct bpf_unix_iter_state *iter = priv_data;
3666 	int err;
3667 
3668 	err = bpf_iter_init_seq_net(priv_data, aux);
3669 	if (err)
3670 		return err;
3671 
3672 	err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ);
3673 	if (err) {
3674 		bpf_iter_fini_seq_net(priv_data);
3675 		return err;
3676 	}
3677 
3678 	return 0;
3679 }
3680 
3681 static void bpf_iter_fini_unix(void *priv_data)
3682 {
3683 	struct bpf_unix_iter_state *iter = priv_data;
3684 
3685 	bpf_iter_fini_seq_net(priv_data);
3686 	kvfree(iter->batch);
3687 }
3688 
3689 static const struct bpf_iter_seq_info unix_seq_info = {
3690 	.seq_ops		= &bpf_iter_unix_seq_ops,
3691 	.init_seq_private	= bpf_iter_init_unix,
3692 	.fini_seq_private	= bpf_iter_fini_unix,
3693 	.seq_priv_size		= sizeof(struct bpf_unix_iter_state),
3694 };
3695 
3696 static const struct bpf_func_proto *
3697 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id,
3698 			     const struct bpf_prog *prog)
3699 {
3700 	switch (func_id) {
3701 	case BPF_FUNC_setsockopt:
3702 		return &bpf_sk_setsockopt_proto;
3703 	case BPF_FUNC_getsockopt:
3704 		return &bpf_sk_getsockopt_proto;
3705 	default:
3706 		return NULL;
3707 	}
3708 }
3709 
3710 static struct bpf_iter_reg unix_reg_info = {
3711 	.target			= "unix",
3712 	.ctx_arg_info_size	= 1,
3713 	.ctx_arg_info		= {
3714 		{ offsetof(struct bpf_iter__unix, unix_sk),
3715 		  PTR_TO_BTF_ID_OR_NULL },
3716 	},
3717 	.get_func_proto         = bpf_iter_unix_get_func_proto,
3718 	.seq_info		= &unix_seq_info,
3719 };
3720 
3721 static void __init bpf_iter_register(void)
3722 {
3723 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3724 	if (bpf_iter_reg_target(&unix_reg_info))
3725 		pr_warn("Warning: could not register bpf iterator unix\n");
3726 }
3727 #endif
3728 
3729 static int __init af_unix_init(void)
3730 {
3731 	int i, rc = -1;
3732 
3733 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3734 
3735 	for (i = 0; i < UNIX_HASH_SIZE / 2; i++) {
3736 		spin_lock_init(&bsd_socket_locks[i]);
3737 		INIT_HLIST_HEAD(&bsd_socket_buckets[i]);
3738 	}
3739 
3740 	rc = proto_register(&unix_dgram_proto, 1);
3741 	if (rc != 0) {
3742 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3743 		goto out;
3744 	}
3745 
3746 	rc = proto_register(&unix_stream_proto, 1);
3747 	if (rc != 0) {
3748 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3749 		proto_unregister(&unix_dgram_proto);
3750 		goto out;
3751 	}
3752 
3753 	sock_register(&unix_family_ops);
3754 	register_pernet_subsys(&unix_net_ops);
3755 	unix_bpf_build_proto();
3756 
3757 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3758 	bpf_iter_register();
3759 #endif
3760 
3761 out:
3762 	return rc;
3763 }
3764 
3765 static void __exit af_unix_exit(void)
3766 {
3767 	sock_unregister(PF_UNIX);
3768 	proto_unregister(&unix_dgram_proto);
3769 	proto_unregister(&unix_stream_proto);
3770 	unregister_pernet_subsys(&unix_net_ops);
3771 }
3772 
3773 /* Earlier than device_initcall() so that other drivers invoking
3774    request_module() don't end up in a loop when modprobe tries
3775    to use a UNIX socket. But later than subsys_initcall() because
3776    we depend on stuff initialised there */
3777 fs_initcall(af_unix_init);
3778 module_exit(af_unix_exit);
3779 
3780 MODULE_LICENSE("GPL");
3781 MODULE_ALIAS_NETPROTO(PF_UNIX);
3782