1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/splice.h> 116 #include <linux/freezer.h> 117 #include <linux/file.h> 118 #include <linux/btf_ids.h> 119 #include <linux/bpf-cgroup.h> 120 121 static atomic_long_t unix_nr_socks; 122 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 123 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 124 125 /* SMP locking strategy: 126 * hash table is protected with spinlock. 127 * each socket state is protected by separate spinlock. 128 */ 129 130 static unsigned int unix_unbound_hash(struct sock *sk) 131 { 132 unsigned long hash = (unsigned long)sk; 133 134 hash ^= hash >> 16; 135 hash ^= hash >> 8; 136 hash ^= sk->sk_type; 137 138 return hash & UNIX_HASH_MOD; 139 } 140 141 static unsigned int unix_bsd_hash(struct inode *i) 142 { 143 return i->i_ino & UNIX_HASH_MOD; 144 } 145 146 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 147 int addr_len, int type) 148 { 149 __wsum csum = csum_partial(sunaddr, addr_len, 0); 150 unsigned int hash; 151 152 hash = (__force unsigned int)csum_fold(csum); 153 hash ^= hash >> 8; 154 hash ^= type; 155 156 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 157 } 158 159 static void unix_table_double_lock(struct net *net, 160 unsigned int hash1, unsigned int hash2) 161 { 162 if (hash1 == hash2) { 163 spin_lock(&net->unx.table.locks[hash1]); 164 return; 165 } 166 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&net->unx.table.locks[hash1]); 171 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(struct net *net, 175 unsigned int hash1, unsigned int hash2) 176 { 177 if (hash1 == hash2) { 178 spin_unlock(&net->unx.table.locks[hash1]); 179 return; 180 } 181 182 spin_unlock(&net->unx.table.locks[hash1]); 183 spin_unlock(&net->unx.table.locks[hash2]); 184 } 185 186 #ifdef CONFIG_SECURITY_NETWORK 187 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 188 { 189 UNIXCB(skb).secid = scm->secid; 190 } 191 192 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 193 { 194 scm->secid = UNIXCB(skb).secid; 195 } 196 197 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 198 { 199 return (scm->secid == UNIXCB(skb).secid); 200 } 201 #else 202 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 203 { } 204 205 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 206 { } 207 208 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 209 { 210 return true; 211 } 212 #endif /* CONFIG_SECURITY_NETWORK */ 213 214 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 215 { 216 return unix_peer(osk) == sk; 217 } 218 219 static inline int unix_may_send(struct sock *sk, struct sock *osk) 220 { 221 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 222 } 223 224 static inline int unix_recvq_full(const struct sock *sk) 225 { 226 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 227 } 228 229 static inline int unix_recvq_full_lockless(const struct sock *sk) 230 { 231 return skb_queue_len_lockless(&sk->sk_receive_queue) > 232 READ_ONCE(sk->sk_max_ack_backlog); 233 } 234 235 struct sock *unix_peer_get(struct sock *s) 236 { 237 struct sock *peer; 238 239 unix_state_lock(s); 240 peer = unix_peer(s); 241 if (peer) 242 sock_hold(peer); 243 unix_state_unlock(s); 244 return peer; 245 } 246 EXPORT_SYMBOL_GPL(unix_peer_get); 247 248 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 249 int addr_len) 250 { 251 struct unix_address *addr; 252 253 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 254 if (!addr) 255 return NULL; 256 257 refcount_set(&addr->refcnt, 1); 258 addr->len = addr_len; 259 memcpy(addr->name, sunaddr, addr_len); 260 261 return addr; 262 } 263 264 static inline void unix_release_addr(struct unix_address *addr) 265 { 266 if (refcount_dec_and_test(&addr->refcnt)) 267 kfree(addr); 268 } 269 270 /* 271 * Check unix socket name: 272 * - should be not zero length. 273 * - if started by not zero, should be NULL terminated (FS object) 274 * - if started by zero, it is abstract name. 275 */ 276 277 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 278 { 279 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 280 addr_len > sizeof(*sunaddr)) 281 return -EINVAL; 282 283 if (sunaddr->sun_family != AF_UNIX) 284 return -EINVAL; 285 286 return 0; 287 } 288 289 static int unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 290 { 291 struct sockaddr_storage *addr = (struct sockaddr_storage *)sunaddr; 292 short offset = offsetof(struct sockaddr_storage, __data); 293 294 BUILD_BUG_ON(offset != offsetof(struct sockaddr_un, sun_path)); 295 296 /* This may look like an off by one error but it is a bit more 297 * subtle. 108 is the longest valid AF_UNIX path for a binding. 298 * sun_path[108] doesn't as such exist. However in kernel space 299 * we are guaranteed that it is a valid memory location in our 300 * kernel address buffer because syscall functions always pass 301 * a pointer of struct sockaddr_storage which has a bigger buffer 302 * than 108. Also, we must terminate sun_path for strlen() in 303 * getname_kernel(). 304 */ 305 addr->__data[addr_len - offset] = 0; 306 307 /* Don't pass sunaddr->sun_path to strlen(). Otherwise, 108 will 308 * cause panic if CONFIG_FORTIFY_SOURCE=y. Let __fortify_strlen() 309 * know the actual buffer. 310 */ 311 return strlen(addr->__data) + offset + 1; 312 } 313 314 static void __unix_remove_socket(struct sock *sk) 315 { 316 sk_del_node_init(sk); 317 } 318 319 static void __unix_insert_socket(struct net *net, struct sock *sk) 320 { 321 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 322 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 323 } 324 325 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 326 struct unix_address *addr, unsigned int hash) 327 { 328 __unix_remove_socket(sk); 329 smp_store_release(&unix_sk(sk)->addr, addr); 330 331 sk->sk_hash = hash; 332 __unix_insert_socket(net, sk); 333 } 334 335 static void unix_remove_socket(struct net *net, struct sock *sk) 336 { 337 spin_lock(&net->unx.table.locks[sk->sk_hash]); 338 __unix_remove_socket(sk); 339 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 340 } 341 342 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 343 { 344 spin_lock(&net->unx.table.locks[sk->sk_hash]); 345 __unix_insert_socket(net, sk); 346 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 347 } 348 349 static void unix_insert_bsd_socket(struct sock *sk) 350 { 351 spin_lock(&bsd_socket_locks[sk->sk_hash]); 352 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 353 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 354 } 355 356 static void unix_remove_bsd_socket(struct sock *sk) 357 { 358 if (!hlist_unhashed(&sk->sk_bind_node)) { 359 spin_lock(&bsd_socket_locks[sk->sk_hash]); 360 __sk_del_bind_node(sk); 361 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 362 363 sk_node_init(&sk->sk_bind_node); 364 } 365 } 366 367 static struct sock *__unix_find_socket_byname(struct net *net, 368 struct sockaddr_un *sunname, 369 int len, unsigned int hash) 370 { 371 struct sock *s; 372 373 sk_for_each(s, &net->unx.table.buckets[hash]) { 374 struct unix_sock *u = unix_sk(s); 375 376 if (u->addr->len == len && 377 !memcmp(u->addr->name, sunname, len)) 378 return s; 379 } 380 return NULL; 381 } 382 383 static inline struct sock *unix_find_socket_byname(struct net *net, 384 struct sockaddr_un *sunname, 385 int len, unsigned int hash) 386 { 387 struct sock *s; 388 389 spin_lock(&net->unx.table.locks[hash]); 390 s = __unix_find_socket_byname(net, sunname, len, hash); 391 if (s) 392 sock_hold(s); 393 spin_unlock(&net->unx.table.locks[hash]); 394 return s; 395 } 396 397 static struct sock *unix_find_socket_byinode(struct inode *i) 398 { 399 unsigned int hash = unix_bsd_hash(i); 400 struct sock *s; 401 402 spin_lock(&bsd_socket_locks[hash]); 403 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 404 struct dentry *dentry = unix_sk(s)->path.dentry; 405 406 if (dentry && d_backing_inode(dentry) == i) { 407 sock_hold(s); 408 spin_unlock(&bsd_socket_locks[hash]); 409 return s; 410 } 411 } 412 spin_unlock(&bsd_socket_locks[hash]); 413 return NULL; 414 } 415 416 /* Support code for asymmetrically connected dgram sockets 417 * 418 * If a datagram socket is connected to a socket not itself connected 419 * to the first socket (eg, /dev/log), clients may only enqueue more 420 * messages if the present receive queue of the server socket is not 421 * "too large". This means there's a second writeability condition 422 * poll and sendmsg need to test. The dgram recv code will do a wake 423 * up on the peer_wait wait queue of a socket upon reception of a 424 * datagram which needs to be propagated to sleeping would-be writers 425 * since these might not have sent anything so far. This can't be 426 * accomplished via poll_wait because the lifetime of the server 427 * socket might be less than that of its clients if these break their 428 * association with it or if the server socket is closed while clients 429 * are still connected to it and there's no way to inform "a polling 430 * implementation" that it should let go of a certain wait queue 431 * 432 * In order to propagate a wake up, a wait_queue_entry_t of the client 433 * socket is enqueued on the peer_wait queue of the server socket 434 * whose wake function does a wake_up on the ordinary client socket 435 * wait queue. This connection is established whenever a write (or 436 * poll for write) hit the flow control condition and broken when the 437 * association to the server socket is dissolved or after a wake up 438 * was relayed. 439 */ 440 441 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 442 void *key) 443 { 444 struct unix_sock *u; 445 wait_queue_head_t *u_sleep; 446 447 u = container_of(q, struct unix_sock, peer_wake); 448 449 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 450 q); 451 u->peer_wake.private = NULL; 452 453 /* relaying can only happen while the wq still exists */ 454 u_sleep = sk_sleep(&u->sk); 455 if (u_sleep) 456 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 457 458 return 0; 459 } 460 461 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 462 { 463 struct unix_sock *u, *u_other; 464 int rc; 465 466 u = unix_sk(sk); 467 u_other = unix_sk(other); 468 rc = 0; 469 spin_lock(&u_other->peer_wait.lock); 470 471 if (!u->peer_wake.private) { 472 u->peer_wake.private = other; 473 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 474 475 rc = 1; 476 } 477 478 spin_unlock(&u_other->peer_wait.lock); 479 return rc; 480 } 481 482 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 483 struct sock *other) 484 { 485 struct unix_sock *u, *u_other; 486 487 u = unix_sk(sk); 488 u_other = unix_sk(other); 489 spin_lock(&u_other->peer_wait.lock); 490 491 if (u->peer_wake.private == other) { 492 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 493 u->peer_wake.private = NULL; 494 } 495 496 spin_unlock(&u_other->peer_wait.lock); 497 } 498 499 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 500 struct sock *other) 501 { 502 unix_dgram_peer_wake_disconnect(sk, other); 503 wake_up_interruptible_poll(sk_sleep(sk), 504 EPOLLOUT | 505 EPOLLWRNORM | 506 EPOLLWRBAND); 507 } 508 509 /* preconditions: 510 * - unix_peer(sk) == other 511 * - association is stable 512 */ 513 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 514 { 515 int connected; 516 517 connected = unix_dgram_peer_wake_connect(sk, other); 518 519 /* If other is SOCK_DEAD, we want to make sure we signal 520 * POLLOUT, such that a subsequent write() can get a 521 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 522 * to other and its full, we will hang waiting for POLLOUT. 523 */ 524 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 525 return 1; 526 527 if (connected) 528 unix_dgram_peer_wake_disconnect(sk, other); 529 530 return 0; 531 } 532 533 static int unix_writable(const struct sock *sk) 534 { 535 return sk->sk_state != TCP_LISTEN && 536 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 537 } 538 539 static void unix_write_space(struct sock *sk) 540 { 541 struct socket_wq *wq; 542 543 rcu_read_lock(); 544 if (unix_writable(sk)) { 545 wq = rcu_dereference(sk->sk_wq); 546 if (skwq_has_sleeper(wq)) 547 wake_up_interruptible_sync_poll(&wq->wait, 548 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 549 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 550 } 551 rcu_read_unlock(); 552 } 553 554 /* When dgram socket disconnects (or changes its peer), we clear its receive 555 * queue of packets arrived from previous peer. First, it allows to do 556 * flow control based only on wmem_alloc; second, sk connected to peer 557 * may receive messages only from that peer. */ 558 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 559 { 560 if (!skb_queue_empty(&sk->sk_receive_queue)) { 561 skb_queue_purge(&sk->sk_receive_queue); 562 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 563 564 /* If one link of bidirectional dgram pipe is disconnected, 565 * we signal error. Messages are lost. Do not make this, 566 * when peer was not connected to us. 567 */ 568 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 569 WRITE_ONCE(other->sk_err, ECONNRESET); 570 sk_error_report(other); 571 } 572 } 573 other->sk_state = TCP_CLOSE; 574 } 575 576 static void unix_sock_destructor(struct sock *sk) 577 { 578 struct unix_sock *u = unix_sk(sk); 579 580 skb_queue_purge(&sk->sk_receive_queue); 581 582 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 583 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 584 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 585 if (!sock_flag(sk, SOCK_DEAD)) { 586 pr_info("Attempt to release alive unix socket: %p\n", sk); 587 return; 588 } 589 590 if (u->addr) 591 unix_release_addr(u->addr); 592 593 atomic_long_dec(&unix_nr_socks); 594 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 595 #ifdef UNIX_REFCNT_DEBUG 596 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 597 atomic_long_read(&unix_nr_socks)); 598 #endif 599 } 600 601 static void unix_release_sock(struct sock *sk, int embrion) 602 { 603 struct unix_sock *u = unix_sk(sk); 604 struct sock *skpair; 605 struct sk_buff *skb; 606 struct path path; 607 int state; 608 609 unix_remove_socket(sock_net(sk), sk); 610 unix_remove_bsd_socket(sk); 611 612 /* Clear state */ 613 unix_state_lock(sk); 614 sock_orphan(sk); 615 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 616 path = u->path; 617 u->path.dentry = NULL; 618 u->path.mnt = NULL; 619 state = sk->sk_state; 620 sk->sk_state = TCP_CLOSE; 621 622 skpair = unix_peer(sk); 623 unix_peer(sk) = NULL; 624 625 unix_state_unlock(sk); 626 627 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 628 if (u->oob_skb) { 629 kfree_skb(u->oob_skb); 630 u->oob_skb = NULL; 631 } 632 #endif 633 634 wake_up_interruptible_all(&u->peer_wait); 635 636 if (skpair != NULL) { 637 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 638 unix_state_lock(skpair); 639 /* No more writes */ 640 WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK); 641 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 642 WRITE_ONCE(skpair->sk_err, ECONNRESET); 643 unix_state_unlock(skpair); 644 skpair->sk_state_change(skpair); 645 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 646 } 647 648 unix_dgram_peer_wake_disconnect(sk, skpair); 649 sock_put(skpair); /* It may now die */ 650 } 651 652 /* Try to flush out this socket. Throw out buffers at least */ 653 654 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 655 if (state == TCP_LISTEN) 656 unix_release_sock(skb->sk, 1); 657 /* passed fds are erased in the kfree_skb hook */ 658 UNIXCB(skb).consumed = skb->len; 659 kfree_skb(skb); 660 } 661 662 if (path.dentry) 663 path_put(&path); 664 665 sock_put(sk); 666 667 /* ---- Socket is dead now and most probably destroyed ---- */ 668 669 /* 670 * Fixme: BSD difference: In BSD all sockets connected to us get 671 * ECONNRESET and we die on the spot. In Linux we behave 672 * like files and pipes do and wait for the last 673 * dereference. 674 * 675 * Can't we simply set sock->err? 676 * 677 * What the above comment does talk about? --ANK(980817) 678 */ 679 680 if (READ_ONCE(unix_tot_inflight)) 681 unix_gc(); /* Garbage collect fds */ 682 } 683 684 static void init_peercred(struct sock *sk) 685 { 686 const struct cred *old_cred; 687 struct pid *old_pid; 688 689 spin_lock(&sk->sk_peer_lock); 690 old_pid = sk->sk_peer_pid; 691 old_cred = sk->sk_peer_cred; 692 sk->sk_peer_pid = get_pid(task_tgid(current)); 693 sk->sk_peer_cred = get_current_cred(); 694 spin_unlock(&sk->sk_peer_lock); 695 696 put_pid(old_pid); 697 put_cred(old_cred); 698 } 699 700 static void copy_peercred(struct sock *sk, struct sock *peersk) 701 { 702 const struct cred *old_cred; 703 struct pid *old_pid; 704 705 if (sk < peersk) { 706 spin_lock(&sk->sk_peer_lock); 707 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 708 } else { 709 spin_lock(&peersk->sk_peer_lock); 710 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 711 } 712 old_pid = sk->sk_peer_pid; 713 old_cred = sk->sk_peer_cred; 714 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 715 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 716 717 spin_unlock(&sk->sk_peer_lock); 718 spin_unlock(&peersk->sk_peer_lock); 719 720 put_pid(old_pid); 721 put_cred(old_cred); 722 } 723 724 static int unix_listen(struct socket *sock, int backlog) 725 { 726 int err; 727 struct sock *sk = sock->sk; 728 struct unix_sock *u = unix_sk(sk); 729 730 err = -EOPNOTSUPP; 731 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 732 goto out; /* Only stream/seqpacket sockets accept */ 733 err = -EINVAL; 734 if (!u->addr) 735 goto out; /* No listens on an unbound socket */ 736 unix_state_lock(sk); 737 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 738 goto out_unlock; 739 if (backlog > sk->sk_max_ack_backlog) 740 wake_up_interruptible_all(&u->peer_wait); 741 sk->sk_max_ack_backlog = backlog; 742 sk->sk_state = TCP_LISTEN; 743 /* set credentials so connect can copy them */ 744 init_peercred(sk); 745 err = 0; 746 747 out_unlock: 748 unix_state_unlock(sk); 749 out: 750 return err; 751 } 752 753 static int unix_release(struct socket *); 754 static int unix_bind(struct socket *, struct sockaddr *, int); 755 static int unix_stream_connect(struct socket *, struct sockaddr *, 756 int addr_len, int flags); 757 static int unix_socketpair(struct socket *, struct socket *); 758 static int unix_accept(struct socket *, struct socket *, int, bool); 759 static int unix_getname(struct socket *, struct sockaddr *, int); 760 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 761 static __poll_t unix_dgram_poll(struct file *, struct socket *, 762 poll_table *); 763 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 764 #ifdef CONFIG_COMPAT 765 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 766 #endif 767 static int unix_shutdown(struct socket *, int); 768 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 769 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 770 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 771 struct pipe_inode_info *, size_t size, 772 unsigned int flags); 773 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 774 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 775 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 776 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 777 static int unix_dgram_connect(struct socket *, struct sockaddr *, 778 int, int); 779 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 780 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 781 int); 782 783 #ifdef CONFIG_PROC_FS 784 static int unix_count_nr_fds(struct sock *sk) 785 { 786 struct sk_buff *skb; 787 struct unix_sock *u; 788 int nr_fds = 0; 789 790 spin_lock(&sk->sk_receive_queue.lock); 791 skb = skb_peek(&sk->sk_receive_queue); 792 while (skb) { 793 u = unix_sk(skb->sk); 794 nr_fds += atomic_read(&u->scm_stat.nr_fds); 795 skb = skb_peek_next(skb, &sk->sk_receive_queue); 796 } 797 spin_unlock(&sk->sk_receive_queue.lock); 798 799 return nr_fds; 800 } 801 802 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 803 { 804 struct sock *sk = sock->sk; 805 unsigned char s_state; 806 struct unix_sock *u; 807 int nr_fds = 0; 808 809 if (sk) { 810 s_state = READ_ONCE(sk->sk_state); 811 u = unix_sk(sk); 812 813 /* SOCK_STREAM and SOCK_SEQPACKET sockets never change their 814 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN. 815 * SOCK_DGRAM is ordinary. So, no lock is needed. 816 */ 817 if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED) 818 nr_fds = atomic_read(&u->scm_stat.nr_fds); 819 else if (s_state == TCP_LISTEN) 820 nr_fds = unix_count_nr_fds(sk); 821 822 seq_printf(m, "scm_fds: %u\n", nr_fds); 823 } 824 } 825 #else 826 #define unix_show_fdinfo NULL 827 #endif 828 829 static const struct proto_ops unix_stream_ops = { 830 .family = PF_UNIX, 831 .owner = THIS_MODULE, 832 .release = unix_release, 833 .bind = unix_bind, 834 .connect = unix_stream_connect, 835 .socketpair = unix_socketpair, 836 .accept = unix_accept, 837 .getname = unix_getname, 838 .poll = unix_poll, 839 .ioctl = unix_ioctl, 840 #ifdef CONFIG_COMPAT 841 .compat_ioctl = unix_compat_ioctl, 842 #endif 843 .listen = unix_listen, 844 .shutdown = unix_shutdown, 845 .sendmsg = unix_stream_sendmsg, 846 .recvmsg = unix_stream_recvmsg, 847 .read_skb = unix_stream_read_skb, 848 .mmap = sock_no_mmap, 849 .splice_read = unix_stream_splice_read, 850 .set_peek_off = sk_set_peek_off, 851 .show_fdinfo = unix_show_fdinfo, 852 }; 853 854 static const struct proto_ops unix_dgram_ops = { 855 .family = PF_UNIX, 856 .owner = THIS_MODULE, 857 .release = unix_release, 858 .bind = unix_bind, 859 .connect = unix_dgram_connect, 860 .socketpair = unix_socketpair, 861 .accept = sock_no_accept, 862 .getname = unix_getname, 863 .poll = unix_dgram_poll, 864 .ioctl = unix_ioctl, 865 #ifdef CONFIG_COMPAT 866 .compat_ioctl = unix_compat_ioctl, 867 #endif 868 .listen = sock_no_listen, 869 .shutdown = unix_shutdown, 870 .sendmsg = unix_dgram_sendmsg, 871 .read_skb = unix_read_skb, 872 .recvmsg = unix_dgram_recvmsg, 873 .mmap = sock_no_mmap, 874 .set_peek_off = sk_set_peek_off, 875 .show_fdinfo = unix_show_fdinfo, 876 }; 877 878 static const struct proto_ops unix_seqpacket_ops = { 879 .family = PF_UNIX, 880 .owner = THIS_MODULE, 881 .release = unix_release, 882 .bind = unix_bind, 883 .connect = unix_stream_connect, 884 .socketpair = unix_socketpair, 885 .accept = unix_accept, 886 .getname = unix_getname, 887 .poll = unix_dgram_poll, 888 .ioctl = unix_ioctl, 889 #ifdef CONFIG_COMPAT 890 .compat_ioctl = unix_compat_ioctl, 891 #endif 892 .listen = unix_listen, 893 .shutdown = unix_shutdown, 894 .sendmsg = unix_seqpacket_sendmsg, 895 .recvmsg = unix_seqpacket_recvmsg, 896 .mmap = sock_no_mmap, 897 .set_peek_off = sk_set_peek_off, 898 .show_fdinfo = unix_show_fdinfo, 899 }; 900 901 static void unix_close(struct sock *sk, long timeout) 902 { 903 /* Nothing to do here, unix socket does not need a ->close(). 904 * This is merely for sockmap. 905 */ 906 } 907 908 static void unix_unhash(struct sock *sk) 909 { 910 /* Nothing to do here, unix socket does not need a ->unhash(). 911 * This is merely for sockmap. 912 */ 913 } 914 915 static bool unix_bpf_bypass_getsockopt(int level, int optname) 916 { 917 if (level == SOL_SOCKET) { 918 switch (optname) { 919 case SO_PEERPIDFD: 920 return true; 921 default: 922 return false; 923 } 924 } 925 926 return false; 927 } 928 929 struct proto unix_dgram_proto = { 930 .name = "UNIX", 931 .owner = THIS_MODULE, 932 .obj_size = sizeof(struct unix_sock), 933 .close = unix_close, 934 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 935 #ifdef CONFIG_BPF_SYSCALL 936 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 937 #endif 938 }; 939 940 struct proto unix_stream_proto = { 941 .name = "UNIX-STREAM", 942 .owner = THIS_MODULE, 943 .obj_size = sizeof(struct unix_sock), 944 .close = unix_close, 945 .unhash = unix_unhash, 946 .bpf_bypass_getsockopt = unix_bpf_bypass_getsockopt, 947 #ifdef CONFIG_BPF_SYSCALL 948 .psock_update_sk_prot = unix_stream_bpf_update_proto, 949 #endif 950 }; 951 952 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 953 { 954 struct unix_sock *u; 955 struct sock *sk; 956 int err; 957 958 atomic_long_inc(&unix_nr_socks); 959 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 960 err = -ENFILE; 961 goto err; 962 } 963 964 if (type == SOCK_STREAM) 965 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 966 else /*dgram and seqpacket */ 967 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 968 969 if (!sk) { 970 err = -ENOMEM; 971 goto err; 972 } 973 974 sock_init_data(sock, sk); 975 976 sk->sk_hash = unix_unbound_hash(sk); 977 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 978 sk->sk_write_space = unix_write_space; 979 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 980 sk->sk_destruct = unix_sock_destructor; 981 u = unix_sk(sk); 982 u->inflight = 0; 983 u->path.dentry = NULL; 984 u->path.mnt = NULL; 985 spin_lock_init(&u->lock); 986 INIT_LIST_HEAD(&u->link); 987 mutex_init(&u->iolock); /* single task reading lock */ 988 mutex_init(&u->bindlock); /* single task binding lock */ 989 init_waitqueue_head(&u->peer_wait); 990 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 991 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 992 unix_insert_unbound_socket(net, sk); 993 994 sock_prot_inuse_add(net, sk->sk_prot, 1); 995 996 return sk; 997 998 err: 999 atomic_long_dec(&unix_nr_socks); 1000 return ERR_PTR(err); 1001 } 1002 1003 static int unix_create(struct net *net, struct socket *sock, int protocol, 1004 int kern) 1005 { 1006 struct sock *sk; 1007 1008 if (protocol && protocol != PF_UNIX) 1009 return -EPROTONOSUPPORT; 1010 1011 sock->state = SS_UNCONNECTED; 1012 1013 switch (sock->type) { 1014 case SOCK_STREAM: 1015 sock->ops = &unix_stream_ops; 1016 break; 1017 /* 1018 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1019 * nothing uses it. 1020 */ 1021 case SOCK_RAW: 1022 sock->type = SOCK_DGRAM; 1023 fallthrough; 1024 case SOCK_DGRAM: 1025 sock->ops = &unix_dgram_ops; 1026 break; 1027 case SOCK_SEQPACKET: 1028 sock->ops = &unix_seqpacket_ops; 1029 break; 1030 default: 1031 return -ESOCKTNOSUPPORT; 1032 } 1033 1034 sk = unix_create1(net, sock, kern, sock->type); 1035 if (IS_ERR(sk)) 1036 return PTR_ERR(sk); 1037 1038 return 0; 1039 } 1040 1041 static int unix_release(struct socket *sock) 1042 { 1043 struct sock *sk = sock->sk; 1044 1045 if (!sk) 1046 return 0; 1047 1048 sk->sk_prot->close(sk, 0); 1049 unix_release_sock(sk, 0); 1050 sock->sk = NULL; 1051 1052 return 0; 1053 } 1054 1055 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1056 int type) 1057 { 1058 struct inode *inode; 1059 struct path path; 1060 struct sock *sk; 1061 int err; 1062 1063 unix_mkname_bsd(sunaddr, addr_len); 1064 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1065 if (err) 1066 goto fail; 1067 1068 err = path_permission(&path, MAY_WRITE); 1069 if (err) 1070 goto path_put; 1071 1072 err = -ECONNREFUSED; 1073 inode = d_backing_inode(path.dentry); 1074 if (!S_ISSOCK(inode->i_mode)) 1075 goto path_put; 1076 1077 sk = unix_find_socket_byinode(inode); 1078 if (!sk) 1079 goto path_put; 1080 1081 err = -EPROTOTYPE; 1082 if (sk->sk_type == type) 1083 touch_atime(&path); 1084 else 1085 goto sock_put; 1086 1087 path_put(&path); 1088 1089 return sk; 1090 1091 sock_put: 1092 sock_put(sk); 1093 path_put: 1094 path_put(&path); 1095 fail: 1096 return ERR_PTR(err); 1097 } 1098 1099 static struct sock *unix_find_abstract(struct net *net, 1100 struct sockaddr_un *sunaddr, 1101 int addr_len, int type) 1102 { 1103 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1104 struct dentry *dentry; 1105 struct sock *sk; 1106 1107 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1108 if (!sk) 1109 return ERR_PTR(-ECONNREFUSED); 1110 1111 dentry = unix_sk(sk)->path.dentry; 1112 if (dentry) 1113 touch_atime(&unix_sk(sk)->path); 1114 1115 return sk; 1116 } 1117 1118 static struct sock *unix_find_other(struct net *net, 1119 struct sockaddr_un *sunaddr, 1120 int addr_len, int type) 1121 { 1122 struct sock *sk; 1123 1124 if (sunaddr->sun_path[0]) 1125 sk = unix_find_bsd(sunaddr, addr_len, type); 1126 else 1127 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1128 1129 return sk; 1130 } 1131 1132 static int unix_autobind(struct sock *sk) 1133 { 1134 unsigned int new_hash, old_hash = sk->sk_hash; 1135 struct unix_sock *u = unix_sk(sk); 1136 struct net *net = sock_net(sk); 1137 struct unix_address *addr; 1138 u32 lastnum, ordernum; 1139 int err; 1140 1141 err = mutex_lock_interruptible(&u->bindlock); 1142 if (err) 1143 return err; 1144 1145 if (u->addr) 1146 goto out; 1147 1148 err = -ENOMEM; 1149 addr = kzalloc(sizeof(*addr) + 1150 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1151 if (!addr) 1152 goto out; 1153 1154 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1155 addr->name->sun_family = AF_UNIX; 1156 refcount_set(&addr->refcnt, 1); 1157 1158 ordernum = get_random_u32(); 1159 lastnum = ordernum & 0xFFFFF; 1160 retry: 1161 ordernum = (ordernum + 1) & 0xFFFFF; 1162 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1163 1164 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1165 unix_table_double_lock(net, old_hash, new_hash); 1166 1167 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1168 unix_table_double_unlock(net, old_hash, new_hash); 1169 1170 /* __unix_find_socket_byname() may take long time if many names 1171 * are already in use. 1172 */ 1173 cond_resched(); 1174 1175 if (ordernum == lastnum) { 1176 /* Give up if all names seems to be in use. */ 1177 err = -ENOSPC; 1178 unix_release_addr(addr); 1179 goto out; 1180 } 1181 1182 goto retry; 1183 } 1184 1185 __unix_set_addr_hash(net, sk, addr, new_hash); 1186 unix_table_double_unlock(net, old_hash, new_hash); 1187 err = 0; 1188 1189 out: mutex_unlock(&u->bindlock); 1190 return err; 1191 } 1192 1193 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1194 int addr_len) 1195 { 1196 umode_t mode = S_IFSOCK | 1197 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1198 unsigned int new_hash, old_hash = sk->sk_hash; 1199 struct unix_sock *u = unix_sk(sk); 1200 struct net *net = sock_net(sk); 1201 struct mnt_idmap *idmap; 1202 struct unix_address *addr; 1203 struct dentry *dentry; 1204 struct path parent; 1205 int err; 1206 1207 addr_len = unix_mkname_bsd(sunaddr, addr_len); 1208 addr = unix_create_addr(sunaddr, addr_len); 1209 if (!addr) 1210 return -ENOMEM; 1211 1212 /* 1213 * Get the parent directory, calculate the hash for last 1214 * component. 1215 */ 1216 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1217 if (IS_ERR(dentry)) { 1218 err = PTR_ERR(dentry); 1219 goto out; 1220 } 1221 1222 /* 1223 * All right, let's create it. 1224 */ 1225 idmap = mnt_idmap(parent.mnt); 1226 err = security_path_mknod(&parent, dentry, mode, 0); 1227 if (!err) 1228 err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0); 1229 if (err) 1230 goto out_path; 1231 err = mutex_lock_interruptible(&u->bindlock); 1232 if (err) 1233 goto out_unlink; 1234 if (u->addr) 1235 goto out_unlock; 1236 1237 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1238 unix_table_double_lock(net, old_hash, new_hash); 1239 u->path.mnt = mntget(parent.mnt); 1240 u->path.dentry = dget(dentry); 1241 __unix_set_addr_hash(net, sk, addr, new_hash); 1242 unix_table_double_unlock(net, old_hash, new_hash); 1243 unix_insert_bsd_socket(sk); 1244 mutex_unlock(&u->bindlock); 1245 done_path_create(&parent, dentry); 1246 return 0; 1247 1248 out_unlock: 1249 mutex_unlock(&u->bindlock); 1250 err = -EINVAL; 1251 out_unlink: 1252 /* failed after successful mknod? unlink what we'd created... */ 1253 vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL); 1254 out_path: 1255 done_path_create(&parent, dentry); 1256 out: 1257 unix_release_addr(addr); 1258 return err == -EEXIST ? -EADDRINUSE : err; 1259 } 1260 1261 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1262 int addr_len) 1263 { 1264 unsigned int new_hash, old_hash = sk->sk_hash; 1265 struct unix_sock *u = unix_sk(sk); 1266 struct net *net = sock_net(sk); 1267 struct unix_address *addr; 1268 int err; 1269 1270 addr = unix_create_addr(sunaddr, addr_len); 1271 if (!addr) 1272 return -ENOMEM; 1273 1274 err = mutex_lock_interruptible(&u->bindlock); 1275 if (err) 1276 goto out; 1277 1278 if (u->addr) { 1279 err = -EINVAL; 1280 goto out_mutex; 1281 } 1282 1283 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1284 unix_table_double_lock(net, old_hash, new_hash); 1285 1286 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1287 goto out_spin; 1288 1289 __unix_set_addr_hash(net, sk, addr, new_hash); 1290 unix_table_double_unlock(net, old_hash, new_hash); 1291 mutex_unlock(&u->bindlock); 1292 return 0; 1293 1294 out_spin: 1295 unix_table_double_unlock(net, old_hash, new_hash); 1296 err = -EADDRINUSE; 1297 out_mutex: 1298 mutex_unlock(&u->bindlock); 1299 out: 1300 unix_release_addr(addr); 1301 return err; 1302 } 1303 1304 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1305 { 1306 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1307 struct sock *sk = sock->sk; 1308 int err; 1309 1310 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1311 sunaddr->sun_family == AF_UNIX) 1312 return unix_autobind(sk); 1313 1314 err = unix_validate_addr(sunaddr, addr_len); 1315 if (err) 1316 return err; 1317 1318 if (sunaddr->sun_path[0]) 1319 err = unix_bind_bsd(sk, sunaddr, addr_len); 1320 else 1321 err = unix_bind_abstract(sk, sunaddr, addr_len); 1322 1323 return err; 1324 } 1325 1326 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1327 { 1328 if (unlikely(sk1 == sk2) || !sk2) { 1329 unix_state_lock(sk1); 1330 return; 1331 } 1332 if (sk1 > sk2) 1333 swap(sk1, sk2); 1334 1335 unix_state_lock(sk1); 1336 unix_state_lock_nested(sk2, U_LOCK_SECOND); 1337 } 1338 1339 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1340 { 1341 if (unlikely(sk1 == sk2) || !sk2) { 1342 unix_state_unlock(sk1); 1343 return; 1344 } 1345 unix_state_unlock(sk1); 1346 unix_state_unlock(sk2); 1347 } 1348 1349 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1350 int alen, int flags) 1351 { 1352 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1353 struct sock *sk = sock->sk; 1354 struct sock *other; 1355 int err; 1356 1357 err = -EINVAL; 1358 if (alen < offsetofend(struct sockaddr, sa_family)) 1359 goto out; 1360 1361 if (addr->sa_family != AF_UNSPEC) { 1362 err = unix_validate_addr(sunaddr, alen); 1363 if (err) 1364 goto out; 1365 1366 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, addr, &alen); 1367 if (err) 1368 goto out; 1369 1370 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1371 test_bit(SOCK_PASSPIDFD, &sock->flags)) && 1372 !unix_sk(sk)->addr) { 1373 err = unix_autobind(sk); 1374 if (err) 1375 goto out; 1376 } 1377 1378 restart: 1379 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1380 if (IS_ERR(other)) { 1381 err = PTR_ERR(other); 1382 goto out; 1383 } 1384 1385 unix_state_double_lock(sk, other); 1386 1387 /* Apparently VFS overslept socket death. Retry. */ 1388 if (sock_flag(other, SOCK_DEAD)) { 1389 unix_state_double_unlock(sk, other); 1390 sock_put(other); 1391 goto restart; 1392 } 1393 1394 err = -EPERM; 1395 if (!unix_may_send(sk, other)) 1396 goto out_unlock; 1397 1398 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1399 if (err) 1400 goto out_unlock; 1401 1402 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1403 } else { 1404 /* 1405 * 1003.1g breaking connected state with AF_UNSPEC 1406 */ 1407 other = NULL; 1408 unix_state_double_lock(sk, other); 1409 } 1410 1411 /* 1412 * If it was connected, reconnect. 1413 */ 1414 if (unix_peer(sk)) { 1415 struct sock *old_peer = unix_peer(sk); 1416 1417 unix_peer(sk) = other; 1418 if (!other) 1419 sk->sk_state = TCP_CLOSE; 1420 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1421 1422 unix_state_double_unlock(sk, other); 1423 1424 if (other != old_peer) 1425 unix_dgram_disconnected(sk, old_peer); 1426 sock_put(old_peer); 1427 } else { 1428 unix_peer(sk) = other; 1429 unix_state_double_unlock(sk, other); 1430 } 1431 1432 return 0; 1433 1434 out_unlock: 1435 unix_state_double_unlock(sk, other); 1436 sock_put(other); 1437 out: 1438 return err; 1439 } 1440 1441 static long unix_wait_for_peer(struct sock *other, long timeo) 1442 __releases(&unix_sk(other)->lock) 1443 { 1444 struct unix_sock *u = unix_sk(other); 1445 int sched; 1446 DEFINE_WAIT(wait); 1447 1448 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1449 1450 sched = !sock_flag(other, SOCK_DEAD) && 1451 !(other->sk_shutdown & RCV_SHUTDOWN) && 1452 unix_recvq_full_lockless(other); 1453 1454 unix_state_unlock(other); 1455 1456 if (sched) 1457 timeo = schedule_timeout(timeo); 1458 1459 finish_wait(&u->peer_wait, &wait); 1460 return timeo; 1461 } 1462 1463 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1464 int addr_len, int flags) 1465 { 1466 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1467 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1468 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1469 struct net *net = sock_net(sk); 1470 struct sk_buff *skb = NULL; 1471 long timeo; 1472 int err; 1473 int st; 1474 1475 err = unix_validate_addr(sunaddr, addr_len); 1476 if (err) 1477 goto out; 1478 1479 err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, uaddr, &addr_len); 1480 if (err) 1481 goto out; 1482 1483 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 1484 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 1485 err = unix_autobind(sk); 1486 if (err) 1487 goto out; 1488 } 1489 1490 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1491 1492 /* First of all allocate resources. 1493 If we will make it after state is locked, 1494 we will have to recheck all again in any case. 1495 */ 1496 1497 /* create new sock for complete connection */ 1498 newsk = unix_create1(net, NULL, 0, sock->type); 1499 if (IS_ERR(newsk)) { 1500 err = PTR_ERR(newsk); 1501 newsk = NULL; 1502 goto out; 1503 } 1504 1505 err = -ENOMEM; 1506 1507 /* Allocate skb for sending to listening sock */ 1508 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1509 if (skb == NULL) 1510 goto out; 1511 1512 restart: 1513 /* Find listening sock. */ 1514 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1515 if (IS_ERR(other)) { 1516 err = PTR_ERR(other); 1517 other = NULL; 1518 goto out; 1519 } 1520 1521 /* Latch state of peer */ 1522 unix_state_lock(other); 1523 1524 /* Apparently VFS overslept socket death. Retry. */ 1525 if (sock_flag(other, SOCK_DEAD)) { 1526 unix_state_unlock(other); 1527 sock_put(other); 1528 goto restart; 1529 } 1530 1531 err = -ECONNREFUSED; 1532 if (other->sk_state != TCP_LISTEN) 1533 goto out_unlock; 1534 if (other->sk_shutdown & RCV_SHUTDOWN) 1535 goto out_unlock; 1536 1537 if (unix_recvq_full(other)) { 1538 err = -EAGAIN; 1539 if (!timeo) 1540 goto out_unlock; 1541 1542 timeo = unix_wait_for_peer(other, timeo); 1543 1544 err = sock_intr_errno(timeo); 1545 if (signal_pending(current)) 1546 goto out; 1547 sock_put(other); 1548 goto restart; 1549 } 1550 1551 /* Latch our state. 1552 1553 It is tricky place. We need to grab our state lock and cannot 1554 drop lock on peer. It is dangerous because deadlock is 1555 possible. Connect to self case and simultaneous 1556 attempt to connect are eliminated by checking socket 1557 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1558 check this before attempt to grab lock. 1559 1560 Well, and we have to recheck the state after socket locked. 1561 */ 1562 st = sk->sk_state; 1563 1564 switch (st) { 1565 case TCP_CLOSE: 1566 /* This is ok... continue with connect */ 1567 break; 1568 case TCP_ESTABLISHED: 1569 /* Socket is already connected */ 1570 err = -EISCONN; 1571 goto out_unlock; 1572 default: 1573 err = -EINVAL; 1574 goto out_unlock; 1575 } 1576 1577 unix_state_lock_nested(sk, U_LOCK_SECOND); 1578 1579 if (sk->sk_state != st) { 1580 unix_state_unlock(sk); 1581 unix_state_unlock(other); 1582 sock_put(other); 1583 goto restart; 1584 } 1585 1586 err = security_unix_stream_connect(sk, other, newsk); 1587 if (err) { 1588 unix_state_unlock(sk); 1589 goto out_unlock; 1590 } 1591 1592 /* The way is open! Fastly set all the necessary fields... */ 1593 1594 sock_hold(sk); 1595 unix_peer(newsk) = sk; 1596 newsk->sk_state = TCP_ESTABLISHED; 1597 newsk->sk_type = sk->sk_type; 1598 init_peercred(newsk); 1599 newu = unix_sk(newsk); 1600 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1601 otheru = unix_sk(other); 1602 1603 /* copy address information from listening to new sock 1604 * 1605 * The contents of *(otheru->addr) and otheru->path 1606 * are seen fully set up here, since we have found 1607 * otheru in hash under its lock. Insertion into the 1608 * hash chain we'd found it in had been done in an 1609 * earlier critical area protected by the chain's lock, 1610 * the same one where we'd set *(otheru->addr) contents, 1611 * as well as otheru->path and otheru->addr itself. 1612 * 1613 * Using smp_store_release() here to set newu->addr 1614 * is enough to make those stores, as well as stores 1615 * to newu->path visible to anyone who gets newu->addr 1616 * by smp_load_acquire(). IOW, the same warranties 1617 * as for unix_sock instances bound in unix_bind() or 1618 * in unix_autobind(). 1619 */ 1620 if (otheru->path.dentry) { 1621 path_get(&otheru->path); 1622 newu->path = otheru->path; 1623 } 1624 refcount_inc(&otheru->addr->refcnt); 1625 smp_store_release(&newu->addr, otheru->addr); 1626 1627 /* Set credentials */ 1628 copy_peercred(sk, other); 1629 1630 sock->state = SS_CONNECTED; 1631 sk->sk_state = TCP_ESTABLISHED; 1632 sock_hold(newsk); 1633 1634 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1635 unix_peer(sk) = newsk; 1636 1637 unix_state_unlock(sk); 1638 1639 /* take ten and send info to listening sock */ 1640 spin_lock(&other->sk_receive_queue.lock); 1641 __skb_queue_tail(&other->sk_receive_queue, skb); 1642 spin_unlock(&other->sk_receive_queue.lock); 1643 unix_state_unlock(other); 1644 other->sk_data_ready(other); 1645 sock_put(other); 1646 return 0; 1647 1648 out_unlock: 1649 if (other) 1650 unix_state_unlock(other); 1651 1652 out: 1653 kfree_skb(skb); 1654 if (newsk) 1655 unix_release_sock(newsk, 0); 1656 if (other) 1657 sock_put(other); 1658 return err; 1659 } 1660 1661 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1662 { 1663 struct sock *ska = socka->sk, *skb = sockb->sk; 1664 1665 /* Join our sockets back to back */ 1666 sock_hold(ska); 1667 sock_hold(skb); 1668 unix_peer(ska) = skb; 1669 unix_peer(skb) = ska; 1670 init_peercred(ska); 1671 init_peercred(skb); 1672 1673 ska->sk_state = TCP_ESTABLISHED; 1674 skb->sk_state = TCP_ESTABLISHED; 1675 socka->state = SS_CONNECTED; 1676 sockb->state = SS_CONNECTED; 1677 return 0; 1678 } 1679 1680 static void unix_sock_inherit_flags(const struct socket *old, 1681 struct socket *new) 1682 { 1683 if (test_bit(SOCK_PASSCRED, &old->flags)) 1684 set_bit(SOCK_PASSCRED, &new->flags); 1685 if (test_bit(SOCK_PASSPIDFD, &old->flags)) 1686 set_bit(SOCK_PASSPIDFD, &new->flags); 1687 if (test_bit(SOCK_PASSSEC, &old->flags)) 1688 set_bit(SOCK_PASSSEC, &new->flags); 1689 } 1690 1691 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1692 bool kern) 1693 { 1694 struct sock *sk = sock->sk; 1695 struct sock *tsk; 1696 struct sk_buff *skb; 1697 int err; 1698 1699 err = -EOPNOTSUPP; 1700 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1701 goto out; 1702 1703 err = -EINVAL; 1704 if (sk->sk_state != TCP_LISTEN) 1705 goto out; 1706 1707 /* If socket state is TCP_LISTEN it cannot change (for now...), 1708 * so that no locks are necessary. 1709 */ 1710 1711 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1712 &err); 1713 if (!skb) { 1714 /* This means receive shutdown. */ 1715 if (err == 0) 1716 err = -EINVAL; 1717 goto out; 1718 } 1719 1720 tsk = skb->sk; 1721 skb_free_datagram(sk, skb); 1722 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1723 1724 /* attach accepted sock to socket */ 1725 unix_state_lock(tsk); 1726 newsock->state = SS_CONNECTED; 1727 unix_sock_inherit_flags(sock, newsock); 1728 sock_graft(tsk, newsock); 1729 unix_state_unlock(tsk); 1730 return 0; 1731 1732 out: 1733 return err; 1734 } 1735 1736 1737 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1738 { 1739 struct sock *sk = sock->sk; 1740 struct unix_address *addr; 1741 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1742 int err = 0; 1743 1744 if (peer) { 1745 sk = unix_peer_get(sk); 1746 1747 err = -ENOTCONN; 1748 if (!sk) 1749 goto out; 1750 err = 0; 1751 } else { 1752 sock_hold(sk); 1753 } 1754 1755 addr = smp_load_acquire(&unix_sk(sk)->addr); 1756 if (!addr) { 1757 sunaddr->sun_family = AF_UNIX; 1758 sunaddr->sun_path[0] = 0; 1759 err = offsetof(struct sockaddr_un, sun_path); 1760 } else { 1761 err = addr->len; 1762 memcpy(sunaddr, addr->name, addr->len); 1763 1764 if (peer) 1765 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1766 CGROUP_UNIX_GETPEERNAME); 1767 else 1768 BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err, 1769 CGROUP_UNIX_GETSOCKNAME); 1770 } 1771 sock_put(sk); 1772 out: 1773 return err; 1774 } 1775 1776 /* The "user->unix_inflight" variable is protected by the garbage 1777 * collection lock, and we just read it locklessly here. If you go 1778 * over the limit, there might be a tiny race in actually noticing 1779 * it across threads. Tough. 1780 */ 1781 static inline bool too_many_unix_fds(struct task_struct *p) 1782 { 1783 struct user_struct *user = current_user(); 1784 1785 if (unlikely(READ_ONCE(user->unix_inflight) > task_rlimit(p, RLIMIT_NOFILE))) 1786 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 1787 return false; 1788 } 1789 1790 static int unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) 1791 { 1792 int i; 1793 1794 if (too_many_unix_fds(current)) 1795 return -ETOOMANYREFS; 1796 1797 /* Need to duplicate file references for the sake of garbage 1798 * collection. Otherwise a socket in the fps might become a 1799 * candidate for GC while the skb is not yet queued. 1800 */ 1801 UNIXCB(skb).fp = scm_fp_dup(scm->fp); 1802 if (!UNIXCB(skb).fp) 1803 return -ENOMEM; 1804 1805 for (i = scm->fp->count - 1; i >= 0; i--) 1806 unix_inflight(scm->fp->user, scm->fp->fp[i]); 1807 1808 return 0; 1809 } 1810 1811 static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb) 1812 { 1813 int i; 1814 1815 scm->fp = UNIXCB(skb).fp; 1816 UNIXCB(skb).fp = NULL; 1817 1818 for (i = scm->fp->count - 1; i >= 0; i--) 1819 unix_notinflight(scm->fp->user, scm->fp->fp[i]); 1820 } 1821 1822 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1823 { 1824 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1825 1826 /* 1827 * Garbage collection of unix sockets starts by selecting a set of 1828 * candidate sockets which have reference only from being in flight 1829 * (total_refs == inflight_refs). This condition is checked once during 1830 * the candidate collection phase, and candidates are marked as such, so 1831 * that non-candidates can later be ignored. While inflight_refs is 1832 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1833 * is an instantaneous decision. 1834 * 1835 * Once a candidate, however, the socket must not be reinstalled into a 1836 * file descriptor while the garbage collection is in progress. 1837 * 1838 * If the above conditions are met, then the directed graph of 1839 * candidates (*) does not change while unix_gc_lock is held. 1840 * 1841 * Any operations that changes the file count through file descriptors 1842 * (dup, close, sendmsg) does not change the graph since candidates are 1843 * not installed in fds. 1844 * 1845 * Dequeing a candidate via recvmsg would install it into an fd, but 1846 * that takes unix_gc_lock to decrement the inflight count, so it's 1847 * serialized with garbage collection. 1848 * 1849 * MSG_PEEK is special in that it does not change the inflight count, 1850 * yet does install the socket into an fd. The following lock/unlock 1851 * pair is to ensure serialization with garbage collection. It must be 1852 * done between incrementing the file count and installing the file into 1853 * an fd. 1854 * 1855 * If garbage collection starts after the barrier provided by the 1856 * lock/unlock, then it will see the elevated refcount and not mark this 1857 * as a candidate. If a garbage collection is already in progress 1858 * before the file count was incremented, then the lock/unlock pair will 1859 * ensure that garbage collection is finished before progressing to 1860 * installing the fd. 1861 * 1862 * (*) A -> B where B is on the queue of A or B is on the queue of C 1863 * which is on the queue of listening socket A. 1864 */ 1865 spin_lock(&unix_gc_lock); 1866 spin_unlock(&unix_gc_lock); 1867 } 1868 1869 static void unix_destruct_scm(struct sk_buff *skb) 1870 { 1871 struct scm_cookie scm; 1872 1873 memset(&scm, 0, sizeof(scm)); 1874 scm.pid = UNIXCB(skb).pid; 1875 if (UNIXCB(skb).fp) 1876 unix_detach_fds(&scm, skb); 1877 1878 /* Alas, it calls VFS */ 1879 /* So fscking what? fput() had been SMP-safe since the last Summer */ 1880 scm_destroy(&scm); 1881 sock_wfree(skb); 1882 } 1883 1884 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1885 { 1886 int err = 0; 1887 1888 UNIXCB(skb).pid = get_pid(scm->pid); 1889 UNIXCB(skb).uid = scm->creds.uid; 1890 UNIXCB(skb).gid = scm->creds.gid; 1891 UNIXCB(skb).fp = NULL; 1892 unix_get_secdata(scm, skb); 1893 if (scm->fp && send_fds) 1894 err = unix_attach_fds(scm, skb); 1895 1896 skb->destructor = unix_destruct_scm; 1897 return err; 1898 } 1899 1900 static bool unix_passcred_enabled(const struct socket *sock, 1901 const struct sock *other) 1902 { 1903 return test_bit(SOCK_PASSCRED, &sock->flags) || 1904 test_bit(SOCK_PASSPIDFD, &sock->flags) || 1905 !other->sk_socket || 1906 test_bit(SOCK_PASSCRED, &other->sk_socket->flags) || 1907 test_bit(SOCK_PASSPIDFD, &other->sk_socket->flags); 1908 } 1909 1910 /* 1911 * Some apps rely on write() giving SCM_CREDENTIALS 1912 * We include credentials if source or destination socket 1913 * asserted SOCK_PASSCRED. 1914 */ 1915 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1916 const struct sock *other) 1917 { 1918 if (UNIXCB(skb).pid) 1919 return; 1920 if (unix_passcred_enabled(sock, other)) { 1921 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1922 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1923 } 1924 } 1925 1926 static bool unix_skb_scm_eq(struct sk_buff *skb, 1927 struct scm_cookie *scm) 1928 { 1929 return UNIXCB(skb).pid == scm->pid && 1930 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1931 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1932 unix_secdata_eq(scm, skb); 1933 } 1934 1935 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1936 { 1937 struct scm_fp_list *fp = UNIXCB(skb).fp; 1938 struct unix_sock *u = unix_sk(sk); 1939 1940 if (unlikely(fp && fp->count)) 1941 atomic_add(fp->count, &u->scm_stat.nr_fds); 1942 } 1943 1944 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1945 { 1946 struct scm_fp_list *fp = UNIXCB(skb).fp; 1947 struct unix_sock *u = unix_sk(sk); 1948 1949 if (unlikely(fp && fp->count)) 1950 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1951 } 1952 1953 /* 1954 * Send AF_UNIX data. 1955 */ 1956 1957 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1958 size_t len) 1959 { 1960 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1961 struct sock *sk = sock->sk, *other = NULL; 1962 struct unix_sock *u = unix_sk(sk); 1963 struct scm_cookie scm; 1964 struct sk_buff *skb; 1965 int data_len = 0; 1966 int sk_locked; 1967 long timeo; 1968 int err; 1969 1970 err = scm_send(sock, msg, &scm, false); 1971 if (err < 0) 1972 return err; 1973 1974 wait_for_unix_gc(scm.fp); 1975 1976 err = -EOPNOTSUPP; 1977 if (msg->msg_flags&MSG_OOB) 1978 goto out; 1979 1980 if (msg->msg_namelen) { 1981 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1982 if (err) 1983 goto out; 1984 1985 err = BPF_CGROUP_RUN_PROG_UNIX_SENDMSG_LOCK(sk, 1986 msg->msg_name, 1987 &msg->msg_namelen, 1988 NULL); 1989 if (err) 1990 goto out; 1991 } else { 1992 sunaddr = NULL; 1993 err = -ENOTCONN; 1994 other = unix_peer_get(sk); 1995 if (!other) 1996 goto out; 1997 } 1998 1999 if ((test_bit(SOCK_PASSCRED, &sock->flags) || 2000 test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) { 2001 err = unix_autobind(sk); 2002 if (err) 2003 goto out; 2004 } 2005 2006 err = -EMSGSIZE; 2007 if (len > sk->sk_sndbuf - 32) 2008 goto out; 2009 2010 if (len > SKB_MAX_ALLOC) { 2011 data_len = min_t(size_t, 2012 len - SKB_MAX_ALLOC, 2013 MAX_SKB_FRAGS * PAGE_SIZE); 2014 data_len = PAGE_ALIGN(data_len); 2015 2016 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 2017 } 2018 2019 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 2020 msg->msg_flags & MSG_DONTWAIT, &err, 2021 PAGE_ALLOC_COSTLY_ORDER); 2022 if (skb == NULL) 2023 goto out; 2024 2025 err = unix_scm_to_skb(&scm, skb, true); 2026 if (err < 0) 2027 goto out_free; 2028 2029 skb_put(skb, len - data_len); 2030 skb->data_len = data_len; 2031 skb->len = len; 2032 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 2033 if (err) 2034 goto out_free; 2035 2036 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 2037 2038 restart: 2039 if (!other) { 2040 err = -ECONNRESET; 2041 if (sunaddr == NULL) 2042 goto out_free; 2043 2044 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 2045 sk->sk_type); 2046 if (IS_ERR(other)) { 2047 err = PTR_ERR(other); 2048 other = NULL; 2049 goto out_free; 2050 } 2051 } 2052 2053 if (sk_filter(other, skb) < 0) { 2054 /* Toss the packet but do not return any error to the sender */ 2055 err = len; 2056 goto out_free; 2057 } 2058 2059 sk_locked = 0; 2060 unix_state_lock(other); 2061 restart_locked: 2062 err = -EPERM; 2063 if (!unix_may_send(sk, other)) 2064 goto out_unlock; 2065 2066 if (unlikely(sock_flag(other, SOCK_DEAD))) { 2067 /* 2068 * Check with 1003.1g - what should 2069 * datagram error 2070 */ 2071 unix_state_unlock(other); 2072 sock_put(other); 2073 2074 if (!sk_locked) 2075 unix_state_lock(sk); 2076 2077 err = 0; 2078 if (sk->sk_type == SOCK_SEQPACKET) { 2079 /* We are here only when racing with unix_release_sock() 2080 * is clearing @other. Never change state to TCP_CLOSE 2081 * unlike SOCK_DGRAM wants. 2082 */ 2083 unix_state_unlock(sk); 2084 err = -EPIPE; 2085 } else if (unix_peer(sk) == other) { 2086 unix_peer(sk) = NULL; 2087 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 2088 2089 sk->sk_state = TCP_CLOSE; 2090 unix_state_unlock(sk); 2091 2092 unix_dgram_disconnected(sk, other); 2093 sock_put(other); 2094 err = -ECONNREFUSED; 2095 } else { 2096 unix_state_unlock(sk); 2097 } 2098 2099 other = NULL; 2100 if (err) 2101 goto out_free; 2102 goto restart; 2103 } 2104 2105 err = -EPIPE; 2106 if (other->sk_shutdown & RCV_SHUTDOWN) 2107 goto out_unlock; 2108 2109 if (sk->sk_type != SOCK_SEQPACKET) { 2110 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2111 if (err) 2112 goto out_unlock; 2113 } 2114 2115 /* other == sk && unix_peer(other) != sk if 2116 * - unix_peer(sk) == NULL, destination address bound to sk 2117 * - unix_peer(sk) == sk by time of get but disconnected before lock 2118 */ 2119 if (other != sk && 2120 unlikely(unix_peer(other) != sk && 2121 unix_recvq_full_lockless(other))) { 2122 if (timeo) { 2123 timeo = unix_wait_for_peer(other, timeo); 2124 2125 err = sock_intr_errno(timeo); 2126 if (signal_pending(current)) 2127 goto out_free; 2128 2129 goto restart; 2130 } 2131 2132 if (!sk_locked) { 2133 unix_state_unlock(other); 2134 unix_state_double_lock(sk, other); 2135 } 2136 2137 if (unix_peer(sk) != other || 2138 unix_dgram_peer_wake_me(sk, other)) { 2139 err = -EAGAIN; 2140 sk_locked = 1; 2141 goto out_unlock; 2142 } 2143 2144 if (!sk_locked) { 2145 sk_locked = 1; 2146 goto restart_locked; 2147 } 2148 } 2149 2150 if (unlikely(sk_locked)) 2151 unix_state_unlock(sk); 2152 2153 if (sock_flag(other, SOCK_RCVTSTAMP)) 2154 __net_timestamp(skb); 2155 maybe_add_creds(skb, sock, other); 2156 scm_stat_add(other, skb); 2157 skb_queue_tail(&other->sk_receive_queue, skb); 2158 unix_state_unlock(other); 2159 other->sk_data_ready(other); 2160 sock_put(other); 2161 scm_destroy(&scm); 2162 return len; 2163 2164 out_unlock: 2165 if (sk_locked) 2166 unix_state_unlock(sk); 2167 unix_state_unlock(other); 2168 out_free: 2169 kfree_skb(skb); 2170 out: 2171 if (other) 2172 sock_put(other); 2173 scm_destroy(&scm); 2174 return err; 2175 } 2176 2177 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2178 * bytes, and a minimum of a full page. 2179 */ 2180 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2181 2182 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2183 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other, 2184 struct scm_cookie *scm, bool fds_sent) 2185 { 2186 struct unix_sock *ousk = unix_sk(other); 2187 struct sk_buff *skb; 2188 int err = 0; 2189 2190 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2191 2192 if (!skb) 2193 return err; 2194 2195 err = unix_scm_to_skb(scm, skb, !fds_sent); 2196 if (err < 0) { 2197 kfree_skb(skb); 2198 return err; 2199 } 2200 skb_put(skb, 1); 2201 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2202 2203 if (err) { 2204 kfree_skb(skb); 2205 return err; 2206 } 2207 2208 unix_state_lock(other); 2209 2210 if (sock_flag(other, SOCK_DEAD) || 2211 (other->sk_shutdown & RCV_SHUTDOWN)) { 2212 unix_state_unlock(other); 2213 kfree_skb(skb); 2214 return -EPIPE; 2215 } 2216 2217 maybe_add_creds(skb, sock, other); 2218 skb_get(skb); 2219 2220 if (ousk->oob_skb) 2221 consume_skb(ousk->oob_skb); 2222 2223 WRITE_ONCE(ousk->oob_skb, skb); 2224 2225 scm_stat_add(other, skb); 2226 skb_queue_tail(&other->sk_receive_queue, skb); 2227 sk_send_sigurg(other); 2228 unix_state_unlock(other); 2229 other->sk_data_ready(other); 2230 2231 return err; 2232 } 2233 #endif 2234 2235 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2236 size_t len) 2237 { 2238 struct sock *sk = sock->sk; 2239 struct sock *other = NULL; 2240 int err, size; 2241 struct sk_buff *skb; 2242 int sent = 0; 2243 struct scm_cookie scm; 2244 bool fds_sent = false; 2245 int data_len; 2246 2247 err = scm_send(sock, msg, &scm, false); 2248 if (err < 0) 2249 return err; 2250 2251 wait_for_unix_gc(scm.fp); 2252 2253 err = -EOPNOTSUPP; 2254 if (msg->msg_flags & MSG_OOB) { 2255 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2256 if (len) 2257 len--; 2258 else 2259 #endif 2260 goto out_err; 2261 } 2262 2263 if (msg->msg_namelen) { 2264 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2265 goto out_err; 2266 } else { 2267 err = -ENOTCONN; 2268 other = unix_peer(sk); 2269 if (!other) 2270 goto out_err; 2271 } 2272 2273 if (sk->sk_shutdown & SEND_SHUTDOWN) 2274 goto pipe_err; 2275 2276 while (sent < len) { 2277 size = len - sent; 2278 2279 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2280 skb = sock_alloc_send_pskb(sk, 0, 0, 2281 msg->msg_flags & MSG_DONTWAIT, 2282 &err, 0); 2283 } else { 2284 /* Keep two messages in the pipe so it schedules better */ 2285 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2286 2287 /* allow fallback to order-0 allocations */ 2288 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2289 2290 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2291 2292 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2293 2294 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2295 msg->msg_flags & MSG_DONTWAIT, &err, 2296 get_order(UNIX_SKB_FRAGS_SZ)); 2297 } 2298 if (!skb) 2299 goto out_err; 2300 2301 /* Only send the fds in the first buffer */ 2302 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2303 if (err < 0) { 2304 kfree_skb(skb); 2305 goto out_err; 2306 } 2307 fds_sent = true; 2308 2309 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2310 err = skb_splice_from_iter(skb, &msg->msg_iter, size, 2311 sk->sk_allocation); 2312 if (err < 0) { 2313 kfree_skb(skb); 2314 goto out_err; 2315 } 2316 size = err; 2317 refcount_add(size, &sk->sk_wmem_alloc); 2318 } else { 2319 skb_put(skb, size - data_len); 2320 skb->data_len = data_len; 2321 skb->len = size; 2322 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2323 if (err) { 2324 kfree_skb(skb); 2325 goto out_err; 2326 } 2327 } 2328 2329 unix_state_lock(other); 2330 2331 if (sock_flag(other, SOCK_DEAD) || 2332 (other->sk_shutdown & RCV_SHUTDOWN)) 2333 goto pipe_err_free; 2334 2335 maybe_add_creds(skb, sock, other); 2336 scm_stat_add(other, skb); 2337 skb_queue_tail(&other->sk_receive_queue, skb); 2338 unix_state_unlock(other); 2339 other->sk_data_ready(other); 2340 sent += size; 2341 } 2342 2343 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2344 if (msg->msg_flags & MSG_OOB) { 2345 err = queue_oob(sock, msg, other, &scm, fds_sent); 2346 if (err) 2347 goto out_err; 2348 sent++; 2349 } 2350 #endif 2351 2352 scm_destroy(&scm); 2353 2354 return sent; 2355 2356 pipe_err_free: 2357 unix_state_unlock(other); 2358 kfree_skb(skb); 2359 pipe_err: 2360 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2361 send_sig(SIGPIPE, current, 0); 2362 err = -EPIPE; 2363 out_err: 2364 scm_destroy(&scm); 2365 return sent ? : err; 2366 } 2367 2368 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2369 size_t len) 2370 { 2371 int err; 2372 struct sock *sk = sock->sk; 2373 2374 err = sock_error(sk); 2375 if (err) 2376 return err; 2377 2378 if (sk->sk_state != TCP_ESTABLISHED) 2379 return -ENOTCONN; 2380 2381 if (msg->msg_namelen) 2382 msg->msg_namelen = 0; 2383 2384 return unix_dgram_sendmsg(sock, msg, len); 2385 } 2386 2387 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2388 size_t size, int flags) 2389 { 2390 struct sock *sk = sock->sk; 2391 2392 if (sk->sk_state != TCP_ESTABLISHED) 2393 return -ENOTCONN; 2394 2395 return unix_dgram_recvmsg(sock, msg, size, flags); 2396 } 2397 2398 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2399 { 2400 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2401 2402 if (addr) { 2403 msg->msg_namelen = addr->len; 2404 memcpy(msg->msg_name, addr->name, addr->len); 2405 } 2406 } 2407 2408 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2409 int flags) 2410 { 2411 struct scm_cookie scm; 2412 struct socket *sock = sk->sk_socket; 2413 struct unix_sock *u = unix_sk(sk); 2414 struct sk_buff *skb, *last; 2415 long timeo; 2416 int skip; 2417 int err; 2418 2419 err = -EOPNOTSUPP; 2420 if (flags&MSG_OOB) 2421 goto out; 2422 2423 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2424 2425 do { 2426 mutex_lock(&u->iolock); 2427 2428 skip = sk_peek_offset(sk, flags); 2429 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2430 &skip, &err, &last); 2431 if (skb) { 2432 if (!(flags & MSG_PEEK)) 2433 scm_stat_del(sk, skb); 2434 break; 2435 } 2436 2437 mutex_unlock(&u->iolock); 2438 2439 if (err != -EAGAIN) 2440 break; 2441 } while (timeo && 2442 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2443 &err, &timeo, last)); 2444 2445 if (!skb) { /* implies iolock unlocked */ 2446 unix_state_lock(sk); 2447 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2448 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2449 (sk->sk_shutdown & RCV_SHUTDOWN)) 2450 err = 0; 2451 unix_state_unlock(sk); 2452 goto out; 2453 } 2454 2455 if (wq_has_sleeper(&u->peer_wait)) 2456 wake_up_interruptible_sync_poll(&u->peer_wait, 2457 EPOLLOUT | EPOLLWRNORM | 2458 EPOLLWRBAND); 2459 2460 if (msg->msg_name) { 2461 unix_copy_addr(msg, skb->sk); 2462 2463 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2464 msg->msg_name, 2465 &msg->msg_namelen); 2466 } 2467 2468 if (size > skb->len - skip) 2469 size = skb->len - skip; 2470 else if (size < skb->len - skip) 2471 msg->msg_flags |= MSG_TRUNC; 2472 2473 err = skb_copy_datagram_msg(skb, skip, msg, size); 2474 if (err) 2475 goto out_free; 2476 2477 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2478 __sock_recv_timestamp(msg, sk, skb); 2479 2480 memset(&scm, 0, sizeof(scm)); 2481 2482 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2483 unix_set_secdata(&scm, skb); 2484 2485 if (!(flags & MSG_PEEK)) { 2486 if (UNIXCB(skb).fp) 2487 unix_detach_fds(&scm, skb); 2488 2489 sk_peek_offset_bwd(sk, skb->len); 2490 } else { 2491 /* It is questionable: on PEEK we could: 2492 - do not return fds - good, but too simple 8) 2493 - return fds, and do not return them on read (old strategy, 2494 apparently wrong) 2495 - clone fds (I chose it for now, it is the most universal 2496 solution) 2497 2498 POSIX 1003.1g does not actually define this clearly 2499 at all. POSIX 1003.1g doesn't define a lot of things 2500 clearly however! 2501 2502 */ 2503 2504 sk_peek_offset_fwd(sk, size); 2505 2506 if (UNIXCB(skb).fp) 2507 unix_peek_fds(&scm, skb); 2508 } 2509 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2510 2511 scm_recv_unix(sock, msg, &scm, flags); 2512 2513 out_free: 2514 skb_free_datagram(sk, skb); 2515 mutex_unlock(&u->iolock); 2516 out: 2517 return err; 2518 } 2519 2520 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2521 int flags) 2522 { 2523 struct sock *sk = sock->sk; 2524 2525 #ifdef CONFIG_BPF_SYSCALL 2526 const struct proto *prot = READ_ONCE(sk->sk_prot); 2527 2528 if (prot != &unix_dgram_proto) 2529 return prot->recvmsg(sk, msg, size, flags, NULL); 2530 #endif 2531 return __unix_dgram_recvmsg(sk, msg, size, flags); 2532 } 2533 2534 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2535 { 2536 struct unix_sock *u = unix_sk(sk); 2537 struct sk_buff *skb; 2538 int err; 2539 2540 mutex_lock(&u->iolock); 2541 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2542 mutex_unlock(&u->iolock); 2543 if (!skb) 2544 return err; 2545 2546 return recv_actor(sk, skb); 2547 } 2548 2549 /* 2550 * Sleep until more data has arrived. But check for races.. 2551 */ 2552 static long unix_stream_data_wait(struct sock *sk, long timeo, 2553 struct sk_buff *last, unsigned int last_len, 2554 bool freezable) 2555 { 2556 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2557 struct sk_buff *tail; 2558 DEFINE_WAIT(wait); 2559 2560 unix_state_lock(sk); 2561 2562 for (;;) { 2563 prepare_to_wait(sk_sleep(sk), &wait, state); 2564 2565 tail = skb_peek_tail(&sk->sk_receive_queue); 2566 if (tail != last || 2567 (tail && tail->len != last_len) || 2568 sk->sk_err || 2569 (sk->sk_shutdown & RCV_SHUTDOWN) || 2570 signal_pending(current) || 2571 !timeo) 2572 break; 2573 2574 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2575 unix_state_unlock(sk); 2576 timeo = schedule_timeout(timeo); 2577 unix_state_lock(sk); 2578 2579 if (sock_flag(sk, SOCK_DEAD)) 2580 break; 2581 2582 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2583 } 2584 2585 finish_wait(sk_sleep(sk), &wait); 2586 unix_state_unlock(sk); 2587 return timeo; 2588 } 2589 2590 static unsigned int unix_skb_len(const struct sk_buff *skb) 2591 { 2592 return skb->len - UNIXCB(skb).consumed; 2593 } 2594 2595 struct unix_stream_read_state { 2596 int (*recv_actor)(struct sk_buff *, int, int, 2597 struct unix_stream_read_state *); 2598 struct socket *socket; 2599 struct msghdr *msg; 2600 struct pipe_inode_info *pipe; 2601 size_t size; 2602 int flags; 2603 unsigned int splice_flags; 2604 }; 2605 2606 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2607 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2608 { 2609 struct socket *sock = state->socket; 2610 struct sock *sk = sock->sk; 2611 struct unix_sock *u = unix_sk(sk); 2612 int chunk = 1; 2613 struct sk_buff *oob_skb; 2614 2615 mutex_lock(&u->iolock); 2616 unix_state_lock(sk); 2617 2618 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2619 unix_state_unlock(sk); 2620 mutex_unlock(&u->iolock); 2621 return -EINVAL; 2622 } 2623 2624 oob_skb = u->oob_skb; 2625 2626 if (!(state->flags & MSG_PEEK)) 2627 WRITE_ONCE(u->oob_skb, NULL); 2628 else 2629 skb_get(oob_skb); 2630 unix_state_unlock(sk); 2631 2632 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2633 2634 if (!(state->flags & MSG_PEEK)) 2635 UNIXCB(oob_skb).consumed += 1; 2636 2637 consume_skb(oob_skb); 2638 2639 mutex_unlock(&u->iolock); 2640 2641 if (chunk < 0) 2642 return -EFAULT; 2643 2644 state->msg->msg_flags |= MSG_OOB; 2645 return 1; 2646 } 2647 2648 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2649 int flags, int copied) 2650 { 2651 struct unix_sock *u = unix_sk(sk); 2652 2653 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2654 skb_unlink(skb, &sk->sk_receive_queue); 2655 consume_skb(skb); 2656 skb = NULL; 2657 } else { 2658 if (skb == u->oob_skb) { 2659 if (copied) { 2660 skb = NULL; 2661 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2662 if (!(flags & MSG_PEEK)) { 2663 WRITE_ONCE(u->oob_skb, NULL); 2664 consume_skb(skb); 2665 } 2666 } else if (!(flags & MSG_PEEK)) { 2667 skb_unlink(skb, &sk->sk_receive_queue); 2668 consume_skb(skb); 2669 skb = skb_peek(&sk->sk_receive_queue); 2670 } 2671 } 2672 } 2673 return skb; 2674 } 2675 #endif 2676 2677 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2678 { 2679 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2680 return -ENOTCONN; 2681 2682 return unix_read_skb(sk, recv_actor); 2683 } 2684 2685 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2686 bool freezable) 2687 { 2688 struct scm_cookie scm; 2689 struct socket *sock = state->socket; 2690 struct sock *sk = sock->sk; 2691 struct unix_sock *u = unix_sk(sk); 2692 int copied = 0; 2693 int flags = state->flags; 2694 int noblock = flags & MSG_DONTWAIT; 2695 bool check_creds = false; 2696 int target; 2697 int err = 0; 2698 long timeo; 2699 int skip; 2700 size_t size = state->size; 2701 unsigned int last_len; 2702 2703 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2704 err = -EINVAL; 2705 goto out; 2706 } 2707 2708 if (unlikely(flags & MSG_OOB)) { 2709 err = -EOPNOTSUPP; 2710 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2711 err = unix_stream_recv_urg(state); 2712 #endif 2713 goto out; 2714 } 2715 2716 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2717 timeo = sock_rcvtimeo(sk, noblock); 2718 2719 memset(&scm, 0, sizeof(scm)); 2720 2721 /* Lock the socket to prevent queue disordering 2722 * while sleeps in memcpy_tomsg 2723 */ 2724 mutex_lock(&u->iolock); 2725 2726 skip = max(sk_peek_offset(sk, flags), 0); 2727 2728 do { 2729 int chunk; 2730 bool drop_skb; 2731 struct sk_buff *skb, *last; 2732 2733 redo: 2734 unix_state_lock(sk); 2735 if (sock_flag(sk, SOCK_DEAD)) { 2736 err = -ECONNRESET; 2737 goto unlock; 2738 } 2739 last = skb = skb_peek(&sk->sk_receive_queue); 2740 last_len = last ? last->len : 0; 2741 2742 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2743 if (skb) { 2744 skb = manage_oob(skb, sk, flags, copied); 2745 if (!skb) { 2746 unix_state_unlock(sk); 2747 if (copied) 2748 break; 2749 goto redo; 2750 } 2751 } 2752 #endif 2753 again: 2754 if (skb == NULL) { 2755 if (copied >= target) 2756 goto unlock; 2757 2758 /* 2759 * POSIX 1003.1g mandates this order. 2760 */ 2761 2762 err = sock_error(sk); 2763 if (err) 2764 goto unlock; 2765 if (sk->sk_shutdown & RCV_SHUTDOWN) 2766 goto unlock; 2767 2768 unix_state_unlock(sk); 2769 if (!timeo) { 2770 err = -EAGAIN; 2771 break; 2772 } 2773 2774 mutex_unlock(&u->iolock); 2775 2776 timeo = unix_stream_data_wait(sk, timeo, last, 2777 last_len, freezable); 2778 2779 if (signal_pending(current)) { 2780 err = sock_intr_errno(timeo); 2781 scm_destroy(&scm); 2782 goto out; 2783 } 2784 2785 mutex_lock(&u->iolock); 2786 goto redo; 2787 unlock: 2788 unix_state_unlock(sk); 2789 break; 2790 } 2791 2792 while (skip >= unix_skb_len(skb)) { 2793 skip -= unix_skb_len(skb); 2794 last = skb; 2795 last_len = skb->len; 2796 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2797 if (!skb) 2798 goto again; 2799 } 2800 2801 unix_state_unlock(sk); 2802 2803 if (check_creds) { 2804 /* Never glue messages from different writers */ 2805 if (!unix_skb_scm_eq(skb, &scm)) 2806 break; 2807 } else if (test_bit(SOCK_PASSCRED, &sock->flags) || 2808 test_bit(SOCK_PASSPIDFD, &sock->flags)) { 2809 /* Copy credentials */ 2810 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2811 unix_set_secdata(&scm, skb); 2812 check_creds = true; 2813 } 2814 2815 /* Copy address just once */ 2816 if (state->msg && state->msg->msg_name) { 2817 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2818 state->msg->msg_name); 2819 unix_copy_addr(state->msg, skb->sk); 2820 2821 BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk, 2822 state->msg->msg_name, 2823 &state->msg->msg_namelen); 2824 2825 sunaddr = NULL; 2826 } 2827 2828 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2829 skb_get(skb); 2830 chunk = state->recv_actor(skb, skip, chunk, state); 2831 drop_skb = !unix_skb_len(skb); 2832 /* skb is only safe to use if !drop_skb */ 2833 consume_skb(skb); 2834 if (chunk < 0) { 2835 if (copied == 0) 2836 copied = -EFAULT; 2837 break; 2838 } 2839 copied += chunk; 2840 size -= chunk; 2841 2842 if (drop_skb) { 2843 /* the skb was touched by a concurrent reader; 2844 * we should not expect anything from this skb 2845 * anymore and assume it invalid - we can be 2846 * sure it was dropped from the socket queue 2847 * 2848 * let's report a short read 2849 */ 2850 err = 0; 2851 break; 2852 } 2853 2854 /* Mark read part of skb as used */ 2855 if (!(flags & MSG_PEEK)) { 2856 UNIXCB(skb).consumed += chunk; 2857 2858 sk_peek_offset_bwd(sk, chunk); 2859 2860 if (UNIXCB(skb).fp) { 2861 scm_stat_del(sk, skb); 2862 unix_detach_fds(&scm, skb); 2863 } 2864 2865 if (unix_skb_len(skb)) 2866 break; 2867 2868 skb_unlink(skb, &sk->sk_receive_queue); 2869 consume_skb(skb); 2870 2871 if (scm.fp) 2872 break; 2873 } else { 2874 /* It is questionable, see note in unix_dgram_recvmsg. 2875 */ 2876 if (UNIXCB(skb).fp) 2877 unix_peek_fds(&scm, skb); 2878 2879 sk_peek_offset_fwd(sk, chunk); 2880 2881 if (UNIXCB(skb).fp) 2882 break; 2883 2884 skip = 0; 2885 last = skb; 2886 last_len = skb->len; 2887 unix_state_lock(sk); 2888 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2889 if (skb) 2890 goto again; 2891 unix_state_unlock(sk); 2892 break; 2893 } 2894 } while (size); 2895 2896 mutex_unlock(&u->iolock); 2897 if (state->msg) 2898 scm_recv_unix(sock, state->msg, &scm, flags); 2899 else 2900 scm_destroy(&scm); 2901 out: 2902 return copied ? : err; 2903 } 2904 2905 static int unix_stream_read_actor(struct sk_buff *skb, 2906 int skip, int chunk, 2907 struct unix_stream_read_state *state) 2908 { 2909 int ret; 2910 2911 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2912 state->msg, chunk); 2913 return ret ?: chunk; 2914 } 2915 2916 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2917 size_t size, int flags) 2918 { 2919 struct unix_stream_read_state state = { 2920 .recv_actor = unix_stream_read_actor, 2921 .socket = sk->sk_socket, 2922 .msg = msg, 2923 .size = size, 2924 .flags = flags 2925 }; 2926 2927 return unix_stream_read_generic(&state, true); 2928 } 2929 2930 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2931 size_t size, int flags) 2932 { 2933 struct unix_stream_read_state state = { 2934 .recv_actor = unix_stream_read_actor, 2935 .socket = sock, 2936 .msg = msg, 2937 .size = size, 2938 .flags = flags 2939 }; 2940 2941 #ifdef CONFIG_BPF_SYSCALL 2942 struct sock *sk = sock->sk; 2943 const struct proto *prot = READ_ONCE(sk->sk_prot); 2944 2945 if (prot != &unix_stream_proto) 2946 return prot->recvmsg(sk, msg, size, flags, NULL); 2947 #endif 2948 return unix_stream_read_generic(&state, true); 2949 } 2950 2951 static int unix_stream_splice_actor(struct sk_buff *skb, 2952 int skip, int chunk, 2953 struct unix_stream_read_state *state) 2954 { 2955 return skb_splice_bits(skb, state->socket->sk, 2956 UNIXCB(skb).consumed + skip, 2957 state->pipe, chunk, state->splice_flags); 2958 } 2959 2960 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2961 struct pipe_inode_info *pipe, 2962 size_t size, unsigned int flags) 2963 { 2964 struct unix_stream_read_state state = { 2965 .recv_actor = unix_stream_splice_actor, 2966 .socket = sock, 2967 .pipe = pipe, 2968 .size = size, 2969 .splice_flags = flags, 2970 }; 2971 2972 if (unlikely(*ppos)) 2973 return -ESPIPE; 2974 2975 if (sock->file->f_flags & O_NONBLOCK || 2976 flags & SPLICE_F_NONBLOCK) 2977 state.flags = MSG_DONTWAIT; 2978 2979 return unix_stream_read_generic(&state, false); 2980 } 2981 2982 static int unix_shutdown(struct socket *sock, int mode) 2983 { 2984 struct sock *sk = sock->sk; 2985 struct sock *other; 2986 2987 if (mode < SHUT_RD || mode > SHUT_RDWR) 2988 return -EINVAL; 2989 /* This maps: 2990 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2991 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2992 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2993 */ 2994 ++mode; 2995 2996 unix_state_lock(sk); 2997 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode); 2998 other = unix_peer(sk); 2999 if (other) 3000 sock_hold(other); 3001 unix_state_unlock(sk); 3002 sk->sk_state_change(sk); 3003 3004 if (other && 3005 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 3006 3007 int peer_mode = 0; 3008 const struct proto *prot = READ_ONCE(other->sk_prot); 3009 3010 if (prot->unhash) 3011 prot->unhash(other); 3012 if (mode&RCV_SHUTDOWN) 3013 peer_mode |= SEND_SHUTDOWN; 3014 if (mode&SEND_SHUTDOWN) 3015 peer_mode |= RCV_SHUTDOWN; 3016 unix_state_lock(other); 3017 WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode); 3018 unix_state_unlock(other); 3019 other->sk_state_change(other); 3020 if (peer_mode == SHUTDOWN_MASK) 3021 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 3022 else if (peer_mode & RCV_SHUTDOWN) 3023 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 3024 } 3025 if (other) 3026 sock_put(other); 3027 3028 return 0; 3029 } 3030 3031 long unix_inq_len(struct sock *sk) 3032 { 3033 struct sk_buff *skb; 3034 long amount = 0; 3035 3036 if (sk->sk_state == TCP_LISTEN) 3037 return -EINVAL; 3038 3039 spin_lock(&sk->sk_receive_queue.lock); 3040 if (sk->sk_type == SOCK_STREAM || 3041 sk->sk_type == SOCK_SEQPACKET) { 3042 skb_queue_walk(&sk->sk_receive_queue, skb) 3043 amount += unix_skb_len(skb); 3044 } else { 3045 skb = skb_peek(&sk->sk_receive_queue); 3046 if (skb) 3047 amount = skb->len; 3048 } 3049 spin_unlock(&sk->sk_receive_queue.lock); 3050 3051 return amount; 3052 } 3053 EXPORT_SYMBOL_GPL(unix_inq_len); 3054 3055 long unix_outq_len(struct sock *sk) 3056 { 3057 return sk_wmem_alloc_get(sk); 3058 } 3059 EXPORT_SYMBOL_GPL(unix_outq_len); 3060 3061 static int unix_open_file(struct sock *sk) 3062 { 3063 struct path path; 3064 struct file *f; 3065 int fd; 3066 3067 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3068 return -EPERM; 3069 3070 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3071 return -ENOENT; 3072 3073 path = unix_sk(sk)->path; 3074 if (!path.dentry) 3075 return -ENOENT; 3076 3077 path_get(&path); 3078 3079 fd = get_unused_fd_flags(O_CLOEXEC); 3080 if (fd < 0) 3081 goto out; 3082 3083 f = dentry_open(&path, O_PATH, current_cred()); 3084 if (IS_ERR(f)) { 3085 put_unused_fd(fd); 3086 fd = PTR_ERR(f); 3087 goto out; 3088 } 3089 3090 fd_install(fd, f); 3091 out: 3092 path_put(&path); 3093 3094 return fd; 3095 } 3096 3097 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3098 { 3099 struct sock *sk = sock->sk; 3100 long amount = 0; 3101 int err; 3102 3103 switch (cmd) { 3104 case SIOCOUTQ: 3105 amount = unix_outq_len(sk); 3106 err = put_user(amount, (int __user *)arg); 3107 break; 3108 case SIOCINQ: 3109 amount = unix_inq_len(sk); 3110 if (amount < 0) 3111 err = amount; 3112 else 3113 err = put_user(amount, (int __user *)arg); 3114 break; 3115 case SIOCUNIXFILE: 3116 err = unix_open_file(sk); 3117 break; 3118 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3119 case SIOCATMARK: 3120 { 3121 struct sk_buff *skb; 3122 int answ = 0; 3123 3124 skb = skb_peek(&sk->sk_receive_queue); 3125 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3126 answ = 1; 3127 err = put_user(answ, (int __user *)arg); 3128 } 3129 break; 3130 #endif 3131 default: 3132 err = -ENOIOCTLCMD; 3133 break; 3134 } 3135 return err; 3136 } 3137 3138 #ifdef CONFIG_COMPAT 3139 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3140 { 3141 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3142 } 3143 #endif 3144 3145 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3146 { 3147 struct sock *sk = sock->sk; 3148 __poll_t mask; 3149 u8 shutdown; 3150 3151 sock_poll_wait(file, sock, wait); 3152 mask = 0; 3153 shutdown = READ_ONCE(sk->sk_shutdown); 3154 3155 /* exceptional events? */ 3156 if (READ_ONCE(sk->sk_err)) 3157 mask |= EPOLLERR; 3158 if (shutdown == SHUTDOWN_MASK) 3159 mask |= EPOLLHUP; 3160 if (shutdown & RCV_SHUTDOWN) 3161 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3162 3163 /* readable? */ 3164 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3165 mask |= EPOLLIN | EPOLLRDNORM; 3166 if (sk_is_readable(sk)) 3167 mask |= EPOLLIN | EPOLLRDNORM; 3168 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3169 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3170 mask |= EPOLLPRI; 3171 #endif 3172 3173 /* Connection-based need to check for termination and startup */ 3174 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3175 sk->sk_state == TCP_CLOSE) 3176 mask |= EPOLLHUP; 3177 3178 /* 3179 * we set writable also when the other side has shut down the 3180 * connection. This prevents stuck sockets. 3181 */ 3182 if (unix_writable(sk)) 3183 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3184 3185 return mask; 3186 } 3187 3188 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3189 poll_table *wait) 3190 { 3191 struct sock *sk = sock->sk, *other; 3192 unsigned int writable; 3193 __poll_t mask; 3194 u8 shutdown; 3195 3196 sock_poll_wait(file, sock, wait); 3197 mask = 0; 3198 shutdown = READ_ONCE(sk->sk_shutdown); 3199 3200 /* exceptional events? */ 3201 if (READ_ONCE(sk->sk_err) || 3202 !skb_queue_empty_lockless(&sk->sk_error_queue)) 3203 mask |= EPOLLERR | 3204 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3205 3206 if (shutdown & RCV_SHUTDOWN) 3207 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3208 if (shutdown == SHUTDOWN_MASK) 3209 mask |= EPOLLHUP; 3210 3211 /* readable? */ 3212 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3213 mask |= EPOLLIN | EPOLLRDNORM; 3214 if (sk_is_readable(sk)) 3215 mask |= EPOLLIN | EPOLLRDNORM; 3216 3217 /* Connection-based need to check for termination and startup */ 3218 if (sk->sk_type == SOCK_SEQPACKET) { 3219 if (sk->sk_state == TCP_CLOSE) 3220 mask |= EPOLLHUP; 3221 /* connection hasn't started yet? */ 3222 if (sk->sk_state == TCP_SYN_SENT) 3223 return mask; 3224 } 3225 3226 /* No write status requested, avoid expensive OUT tests. */ 3227 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3228 return mask; 3229 3230 writable = unix_writable(sk); 3231 if (writable) { 3232 unix_state_lock(sk); 3233 3234 other = unix_peer(sk); 3235 if (other && unix_peer(other) != sk && 3236 unix_recvq_full_lockless(other) && 3237 unix_dgram_peer_wake_me(sk, other)) 3238 writable = 0; 3239 3240 unix_state_unlock(sk); 3241 } 3242 3243 if (writable) 3244 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3245 else 3246 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3247 3248 return mask; 3249 } 3250 3251 #ifdef CONFIG_PROC_FS 3252 3253 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3254 3255 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3256 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3257 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3258 3259 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3260 { 3261 unsigned long offset = get_offset(*pos); 3262 unsigned long bucket = get_bucket(*pos); 3263 unsigned long count = 0; 3264 struct sock *sk; 3265 3266 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3267 sk; sk = sk_next(sk)) { 3268 if (++count == offset) 3269 break; 3270 } 3271 3272 return sk; 3273 } 3274 3275 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3276 { 3277 unsigned long bucket = get_bucket(*pos); 3278 struct net *net = seq_file_net(seq); 3279 struct sock *sk; 3280 3281 while (bucket < UNIX_HASH_SIZE) { 3282 spin_lock(&net->unx.table.locks[bucket]); 3283 3284 sk = unix_from_bucket(seq, pos); 3285 if (sk) 3286 return sk; 3287 3288 spin_unlock(&net->unx.table.locks[bucket]); 3289 3290 *pos = set_bucket_offset(++bucket, 1); 3291 } 3292 3293 return NULL; 3294 } 3295 3296 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3297 loff_t *pos) 3298 { 3299 unsigned long bucket = get_bucket(*pos); 3300 3301 sk = sk_next(sk); 3302 if (sk) 3303 return sk; 3304 3305 3306 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3307 3308 *pos = set_bucket_offset(++bucket, 1); 3309 3310 return unix_get_first(seq, pos); 3311 } 3312 3313 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3314 { 3315 if (!*pos) 3316 return SEQ_START_TOKEN; 3317 3318 return unix_get_first(seq, pos); 3319 } 3320 3321 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3322 { 3323 ++*pos; 3324 3325 if (v == SEQ_START_TOKEN) 3326 return unix_get_first(seq, pos); 3327 3328 return unix_get_next(seq, v, pos); 3329 } 3330 3331 static void unix_seq_stop(struct seq_file *seq, void *v) 3332 { 3333 struct sock *sk = v; 3334 3335 if (sk) 3336 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3337 } 3338 3339 static int unix_seq_show(struct seq_file *seq, void *v) 3340 { 3341 3342 if (v == SEQ_START_TOKEN) 3343 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3344 "Inode Path\n"); 3345 else { 3346 struct sock *s = v; 3347 struct unix_sock *u = unix_sk(s); 3348 unix_state_lock(s); 3349 3350 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3351 s, 3352 refcount_read(&s->sk_refcnt), 3353 0, 3354 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3355 s->sk_type, 3356 s->sk_socket ? 3357 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3358 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3359 sock_i_ino(s)); 3360 3361 if (u->addr) { // under a hash table lock here 3362 int i, len; 3363 seq_putc(seq, ' '); 3364 3365 i = 0; 3366 len = u->addr->len - 3367 offsetof(struct sockaddr_un, sun_path); 3368 if (u->addr->name->sun_path[0]) { 3369 len--; 3370 } else { 3371 seq_putc(seq, '@'); 3372 i++; 3373 } 3374 for ( ; i < len; i++) 3375 seq_putc(seq, u->addr->name->sun_path[i] ?: 3376 '@'); 3377 } 3378 unix_state_unlock(s); 3379 seq_putc(seq, '\n'); 3380 } 3381 3382 return 0; 3383 } 3384 3385 static const struct seq_operations unix_seq_ops = { 3386 .start = unix_seq_start, 3387 .next = unix_seq_next, 3388 .stop = unix_seq_stop, 3389 .show = unix_seq_show, 3390 }; 3391 3392 #ifdef CONFIG_BPF_SYSCALL 3393 struct bpf_unix_iter_state { 3394 struct seq_net_private p; 3395 unsigned int cur_sk; 3396 unsigned int end_sk; 3397 unsigned int max_sk; 3398 struct sock **batch; 3399 bool st_bucket_done; 3400 }; 3401 3402 struct bpf_iter__unix { 3403 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3404 __bpf_md_ptr(struct unix_sock *, unix_sk); 3405 uid_t uid __aligned(8); 3406 }; 3407 3408 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3409 struct unix_sock *unix_sk, uid_t uid) 3410 { 3411 struct bpf_iter__unix ctx; 3412 3413 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3414 ctx.meta = meta; 3415 ctx.unix_sk = unix_sk; 3416 ctx.uid = uid; 3417 return bpf_iter_run_prog(prog, &ctx); 3418 } 3419 3420 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3421 3422 { 3423 struct bpf_unix_iter_state *iter = seq->private; 3424 unsigned int expected = 1; 3425 struct sock *sk; 3426 3427 sock_hold(start_sk); 3428 iter->batch[iter->end_sk++] = start_sk; 3429 3430 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3431 if (iter->end_sk < iter->max_sk) { 3432 sock_hold(sk); 3433 iter->batch[iter->end_sk++] = sk; 3434 } 3435 3436 expected++; 3437 } 3438 3439 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3440 3441 return expected; 3442 } 3443 3444 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3445 { 3446 while (iter->cur_sk < iter->end_sk) 3447 sock_put(iter->batch[iter->cur_sk++]); 3448 } 3449 3450 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3451 unsigned int new_batch_sz) 3452 { 3453 struct sock **new_batch; 3454 3455 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3456 GFP_USER | __GFP_NOWARN); 3457 if (!new_batch) 3458 return -ENOMEM; 3459 3460 bpf_iter_unix_put_batch(iter); 3461 kvfree(iter->batch); 3462 iter->batch = new_batch; 3463 iter->max_sk = new_batch_sz; 3464 3465 return 0; 3466 } 3467 3468 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3469 loff_t *pos) 3470 { 3471 struct bpf_unix_iter_state *iter = seq->private; 3472 unsigned int expected; 3473 bool resized = false; 3474 struct sock *sk; 3475 3476 if (iter->st_bucket_done) 3477 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3478 3479 again: 3480 /* Get a new batch */ 3481 iter->cur_sk = 0; 3482 iter->end_sk = 0; 3483 3484 sk = unix_get_first(seq, pos); 3485 if (!sk) 3486 return NULL; /* Done */ 3487 3488 expected = bpf_iter_unix_hold_batch(seq, sk); 3489 3490 if (iter->end_sk == expected) { 3491 iter->st_bucket_done = true; 3492 return sk; 3493 } 3494 3495 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3496 resized = true; 3497 goto again; 3498 } 3499 3500 return sk; 3501 } 3502 3503 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3504 { 3505 if (!*pos) 3506 return SEQ_START_TOKEN; 3507 3508 /* bpf iter does not support lseek, so it always 3509 * continue from where it was stop()-ped. 3510 */ 3511 return bpf_iter_unix_batch(seq, pos); 3512 } 3513 3514 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3515 { 3516 struct bpf_unix_iter_state *iter = seq->private; 3517 struct sock *sk; 3518 3519 /* Whenever seq_next() is called, the iter->cur_sk is 3520 * done with seq_show(), so advance to the next sk in 3521 * the batch. 3522 */ 3523 if (iter->cur_sk < iter->end_sk) 3524 sock_put(iter->batch[iter->cur_sk++]); 3525 3526 ++*pos; 3527 3528 if (iter->cur_sk < iter->end_sk) 3529 sk = iter->batch[iter->cur_sk]; 3530 else 3531 sk = bpf_iter_unix_batch(seq, pos); 3532 3533 return sk; 3534 } 3535 3536 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3537 { 3538 struct bpf_iter_meta meta; 3539 struct bpf_prog *prog; 3540 struct sock *sk = v; 3541 uid_t uid; 3542 bool slow; 3543 int ret; 3544 3545 if (v == SEQ_START_TOKEN) 3546 return 0; 3547 3548 slow = lock_sock_fast(sk); 3549 3550 if (unlikely(sk_unhashed(sk))) { 3551 ret = SEQ_SKIP; 3552 goto unlock; 3553 } 3554 3555 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3556 meta.seq = seq; 3557 prog = bpf_iter_get_info(&meta, false); 3558 ret = unix_prog_seq_show(prog, &meta, v, uid); 3559 unlock: 3560 unlock_sock_fast(sk, slow); 3561 return ret; 3562 } 3563 3564 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3565 { 3566 struct bpf_unix_iter_state *iter = seq->private; 3567 struct bpf_iter_meta meta; 3568 struct bpf_prog *prog; 3569 3570 if (!v) { 3571 meta.seq = seq; 3572 prog = bpf_iter_get_info(&meta, true); 3573 if (prog) 3574 (void)unix_prog_seq_show(prog, &meta, v, 0); 3575 } 3576 3577 if (iter->cur_sk < iter->end_sk) 3578 bpf_iter_unix_put_batch(iter); 3579 } 3580 3581 static const struct seq_operations bpf_iter_unix_seq_ops = { 3582 .start = bpf_iter_unix_seq_start, 3583 .next = bpf_iter_unix_seq_next, 3584 .stop = bpf_iter_unix_seq_stop, 3585 .show = bpf_iter_unix_seq_show, 3586 }; 3587 #endif 3588 #endif 3589 3590 static const struct net_proto_family unix_family_ops = { 3591 .family = PF_UNIX, 3592 .create = unix_create, 3593 .owner = THIS_MODULE, 3594 }; 3595 3596 3597 static int __net_init unix_net_init(struct net *net) 3598 { 3599 int i; 3600 3601 net->unx.sysctl_max_dgram_qlen = 10; 3602 if (unix_sysctl_register(net)) 3603 goto out; 3604 3605 #ifdef CONFIG_PROC_FS 3606 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3607 sizeof(struct seq_net_private))) 3608 goto err_sysctl; 3609 #endif 3610 3611 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3612 sizeof(spinlock_t), GFP_KERNEL); 3613 if (!net->unx.table.locks) 3614 goto err_proc; 3615 3616 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3617 sizeof(struct hlist_head), 3618 GFP_KERNEL); 3619 if (!net->unx.table.buckets) 3620 goto free_locks; 3621 3622 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3623 spin_lock_init(&net->unx.table.locks[i]); 3624 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3625 } 3626 3627 return 0; 3628 3629 free_locks: 3630 kvfree(net->unx.table.locks); 3631 err_proc: 3632 #ifdef CONFIG_PROC_FS 3633 remove_proc_entry("unix", net->proc_net); 3634 err_sysctl: 3635 #endif 3636 unix_sysctl_unregister(net); 3637 out: 3638 return -ENOMEM; 3639 } 3640 3641 static void __net_exit unix_net_exit(struct net *net) 3642 { 3643 kvfree(net->unx.table.buckets); 3644 kvfree(net->unx.table.locks); 3645 unix_sysctl_unregister(net); 3646 remove_proc_entry("unix", net->proc_net); 3647 } 3648 3649 static struct pernet_operations unix_net_ops = { 3650 .init = unix_net_init, 3651 .exit = unix_net_exit, 3652 }; 3653 3654 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3655 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3656 struct unix_sock *unix_sk, uid_t uid) 3657 3658 #define INIT_BATCH_SZ 16 3659 3660 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3661 { 3662 struct bpf_unix_iter_state *iter = priv_data; 3663 int err; 3664 3665 err = bpf_iter_init_seq_net(priv_data, aux); 3666 if (err) 3667 return err; 3668 3669 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3670 if (err) { 3671 bpf_iter_fini_seq_net(priv_data); 3672 return err; 3673 } 3674 3675 return 0; 3676 } 3677 3678 static void bpf_iter_fini_unix(void *priv_data) 3679 { 3680 struct bpf_unix_iter_state *iter = priv_data; 3681 3682 bpf_iter_fini_seq_net(priv_data); 3683 kvfree(iter->batch); 3684 } 3685 3686 static const struct bpf_iter_seq_info unix_seq_info = { 3687 .seq_ops = &bpf_iter_unix_seq_ops, 3688 .init_seq_private = bpf_iter_init_unix, 3689 .fini_seq_private = bpf_iter_fini_unix, 3690 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3691 }; 3692 3693 static const struct bpf_func_proto * 3694 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3695 const struct bpf_prog *prog) 3696 { 3697 switch (func_id) { 3698 case BPF_FUNC_setsockopt: 3699 return &bpf_sk_setsockopt_proto; 3700 case BPF_FUNC_getsockopt: 3701 return &bpf_sk_getsockopt_proto; 3702 default: 3703 return NULL; 3704 } 3705 } 3706 3707 static struct bpf_iter_reg unix_reg_info = { 3708 .target = "unix", 3709 .ctx_arg_info_size = 1, 3710 .ctx_arg_info = { 3711 { offsetof(struct bpf_iter__unix, unix_sk), 3712 PTR_TO_BTF_ID_OR_NULL }, 3713 }, 3714 .get_func_proto = bpf_iter_unix_get_func_proto, 3715 .seq_info = &unix_seq_info, 3716 }; 3717 3718 static void __init bpf_iter_register(void) 3719 { 3720 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3721 if (bpf_iter_reg_target(&unix_reg_info)) 3722 pr_warn("Warning: could not register bpf iterator unix\n"); 3723 } 3724 #endif 3725 3726 static int __init af_unix_init(void) 3727 { 3728 int i, rc = -1; 3729 3730 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3731 3732 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3733 spin_lock_init(&bsd_socket_locks[i]); 3734 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3735 } 3736 3737 rc = proto_register(&unix_dgram_proto, 1); 3738 if (rc != 0) { 3739 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3740 goto out; 3741 } 3742 3743 rc = proto_register(&unix_stream_proto, 1); 3744 if (rc != 0) { 3745 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3746 proto_unregister(&unix_dgram_proto); 3747 goto out; 3748 } 3749 3750 sock_register(&unix_family_ops); 3751 register_pernet_subsys(&unix_net_ops); 3752 unix_bpf_build_proto(); 3753 3754 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3755 bpf_iter_register(); 3756 #endif 3757 3758 out: 3759 return rc; 3760 } 3761 3762 /* Later than subsys_initcall() because we depend on stuff initialised there */ 3763 fs_initcall(af_unix_init); 3764