xref: /linux/net/tls/tls_sw.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44 
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48 
49 #include "tls.h"
50 
51 struct tls_decrypt_arg {
52 	struct_group(inargs,
53 	bool zc;
54 	bool async;
55 	bool async_done;
56 	u8 tail;
57 	);
58 
59 	struct sk_buff *skb;
60 };
61 
62 struct tls_decrypt_ctx {
63 	struct sock *sk;
64 	u8 iv[TLS_MAX_IV_SIZE];
65 	u8 aad[TLS_MAX_AAD_SIZE];
66 	u8 tail;
67 	bool free_sgout;
68 	struct scatterlist sg[];
69 };
70 
71 noinline void tls_err_abort(struct sock *sk, int err)
72 {
73 	WARN_ON_ONCE(err >= 0);
74 	/* sk->sk_err should contain a positive error code. */
75 	WRITE_ONCE(sk->sk_err, -err);
76 	/* Paired with smp_rmb() in tcp_poll() */
77 	smp_wmb();
78 	sk_error_report(sk);
79 }
80 
81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82                      unsigned int recursion_level)
83 {
84         int start = skb_headlen(skb);
85         int i, chunk = start - offset;
86         struct sk_buff *frag_iter;
87         int elt = 0;
88 
89         if (unlikely(recursion_level >= 24))
90                 return -EMSGSIZE;
91 
92         if (chunk > 0) {
93                 if (chunk > len)
94                         chunk = len;
95                 elt++;
96                 len -= chunk;
97                 if (len == 0)
98                         return elt;
99                 offset += chunk;
100         }
101 
102         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103                 int end;
104 
105                 WARN_ON(start > offset + len);
106 
107                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108                 chunk = end - offset;
109                 if (chunk > 0) {
110                         if (chunk > len)
111                                 chunk = len;
112                         elt++;
113                         len -= chunk;
114                         if (len == 0)
115                                 return elt;
116                         offset += chunk;
117                 }
118                 start = end;
119         }
120 
121         if (unlikely(skb_has_frag_list(skb))) {
122                 skb_walk_frags(skb, frag_iter) {
123                         int end, ret;
124 
125                         WARN_ON(start > offset + len);
126 
127                         end = start + frag_iter->len;
128                         chunk = end - offset;
129                         if (chunk > 0) {
130                                 if (chunk > len)
131                                         chunk = len;
132                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
133                                                 recursion_level + 1);
134                                 if (unlikely(ret < 0))
135                                         return ret;
136                                 elt += ret;
137                                 len -= chunk;
138                                 if (len == 0)
139                                         return elt;
140                                 offset += chunk;
141                         }
142                         start = end;
143                 }
144         }
145         BUG_ON(len);
146         return elt;
147 }
148 
149 /* Return the number of scatterlist elements required to completely map the
150  * skb, or -EMSGSIZE if the recursion depth is exceeded.
151  */
152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
153 {
154         return __skb_nsg(skb, offset, len, 0);
155 }
156 
157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 			      struct tls_decrypt_arg *darg)
159 {
160 	struct strp_msg *rxm = strp_msg(skb);
161 	struct tls_msg *tlm = tls_msg(skb);
162 	int sub = 0;
163 
164 	/* Determine zero-padding length */
165 	if (prot->version == TLS_1_3_VERSION) {
166 		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 		char content_type = darg->zc ? darg->tail : 0;
168 		int err;
169 
170 		while (content_type == 0) {
171 			if (offset < prot->prepend_size)
172 				return -EBADMSG;
173 			err = skb_copy_bits(skb, rxm->offset + offset,
174 					    &content_type, 1);
175 			if (err)
176 				return err;
177 			if (content_type)
178 				break;
179 			sub++;
180 			offset--;
181 		}
182 		tlm->control = content_type;
183 	}
184 	return sub;
185 }
186 
187 static void tls_decrypt_done(void *data, int err)
188 {
189 	struct aead_request *aead_req = data;
190 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 	struct scatterlist *sgout = aead_req->dst;
192 	struct tls_sw_context_rx *ctx;
193 	struct tls_decrypt_ctx *dctx;
194 	struct tls_context *tls_ctx;
195 	struct scatterlist *sg;
196 	unsigned int pages;
197 	struct sock *sk;
198 	int aead_size;
199 
200 	/* If requests get too backlogged crypto API returns -EBUSY and calls
201 	 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 	 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 	 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204 	 * -EINPROGRESS -> 0.
205 	 * We have a single struct crypto_async_request per direction, this
206 	 * scheme doesn't help us, so just ignore the first ->complete().
207 	 */
208 	if (err == -EINPROGRESS)
209 		return;
210 
211 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 	dctx = (void *)((u8 *)aead_req + aead_size);
214 
215 	sk = dctx->sk;
216 	tls_ctx = tls_get_ctx(sk);
217 	ctx = tls_sw_ctx_rx(tls_ctx);
218 
219 	/* Propagate if there was an err */
220 	if (err) {
221 		if (err == -EBADMSG)
222 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 		ctx->async_wait.err = err;
224 		tls_err_abort(sk, err);
225 	}
226 
227 	/* Free the destination pages if skb was not decrypted inplace */
228 	if (dctx->free_sgout) {
229 		/* Skip the first S/G entry as it points to AAD */
230 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231 			if (!sg)
232 				break;
233 			put_page(sg_page(sg));
234 		}
235 	}
236 
237 	kfree(aead_req);
238 
239 	if (atomic_dec_and_test(&ctx->decrypt_pending))
240 		complete(&ctx->async_wait.completion);
241 }
242 
243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
244 {
245 	if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 	atomic_inc(&ctx->decrypt_pending);
248 
249 	return ctx->async_wait.err;
250 }
251 
252 static int tls_do_decryption(struct sock *sk,
253 			     struct scatterlist *sgin,
254 			     struct scatterlist *sgout,
255 			     char *iv_recv,
256 			     size_t data_len,
257 			     struct aead_request *aead_req,
258 			     struct tls_decrypt_arg *darg)
259 {
260 	struct tls_context *tls_ctx = tls_get_ctx(sk);
261 	struct tls_prot_info *prot = &tls_ctx->prot_info;
262 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263 	int ret;
264 
265 	aead_request_set_tfm(aead_req, ctx->aead_recv);
266 	aead_request_set_ad(aead_req, prot->aad_size);
267 	aead_request_set_crypt(aead_req, sgin, sgout,
268 			       data_len + prot->tag_size,
269 			       (u8 *)iv_recv);
270 
271 	if (darg->async) {
272 		aead_request_set_callback(aead_req,
273 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
274 					  tls_decrypt_done, aead_req);
275 		DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 		atomic_inc(&ctx->decrypt_pending);
277 	} else {
278 		DECLARE_CRYPTO_WAIT(wait);
279 
280 		aead_request_set_callback(aead_req,
281 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
282 					  crypto_req_done, &wait);
283 		ret = crypto_aead_decrypt(aead_req);
284 		if (ret == -EINPROGRESS || ret == -EBUSY)
285 			ret = crypto_wait_req(ret, &wait);
286 		return ret;
287 	}
288 
289 	ret = crypto_aead_decrypt(aead_req);
290 	if (ret == -EINPROGRESS)
291 		return 0;
292 
293 	if (ret == -EBUSY) {
294 		ret = tls_decrypt_async_wait(ctx);
295 		darg->async_done = true;
296 		/* all completions have run, we're not doing async anymore */
297 		darg->async = false;
298 		return ret;
299 	}
300 
301 	atomic_dec(&ctx->decrypt_pending);
302 	darg->async = false;
303 
304 	return ret;
305 }
306 
307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
308 {
309 	struct tls_context *tls_ctx = tls_get_ctx(sk);
310 	struct tls_prot_info *prot = &tls_ctx->prot_info;
311 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 	struct tls_rec *rec = ctx->open_rec;
313 
314 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315 	if (target_size > 0)
316 		target_size += prot->overhead_size;
317 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
318 }
319 
320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
321 {
322 	struct tls_context *tls_ctx = tls_get_ctx(sk);
323 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 	struct tls_rec *rec = ctx->open_rec;
325 	struct sk_msg *msg_en = &rec->msg_encrypted;
326 
327 	return sk_msg_alloc(sk, msg_en, len, 0);
328 }
329 
330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
331 {
332 	struct tls_context *tls_ctx = tls_get_ctx(sk);
333 	struct tls_prot_info *prot = &tls_ctx->prot_info;
334 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 	struct tls_rec *rec = ctx->open_rec;
336 	struct sk_msg *msg_pl = &rec->msg_plaintext;
337 	struct sk_msg *msg_en = &rec->msg_encrypted;
338 	int skip, len;
339 
340 	/* We add page references worth len bytes from encrypted sg
341 	 * at the end of plaintext sg. It is guaranteed that msg_en
342 	 * has enough required room (ensured by caller).
343 	 */
344 	len = required - msg_pl->sg.size;
345 
346 	/* Skip initial bytes in msg_en's data to be able to use
347 	 * same offset of both plain and encrypted data.
348 	 */
349 	skip = prot->prepend_size + msg_pl->sg.size;
350 
351 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
352 }
353 
354 static struct tls_rec *tls_get_rec(struct sock *sk)
355 {
356 	struct tls_context *tls_ctx = tls_get_ctx(sk);
357 	struct tls_prot_info *prot = &tls_ctx->prot_info;
358 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 	struct sk_msg *msg_pl, *msg_en;
360 	struct tls_rec *rec;
361 	int mem_size;
362 
363 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
364 
365 	rec = kzalloc(mem_size, sk->sk_allocation);
366 	if (!rec)
367 		return NULL;
368 
369 	msg_pl = &rec->msg_plaintext;
370 	msg_en = &rec->msg_encrypted;
371 
372 	sk_msg_init(msg_pl);
373 	sk_msg_init(msg_en);
374 
375 	sg_init_table(rec->sg_aead_in, 2);
376 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 	sg_unmark_end(&rec->sg_aead_in[1]);
378 
379 	sg_init_table(rec->sg_aead_out, 2);
380 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 	sg_unmark_end(&rec->sg_aead_out[1]);
382 
383 	rec->sk = sk;
384 
385 	return rec;
386 }
387 
388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
389 {
390 	sk_msg_free(sk, &rec->msg_encrypted);
391 	sk_msg_free(sk, &rec->msg_plaintext);
392 	kfree(rec);
393 }
394 
395 static void tls_free_open_rec(struct sock *sk)
396 {
397 	struct tls_context *tls_ctx = tls_get_ctx(sk);
398 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 	struct tls_rec *rec = ctx->open_rec;
400 
401 	if (rec) {
402 		tls_free_rec(sk, rec);
403 		ctx->open_rec = NULL;
404 	}
405 }
406 
407 int tls_tx_records(struct sock *sk, int flags)
408 {
409 	struct tls_context *tls_ctx = tls_get_ctx(sk);
410 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 	struct tls_rec *rec, *tmp;
412 	struct sk_msg *msg_en;
413 	int tx_flags, rc = 0;
414 
415 	if (tls_is_partially_sent_record(tls_ctx)) {
416 		rec = list_first_entry(&ctx->tx_list,
417 				       struct tls_rec, list);
418 
419 		if (flags == -1)
420 			tx_flags = rec->tx_flags;
421 		else
422 			tx_flags = flags;
423 
424 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425 		if (rc)
426 			goto tx_err;
427 
428 		/* Full record has been transmitted.
429 		 * Remove the head of tx_list
430 		 */
431 		list_del(&rec->list);
432 		sk_msg_free(sk, &rec->msg_plaintext);
433 		kfree(rec);
434 	}
435 
436 	/* Tx all ready records */
437 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 		if (READ_ONCE(rec->tx_ready)) {
439 			if (flags == -1)
440 				tx_flags = rec->tx_flags;
441 			else
442 				tx_flags = flags;
443 
444 			msg_en = &rec->msg_encrypted;
445 			rc = tls_push_sg(sk, tls_ctx,
446 					 &msg_en->sg.data[msg_en->sg.curr],
447 					 0, tx_flags);
448 			if (rc)
449 				goto tx_err;
450 
451 			list_del(&rec->list);
452 			sk_msg_free(sk, &rec->msg_plaintext);
453 			kfree(rec);
454 		} else {
455 			break;
456 		}
457 	}
458 
459 tx_err:
460 	if (rc < 0 && rc != -EAGAIN)
461 		tls_err_abort(sk, rc);
462 
463 	return rc;
464 }
465 
466 static void tls_encrypt_done(void *data, int err)
467 {
468 	struct tls_sw_context_tx *ctx;
469 	struct tls_context *tls_ctx;
470 	struct tls_prot_info *prot;
471 	struct tls_rec *rec = data;
472 	struct scatterlist *sge;
473 	struct sk_msg *msg_en;
474 	struct sock *sk;
475 
476 	if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477 		return;
478 
479 	msg_en = &rec->msg_encrypted;
480 
481 	sk = rec->sk;
482 	tls_ctx = tls_get_ctx(sk);
483 	prot = &tls_ctx->prot_info;
484 	ctx = tls_sw_ctx_tx(tls_ctx);
485 
486 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 	sge->offset -= prot->prepend_size;
488 	sge->length += prot->prepend_size;
489 
490 	/* Check if error is previously set on socket */
491 	if (err || sk->sk_err) {
492 		rec = NULL;
493 
494 		/* If err is already set on socket, return the same code */
495 		if (sk->sk_err) {
496 			ctx->async_wait.err = -sk->sk_err;
497 		} else {
498 			ctx->async_wait.err = err;
499 			tls_err_abort(sk, err);
500 		}
501 	}
502 
503 	if (rec) {
504 		struct tls_rec *first_rec;
505 
506 		/* Mark the record as ready for transmission */
507 		smp_store_mb(rec->tx_ready, true);
508 
509 		/* If received record is at head of tx_list, schedule tx */
510 		first_rec = list_first_entry(&ctx->tx_list,
511 					     struct tls_rec, list);
512 		if (rec == first_rec) {
513 			/* Schedule the transmission */
514 			if (!test_and_set_bit(BIT_TX_SCHEDULED,
515 					      &ctx->tx_bitmask))
516 				schedule_delayed_work(&ctx->tx_work.work, 1);
517 		}
518 	}
519 
520 	if (atomic_dec_and_test(&ctx->encrypt_pending))
521 		complete(&ctx->async_wait.completion);
522 }
523 
524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
525 {
526 	if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 	atomic_inc(&ctx->encrypt_pending);
529 
530 	return ctx->async_wait.err;
531 }
532 
533 static int tls_do_encryption(struct sock *sk,
534 			     struct tls_context *tls_ctx,
535 			     struct tls_sw_context_tx *ctx,
536 			     struct aead_request *aead_req,
537 			     size_t data_len, u32 start)
538 {
539 	struct tls_prot_info *prot = &tls_ctx->prot_info;
540 	struct tls_rec *rec = ctx->open_rec;
541 	struct sk_msg *msg_en = &rec->msg_encrypted;
542 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 	int rc, iv_offset = 0;
544 
545 	/* For CCM based ciphers, first byte of IV is a constant */
546 	switch (prot->cipher_type) {
547 	case TLS_CIPHER_AES_CCM_128:
548 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549 		iv_offset = 1;
550 		break;
551 	case TLS_CIPHER_SM4_CCM:
552 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553 		iv_offset = 1;
554 		break;
555 	}
556 
557 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 	       prot->iv_size + prot->salt_size);
559 
560 	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 			    tls_ctx->tx.rec_seq);
562 
563 	sge->offset += prot->prepend_size;
564 	sge->length -= prot->prepend_size;
565 
566 	msg_en->sg.curr = start;
567 
568 	aead_request_set_tfm(aead_req, ctx->aead_send);
569 	aead_request_set_ad(aead_req, prot->aad_size);
570 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
571 			       rec->sg_aead_out,
572 			       data_len, rec->iv_data);
573 
574 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 				  tls_encrypt_done, rec);
576 
577 	/* Add the record in tx_list */
578 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 	DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 	atomic_inc(&ctx->encrypt_pending);
581 
582 	rc = crypto_aead_encrypt(aead_req);
583 	if (rc == -EBUSY) {
584 		rc = tls_encrypt_async_wait(ctx);
585 		rc = rc ?: -EINPROGRESS;
586 	}
587 	if (!rc || rc != -EINPROGRESS) {
588 		atomic_dec(&ctx->encrypt_pending);
589 		sge->offset -= prot->prepend_size;
590 		sge->length += prot->prepend_size;
591 	}
592 
593 	if (!rc) {
594 		WRITE_ONCE(rec->tx_ready, true);
595 	} else if (rc != -EINPROGRESS) {
596 		list_del(&rec->list);
597 		return rc;
598 	}
599 
600 	/* Unhook the record from context if encryption is not failure */
601 	ctx->open_rec = NULL;
602 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603 	return rc;
604 }
605 
606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 				 struct tls_rec **to, struct sk_msg *msg_opl,
608 				 struct sk_msg *msg_oen, u32 split_point,
609 				 u32 tx_overhead_size, u32 *orig_end)
610 {
611 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 	struct scatterlist *sge, *osge, *nsge;
613 	u32 orig_size = msg_opl->sg.size;
614 	struct scatterlist tmp = { };
615 	struct sk_msg *msg_npl;
616 	struct tls_rec *new;
617 	int ret;
618 
619 	new = tls_get_rec(sk);
620 	if (!new)
621 		return -ENOMEM;
622 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 			   tx_overhead_size, 0);
624 	if (ret < 0) {
625 		tls_free_rec(sk, new);
626 		return ret;
627 	}
628 
629 	*orig_end = msg_opl->sg.end;
630 	i = msg_opl->sg.start;
631 	sge = sk_msg_elem(msg_opl, i);
632 	while (apply && sge->length) {
633 		if (sge->length > apply) {
634 			u32 len = sge->length - apply;
635 
636 			get_page(sg_page(sge));
637 			sg_set_page(&tmp, sg_page(sge), len,
638 				    sge->offset + apply);
639 			sge->length = apply;
640 			bytes += apply;
641 			apply = 0;
642 		} else {
643 			apply -= sge->length;
644 			bytes += sge->length;
645 		}
646 
647 		sk_msg_iter_var_next(i);
648 		if (i == msg_opl->sg.end)
649 			break;
650 		sge = sk_msg_elem(msg_opl, i);
651 	}
652 
653 	msg_opl->sg.end = i;
654 	msg_opl->sg.curr = i;
655 	msg_opl->sg.copybreak = 0;
656 	msg_opl->apply_bytes = 0;
657 	msg_opl->sg.size = bytes;
658 
659 	msg_npl = &new->msg_plaintext;
660 	msg_npl->apply_bytes = apply;
661 	msg_npl->sg.size = orig_size - bytes;
662 
663 	j = msg_npl->sg.start;
664 	nsge = sk_msg_elem(msg_npl, j);
665 	if (tmp.length) {
666 		memcpy(nsge, &tmp, sizeof(*nsge));
667 		sk_msg_iter_var_next(j);
668 		nsge = sk_msg_elem(msg_npl, j);
669 	}
670 
671 	osge = sk_msg_elem(msg_opl, i);
672 	while (osge->length) {
673 		memcpy(nsge, osge, sizeof(*nsge));
674 		sg_unmark_end(nsge);
675 		sk_msg_iter_var_next(i);
676 		sk_msg_iter_var_next(j);
677 		if (i == *orig_end)
678 			break;
679 		osge = sk_msg_elem(msg_opl, i);
680 		nsge = sk_msg_elem(msg_npl, j);
681 	}
682 
683 	msg_npl->sg.end = j;
684 	msg_npl->sg.curr = j;
685 	msg_npl->sg.copybreak = 0;
686 
687 	*to = new;
688 	return 0;
689 }
690 
691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 				  struct tls_rec *from, u32 orig_end)
693 {
694 	struct sk_msg *msg_npl = &from->msg_plaintext;
695 	struct sk_msg *msg_opl = &to->msg_plaintext;
696 	struct scatterlist *osge, *nsge;
697 	u32 i, j;
698 
699 	i = msg_opl->sg.end;
700 	sk_msg_iter_var_prev(i);
701 	j = msg_npl->sg.start;
702 
703 	osge = sk_msg_elem(msg_opl, i);
704 	nsge = sk_msg_elem(msg_npl, j);
705 
706 	if (sg_page(osge) == sg_page(nsge) &&
707 	    osge->offset + osge->length == nsge->offset) {
708 		osge->length += nsge->length;
709 		put_page(sg_page(nsge));
710 	}
711 
712 	msg_opl->sg.end = orig_end;
713 	msg_opl->sg.curr = orig_end;
714 	msg_opl->sg.copybreak = 0;
715 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 	msg_opl->sg.size += msg_npl->sg.size;
717 
718 	sk_msg_free(sk, &to->msg_encrypted);
719 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
720 
721 	kfree(from);
722 }
723 
724 static int tls_push_record(struct sock *sk, int flags,
725 			   unsigned char record_type)
726 {
727 	struct tls_context *tls_ctx = tls_get_ctx(sk);
728 	struct tls_prot_info *prot = &tls_ctx->prot_info;
729 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 	u32 i, split_point, orig_end;
732 	struct sk_msg *msg_pl, *msg_en;
733 	struct aead_request *req;
734 	bool split;
735 	int rc;
736 
737 	if (!rec)
738 		return 0;
739 
740 	msg_pl = &rec->msg_plaintext;
741 	msg_en = &rec->msg_encrypted;
742 
743 	split_point = msg_pl->apply_bytes;
744 	split = split_point && split_point < msg_pl->sg.size;
745 	if (unlikely((!split &&
746 		      msg_pl->sg.size +
747 		      prot->overhead_size > msg_en->sg.size) ||
748 		     (split &&
749 		      split_point +
750 		      prot->overhead_size > msg_en->sg.size))) {
751 		split = true;
752 		split_point = msg_en->sg.size;
753 	}
754 	if (split) {
755 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 					   split_point, prot->overhead_size,
757 					   &orig_end);
758 		if (rc < 0)
759 			return rc;
760 		/* This can happen if above tls_split_open_record allocates
761 		 * a single large encryption buffer instead of two smaller
762 		 * ones. In this case adjust pointers and continue without
763 		 * split.
764 		 */
765 		if (!msg_pl->sg.size) {
766 			tls_merge_open_record(sk, rec, tmp, orig_end);
767 			msg_pl = &rec->msg_plaintext;
768 			msg_en = &rec->msg_encrypted;
769 			split = false;
770 		}
771 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 			    prot->overhead_size);
773 	}
774 
775 	rec->tx_flags = flags;
776 	req = &rec->aead_req;
777 
778 	i = msg_pl->sg.end;
779 	sk_msg_iter_var_prev(i);
780 
781 	rec->content_type = record_type;
782 	if (prot->version == TLS_1_3_VERSION) {
783 		/* Add content type to end of message.  No padding added */
784 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 		sg_mark_end(&rec->sg_content_type);
786 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 			 &rec->sg_content_type);
788 	} else {
789 		sg_mark_end(sk_msg_elem(msg_pl, i));
790 	}
791 
792 	if (msg_pl->sg.end < msg_pl->sg.start) {
793 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795 			 msg_pl->sg.data);
796 	}
797 
798 	i = msg_pl->sg.start;
799 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
800 
801 	i = msg_en->sg.end;
802 	sk_msg_iter_var_prev(i);
803 	sg_mark_end(sk_msg_elem(msg_en, i));
804 
805 	i = msg_en->sg.start;
806 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
807 
808 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 		     tls_ctx->tx.rec_seq, record_type, prot);
810 
811 	tls_fill_prepend(tls_ctx,
812 			 page_address(sg_page(&msg_en->sg.data[i])) +
813 			 msg_en->sg.data[i].offset,
814 			 msg_pl->sg.size + prot->tail_size,
815 			 record_type);
816 
817 	tls_ctx->pending_open_record_frags = false;
818 
819 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 			       msg_pl->sg.size + prot->tail_size, i);
821 	if (rc < 0) {
822 		if (rc != -EINPROGRESS) {
823 			tls_err_abort(sk, -EBADMSG);
824 			if (split) {
825 				tls_ctx->pending_open_record_frags = true;
826 				tls_merge_open_record(sk, rec, tmp, orig_end);
827 			}
828 		}
829 		ctx->async_capable = 1;
830 		return rc;
831 	} else if (split) {
832 		msg_pl = &tmp->msg_plaintext;
833 		msg_en = &tmp->msg_encrypted;
834 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 		tls_ctx->pending_open_record_frags = true;
836 		ctx->open_rec = tmp;
837 	}
838 
839 	return tls_tx_records(sk, flags);
840 }
841 
842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 			       bool full_record, u8 record_type,
844 			       ssize_t *copied, int flags)
845 {
846 	struct tls_context *tls_ctx = tls_get_ctx(sk);
847 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 	struct sk_msg msg_redir = { };
849 	struct sk_psock *psock;
850 	struct sock *sk_redir;
851 	struct tls_rec *rec;
852 	bool enospc, policy, redir_ingress;
853 	int err = 0, send;
854 	u32 delta = 0;
855 
856 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 	psock = sk_psock_get(sk);
858 	if (!psock || !policy) {
859 		err = tls_push_record(sk, flags, record_type);
860 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 			*copied -= sk_msg_free(sk, msg);
862 			tls_free_open_rec(sk);
863 			err = -sk->sk_err;
864 		}
865 		if (psock)
866 			sk_psock_put(sk, psock);
867 		return err;
868 	}
869 more_data:
870 	enospc = sk_msg_full(msg);
871 	if (psock->eval == __SK_NONE) {
872 		delta = msg->sg.size;
873 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 		delta -= msg->sg.size;
875 	}
876 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
877 	    !enospc && !full_record) {
878 		err = -ENOSPC;
879 		goto out_err;
880 	}
881 	msg->cork_bytes = 0;
882 	send = msg->sg.size;
883 	if (msg->apply_bytes && msg->apply_bytes < send)
884 		send = msg->apply_bytes;
885 
886 	switch (psock->eval) {
887 	case __SK_PASS:
888 		err = tls_push_record(sk, flags, record_type);
889 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
890 			*copied -= sk_msg_free(sk, msg);
891 			tls_free_open_rec(sk);
892 			err = -sk->sk_err;
893 			goto out_err;
894 		}
895 		break;
896 	case __SK_REDIRECT:
897 		redir_ingress = psock->redir_ingress;
898 		sk_redir = psock->sk_redir;
899 		memcpy(&msg_redir, msg, sizeof(*msg));
900 		if (msg->apply_bytes < send)
901 			msg->apply_bytes = 0;
902 		else
903 			msg->apply_bytes -= send;
904 		sk_msg_return_zero(sk, msg, send);
905 		msg->sg.size -= send;
906 		release_sock(sk);
907 		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
908 					    &msg_redir, send, flags);
909 		lock_sock(sk);
910 		if (err < 0) {
911 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
912 			msg->sg.size = 0;
913 		}
914 		if (msg->sg.size == 0)
915 			tls_free_open_rec(sk);
916 		break;
917 	case __SK_DROP:
918 	default:
919 		sk_msg_free_partial(sk, msg, send);
920 		if (msg->apply_bytes < send)
921 			msg->apply_bytes = 0;
922 		else
923 			msg->apply_bytes -= send;
924 		if (msg->sg.size == 0)
925 			tls_free_open_rec(sk);
926 		*copied -= (send + delta);
927 		err = -EACCES;
928 	}
929 
930 	if (likely(!err)) {
931 		bool reset_eval = !ctx->open_rec;
932 
933 		rec = ctx->open_rec;
934 		if (rec) {
935 			msg = &rec->msg_plaintext;
936 			if (!msg->apply_bytes)
937 				reset_eval = true;
938 		}
939 		if (reset_eval) {
940 			psock->eval = __SK_NONE;
941 			if (psock->sk_redir) {
942 				sock_put(psock->sk_redir);
943 				psock->sk_redir = NULL;
944 			}
945 		}
946 		if (rec)
947 			goto more_data;
948 	}
949  out_err:
950 	sk_psock_put(sk, psock);
951 	return err;
952 }
953 
954 static int tls_sw_push_pending_record(struct sock *sk, int flags)
955 {
956 	struct tls_context *tls_ctx = tls_get_ctx(sk);
957 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
958 	struct tls_rec *rec = ctx->open_rec;
959 	struct sk_msg *msg_pl;
960 	size_t copied;
961 
962 	if (!rec)
963 		return 0;
964 
965 	msg_pl = &rec->msg_plaintext;
966 	copied = msg_pl->sg.size;
967 	if (!copied)
968 		return 0;
969 
970 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
971 				   &copied, flags);
972 }
973 
974 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
975 				 struct sk_msg *msg_pl, size_t try_to_copy,
976 				 ssize_t *copied)
977 {
978 	struct page *page = NULL, **pages = &page;
979 
980 	do {
981 		ssize_t part;
982 		size_t off;
983 
984 		part = iov_iter_extract_pages(&msg->msg_iter, &pages,
985 					      try_to_copy, 1, 0, &off);
986 		if (part <= 0)
987 			return part ?: -EIO;
988 
989 		if (WARN_ON_ONCE(!sendpage_ok(page))) {
990 			iov_iter_revert(&msg->msg_iter, part);
991 			return -EIO;
992 		}
993 
994 		sk_msg_page_add(msg_pl, page, part, off);
995 		msg_pl->sg.copybreak = 0;
996 		msg_pl->sg.curr = msg_pl->sg.end;
997 		sk_mem_charge(sk, part);
998 		*copied += part;
999 		try_to_copy -= part;
1000 	} while (try_to_copy && !sk_msg_full(msg_pl));
1001 
1002 	return 0;
1003 }
1004 
1005 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1006 				 size_t size)
1007 {
1008 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1009 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1010 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1011 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1012 	bool async_capable = ctx->async_capable;
1013 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1014 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1015 	bool eor = !(msg->msg_flags & MSG_MORE);
1016 	size_t try_to_copy;
1017 	ssize_t copied = 0;
1018 	struct sk_msg *msg_pl, *msg_en;
1019 	struct tls_rec *rec;
1020 	int required_size;
1021 	int num_async = 0;
1022 	bool full_record;
1023 	int record_room;
1024 	int num_zc = 0;
1025 	int orig_size;
1026 	int ret = 0;
1027 
1028 	if (!eor && (msg->msg_flags & MSG_EOR))
1029 		return -EINVAL;
1030 
1031 	if (unlikely(msg->msg_controllen)) {
1032 		ret = tls_process_cmsg(sk, msg, &record_type);
1033 		if (ret) {
1034 			if (ret == -EINPROGRESS)
1035 				num_async++;
1036 			else if (ret != -EAGAIN)
1037 				goto send_end;
1038 		}
1039 	}
1040 
1041 	while (msg_data_left(msg)) {
1042 		if (sk->sk_err) {
1043 			ret = -sk->sk_err;
1044 			goto send_end;
1045 		}
1046 
1047 		if (ctx->open_rec)
1048 			rec = ctx->open_rec;
1049 		else
1050 			rec = ctx->open_rec = tls_get_rec(sk);
1051 		if (!rec) {
1052 			ret = -ENOMEM;
1053 			goto send_end;
1054 		}
1055 
1056 		msg_pl = &rec->msg_plaintext;
1057 		msg_en = &rec->msg_encrypted;
1058 
1059 		orig_size = msg_pl->sg.size;
1060 		full_record = false;
1061 		try_to_copy = msg_data_left(msg);
1062 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1063 		if (try_to_copy >= record_room) {
1064 			try_to_copy = record_room;
1065 			full_record = true;
1066 		}
1067 
1068 		required_size = msg_pl->sg.size + try_to_copy +
1069 				prot->overhead_size;
1070 
1071 		if (!sk_stream_memory_free(sk))
1072 			goto wait_for_sndbuf;
1073 
1074 alloc_encrypted:
1075 		ret = tls_alloc_encrypted_msg(sk, required_size);
1076 		if (ret) {
1077 			if (ret != -ENOSPC)
1078 				goto wait_for_memory;
1079 
1080 			/* Adjust try_to_copy according to the amount that was
1081 			 * actually allocated. The difference is due
1082 			 * to max sg elements limit
1083 			 */
1084 			try_to_copy -= required_size - msg_en->sg.size;
1085 			full_record = true;
1086 		}
1087 
1088 		if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1089 			ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1090 						    try_to_copy, &copied);
1091 			if (ret < 0)
1092 				goto send_end;
1093 			tls_ctx->pending_open_record_frags = true;
1094 
1095 			if (sk_msg_full(msg_pl))
1096 				full_record = true;
1097 
1098 			if (full_record || eor)
1099 				goto copied;
1100 			continue;
1101 		}
1102 
1103 		if (!is_kvec && (full_record || eor) && !async_capable) {
1104 			u32 first = msg_pl->sg.end;
1105 
1106 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1107 							msg_pl, try_to_copy);
1108 			if (ret)
1109 				goto fallback_to_reg_send;
1110 
1111 			num_zc++;
1112 			copied += try_to_copy;
1113 
1114 			sk_msg_sg_copy_set(msg_pl, first);
1115 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1116 						  record_type, &copied,
1117 						  msg->msg_flags);
1118 			if (ret) {
1119 				if (ret == -EINPROGRESS)
1120 					num_async++;
1121 				else if (ret == -ENOMEM)
1122 					goto wait_for_memory;
1123 				else if (ctx->open_rec && ret == -ENOSPC)
1124 					goto rollback_iter;
1125 				else if (ret != -EAGAIN)
1126 					goto send_end;
1127 			}
1128 			continue;
1129 rollback_iter:
1130 			copied -= try_to_copy;
1131 			sk_msg_sg_copy_clear(msg_pl, first);
1132 			iov_iter_revert(&msg->msg_iter,
1133 					msg_pl->sg.size - orig_size);
1134 fallback_to_reg_send:
1135 			sk_msg_trim(sk, msg_pl, orig_size);
1136 		}
1137 
1138 		required_size = msg_pl->sg.size + try_to_copy;
1139 
1140 		ret = tls_clone_plaintext_msg(sk, required_size);
1141 		if (ret) {
1142 			if (ret != -ENOSPC)
1143 				goto send_end;
1144 
1145 			/* Adjust try_to_copy according to the amount that was
1146 			 * actually allocated. The difference is due
1147 			 * to max sg elements limit
1148 			 */
1149 			try_to_copy -= required_size - msg_pl->sg.size;
1150 			full_record = true;
1151 			sk_msg_trim(sk, msg_en,
1152 				    msg_pl->sg.size + prot->overhead_size);
1153 		}
1154 
1155 		if (try_to_copy) {
1156 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1157 						       msg_pl, try_to_copy);
1158 			if (ret < 0)
1159 				goto trim_sgl;
1160 		}
1161 
1162 		/* Open records defined only if successfully copied, otherwise
1163 		 * we would trim the sg but not reset the open record frags.
1164 		 */
1165 		tls_ctx->pending_open_record_frags = true;
1166 		copied += try_to_copy;
1167 copied:
1168 		if (full_record || eor) {
1169 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1170 						  record_type, &copied,
1171 						  msg->msg_flags);
1172 			if (ret) {
1173 				if (ret == -EINPROGRESS)
1174 					num_async++;
1175 				else if (ret == -ENOMEM)
1176 					goto wait_for_memory;
1177 				else if (ret != -EAGAIN) {
1178 					if (ret == -ENOSPC)
1179 						ret = 0;
1180 					goto send_end;
1181 				}
1182 			}
1183 		}
1184 
1185 		continue;
1186 
1187 wait_for_sndbuf:
1188 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1189 wait_for_memory:
1190 		ret = sk_stream_wait_memory(sk, &timeo);
1191 		if (ret) {
1192 trim_sgl:
1193 			if (ctx->open_rec)
1194 				tls_trim_both_msgs(sk, orig_size);
1195 			goto send_end;
1196 		}
1197 
1198 		if (ctx->open_rec && msg_en->sg.size < required_size)
1199 			goto alloc_encrypted;
1200 	}
1201 
1202 	if (!num_async) {
1203 		goto send_end;
1204 	} else if (num_zc || eor) {
1205 		int err;
1206 
1207 		/* Wait for pending encryptions to get completed */
1208 		err = tls_encrypt_async_wait(ctx);
1209 		if (err) {
1210 			ret = err;
1211 			copied = 0;
1212 		}
1213 	}
1214 
1215 	/* Transmit if any encryptions have completed */
1216 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1217 		cancel_delayed_work(&ctx->tx_work.work);
1218 		tls_tx_records(sk, msg->msg_flags);
1219 	}
1220 
1221 send_end:
1222 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1223 	return copied > 0 ? copied : ret;
1224 }
1225 
1226 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1227 {
1228 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1229 	int ret;
1230 
1231 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1232 			       MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1233 			       MSG_SENDPAGE_NOPOLICY))
1234 		return -EOPNOTSUPP;
1235 
1236 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1237 	if (ret)
1238 		return ret;
1239 	lock_sock(sk);
1240 	ret = tls_sw_sendmsg_locked(sk, msg, size);
1241 	release_sock(sk);
1242 	mutex_unlock(&tls_ctx->tx_lock);
1243 	return ret;
1244 }
1245 
1246 /*
1247  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1248  */
1249 void tls_sw_splice_eof(struct socket *sock)
1250 {
1251 	struct sock *sk = sock->sk;
1252 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1253 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1254 	struct tls_rec *rec;
1255 	struct sk_msg *msg_pl;
1256 	ssize_t copied = 0;
1257 	bool retrying = false;
1258 	int ret = 0;
1259 
1260 	if (!ctx->open_rec)
1261 		return;
1262 
1263 	mutex_lock(&tls_ctx->tx_lock);
1264 	lock_sock(sk);
1265 
1266 retry:
1267 	/* same checks as in tls_sw_push_pending_record() */
1268 	rec = ctx->open_rec;
1269 	if (!rec)
1270 		goto unlock;
1271 
1272 	msg_pl = &rec->msg_plaintext;
1273 	if (msg_pl->sg.size == 0)
1274 		goto unlock;
1275 
1276 	/* Check the BPF advisor and perform transmission. */
1277 	ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1278 				  &copied, 0);
1279 	switch (ret) {
1280 	case 0:
1281 	case -EAGAIN:
1282 		if (retrying)
1283 			goto unlock;
1284 		retrying = true;
1285 		goto retry;
1286 	case -EINPROGRESS:
1287 		break;
1288 	default:
1289 		goto unlock;
1290 	}
1291 
1292 	/* Wait for pending encryptions to get completed */
1293 	if (tls_encrypt_async_wait(ctx))
1294 		goto unlock;
1295 
1296 	/* Transmit if any encryptions have completed */
1297 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1298 		cancel_delayed_work(&ctx->tx_work.work);
1299 		tls_tx_records(sk, 0);
1300 	}
1301 
1302 unlock:
1303 	release_sock(sk);
1304 	mutex_unlock(&tls_ctx->tx_lock);
1305 }
1306 
1307 static int
1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1309 		bool released)
1310 {
1311 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1312 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1313 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1314 	int ret = 0;
1315 	long timeo;
1316 
1317 	/* a rekey is pending, let userspace deal with it */
1318 	if (unlikely(ctx->key_update_pending))
1319 		return -EKEYEXPIRED;
1320 
1321 	timeo = sock_rcvtimeo(sk, nonblock);
1322 
1323 	while (!tls_strp_msg_ready(ctx)) {
1324 		if (!sk_psock_queue_empty(psock))
1325 			return 0;
1326 
1327 		if (sk->sk_err)
1328 			return sock_error(sk);
1329 
1330 		if (ret < 0)
1331 			return ret;
1332 
1333 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1334 			tls_strp_check_rcv(&ctx->strp);
1335 			if (tls_strp_msg_ready(ctx))
1336 				break;
1337 		}
1338 
1339 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1340 			return 0;
1341 
1342 		if (sock_flag(sk, SOCK_DONE))
1343 			return 0;
1344 
1345 		if (!timeo)
1346 			return -EAGAIN;
1347 
1348 		released = true;
1349 		add_wait_queue(sk_sleep(sk), &wait);
1350 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1351 		ret = sk_wait_event(sk, &timeo,
1352 				    tls_strp_msg_ready(ctx) ||
1353 				    !sk_psock_queue_empty(psock),
1354 				    &wait);
1355 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1356 		remove_wait_queue(sk_sleep(sk), &wait);
1357 
1358 		/* Handle signals */
1359 		if (signal_pending(current))
1360 			return sock_intr_errno(timeo);
1361 	}
1362 
1363 	tls_strp_msg_load(&ctx->strp, released);
1364 
1365 	return 1;
1366 }
1367 
1368 static int tls_setup_from_iter(struct iov_iter *from,
1369 			       int length, int *pages_used,
1370 			       struct scatterlist *to,
1371 			       int to_max_pages)
1372 {
1373 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1374 	struct page *pages[MAX_SKB_FRAGS];
1375 	unsigned int size = 0;
1376 	ssize_t copied, use;
1377 	size_t offset;
1378 
1379 	while (length > 0) {
1380 		i = 0;
1381 		maxpages = to_max_pages - num_elem;
1382 		if (maxpages == 0) {
1383 			rc = -EFAULT;
1384 			goto out;
1385 		}
1386 		copied = iov_iter_get_pages2(from, pages,
1387 					    length,
1388 					    maxpages, &offset);
1389 		if (copied <= 0) {
1390 			rc = -EFAULT;
1391 			goto out;
1392 		}
1393 
1394 		length -= copied;
1395 		size += copied;
1396 		while (copied) {
1397 			use = min_t(int, copied, PAGE_SIZE - offset);
1398 
1399 			sg_set_page(&to[num_elem],
1400 				    pages[i], use, offset);
1401 			sg_unmark_end(&to[num_elem]);
1402 			/* We do not uncharge memory from this API */
1403 
1404 			offset = 0;
1405 			copied -= use;
1406 
1407 			i++;
1408 			num_elem++;
1409 		}
1410 	}
1411 	/* Mark the end in the last sg entry if newly added */
1412 	if (num_elem > *pages_used)
1413 		sg_mark_end(&to[num_elem - 1]);
1414 out:
1415 	if (rc)
1416 		iov_iter_revert(from, size);
1417 	*pages_used = num_elem;
1418 
1419 	return rc;
1420 }
1421 
1422 static struct sk_buff *
1423 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1424 		     unsigned int full_len)
1425 {
1426 	struct strp_msg *clr_rxm;
1427 	struct sk_buff *clr_skb;
1428 	int err;
1429 
1430 	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1431 				       &err, sk->sk_allocation);
1432 	if (!clr_skb)
1433 		return NULL;
1434 
1435 	skb_copy_header(clr_skb, skb);
1436 	clr_skb->len = full_len;
1437 	clr_skb->data_len = full_len;
1438 
1439 	clr_rxm = strp_msg(clr_skb);
1440 	clr_rxm->offset = 0;
1441 
1442 	return clr_skb;
1443 }
1444 
1445 /* Decrypt handlers
1446  *
1447  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1448  * They must transform the darg in/out argument are as follows:
1449  *       |          Input            |         Output
1450  * -------------------------------------------------------------------
1451  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1452  * async | Async decrypt allowed     | Async crypto used / in progress
1453  *   skb |            *              | Output skb
1454  *
1455  * If ZC decryption was performed darg.skb will point to the input skb.
1456  */
1457 
1458 /* This function decrypts the input skb into either out_iov or in out_sg
1459  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1460  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1461  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1462  * NULL, then the decryption happens inside skb buffers itself, i.e.
1463  * zero-copy gets disabled and 'darg->zc' is updated.
1464  */
1465 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1466 			  struct scatterlist *out_sg,
1467 			  struct tls_decrypt_arg *darg)
1468 {
1469 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1470 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1471 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1472 	int n_sgin, n_sgout, aead_size, err, pages = 0;
1473 	struct sk_buff *skb = tls_strp_msg(ctx);
1474 	const struct strp_msg *rxm = strp_msg(skb);
1475 	const struct tls_msg *tlm = tls_msg(skb);
1476 	struct aead_request *aead_req;
1477 	struct scatterlist *sgin = NULL;
1478 	struct scatterlist *sgout = NULL;
1479 	const int data_len = rxm->full_len - prot->overhead_size;
1480 	int tail_pages = !!prot->tail_size;
1481 	struct tls_decrypt_ctx *dctx;
1482 	struct sk_buff *clear_skb;
1483 	int iv_offset = 0;
1484 	u8 *mem;
1485 
1486 	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1487 			 rxm->full_len - prot->prepend_size);
1488 	if (n_sgin < 1)
1489 		return n_sgin ?: -EBADMSG;
1490 
1491 	if (darg->zc && (out_iov || out_sg)) {
1492 		clear_skb = NULL;
1493 
1494 		if (out_iov)
1495 			n_sgout = 1 + tail_pages +
1496 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1497 		else
1498 			n_sgout = sg_nents(out_sg);
1499 	} else {
1500 		darg->zc = false;
1501 
1502 		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1503 		if (!clear_skb)
1504 			return -ENOMEM;
1505 
1506 		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1507 	}
1508 
1509 	/* Increment to accommodate AAD */
1510 	n_sgin = n_sgin + 1;
1511 
1512 	/* Allocate a single block of memory which contains
1513 	 *   aead_req || tls_decrypt_ctx.
1514 	 * Both structs are variable length.
1515 	 */
1516 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1517 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
1518 	mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1519 		      sk->sk_allocation);
1520 	if (!mem) {
1521 		err = -ENOMEM;
1522 		goto exit_free_skb;
1523 	}
1524 
1525 	/* Segment the allocated memory */
1526 	aead_req = (struct aead_request *)mem;
1527 	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1528 	dctx->sk = sk;
1529 	sgin = &dctx->sg[0];
1530 	sgout = &dctx->sg[n_sgin];
1531 
1532 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1533 	switch (prot->cipher_type) {
1534 	case TLS_CIPHER_AES_CCM_128:
1535 		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1536 		iv_offset = 1;
1537 		break;
1538 	case TLS_CIPHER_SM4_CCM:
1539 		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1540 		iv_offset = 1;
1541 		break;
1542 	}
1543 
1544 	/* Prepare IV */
1545 	if (prot->version == TLS_1_3_VERSION ||
1546 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1547 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1548 		       prot->iv_size + prot->salt_size);
1549 	} else {
1550 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1551 				    &dctx->iv[iv_offset] + prot->salt_size,
1552 				    prot->iv_size);
1553 		if (err < 0)
1554 			goto exit_free;
1555 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1556 	}
1557 	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1558 
1559 	/* Prepare AAD */
1560 	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1561 		     prot->tail_size,
1562 		     tls_ctx->rx.rec_seq, tlm->control, prot);
1563 
1564 	/* Prepare sgin */
1565 	sg_init_table(sgin, n_sgin);
1566 	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1567 	err = skb_to_sgvec(skb, &sgin[1],
1568 			   rxm->offset + prot->prepend_size,
1569 			   rxm->full_len - prot->prepend_size);
1570 	if (err < 0)
1571 		goto exit_free;
1572 
1573 	if (clear_skb) {
1574 		sg_init_table(sgout, n_sgout);
1575 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1576 
1577 		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1578 				   data_len + prot->tail_size);
1579 		if (err < 0)
1580 			goto exit_free;
1581 	} else if (out_iov) {
1582 		sg_init_table(sgout, n_sgout);
1583 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1584 
1585 		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1586 					  (n_sgout - 1 - tail_pages));
1587 		if (err < 0)
1588 			goto exit_free_pages;
1589 
1590 		if (prot->tail_size) {
1591 			sg_unmark_end(&sgout[pages]);
1592 			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1593 				   prot->tail_size);
1594 			sg_mark_end(&sgout[pages + 1]);
1595 		}
1596 	} else if (out_sg) {
1597 		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1598 	}
1599 	dctx->free_sgout = !!pages;
1600 
1601 	/* Prepare and submit AEAD request */
1602 	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1603 				data_len + prot->tail_size, aead_req, darg);
1604 	if (err) {
1605 		if (darg->async_done)
1606 			goto exit_free_skb;
1607 		goto exit_free_pages;
1608 	}
1609 
1610 	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1611 	clear_skb = NULL;
1612 
1613 	if (unlikely(darg->async)) {
1614 		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1615 		if (err)
1616 			__skb_queue_tail(&ctx->async_hold, darg->skb);
1617 		return err;
1618 	}
1619 
1620 	if (unlikely(darg->async_done))
1621 		return 0;
1622 
1623 	if (prot->tail_size)
1624 		darg->tail = dctx->tail;
1625 
1626 exit_free_pages:
1627 	/* Release the pages in case iov was mapped to pages */
1628 	for (; pages > 0; pages--)
1629 		put_page(sg_page(&sgout[pages]));
1630 exit_free:
1631 	kfree(mem);
1632 exit_free_skb:
1633 	consume_skb(clear_skb);
1634 	return err;
1635 }
1636 
1637 static int
1638 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1639 	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1640 {
1641 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1642 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1643 	struct strp_msg *rxm;
1644 	int pad, err;
1645 
1646 	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1647 	if (err < 0) {
1648 		if (err == -EBADMSG)
1649 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1650 		return err;
1651 	}
1652 	/* keep going even for ->async, the code below is TLS 1.3 */
1653 
1654 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1655 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1656 		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1657 		darg->zc = false;
1658 		if (!darg->tail)
1659 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1660 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1661 		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1662 	}
1663 
1664 	pad = tls_padding_length(prot, darg->skb, darg);
1665 	if (pad < 0) {
1666 		if (darg->skb != tls_strp_msg(ctx))
1667 			consume_skb(darg->skb);
1668 		return pad;
1669 	}
1670 
1671 	rxm = strp_msg(darg->skb);
1672 	rxm->full_len -= pad;
1673 
1674 	return 0;
1675 }
1676 
1677 static int
1678 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1679 		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1680 {
1681 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1682 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1683 	struct strp_msg *rxm;
1684 	int pad, err;
1685 
1686 	if (tls_ctx->rx_conf != TLS_HW)
1687 		return 0;
1688 
1689 	err = tls_device_decrypted(sk, tls_ctx);
1690 	if (err <= 0)
1691 		return err;
1692 
1693 	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1694 	if (pad < 0)
1695 		return pad;
1696 
1697 	darg->async = false;
1698 	darg->skb = tls_strp_msg(ctx);
1699 	/* ->zc downgrade check, in case TLS 1.3 gets here */
1700 	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1701 		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1702 
1703 	rxm = strp_msg(darg->skb);
1704 	rxm->full_len -= pad;
1705 
1706 	if (!darg->zc) {
1707 		/* Non-ZC case needs a real skb */
1708 		darg->skb = tls_strp_msg_detach(ctx);
1709 		if (!darg->skb)
1710 			return -ENOMEM;
1711 	} else {
1712 		unsigned int off, len;
1713 
1714 		/* In ZC case nobody cares about the output skb.
1715 		 * Just copy the data here. Note the skb is not fully trimmed.
1716 		 */
1717 		off = rxm->offset + prot->prepend_size;
1718 		len = rxm->full_len - prot->overhead_size;
1719 
1720 		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1721 		if (err)
1722 			return err;
1723 	}
1724 	return 1;
1725 }
1726 
1727 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx,
1728 				   struct sk_buff *skb)
1729 {
1730 	const struct strp_msg *rxm = strp_msg(skb);
1731 	const struct tls_msg *tlm = tls_msg(skb);
1732 	char hs_type;
1733 	int err;
1734 
1735 	if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE))
1736 		return 0;
1737 
1738 	if (rxm->full_len < 1)
1739 		return 0;
1740 
1741 	err = skb_copy_bits(skb, rxm->offset, &hs_type, 1);
1742 	if (err < 0) {
1743 		DEBUG_NET_WARN_ON_ONCE(1);
1744 		return err;
1745 	}
1746 
1747 	if (hs_type == TLS_HANDSHAKE_KEYUPDATE) {
1748 		struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx;
1749 
1750 		WRITE_ONCE(rx_ctx->key_update_pending, true);
1751 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED);
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1758 			     struct tls_decrypt_arg *darg)
1759 {
1760 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1761 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1762 	struct strp_msg *rxm;
1763 	int err;
1764 
1765 	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1766 	if (!err)
1767 		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1768 	if (err < 0)
1769 		return err;
1770 
1771 	rxm = strp_msg(darg->skb);
1772 	rxm->offset += prot->prepend_size;
1773 	rxm->full_len -= prot->overhead_size;
1774 	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1775 
1776 	return tls_check_pending_rekey(sk, tls_ctx, darg->skb);
1777 }
1778 
1779 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1780 {
1781 	struct tls_decrypt_arg darg = { .zc = true, };
1782 
1783 	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1784 }
1785 
1786 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1787 				   u8 *control)
1788 {
1789 	int err;
1790 
1791 	if (!*control) {
1792 		*control = tlm->control;
1793 		if (!*control)
1794 			return -EBADMSG;
1795 
1796 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1797 			       sizeof(*control), control);
1798 		if (*control != TLS_RECORD_TYPE_DATA) {
1799 			if (err || msg->msg_flags & MSG_CTRUNC)
1800 				return -EIO;
1801 		}
1802 	} else if (*control != tlm->control) {
1803 		return 0;
1804 	}
1805 
1806 	return 1;
1807 }
1808 
1809 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1810 {
1811 	tls_strp_msg_done(&ctx->strp);
1812 }
1813 
1814 /* This function traverses the rx_list in tls receive context to copies the
1815  * decrypted records into the buffer provided by caller zero copy is not
1816  * true. Further, the records are removed from the rx_list if it is not a peek
1817  * case and the record has been consumed completely.
1818  */
1819 static int process_rx_list(struct tls_sw_context_rx *ctx,
1820 			   struct msghdr *msg,
1821 			   u8 *control,
1822 			   size_t skip,
1823 			   size_t len,
1824 			   bool is_peek,
1825 			   bool *more)
1826 {
1827 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1828 	struct tls_msg *tlm;
1829 	ssize_t copied = 0;
1830 	int err;
1831 
1832 	while (skip && skb) {
1833 		struct strp_msg *rxm = strp_msg(skb);
1834 		tlm = tls_msg(skb);
1835 
1836 		err = tls_record_content_type(msg, tlm, control);
1837 		if (err <= 0)
1838 			goto more;
1839 
1840 		if (skip < rxm->full_len)
1841 			break;
1842 
1843 		skip = skip - rxm->full_len;
1844 		skb = skb_peek_next(skb, &ctx->rx_list);
1845 	}
1846 
1847 	while (len && skb) {
1848 		struct sk_buff *next_skb;
1849 		struct strp_msg *rxm = strp_msg(skb);
1850 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1851 
1852 		tlm = tls_msg(skb);
1853 
1854 		err = tls_record_content_type(msg, tlm, control);
1855 		if (err <= 0)
1856 			goto more;
1857 
1858 		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1859 					    msg, chunk);
1860 		if (err < 0)
1861 			goto more;
1862 
1863 		len = len - chunk;
1864 		copied = copied + chunk;
1865 
1866 		/* Consume the data from record if it is non-peek case*/
1867 		if (!is_peek) {
1868 			rxm->offset = rxm->offset + chunk;
1869 			rxm->full_len = rxm->full_len - chunk;
1870 
1871 			/* Return if there is unconsumed data in the record */
1872 			if (rxm->full_len - skip)
1873 				break;
1874 		}
1875 
1876 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1877 		 * So from the 2nd record, 'skip' should be 0.
1878 		 */
1879 		skip = 0;
1880 
1881 		if (msg)
1882 			msg->msg_flags |= MSG_EOR;
1883 
1884 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1885 
1886 		if (!is_peek) {
1887 			__skb_unlink(skb, &ctx->rx_list);
1888 			consume_skb(skb);
1889 		}
1890 
1891 		skb = next_skb;
1892 	}
1893 	err = 0;
1894 
1895 out:
1896 	return copied ? : err;
1897 more:
1898 	if (more)
1899 		*more = true;
1900 	goto out;
1901 }
1902 
1903 static bool
1904 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1905 		       size_t len_left, size_t decrypted, ssize_t done,
1906 		       size_t *flushed_at)
1907 {
1908 	size_t max_rec;
1909 
1910 	if (len_left <= decrypted)
1911 		return false;
1912 
1913 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1914 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1915 		return false;
1916 
1917 	*flushed_at = done;
1918 	return sk_flush_backlog(sk);
1919 }
1920 
1921 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1922 				 bool nonblock)
1923 {
1924 	long timeo;
1925 	int ret;
1926 
1927 	timeo = sock_rcvtimeo(sk, nonblock);
1928 
1929 	while (unlikely(ctx->reader_present)) {
1930 		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1931 
1932 		ctx->reader_contended = 1;
1933 
1934 		add_wait_queue(&ctx->wq, &wait);
1935 		ret = sk_wait_event(sk, &timeo,
1936 				    !READ_ONCE(ctx->reader_present), &wait);
1937 		remove_wait_queue(&ctx->wq, &wait);
1938 
1939 		if (timeo <= 0)
1940 			return -EAGAIN;
1941 		if (signal_pending(current))
1942 			return sock_intr_errno(timeo);
1943 		if (ret < 0)
1944 			return ret;
1945 	}
1946 
1947 	WRITE_ONCE(ctx->reader_present, 1);
1948 
1949 	return 0;
1950 }
1951 
1952 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1953 			      bool nonblock)
1954 {
1955 	int err;
1956 
1957 	lock_sock(sk);
1958 	err = tls_rx_reader_acquire(sk, ctx, nonblock);
1959 	if (err)
1960 		release_sock(sk);
1961 	return err;
1962 }
1963 
1964 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1965 {
1966 	if (unlikely(ctx->reader_contended)) {
1967 		if (wq_has_sleeper(&ctx->wq))
1968 			wake_up(&ctx->wq);
1969 		else
1970 			ctx->reader_contended = 0;
1971 
1972 		WARN_ON_ONCE(!ctx->reader_present);
1973 	}
1974 
1975 	WRITE_ONCE(ctx->reader_present, 0);
1976 }
1977 
1978 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1979 {
1980 	tls_rx_reader_release(sk, ctx);
1981 	release_sock(sk);
1982 }
1983 
1984 int tls_sw_recvmsg(struct sock *sk,
1985 		   struct msghdr *msg,
1986 		   size_t len,
1987 		   int flags,
1988 		   int *addr_len)
1989 {
1990 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1991 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1992 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1993 	ssize_t decrypted = 0, async_copy_bytes = 0;
1994 	struct sk_psock *psock;
1995 	unsigned char control = 0;
1996 	size_t flushed_at = 0;
1997 	struct strp_msg *rxm;
1998 	struct tls_msg *tlm;
1999 	ssize_t copied = 0;
2000 	ssize_t peeked = 0;
2001 	bool async = false;
2002 	int target, err;
2003 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
2004 	bool is_peek = flags & MSG_PEEK;
2005 	bool rx_more = false;
2006 	bool released = true;
2007 	bool bpf_strp_enabled;
2008 	bool zc_capable;
2009 
2010 	if (unlikely(flags & MSG_ERRQUEUE))
2011 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2012 
2013 	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2014 	if (err < 0)
2015 		return err;
2016 	psock = sk_psock_get(sk);
2017 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
2018 
2019 	/* If crypto failed the connection is broken */
2020 	err = ctx->async_wait.err;
2021 	if (err)
2022 		goto end;
2023 
2024 	/* Process pending decrypted records. It must be non-zero-copy */
2025 	err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2026 	if (err < 0)
2027 		goto end;
2028 
2029 	copied = err;
2030 	if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
2031 		goto end;
2032 
2033 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2034 	len = len - copied;
2035 
2036 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2037 		ctx->zc_capable;
2038 	decrypted = 0;
2039 	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2040 		struct tls_decrypt_arg darg;
2041 		int to_decrypt, chunk;
2042 
2043 		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2044 				      released);
2045 		if (err <= 0) {
2046 			if (psock) {
2047 				chunk = sk_msg_recvmsg(sk, psock, msg, len,
2048 						       flags);
2049 				if (chunk > 0) {
2050 					decrypted += chunk;
2051 					len -= chunk;
2052 					continue;
2053 				}
2054 			}
2055 			goto recv_end;
2056 		}
2057 
2058 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2059 
2060 		rxm = strp_msg(tls_strp_msg(ctx));
2061 		tlm = tls_msg(tls_strp_msg(ctx));
2062 
2063 		to_decrypt = rxm->full_len - prot->overhead_size;
2064 
2065 		if (zc_capable && to_decrypt <= len &&
2066 		    tlm->control == TLS_RECORD_TYPE_DATA)
2067 			darg.zc = true;
2068 
2069 		/* Do not use async mode if record is non-data */
2070 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2071 			darg.async = ctx->async_capable;
2072 		else
2073 			darg.async = false;
2074 
2075 		err = tls_rx_one_record(sk, msg, &darg);
2076 		if (err < 0) {
2077 			tls_err_abort(sk, -EBADMSG);
2078 			goto recv_end;
2079 		}
2080 
2081 		async |= darg.async;
2082 
2083 		/* If the type of records being processed is not known yet,
2084 		 * set it to record type just dequeued. If it is already known,
2085 		 * but does not match the record type just dequeued, go to end.
2086 		 * We always get record type here since for tls1.2, record type
2087 		 * is known just after record is dequeued from stream parser.
2088 		 * For tls1.3, we disable async.
2089 		 */
2090 		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2091 		if (err <= 0) {
2092 			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2093 			tls_rx_rec_done(ctx);
2094 put_on_rx_list_err:
2095 			__skb_queue_tail(&ctx->rx_list, darg.skb);
2096 			goto recv_end;
2097 		}
2098 
2099 		/* periodically flush backlog, and feed strparser */
2100 		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2101 						  decrypted + copied,
2102 						  &flushed_at);
2103 
2104 		/* TLS 1.3 may have updated the length by more than overhead */
2105 		rxm = strp_msg(darg.skb);
2106 		chunk = rxm->full_len;
2107 		tls_rx_rec_done(ctx);
2108 
2109 		if (!darg.zc) {
2110 			bool partially_consumed = chunk > len;
2111 			struct sk_buff *skb = darg.skb;
2112 
2113 			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2114 
2115 			if (async) {
2116 				/* TLS 1.2-only, to_decrypt must be text len */
2117 				chunk = min_t(int, to_decrypt, len);
2118 				async_copy_bytes += chunk;
2119 put_on_rx_list:
2120 				decrypted += chunk;
2121 				len -= chunk;
2122 				__skb_queue_tail(&ctx->rx_list, skb);
2123 				if (unlikely(control != TLS_RECORD_TYPE_DATA))
2124 					break;
2125 				continue;
2126 			}
2127 
2128 			if (bpf_strp_enabled) {
2129 				released = true;
2130 				err = sk_psock_tls_strp_read(psock, skb);
2131 				if (err != __SK_PASS) {
2132 					rxm->offset = rxm->offset + rxm->full_len;
2133 					rxm->full_len = 0;
2134 					if (err == __SK_DROP)
2135 						consume_skb(skb);
2136 					continue;
2137 				}
2138 			}
2139 
2140 			if (partially_consumed)
2141 				chunk = len;
2142 
2143 			err = skb_copy_datagram_msg(skb, rxm->offset,
2144 						    msg, chunk);
2145 			if (err < 0)
2146 				goto put_on_rx_list_err;
2147 
2148 			if (is_peek) {
2149 				peeked += chunk;
2150 				goto put_on_rx_list;
2151 			}
2152 
2153 			if (partially_consumed) {
2154 				rxm->offset += chunk;
2155 				rxm->full_len -= chunk;
2156 				goto put_on_rx_list;
2157 			}
2158 
2159 			consume_skb(skb);
2160 		}
2161 
2162 		decrypted += chunk;
2163 		len -= chunk;
2164 
2165 		/* Return full control message to userspace before trying
2166 		 * to parse another message type
2167 		 */
2168 		msg->msg_flags |= MSG_EOR;
2169 		if (control != TLS_RECORD_TYPE_DATA)
2170 			break;
2171 	}
2172 
2173 recv_end:
2174 	if (async) {
2175 		int ret;
2176 
2177 		/* Wait for all previously submitted records to be decrypted */
2178 		ret = tls_decrypt_async_wait(ctx);
2179 		__skb_queue_purge(&ctx->async_hold);
2180 
2181 		if (ret) {
2182 			if (err >= 0 || err == -EINPROGRESS)
2183 				err = ret;
2184 			goto end;
2185 		}
2186 
2187 		/* Drain records from the rx_list & copy if required */
2188 		if (is_peek)
2189 			err = process_rx_list(ctx, msg, &control, copied + peeked,
2190 					      decrypted - peeked, is_peek, NULL);
2191 		else
2192 			err = process_rx_list(ctx, msg, &control, 0,
2193 					      async_copy_bytes, is_peek, NULL);
2194 
2195 		/* we could have copied less than we wanted, and possibly nothing */
2196 		decrypted += max(err, 0) - async_copy_bytes;
2197 	}
2198 
2199 	copied += decrypted;
2200 
2201 end:
2202 	tls_rx_reader_unlock(sk, ctx);
2203 	if (psock)
2204 		sk_psock_put(sk, psock);
2205 	return copied ? : err;
2206 }
2207 
2208 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2209 			   struct pipe_inode_info *pipe,
2210 			   size_t len, unsigned int flags)
2211 {
2212 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2213 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2214 	struct strp_msg *rxm = NULL;
2215 	struct sock *sk = sock->sk;
2216 	struct tls_msg *tlm;
2217 	struct sk_buff *skb;
2218 	ssize_t copied = 0;
2219 	int chunk;
2220 	int err;
2221 
2222 	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2223 	if (err < 0)
2224 		return err;
2225 
2226 	if (!skb_queue_empty(&ctx->rx_list)) {
2227 		skb = __skb_dequeue(&ctx->rx_list);
2228 	} else {
2229 		struct tls_decrypt_arg darg;
2230 
2231 		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2232 				      true);
2233 		if (err <= 0)
2234 			goto splice_read_end;
2235 
2236 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2237 
2238 		err = tls_rx_one_record(sk, NULL, &darg);
2239 		if (err < 0) {
2240 			tls_err_abort(sk, -EBADMSG);
2241 			goto splice_read_end;
2242 		}
2243 
2244 		tls_rx_rec_done(ctx);
2245 		skb = darg.skb;
2246 	}
2247 
2248 	rxm = strp_msg(skb);
2249 	tlm = tls_msg(skb);
2250 
2251 	/* splice does not support reading control messages */
2252 	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2253 		err = -EINVAL;
2254 		goto splice_requeue;
2255 	}
2256 
2257 	chunk = min_t(unsigned int, rxm->full_len, len);
2258 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2259 	if (copied < 0)
2260 		goto splice_requeue;
2261 
2262 	if (chunk < rxm->full_len) {
2263 		rxm->offset += len;
2264 		rxm->full_len -= len;
2265 		goto splice_requeue;
2266 	}
2267 
2268 	consume_skb(skb);
2269 
2270 splice_read_end:
2271 	tls_rx_reader_unlock(sk, ctx);
2272 	return copied ? : err;
2273 
2274 splice_requeue:
2275 	__skb_queue_head(&ctx->rx_list, skb);
2276 	goto splice_read_end;
2277 }
2278 
2279 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2280 		     sk_read_actor_t read_actor)
2281 {
2282 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2283 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2284 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2285 	struct strp_msg *rxm = NULL;
2286 	struct sk_buff *skb = NULL;
2287 	struct sk_psock *psock;
2288 	size_t flushed_at = 0;
2289 	bool released = true;
2290 	struct tls_msg *tlm;
2291 	ssize_t copied = 0;
2292 	ssize_t decrypted;
2293 	int err, used;
2294 
2295 	psock = sk_psock_get(sk);
2296 	if (psock) {
2297 		sk_psock_put(sk, psock);
2298 		return -EINVAL;
2299 	}
2300 	err = tls_rx_reader_acquire(sk, ctx, true);
2301 	if (err < 0)
2302 		return err;
2303 
2304 	/* If crypto failed the connection is broken */
2305 	err = ctx->async_wait.err;
2306 	if (err)
2307 		goto read_sock_end;
2308 
2309 	decrypted = 0;
2310 	do {
2311 		if (!skb_queue_empty(&ctx->rx_list)) {
2312 			skb = __skb_dequeue(&ctx->rx_list);
2313 			rxm = strp_msg(skb);
2314 			tlm = tls_msg(skb);
2315 		} else {
2316 			struct tls_decrypt_arg darg;
2317 
2318 			err = tls_rx_rec_wait(sk, NULL, true, released);
2319 			if (err <= 0)
2320 				goto read_sock_end;
2321 
2322 			memset(&darg.inargs, 0, sizeof(darg.inargs));
2323 
2324 			err = tls_rx_one_record(sk, NULL, &darg);
2325 			if (err < 0) {
2326 				tls_err_abort(sk, -EBADMSG);
2327 				goto read_sock_end;
2328 			}
2329 
2330 			released = tls_read_flush_backlog(sk, prot, INT_MAX,
2331 							  0, decrypted,
2332 							  &flushed_at);
2333 			skb = darg.skb;
2334 			rxm = strp_msg(skb);
2335 			tlm = tls_msg(skb);
2336 			decrypted += rxm->full_len;
2337 
2338 			tls_rx_rec_done(ctx);
2339 		}
2340 
2341 		/* read_sock does not support reading control messages */
2342 		if (tlm->control != TLS_RECORD_TYPE_DATA) {
2343 			err = -EINVAL;
2344 			goto read_sock_requeue;
2345 		}
2346 
2347 		used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2348 		if (used <= 0) {
2349 			if (!copied)
2350 				err = used;
2351 			goto read_sock_requeue;
2352 		}
2353 		copied += used;
2354 		if (used < rxm->full_len) {
2355 			rxm->offset += used;
2356 			rxm->full_len -= used;
2357 			if (!desc->count)
2358 				goto read_sock_requeue;
2359 		} else {
2360 			consume_skb(skb);
2361 			if (!desc->count)
2362 				skb = NULL;
2363 		}
2364 	} while (skb);
2365 
2366 read_sock_end:
2367 	tls_rx_reader_release(sk, ctx);
2368 	return copied ? : err;
2369 
2370 read_sock_requeue:
2371 	__skb_queue_head(&ctx->rx_list, skb);
2372 	goto read_sock_end;
2373 }
2374 
2375 bool tls_sw_sock_is_readable(struct sock *sk)
2376 {
2377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2378 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2379 	bool ingress_empty = true;
2380 	struct sk_psock *psock;
2381 
2382 	rcu_read_lock();
2383 	psock = sk_psock(sk);
2384 	if (psock)
2385 		ingress_empty = list_empty(&psock->ingress_msg);
2386 	rcu_read_unlock();
2387 
2388 	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2389 		!skb_queue_empty(&ctx->rx_list);
2390 }
2391 
2392 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2393 {
2394 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2395 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2396 	char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2397 	size_t cipher_overhead;
2398 	size_t data_len = 0;
2399 	int ret;
2400 
2401 	/* Verify that we have a full TLS header, or wait for more data */
2402 	if (strp->stm.offset + prot->prepend_size > skb->len)
2403 		return 0;
2404 
2405 	/* Sanity-check size of on-stack buffer. */
2406 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2407 		ret = -EINVAL;
2408 		goto read_failure;
2409 	}
2410 
2411 	/* Linearize header to local buffer */
2412 	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2413 	if (ret < 0)
2414 		goto read_failure;
2415 
2416 	strp->mark = header[0];
2417 
2418 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2419 
2420 	cipher_overhead = prot->tag_size;
2421 	if (prot->version != TLS_1_3_VERSION &&
2422 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2423 		cipher_overhead += prot->iv_size;
2424 
2425 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2426 	    prot->tail_size) {
2427 		ret = -EMSGSIZE;
2428 		goto read_failure;
2429 	}
2430 	if (data_len < cipher_overhead) {
2431 		ret = -EBADMSG;
2432 		goto read_failure;
2433 	}
2434 
2435 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2436 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2437 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2438 		ret = -EINVAL;
2439 		goto read_failure;
2440 	}
2441 
2442 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2443 				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2444 	return data_len + TLS_HEADER_SIZE;
2445 
2446 read_failure:
2447 	tls_err_abort(strp->sk, ret);
2448 
2449 	return ret;
2450 }
2451 
2452 void tls_rx_msg_ready(struct tls_strparser *strp)
2453 {
2454 	struct tls_sw_context_rx *ctx;
2455 
2456 	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2457 	ctx->saved_data_ready(strp->sk);
2458 }
2459 
2460 static void tls_data_ready(struct sock *sk)
2461 {
2462 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2463 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2464 	struct sk_psock *psock;
2465 	gfp_t alloc_save;
2466 
2467 	trace_sk_data_ready(sk);
2468 
2469 	alloc_save = sk->sk_allocation;
2470 	sk->sk_allocation = GFP_ATOMIC;
2471 	tls_strp_data_ready(&ctx->strp);
2472 	sk->sk_allocation = alloc_save;
2473 
2474 	psock = sk_psock_get(sk);
2475 	if (psock) {
2476 		if (!list_empty(&psock->ingress_msg))
2477 			ctx->saved_data_ready(sk);
2478 		sk_psock_put(sk, psock);
2479 	}
2480 }
2481 
2482 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2483 {
2484 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2485 
2486 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2487 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2488 	cancel_delayed_work_sync(&ctx->tx_work.work);
2489 }
2490 
2491 void tls_sw_release_resources_tx(struct sock *sk)
2492 {
2493 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2494 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2495 	struct tls_rec *rec, *tmp;
2496 
2497 	/* Wait for any pending async encryptions to complete */
2498 	tls_encrypt_async_wait(ctx);
2499 
2500 	tls_tx_records(sk, -1);
2501 
2502 	/* Free up un-sent records in tx_list. First, free
2503 	 * the partially sent record if any at head of tx_list.
2504 	 */
2505 	if (tls_ctx->partially_sent_record) {
2506 		tls_free_partial_record(sk, tls_ctx);
2507 		rec = list_first_entry(&ctx->tx_list,
2508 				       struct tls_rec, list);
2509 		list_del(&rec->list);
2510 		sk_msg_free(sk, &rec->msg_plaintext);
2511 		kfree(rec);
2512 	}
2513 
2514 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2515 		list_del(&rec->list);
2516 		sk_msg_free(sk, &rec->msg_encrypted);
2517 		sk_msg_free(sk, &rec->msg_plaintext);
2518 		kfree(rec);
2519 	}
2520 
2521 	crypto_free_aead(ctx->aead_send);
2522 	tls_free_open_rec(sk);
2523 }
2524 
2525 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2526 {
2527 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2528 
2529 	kfree(ctx);
2530 }
2531 
2532 void tls_sw_release_resources_rx(struct sock *sk)
2533 {
2534 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2535 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2536 
2537 	if (ctx->aead_recv) {
2538 		__skb_queue_purge(&ctx->rx_list);
2539 		crypto_free_aead(ctx->aead_recv);
2540 		tls_strp_stop(&ctx->strp);
2541 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2542 		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2543 		 * never swapped.
2544 		 */
2545 		if (ctx->saved_data_ready) {
2546 			write_lock_bh(&sk->sk_callback_lock);
2547 			sk->sk_data_ready = ctx->saved_data_ready;
2548 			write_unlock_bh(&sk->sk_callback_lock);
2549 		}
2550 	}
2551 }
2552 
2553 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2554 {
2555 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2556 
2557 	tls_strp_done(&ctx->strp);
2558 }
2559 
2560 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2561 {
2562 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2563 
2564 	kfree(ctx);
2565 }
2566 
2567 void tls_sw_free_resources_rx(struct sock *sk)
2568 {
2569 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2570 
2571 	tls_sw_release_resources_rx(sk);
2572 	tls_sw_free_ctx_rx(tls_ctx);
2573 }
2574 
2575 /* The work handler to transmitt the encrypted records in tx_list */
2576 static void tx_work_handler(struct work_struct *work)
2577 {
2578 	struct delayed_work *delayed_work = to_delayed_work(work);
2579 	struct tx_work *tx_work = container_of(delayed_work,
2580 					       struct tx_work, work);
2581 	struct sock *sk = tx_work->sk;
2582 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2583 	struct tls_sw_context_tx *ctx;
2584 
2585 	if (unlikely(!tls_ctx))
2586 		return;
2587 
2588 	ctx = tls_sw_ctx_tx(tls_ctx);
2589 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2590 		return;
2591 
2592 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2593 		return;
2594 
2595 	if (mutex_trylock(&tls_ctx->tx_lock)) {
2596 		lock_sock(sk);
2597 		tls_tx_records(sk, -1);
2598 		release_sock(sk);
2599 		mutex_unlock(&tls_ctx->tx_lock);
2600 	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2601 		/* Someone is holding the tx_lock, they will likely run Tx
2602 		 * and cancel the work on their way out of the lock section.
2603 		 * Schedule a long delay just in case.
2604 		 */
2605 		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2606 	}
2607 }
2608 
2609 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2610 {
2611 	struct tls_rec *rec;
2612 
2613 	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2614 	if (!rec)
2615 		return false;
2616 
2617 	return READ_ONCE(rec->tx_ready);
2618 }
2619 
2620 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2621 {
2622 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2623 
2624 	/* Schedule the transmission if tx list is ready */
2625 	if (tls_is_tx_ready(tx_ctx) &&
2626 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2627 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2628 }
2629 
2630 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2631 {
2632 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2633 
2634 	write_lock_bh(&sk->sk_callback_lock);
2635 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2636 	sk->sk_data_ready = tls_data_ready;
2637 	write_unlock_bh(&sk->sk_callback_lock);
2638 }
2639 
2640 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2641 {
2642 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2643 
2644 	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2645 		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2646 }
2647 
2648 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2649 {
2650 	struct tls_sw_context_tx *sw_ctx_tx;
2651 
2652 	if (!ctx->priv_ctx_tx) {
2653 		sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2654 		if (!sw_ctx_tx)
2655 			return NULL;
2656 	} else {
2657 		sw_ctx_tx = ctx->priv_ctx_tx;
2658 	}
2659 
2660 	crypto_init_wait(&sw_ctx_tx->async_wait);
2661 	atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2662 	INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2663 	INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2664 	sw_ctx_tx->tx_work.sk = sk;
2665 
2666 	return sw_ctx_tx;
2667 }
2668 
2669 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2670 {
2671 	struct tls_sw_context_rx *sw_ctx_rx;
2672 
2673 	if (!ctx->priv_ctx_rx) {
2674 		sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2675 		if (!sw_ctx_rx)
2676 			return NULL;
2677 	} else {
2678 		sw_ctx_rx = ctx->priv_ctx_rx;
2679 	}
2680 
2681 	crypto_init_wait(&sw_ctx_rx->async_wait);
2682 	atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2683 	init_waitqueue_head(&sw_ctx_rx->wq);
2684 	skb_queue_head_init(&sw_ctx_rx->rx_list);
2685 	skb_queue_head_init(&sw_ctx_rx->async_hold);
2686 
2687 	return sw_ctx_rx;
2688 }
2689 
2690 int init_prot_info(struct tls_prot_info *prot,
2691 		   const struct tls_crypto_info *crypto_info,
2692 		   const struct tls_cipher_desc *cipher_desc)
2693 {
2694 	u16 nonce_size = cipher_desc->nonce;
2695 
2696 	if (crypto_info->version == TLS_1_3_VERSION) {
2697 		nonce_size = 0;
2698 		prot->aad_size = TLS_HEADER_SIZE;
2699 		prot->tail_size = 1;
2700 	} else {
2701 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2702 		prot->tail_size = 0;
2703 	}
2704 
2705 	/* Sanity-check the sizes for stack allocations. */
2706 	if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2707 		return -EINVAL;
2708 
2709 	prot->version = crypto_info->version;
2710 	prot->cipher_type = crypto_info->cipher_type;
2711 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2712 	prot->tag_size = cipher_desc->tag;
2713 	prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2714 	prot->iv_size = cipher_desc->iv;
2715 	prot->salt_size = cipher_desc->salt;
2716 	prot->rec_seq_size = cipher_desc->rec_seq;
2717 
2718 	return 0;
2719 }
2720 
2721 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx)
2722 {
2723 	struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx;
2724 
2725 	WRITE_ONCE(ctx->key_update_pending, false);
2726 	/* wake-up pre-existing poll() */
2727 	ctx->saved_data_ready(sk);
2728 }
2729 
2730 int tls_set_sw_offload(struct sock *sk, int tx,
2731 		       struct tls_crypto_info *new_crypto_info)
2732 {
2733 	struct tls_crypto_info *crypto_info, *src_crypto_info;
2734 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2735 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2736 	const struct tls_cipher_desc *cipher_desc;
2737 	char *iv, *rec_seq, *key, *salt;
2738 	struct cipher_context *cctx;
2739 	struct tls_prot_info *prot;
2740 	struct crypto_aead **aead;
2741 	struct tls_context *ctx;
2742 	struct crypto_tfm *tfm;
2743 	int rc = 0;
2744 
2745 	ctx = tls_get_ctx(sk);
2746 	prot = &ctx->prot_info;
2747 
2748 	/* new_crypto_info != NULL means rekey */
2749 	if (!new_crypto_info) {
2750 		if (tx) {
2751 			ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2752 			if (!ctx->priv_ctx_tx)
2753 				return -ENOMEM;
2754 		} else {
2755 			ctx->priv_ctx_rx = init_ctx_rx(ctx);
2756 			if (!ctx->priv_ctx_rx)
2757 				return -ENOMEM;
2758 		}
2759 	}
2760 
2761 	if (tx) {
2762 		sw_ctx_tx = ctx->priv_ctx_tx;
2763 		crypto_info = &ctx->crypto_send.info;
2764 		cctx = &ctx->tx;
2765 		aead = &sw_ctx_tx->aead_send;
2766 	} else {
2767 		sw_ctx_rx = ctx->priv_ctx_rx;
2768 		crypto_info = &ctx->crypto_recv.info;
2769 		cctx = &ctx->rx;
2770 		aead = &sw_ctx_rx->aead_recv;
2771 	}
2772 
2773 	src_crypto_info = new_crypto_info ?: crypto_info;
2774 
2775 	cipher_desc = get_cipher_desc(src_crypto_info->cipher_type);
2776 	if (!cipher_desc) {
2777 		rc = -EINVAL;
2778 		goto free_priv;
2779 	}
2780 
2781 	rc = init_prot_info(prot, src_crypto_info, cipher_desc);
2782 	if (rc)
2783 		goto free_priv;
2784 
2785 	iv = crypto_info_iv(src_crypto_info, cipher_desc);
2786 	key = crypto_info_key(src_crypto_info, cipher_desc);
2787 	salt = crypto_info_salt(src_crypto_info, cipher_desc);
2788 	rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc);
2789 
2790 	if (!*aead) {
2791 		*aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2792 		if (IS_ERR(*aead)) {
2793 			rc = PTR_ERR(*aead);
2794 			*aead = NULL;
2795 			goto free_priv;
2796 		}
2797 	}
2798 
2799 	ctx->push_pending_record = tls_sw_push_pending_record;
2800 
2801 	/* setkey is the last operation that could fail during a
2802 	 * rekey. if it succeeds, we can start modifying the
2803 	 * context.
2804 	 */
2805 	rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2806 	if (rc) {
2807 		if (new_crypto_info)
2808 			goto out;
2809 		else
2810 			goto free_aead;
2811 	}
2812 
2813 	if (!new_crypto_info) {
2814 		rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2815 		if (rc)
2816 			goto free_aead;
2817 	}
2818 
2819 	if (!tx && !new_crypto_info) {
2820 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2821 
2822 		tls_update_rx_zc_capable(ctx);
2823 		sw_ctx_rx->async_capable =
2824 			src_crypto_info->version != TLS_1_3_VERSION &&
2825 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2826 
2827 		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2828 		if (rc)
2829 			goto free_aead;
2830 	}
2831 
2832 	memcpy(cctx->iv, salt, cipher_desc->salt);
2833 	memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2834 	memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2835 
2836 	if (new_crypto_info) {
2837 		unsafe_memcpy(crypto_info, new_crypto_info,
2838 			      cipher_desc->crypto_info,
2839 			      /* size was checked in do_tls_setsockopt_conf */);
2840 		memzero_explicit(new_crypto_info, cipher_desc->crypto_info);
2841 		if (!tx)
2842 			tls_finish_key_update(sk, ctx);
2843 	}
2844 
2845 	goto out;
2846 
2847 free_aead:
2848 	crypto_free_aead(*aead);
2849 	*aead = NULL;
2850 free_priv:
2851 	if (!new_crypto_info) {
2852 		if (tx) {
2853 			kfree(ctx->priv_ctx_tx);
2854 			ctx->priv_ctx_tx = NULL;
2855 		} else {
2856 			kfree(ctx->priv_ctx_rx);
2857 			ctx->priv_ctx_rx = NULL;
2858 		}
2859 	}
2860 out:
2861 	return rc;
2862 }
2863