1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 bool async_done; 56 u8 tail; 57 ); 58 59 struct sk_buff *skb; 60 }; 61 62 struct tls_decrypt_ctx { 63 struct sock *sk; 64 u8 iv[TLS_MAX_IV_SIZE]; 65 u8 aad[TLS_MAX_AAD_SIZE]; 66 u8 tail; 67 bool free_sgout; 68 struct scatterlist sg[]; 69 }; 70 71 noinline void tls_err_abort(struct sock *sk, int err) 72 { 73 WARN_ON_ONCE(err >= 0); 74 /* sk->sk_err should contain a positive error code. */ 75 WRITE_ONCE(sk->sk_err, -err); 76 /* Paired with smp_rmb() in tcp_poll() */ 77 smp_wmb(); 78 sk_error_report(sk); 79 } 80 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 82 unsigned int recursion_level) 83 { 84 int start = skb_headlen(skb); 85 int i, chunk = start - offset; 86 struct sk_buff *frag_iter; 87 int elt = 0; 88 89 if (unlikely(recursion_level >= 24)) 90 return -EMSGSIZE; 91 92 if (chunk > 0) { 93 if (chunk > len) 94 chunk = len; 95 elt++; 96 len -= chunk; 97 if (len == 0) 98 return elt; 99 offset += chunk; 100 } 101 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 103 int end; 104 105 WARN_ON(start > offset + len); 106 107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 108 chunk = end - offset; 109 if (chunk > 0) { 110 if (chunk > len) 111 chunk = len; 112 elt++; 113 len -= chunk; 114 if (len == 0) 115 return elt; 116 offset += chunk; 117 } 118 start = end; 119 } 120 121 if (unlikely(skb_has_frag_list(skb))) { 122 skb_walk_frags(skb, frag_iter) { 123 int end, ret; 124 125 WARN_ON(start > offset + len); 126 127 end = start + frag_iter->len; 128 chunk = end - offset; 129 if (chunk > 0) { 130 if (chunk > len) 131 chunk = len; 132 ret = __skb_nsg(frag_iter, offset - start, chunk, 133 recursion_level + 1); 134 if (unlikely(ret < 0)) 135 return ret; 136 elt += ret; 137 len -= chunk; 138 if (len == 0) 139 return elt; 140 offset += chunk; 141 } 142 start = end; 143 } 144 } 145 BUG_ON(len); 146 return elt; 147 } 148 149 /* Return the number of scatterlist elements required to completely map the 150 * skb, or -EMSGSIZE if the recursion depth is exceeded. 151 */ 152 static int skb_nsg(struct sk_buff *skb, int offset, int len) 153 { 154 return __skb_nsg(skb, offset, len, 0); 155 } 156 157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 158 struct tls_decrypt_arg *darg) 159 { 160 struct strp_msg *rxm = strp_msg(skb); 161 struct tls_msg *tlm = tls_msg(skb); 162 int sub = 0; 163 164 /* Determine zero-padding length */ 165 if (prot->version == TLS_1_3_VERSION) { 166 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 167 char content_type = darg->zc ? darg->tail : 0; 168 int err; 169 170 while (content_type == 0) { 171 if (offset < prot->prepend_size) 172 return -EBADMSG; 173 err = skb_copy_bits(skb, rxm->offset + offset, 174 &content_type, 1); 175 if (err) 176 return err; 177 if (content_type) 178 break; 179 sub++; 180 offset--; 181 } 182 tlm->control = content_type; 183 } 184 return sub; 185 } 186 187 static void tls_decrypt_done(void *data, int err) 188 { 189 struct aead_request *aead_req = data; 190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 191 struct scatterlist *sgout = aead_req->dst; 192 struct tls_sw_context_rx *ctx; 193 struct tls_decrypt_ctx *dctx; 194 struct tls_context *tls_ctx; 195 struct scatterlist *sg; 196 unsigned int pages; 197 struct sock *sk; 198 int aead_size; 199 200 /* If requests get too backlogged crypto API returns -EBUSY and calls 201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) 202 * to make waiting for backlog to flush with crypto_wait_req() easier. 203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one 204 * -EINPROGRESS -> 0. 205 * We have a single struct crypto_async_request per direction, this 206 * scheme doesn't help us, so just ignore the first ->complete(). 207 */ 208 if (err == -EINPROGRESS) 209 return; 210 211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 212 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 213 dctx = (void *)((u8 *)aead_req + aead_size); 214 215 sk = dctx->sk; 216 tls_ctx = tls_get_ctx(sk); 217 ctx = tls_sw_ctx_rx(tls_ctx); 218 219 /* Propagate if there was an err */ 220 if (err) { 221 if (err == -EBADMSG) 222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 223 ctx->async_wait.err = err; 224 tls_err_abort(sk, err); 225 } 226 227 /* Free the destination pages if skb was not decrypted inplace */ 228 if (dctx->free_sgout) { 229 /* Skip the first S/G entry as it points to AAD */ 230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 231 if (!sg) 232 break; 233 put_page(sg_page(sg)); 234 } 235 } 236 237 kfree(aead_req); 238 239 if (atomic_dec_and_test(&ctx->decrypt_pending)) 240 complete(&ctx->async_wait.completion); 241 } 242 243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) 244 { 245 if (!atomic_dec_and_test(&ctx->decrypt_pending)) 246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 247 atomic_inc(&ctx->decrypt_pending); 248 249 return ctx->async_wait.err; 250 } 251 252 static int tls_do_decryption(struct sock *sk, 253 struct scatterlist *sgin, 254 struct scatterlist *sgout, 255 char *iv_recv, 256 size_t data_len, 257 struct aead_request *aead_req, 258 struct tls_decrypt_arg *darg) 259 { 260 struct tls_context *tls_ctx = tls_get_ctx(sk); 261 struct tls_prot_info *prot = &tls_ctx->prot_info; 262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 263 int ret; 264 265 aead_request_set_tfm(aead_req, ctx->aead_recv); 266 aead_request_set_ad(aead_req, prot->aad_size); 267 aead_request_set_crypt(aead_req, sgin, sgout, 268 data_len + prot->tag_size, 269 (u8 *)iv_recv); 270 271 if (darg->async) { 272 aead_request_set_callback(aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 tls_decrypt_done, aead_req); 275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); 276 atomic_inc(&ctx->decrypt_pending); 277 } else { 278 DECLARE_CRYPTO_WAIT(wait); 279 280 aead_request_set_callback(aead_req, 281 CRYPTO_TFM_REQ_MAY_BACKLOG, 282 crypto_req_done, &wait); 283 ret = crypto_aead_decrypt(aead_req); 284 if (ret == -EINPROGRESS || ret == -EBUSY) 285 ret = crypto_wait_req(ret, &wait); 286 return ret; 287 } 288 289 ret = crypto_aead_decrypt(aead_req); 290 if (ret == -EINPROGRESS) 291 return 0; 292 293 if (ret == -EBUSY) { 294 ret = tls_decrypt_async_wait(ctx); 295 darg->async_done = true; 296 /* all completions have run, we're not doing async anymore */ 297 darg->async = false; 298 return ret; 299 } 300 301 atomic_dec(&ctx->decrypt_pending); 302 darg->async = false; 303 304 return ret; 305 } 306 307 static void tls_trim_both_msgs(struct sock *sk, int target_size) 308 { 309 struct tls_context *tls_ctx = tls_get_ctx(sk); 310 struct tls_prot_info *prot = &tls_ctx->prot_info; 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 312 struct tls_rec *rec = ctx->open_rec; 313 314 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 315 if (target_size > 0) 316 target_size += prot->overhead_size; 317 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 318 } 319 320 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 324 struct tls_rec *rec = ctx->open_rec; 325 struct sk_msg *msg_en = &rec->msg_encrypted; 326 327 return sk_msg_alloc(sk, msg_en, len, 0); 328 } 329 330 static int tls_clone_plaintext_msg(struct sock *sk, int required) 331 { 332 struct tls_context *tls_ctx = tls_get_ctx(sk); 333 struct tls_prot_info *prot = &tls_ctx->prot_info; 334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 335 struct tls_rec *rec = ctx->open_rec; 336 struct sk_msg *msg_pl = &rec->msg_plaintext; 337 struct sk_msg *msg_en = &rec->msg_encrypted; 338 int skip, len; 339 340 /* We add page references worth len bytes from encrypted sg 341 * at the end of plaintext sg. It is guaranteed that msg_en 342 * has enough required room (ensured by caller). 343 */ 344 len = required - msg_pl->sg.size; 345 346 /* Skip initial bytes in msg_en's data to be able to use 347 * same offset of both plain and encrypted data. 348 */ 349 skip = prot->prepend_size + msg_pl->sg.size; 350 351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 352 } 353 354 static struct tls_rec *tls_get_rec(struct sock *sk) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_prot_info *prot = &tls_ctx->prot_info; 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct sk_msg *msg_pl, *msg_en; 360 struct tls_rec *rec; 361 int mem_size; 362 363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 364 365 rec = kzalloc(mem_size, sk->sk_allocation); 366 if (!rec) 367 return NULL; 368 369 msg_pl = &rec->msg_plaintext; 370 msg_en = &rec->msg_encrypted; 371 372 sk_msg_init(msg_pl); 373 sk_msg_init(msg_en); 374 375 sg_init_table(rec->sg_aead_in, 2); 376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 377 sg_unmark_end(&rec->sg_aead_in[1]); 378 379 sg_init_table(rec->sg_aead_out, 2); 380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 381 sg_unmark_end(&rec->sg_aead_out[1]); 382 383 rec->sk = sk; 384 385 return rec; 386 } 387 388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 389 { 390 sk_msg_free(sk, &rec->msg_encrypted); 391 sk_msg_free(sk, &rec->msg_plaintext); 392 kfree(rec); 393 } 394 395 static void tls_free_open_rec(struct sock *sk) 396 { 397 struct tls_context *tls_ctx = tls_get_ctx(sk); 398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 399 struct tls_rec *rec = ctx->open_rec; 400 401 if (rec) { 402 tls_free_rec(sk, rec); 403 ctx->open_rec = NULL; 404 } 405 } 406 407 int tls_tx_records(struct sock *sk, int flags) 408 { 409 struct tls_context *tls_ctx = tls_get_ctx(sk); 410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 411 struct tls_rec *rec, *tmp; 412 struct sk_msg *msg_en; 413 int tx_flags, rc = 0; 414 415 if (tls_is_partially_sent_record(tls_ctx)) { 416 rec = list_first_entry(&ctx->tx_list, 417 struct tls_rec, list); 418 419 if (flags == -1) 420 tx_flags = rec->tx_flags; 421 else 422 tx_flags = flags; 423 424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 425 if (rc) 426 goto tx_err; 427 428 /* Full record has been transmitted. 429 * Remove the head of tx_list 430 */ 431 list_del(&rec->list); 432 sk_msg_free(sk, &rec->msg_plaintext); 433 kfree(rec); 434 } 435 436 /* Tx all ready records */ 437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 438 if (READ_ONCE(rec->tx_ready)) { 439 if (flags == -1) 440 tx_flags = rec->tx_flags; 441 else 442 tx_flags = flags; 443 444 msg_en = &rec->msg_encrypted; 445 rc = tls_push_sg(sk, tls_ctx, 446 &msg_en->sg.data[msg_en->sg.curr], 447 0, tx_flags); 448 if (rc) 449 goto tx_err; 450 451 list_del(&rec->list); 452 sk_msg_free(sk, &rec->msg_plaintext); 453 kfree(rec); 454 } else { 455 break; 456 } 457 } 458 459 tx_err: 460 if (rc < 0 && rc != -EAGAIN) 461 tls_err_abort(sk, rc); 462 463 return rc; 464 } 465 466 static void tls_encrypt_done(void *data, int err) 467 { 468 struct tls_sw_context_tx *ctx; 469 struct tls_context *tls_ctx; 470 struct tls_prot_info *prot; 471 struct tls_rec *rec = data; 472 struct scatterlist *sge; 473 struct sk_msg *msg_en; 474 struct sock *sk; 475 476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ 477 return; 478 479 msg_en = &rec->msg_encrypted; 480 481 sk = rec->sk; 482 tls_ctx = tls_get_ctx(sk); 483 prot = &tls_ctx->prot_info; 484 ctx = tls_sw_ctx_tx(tls_ctx); 485 486 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 487 sge->offset -= prot->prepend_size; 488 sge->length += prot->prepend_size; 489 490 /* Check if error is previously set on socket */ 491 if (err || sk->sk_err) { 492 rec = NULL; 493 494 /* If err is already set on socket, return the same code */ 495 if (sk->sk_err) { 496 ctx->async_wait.err = -sk->sk_err; 497 } else { 498 ctx->async_wait.err = err; 499 tls_err_abort(sk, err); 500 } 501 } 502 503 if (rec) { 504 struct tls_rec *first_rec; 505 506 /* Mark the record as ready for transmission */ 507 smp_store_mb(rec->tx_ready, true); 508 509 /* If received record is at head of tx_list, schedule tx */ 510 first_rec = list_first_entry(&ctx->tx_list, 511 struct tls_rec, list); 512 if (rec == first_rec) { 513 /* Schedule the transmission */ 514 if (!test_and_set_bit(BIT_TX_SCHEDULED, 515 &ctx->tx_bitmask)) 516 schedule_delayed_work(&ctx->tx_work.work, 1); 517 } 518 } 519 520 if (atomic_dec_and_test(&ctx->encrypt_pending)) 521 complete(&ctx->async_wait.completion); 522 } 523 524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) 525 { 526 if (!atomic_dec_and_test(&ctx->encrypt_pending)) 527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 528 atomic_inc(&ctx->encrypt_pending); 529 530 return ctx->async_wait.err; 531 } 532 533 static int tls_do_encryption(struct sock *sk, 534 struct tls_context *tls_ctx, 535 struct tls_sw_context_tx *ctx, 536 struct aead_request *aead_req, 537 size_t data_len, u32 start) 538 { 539 struct tls_prot_info *prot = &tls_ctx->prot_info; 540 struct tls_rec *rec = ctx->open_rec; 541 struct sk_msg *msg_en = &rec->msg_encrypted; 542 struct scatterlist *sge = sk_msg_elem(msg_en, start); 543 int rc, iv_offset = 0; 544 545 /* For CCM based ciphers, first byte of IV is a constant */ 546 switch (prot->cipher_type) { 547 case TLS_CIPHER_AES_CCM_128: 548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 549 iv_offset = 1; 550 break; 551 case TLS_CIPHER_SM4_CCM: 552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 553 iv_offset = 1; 554 break; 555 } 556 557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 558 prot->iv_size + prot->salt_size); 559 560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 561 tls_ctx->tx.rec_seq); 562 563 sge->offset += prot->prepend_size; 564 sge->length -= prot->prepend_size; 565 566 msg_en->sg.curr = start; 567 568 aead_request_set_tfm(aead_req, ctx->aead_send); 569 aead_request_set_ad(aead_req, prot->aad_size); 570 aead_request_set_crypt(aead_req, rec->sg_aead_in, 571 rec->sg_aead_out, 572 data_len, rec->iv_data); 573 574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 575 tls_encrypt_done, rec); 576 577 /* Add the record in tx_list */ 578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); 580 atomic_inc(&ctx->encrypt_pending); 581 582 rc = crypto_aead_encrypt(aead_req); 583 if (rc == -EBUSY) { 584 rc = tls_encrypt_async_wait(ctx); 585 rc = rc ?: -EINPROGRESS; 586 } 587 if (!rc || rc != -EINPROGRESS) { 588 atomic_dec(&ctx->encrypt_pending); 589 sge->offset -= prot->prepend_size; 590 sge->length += prot->prepend_size; 591 } 592 593 if (!rc) { 594 WRITE_ONCE(rec->tx_ready, true); 595 } else if (rc != -EINPROGRESS) { 596 list_del(&rec->list); 597 return rc; 598 } 599 600 /* Unhook the record from context if encryption is not failure */ 601 ctx->open_rec = NULL; 602 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 603 return rc; 604 } 605 606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 607 struct tls_rec **to, struct sk_msg *msg_opl, 608 struct sk_msg *msg_oen, u32 split_point, 609 u32 tx_overhead_size, u32 *orig_end) 610 { 611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 612 struct scatterlist *sge, *osge, *nsge; 613 u32 orig_size = msg_opl->sg.size; 614 struct scatterlist tmp = { }; 615 struct sk_msg *msg_npl; 616 struct tls_rec *new; 617 int ret; 618 619 new = tls_get_rec(sk); 620 if (!new) 621 return -ENOMEM; 622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 623 tx_overhead_size, 0); 624 if (ret < 0) { 625 tls_free_rec(sk, new); 626 return ret; 627 } 628 629 *orig_end = msg_opl->sg.end; 630 i = msg_opl->sg.start; 631 sge = sk_msg_elem(msg_opl, i); 632 while (apply && sge->length) { 633 if (sge->length > apply) { 634 u32 len = sge->length - apply; 635 636 get_page(sg_page(sge)); 637 sg_set_page(&tmp, sg_page(sge), len, 638 sge->offset + apply); 639 sge->length = apply; 640 bytes += apply; 641 apply = 0; 642 } else { 643 apply -= sge->length; 644 bytes += sge->length; 645 } 646 647 sk_msg_iter_var_next(i); 648 if (i == msg_opl->sg.end) 649 break; 650 sge = sk_msg_elem(msg_opl, i); 651 } 652 653 msg_opl->sg.end = i; 654 msg_opl->sg.curr = i; 655 msg_opl->sg.copybreak = 0; 656 msg_opl->apply_bytes = 0; 657 msg_opl->sg.size = bytes; 658 659 msg_npl = &new->msg_plaintext; 660 msg_npl->apply_bytes = apply; 661 msg_npl->sg.size = orig_size - bytes; 662 663 j = msg_npl->sg.start; 664 nsge = sk_msg_elem(msg_npl, j); 665 if (tmp.length) { 666 memcpy(nsge, &tmp, sizeof(*nsge)); 667 sk_msg_iter_var_next(j); 668 nsge = sk_msg_elem(msg_npl, j); 669 } 670 671 osge = sk_msg_elem(msg_opl, i); 672 while (osge->length) { 673 memcpy(nsge, osge, sizeof(*nsge)); 674 sg_unmark_end(nsge); 675 sk_msg_iter_var_next(i); 676 sk_msg_iter_var_next(j); 677 if (i == *orig_end) 678 break; 679 osge = sk_msg_elem(msg_opl, i); 680 nsge = sk_msg_elem(msg_npl, j); 681 } 682 683 msg_npl->sg.end = j; 684 msg_npl->sg.curr = j; 685 msg_npl->sg.copybreak = 0; 686 687 *to = new; 688 return 0; 689 } 690 691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 692 struct tls_rec *from, u32 orig_end) 693 { 694 struct sk_msg *msg_npl = &from->msg_plaintext; 695 struct sk_msg *msg_opl = &to->msg_plaintext; 696 struct scatterlist *osge, *nsge; 697 u32 i, j; 698 699 i = msg_opl->sg.end; 700 sk_msg_iter_var_prev(i); 701 j = msg_npl->sg.start; 702 703 osge = sk_msg_elem(msg_opl, i); 704 nsge = sk_msg_elem(msg_npl, j); 705 706 if (sg_page(osge) == sg_page(nsge) && 707 osge->offset + osge->length == nsge->offset) { 708 osge->length += nsge->length; 709 put_page(sg_page(nsge)); 710 } 711 712 msg_opl->sg.end = orig_end; 713 msg_opl->sg.curr = orig_end; 714 msg_opl->sg.copybreak = 0; 715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 716 msg_opl->sg.size += msg_npl->sg.size; 717 718 sk_msg_free(sk, &to->msg_encrypted); 719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 720 721 kfree(from); 722 } 723 724 static int tls_push_record(struct sock *sk, int flags, 725 unsigned char record_type) 726 { 727 struct tls_context *tls_ctx = tls_get_ctx(sk); 728 struct tls_prot_info *prot = &tls_ctx->prot_info; 729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 731 u32 i, split_point, orig_end; 732 struct sk_msg *msg_pl, *msg_en; 733 struct aead_request *req; 734 bool split; 735 int rc; 736 737 if (!rec) 738 return 0; 739 740 msg_pl = &rec->msg_plaintext; 741 msg_en = &rec->msg_encrypted; 742 743 split_point = msg_pl->apply_bytes; 744 split = split_point && split_point < msg_pl->sg.size; 745 if (unlikely((!split && 746 msg_pl->sg.size + 747 prot->overhead_size > msg_en->sg.size) || 748 (split && 749 split_point + 750 prot->overhead_size > msg_en->sg.size))) { 751 split = true; 752 split_point = msg_en->sg.size; 753 } 754 if (split) { 755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 756 split_point, prot->overhead_size, 757 &orig_end); 758 if (rc < 0) 759 return rc; 760 /* This can happen if above tls_split_open_record allocates 761 * a single large encryption buffer instead of two smaller 762 * ones. In this case adjust pointers and continue without 763 * split. 764 */ 765 if (!msg_pl->sg.size) { 766 tls_merge_open_record(sk, rec, tmp, orig_end); 767 msg_pl = &rec->msg_plaintext; 768 msg_en = &rec->msg_encrypted; 769 split = false; 770 } 771 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 772 prot->overhead_size); 773 } 774 775 rec->tx_flags = flags; 776 req = &rec->aead_req; 777 778 i = msg_pl->sg.end; 779 sk_msg_iter_var_prev(i); 780 781 rec->content_type = record_type; 782 if (prot->version == TLS_1_3_VERSION) { 783 /* Add content type to end of message. No padding added */ 784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 785 sg_mark_end(&rec->sg_content_type); 786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 787 &rec->sg_content_type); 788 } else { 789 sg_mark_end(sk_msg_elem(msg_pl, i)); 790 } 791 792 if (msg_pl->sg.end < msg_pl->sg.start) { 793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 794 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 795 msg_pl->sg.data); 796 } 797 798 i = msg_pl->sg.start; 799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 800 801 i = msg_en->sg.end; 802 sk_msg_iter_var_prev(i); 803 sg_mark_end(sk_msg_elem(msg_en, i)); 804 805 i = msg_en->sg.start; 806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 807 808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 809 tls_ctx->tx.rec_seq, record_type, prot); 810 811 tls_fill_prepend(tls_ctx, 812 page_address(sg_page(&msg_en->sg.data[i])) + 813 msg_en->sg.data[i].offset, 814 msg_pl->sg.size + prot->tail_size, 815 record_type); 816 817 tls_ctx->pending_open_record_frags = false; 818 819 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 820 msg_pl->sg.size + prot->tail_size, i); 821 if (rc < 0) { 822 if (rc != -EINPROGRESS) { 823 tls_err_abort(sk, -EBADMSG); 824 if (split) { 825 tls_ctx->pending_open_record_frags = true; 826 tls_merge_open_record(sk, rec, tmp, orig_end); 827 } 828 } 829 ctx->async_capable = 1; 830 return rc; 831 } else if (split) { 832 msg_pl = &tmp->msg_plaintext; 833 msg_en = &tmp->msg_encrypted; 834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 835 tls_ctx->pending_open_record_frags = true; 836 ctx->open_rec = tmp; 837 } 838 839 return tls_tx_records(sk, flags); 840 } 841 842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 843 bool full_record, u8 record_type, 844 ssize_t *copied, int flags) 845 { 846 struct tls_context *tls_ctx = tls_get_ctx(sk); 847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 848 struct sk_msg msg_redir = { }; 849 struct sk_psock *psock; 850 struct sock *sk_redir; 851 struct tls_rec *rec; 852 bool enospc, policy, redir_ingress; 853 int err = 0, send; 854 u32 delta = 0; 855 856 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 857 psock = sk_psock_get(sk); 858 if (!psock || !policy) { 859 err = tls_push_record(sk, flags, record_type); 860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 861 *copied -= sk_msg_free(sk, msg); 862 tls_free_open_rec(sk); 863 err = -sk->sk_err; 864 } 865 if (psock) 866 sk_psock_put(sk, psock); 867 return err; 868 } 869 more_data: 870 enospc = sk_msg_full(msg); 871 if (psock->eval == __SK_NONE) { 872 delta = msg->sg.size; 873 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 874 delta -= msg->sg.size; 875 } 876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 877 !enospc && !full_record) { 878 err = -ENOSPC; 879 goto out_err; 880 } 881 msg->cork_bytes = 0; 882 send = msg->sg.size; 883 if (msg->apply_bytes && msg->apply_bytes < send) 884 send = msg->apply_bytes; 885 886 switch (psock->eval) { 887 case __SK_PASS: 888 err = tls_push_record(sk, flags, record_type); 889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 890 *copied -= sk_msg_free(sk, msg); 891 tls_free_open_rec(sk); 892 err = -sk->sk_err; 893 goto out_err; 894 } 895 break; 896 case __SK_REDIRECT: 897 redir_ingress = psock->redir_ingress; 898 sk_redir = psock->sk_redir; 899 memcpy(&msg_redir, msg, sizeof(*msg)); 900 if (msg->apply_bytes < send) 901 msg->apply_bytes = 0; 902 else 903 msg->apply_bytes -= send; 904 sk_msg_return_zero(sk, msg, send); 905 msg->sg.size -= send; 906 release_sock(sk); 907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 908 &msg_redir, send, flags); 909 lock_sock(sk); 910 if (err < 0) { 911 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 912 msg->sg.size = 0; 913 } 914 if (msg->sg.size == 0) 915 tls_free_open_rec(sk); 916 break; 917 case __SK_DROP: 918 default: 919 sk_msg_free_partial(sk, msg, send); 920 if (msg->apply_bytes < send) 921 msg->apply_bytes = 0; 922 else 923 msg->apply_bytes -= send; 924 if (msg->sg.size == 0) 925 tls_free_open_rec(sk); 926 *copied -= (send + delta); 927 err = -EACCES; 928 } 929 930 if (likely(!err)) { 931 bool reset_eval = !ctx->open_rec; 932 933 rec = ctx->open_rec; 934 if (rec) { 935 msg = &rec->msg_plaintext; 936 if (!msg->apply_bytes) 937 reset_eval = true; 938 } 939 if (reset_eval) { 940 psock->eval = __SK_NONE; 941 if (psock->sk_redir) { 942 sock_put(psock->sk_redir); 943 psock->sk_redir = NULL; 944 } 945 } 946 if (rec) 947 goto more_data; 948 } 949 out_err: 950 sk_psock_put(sk, psock); 951 return err; 952 } 953 954 static int tls_sw_push_pending_record(struct sock *sk, int flags) 955 { 956 struct tls_context *tls_ctx = tls_get_ctx(sk); 957 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 958 struct tls_rec *rec = ctx->open_rec; 959 struct sk_msg *msg_pl; 960 size_t copied; 961 962 if (!rec) 963 return 0; 964 965 msg_pl = &rec->msg_plaintext; 966 copied = msg_pl->sg.size; 967 if (!copied) 968 return 0; 969 970 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 971 &copied, flags); 972 } 973 974 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 975 struct sk_msg *msg_pl, size_t try_to_copy, 976 ssize_t *copied) 977 { 978 struct page *page = NULL, **pages = &page; 979 980 do { 981 ssize_t part; 982 size_t off; 983 984 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 985 try_to_copy, 1, 0, &off); 986 if (part <= 0) 987 return part ?: -EIO; 988 989 if (WARN_ON_ONCE(!sendpage_ok(page))) { 990 iov_iter_revert(&msg->msg_iter, part); 991 return -EIO; 992 } 993 994 sk_msg_page_add(msg_pl, page, part, off); 995 msg_pl->sg.copybreak = 0; 996 msg_pl->sg.curr = msg_pl->sg.end; 997 sk_mem_charge(sk, part); 998 *copied += part; 999 try_to_copy -= part; 1000 } while (try_to_copy && !sk_msg_full(msg_pl)); 1001 1002 return 0; 1003 } 1004 1005 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 1006 size_t size) 1007 { 1008 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1009 struct tls_context *tls_ctx = tls_get_ctx(sk); 1010 struct tls_prot_info *prot = &tls_ctx->prot_info; 1011 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1012 bool async_capable = ctx->async_capable; 1013 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1014 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1015 bool eor = !(msg->msg_flags & MSG_MORE); 1016 size_t try_to_copy; 1017 ssize_t copied = 0; 1018 struct sk_msg *msg_pl, *msg_en; 1019 struct tls_rec *rec; 1020 int required_size; 1021 int num_async = 0; 1022 bool full_record; 1023 int record_room; 1024 int num_zc = 0; 1025 int orig_size; 1026 int ret = 0; 1027 1028 if (!eor && (msg->msg_flags & MSG_EOR)) 1029 return -EINVAL; 1030 1031 if (unlikely(msg->msg_controllen)) { 1032 ret = tls_process_cmsg(sk, msg, &record_type); 1033 if (ret) { 1034 if (ret == -EINPROGRESS) 1035 num_async++; 1036 else if (ret != -EAGAIN) 1037 goto send_end; 1038 } 1039 } 1040 1041 while (msg_data_left(msg)) { 1042 if (sk->sk_err) { 1043 ret = -sk->sk_err; 1044 goto send_end; 1045 } 1046 1047 if (ctx->open_rec) 1048 rec = ctx->open_rec; 1049 else 1050 rec = ctx->open_rec = tls_get_rec(sk); 1051 if (!rec) { 1052 ret = -ENOMEM; 1053 goto send_end; 1054 } 1055 1056 msg_pl = &rec->msg_plaintext; 1057 msg_en = &rec->msg_encrypted; 1058 1059 orig_size = msg_pl->sg.size; 1060 full_record = false; 1061 try_to_copy = msg_data_left(msg); 1062 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1063 if (try_to_copy >= record_room) { 1064 try_to_copy = record_room; 1065 full_record = true; 1066 } 1067 1068 required_size = msg_pl->sg.size + try_to_copy + 1069 prot->overhead_size; 1070 1071 if (!sk_stream_memory_free(sk)) 1072 goto wait_for_sndbuf; 1073 1074 alloc_encrypted: 1075 ret = tls_alloc_encrypted_msg(sk, required_size); 1076 if (ret) { 1077 if (ret != -ENOSPC) 1078 goto wait_for_memory; 1079 1080 /* Adjust try_to_copy according to the amount that was 1081 * actually allocated. The difference is due 1082 * to max sg elements limit 1083 */ 1084 try_to_copy -= required_size - msg_en->sg.size; 1085 full_record = true; 1086 } 1087 1088 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1089 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1090 try_to_copy, &copied); 1091 if (ret < 0) 1092 goto send_end; 1093 tls_ctx->pending_open_record_frags = true; 1094 1095 if (sk_msg_full(msg_pl)) 1096 full_record = true; 1097 1098 if (full_record || eor) 1099 goto copied; 1100 continue; 1101 } 1102 1103 if (!is_kvec && (full_record || eor) && !async_capable) { 1104 u32 first = msg_pl->sg.end; 1105 1106 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1107 msg_pl, try_to_copy); 1108 if (ret) 1109 goto fallback_to_reg_send; 1110 1111 num_zc++; 1112 copied += try_to_copy; 1113 1114 sk_msg_sg_copy_set(msg_pl, first); 1115 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1116 record_type, &copied, 1117 msg->msg_flags); 1118 if (ret) { 1119 if (ret == -EINPROGRESS) 1120 num_async++; 1121 else if (ret == -ENOMEM) 1122 goto wait_for_memory; 1123 else if (ctx->open_rec && ret == -ENOSPC) 1124 goto rollback_iter; 1125 else if (ret != -EAGAIN) 1126 goto send_end; 1127 } 1128 continue; 1129 rollback_iter: 1130 copied -= try_to_copy; 1131 sk_msg_sg_copy_clear(msg_pl, first); 1132 iov_iter_revert(&msg->msg_iter, 1133 msg_pl->sg.size - orig_size); 1134 fallback_to_reg_send: 1135 sk_msg_trim(sk, msg_pl, orig_size); 1136 } 1137 1138 required_size = msg_pl->sg.size + try_to_copy; 1139 1140 ret = tls_clone_plaintext_msg(sk, required_size); 1141 if (ret) { 1142 if (ret != -ENOSPC) 1143 goto send_end; 1144 1145 /* Adjust try_to_copy according to the amount that was 1146 * actually allocated. The difference is due 1147 * to max sg elements limit 1148 */ 1149 try_to_copy -= required_size - msg_pl->sg.size; 1150 full_record = true; 1151 sk_msg_trim(sk, msg_en, 1152 msg_pl->sg.size + prot->overhead_size); 1153 } 1154 1155 if (try_to_copy) { 1156 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1157 msg_pl, try_to_copy); 1158 if (ret < 0) 1159 goto trim_sgl; 1160 } 1161 1162 /* Open records defined only if successfully copied, otherwise 1163 * we would trim the sg but not reset the open record frags. 1164 */ 1165 tls_ctx->pending_open_record_frags = true; 1166 copied += try_to_copy; 1167 copied: 1168 if (full_record || eor) { 1169 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1170 record_type, &copied, 1171 msg->msg_flags); 1172 if (ret) { 1173 if (ret == -EINPROGRESS) 1174 num_async++; 1175 else if (ret == -ENOMEM) 1176 goto wait_for_memory; 1177 else if (ret != -EAGAIN) { 1178 if (ret == -ENOSPC) 1179 ret = 0; 1180 goto send_end; 1181 } 1182 } 1183 } 1184 1185 continue; 1186 1187 wait_for_sndbuf: 1188 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1189 wait_for_memory: 1190 ret = sk_stream_wait_memory(sk, &timeo); 1191 if (ret) { 1192 trim_sgl: 1193 if (ctx->open_rec) 1194 tls_trim_both_msgs(sk, orig_size); 1195 goto send_end; 1196 } 1197 1198 if (ctx->open_rec && msg_en->sg.size < required_size) 1199 goto alloc_encrypted; 1200 } 1201 1202 if (!num_async) { 1203 goto send_end; 1204 } else if (num_zc || eor) { 1205 int err; 1206 1207 /* Wait for pending encryptions to get completed */ 1208 err = tls_encrypt_async_wait(ctx); 1209 if (err) { 1210 ret = err; 1211 copied = 0; 1212 } 1213 } 1214 1215 /* Transmit if any encryptions have completed */ 1216 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1217 cancel_delayed_work(&ctx->tx_work.work); 1218 tls_tx_records(sk, msg->msg_flags); 1219 } 1220 1221 send_end: 1222 ret = sk_stream_error(sk, msg->msg_flags, ret); 1223 return copied > 0 ? copied : ret; 1224 } 1225 1226 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1227 { 1228 struct tls_context *tls_ctx = tls_get_ctx(sk); 1229 int ret; 1230 1231 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1232 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1233 MSG_SENDPAGE_NOPOLICY)) 1234 return -EOPNOTSUPP; 1235 1236 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1237 if (ret) 1238 return ret; 1239 lock_sock(sk); 1240 ret = tls_sw_sendmsg_locked(sk, msg, size); 1241 release_sock(sk); 1242 mutex_unlock(&tls_ctx->tx_lock); 1243 return ret; 1244 } 1245 1246 /* 1247 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1248 */ 1249 void tls_sw_splice_eof(struct socket *sock) 1250 { 1251 struct sock *sk = sock->sk; 1252 struct tls_context *tls_ctx = tls_get_ctx(sk); 1253 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1254 struct tls_rec *rec; 1255 struct sk_msg *msg_pl; 1256 ssize_t copied = 0; 1257 bool retrying = false; 1258 int ret = 0; 1259 1260 if (!ctx->open_rec) 1261 return; 1262 1263 mutex_lock(&tls_ctx->tx_lock); 1264 lock_sock(sk); 1265 1266 retry: 1267 /* same checks as in tls_sw_push_pending_record() */ 1268 rec = ctx->open_rec; 1269 if (!rec) 1270 goto unlock; 1271 1272 msg_pl = &rec->msg_plaintext; 1273 if (msg_pl->sg.size == 0) 1274 goto unlock; 1275 1276 /* Check the BPF advisor and perform transmission. */ 1277 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1278 &copied, 0); 1279 switch (ret) { 1280 case 0: 1281 case -EAGAIN: 1282 if (retrying) 1283 goto unlock; 1284 retrying = true; 1285 goto retry; 1286 case -EINPROGRESS: 1287 break; 1288 default: 1289 goto unlock; 1290 } 1291 1292 /* Wait for pending encryptions to get completed */ 1293 if (tls_encrypt_async_wait(ctx)) 1294 goto unlock; 1295 1296 /* Transmit if any encryptions have completed */ 1297 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1298 cancel_delayed_work(&ctx->tx_work.work); 1299 tls_tx_records(sk, 0); 1300 } 1301 1302 unlock: 1303 release_sock(sk); 1304 mutex_unlock(&tls_ctx->tx_lock); 1305 } 1306 1307 static int 1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1309 bool released) 1310 { 1311 struct tls_context *tls_ctx = tls_get_ctx(sk); 1312 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1313 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1314 int ret = 0; 1315 long timeo; 1316 1317 /* a rekey is pending, let userspace deal with it */ 1318 if (unlikely(ctx->key_update_pending)) 1319 return -EKEYEXPIRED; 1320 1321 timeo = sock_rcvtimeo(sk, nonblock); 1322 1323 while (!tls_strp_msg_ready(ctx)) { 1324 if (!sk_psock_queue_empty(psock)) 1325 return 0; 1326 1327 if (sk->sk_err) 1328 return sock_error(sk); 1329 1330 if (ret < 0) 1331 return ret; 1332 1333 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1334 tls_strp_check_rcv(&ctx->strp); 1335 if (tls_strp_msg_ready(ctx)) 1336 break; 1337 } 1338 1339 if (sk->sk_shutdown & RCV_SHUTDOWN) 1340 return 0; 1341 1342 if (sock_flag(sk, SOCK_DONE)) 1343 return 0; 1344 1345 if (!timeo) 1346 return -EAGAIN; 1347 1348 released = true; 1349 add_wait_queue(sk_sleep(sk), &wait); 1350 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1351 ret = sk_wait_event(sk, &timeo, 1352 tls_strp_msg_ready(ctx) || 1353 !sk_psock_queue_empty(psock), 1354 &wait); 1355 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1356 remove_wait_queue(sk_sleep(sk), &wait); 1357 1358 /* Handle signals */ 1359 if (signal_pending(current)) 1360 return sock_intr_errno(timeo); 1361 } 1362 1363 tls_strp_msg_load(&ctx->strp, released); 1364 1365 return 1; 1366 } 1367 1368 static int tls_setup_from_iter(struct iov_iter *from, 1369 int length, int *pages_used, 1370 struct scatterlist *to, 1371 int to_max_pages) 1372 { 1373 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1374 struct page *pages[MAX_SKB_FRAGS]; 1375 unsigned int size = 0; 1376 ssize_t copied, use; 1377 size_t offset; 1378 1379 while (length > 0) { 1380 i = 0; 1381 maxpages = to_max_pages - num_elem; 1382 if (maxpages == 0) { 1383 rc = -EFAULT; 1384 goto out; 1385 } 1386 copied = iov_iter_get_pages2(from, pages, 1387 length, 1388 maxpages, &offset); 1389 if (copied <= 0) { 1390 rc = -EFAULT; 1391 goto out; 1392 } 1393 1394 length -= copied; 1395 size += copied; 1396 while (copied) { 1397 use = min_t(int, copied, PAGE_SIZE - offset); 1398 1399 sg_set_page(&to[num_elem], 1400 pages[i], use, offset); 1401 sg_unmark_end(&to[num_elem]); 1402 /* We do not uncharge memory from this API */ 1403 1404 offset = 0; 1405 copied -= use; 1406 1407 i++; 1408 num_elem++; 1409 } 1410 } 1411 /* Mark the end in the last sg entry if newly added */ 1412 if (num_elem > *pages_used) 1413 sg_mark_end(&to[num_elem - 1]); 1414 out: 1415 if (rc) 1416 iov_iter_revert(from, size); 1417 *pages_used = num_elem; 1418 1419 return rc; 1420 } 1421 1422 static struct sk_buff * 1423 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1424 unsigned int full_len) 1425 { 1426 struct strp_msg *clr_rxm; 1427 struct sk_buff *clr_skb; 1428 int err; 1429 1430 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1431 &err, sk->sk_allocation); 1432 if (!clr_skb) 1433 return NULL; 1434 1435 skb_copy_header(clr_skb, skb); 1436 clr_skb->len = full_len; 1437 clr_skb->data_len = full_len; 1438 1439 clr_rxm = strp_msg(clr_skb); 1440 clr_rxm->offset = 0; 1441 1442 return clr_skb; 1443 } 1444 1445 /* Decrypt handlers 1446 * 1447 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1448 * They must transform the darg in/out argument are as follows: 1449 * | Input | Output 1450 * ------------------------------------------------------------------- 1451 * zc | Zero-copy decrypt allowed | Zero-copy performed 1452 * async | Async decrypt allowed | Async crypto used / in progress 1453 * skb | * | Output skb 1454 * 1455 * If ZC decryption was performed darg.skb will point to the input skb. 1456 */ 1457 1458 /* This function decrypts the input skb into either out_iov or in out_sg 1459 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1460 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1461 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1462 * NULL, then the decryption happens inside skb buffers itself, i.e. 1463 * zero-copy gets disabled and 'darg->zc' is updated. 1464 */ 1465 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1466 struct scatterlist *out_sg, 1467 struct tls_decrypt_arg *darg) 1468 { 1469 struct tls_context *tls_ctx = tls_get_ctx(sk); 1470 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1471 struct tls_prot_info *prot = &tls_ctx->prot_info; 1472 int n_sgin, n_sgout, aead_size, err, pages = 0; 1473 struct sk_buff *skb = tls_strp_msg(ctx); 1474 const struct strp_msg *rxm = strp_msg(skb); 1475 const struct tls_msg *tlm = tls_msg(skb); 1476 struct aead_request *aead_req; 1477 struct scatterlist *sgin = NULL; 1478 struct scatterlist *sgout = NULL; 1479 const int data_len = rxm->full_len - prot->overhead_size; 1480 int tail_pages = !!prot->tail_size; 1481 struct tls_decrypt_ctx *dctx; 1482 struct sk_buff *clear_skb; 1483 int iv_offset = 0; 1484 u8 *mem; 1485 1486 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1487 rxm->full_len - prot->prepend_size); 1488 if (n_sgin < 1) 1489 return n_sgin ?: -EBADMSG; 1490 1491 if (darg->zc && (out_iov || out_sg)) { 1492 clear_skb = NULL; 1493 1494 if (out_iov) 1495 n_sgout = 1 + tail_pages + 1496 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1497 else 1498 n_sgout = sg_nents(out_sg); 1499 } else { 1500 darg->zc = false; 1501 1502 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1503 if (!clear_skb) 1504 return -ENOMEM; 1505 1506 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1507 } 1508 1509 /* Increment to accommodate AAD */ 1510 n_sgin = n_sgin + 1; 1511 1512 /* Allocate a single block of memory which contains 1513 * aead_req || tls_decrypt_ctx. 1514 * Both structs are variable length. 1515 */ 1516 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1517 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1518 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1519 sk->sk_allocation); 1520 if (!mem) { 1521 err = -ENOMEM; 1522 goto exit_free_skb; 1523 } 1524 1525 /* Segment the allocated memory */ 1526 aead_req = (struct aead_request *)mem; 1527 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1528 dctx->sk = sk; 1529 sgin = &dctx->sg[0]; 1530 sgout = &dctx->sg[n_sgin]; 1531 1532 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1533 switch (prot->cipher_type) { 1534 case TLS_CIPHER_AES_CCM_128: 1535 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1536 iv_offset = 1; 1537 break; 1538 case TLS_CIPHER_SM4_CCM: 1539 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1540 iv_offset = 1; 1541 break; 1542 } 1543 1544 /* Prepare IV */ 1545 if (prot->version == TLS_1_3_VERSION || 1546 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1547 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1548 prot->iv_size + prot->salt_size); 1549 } else { 1550 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1551 &dctx->iv[iv_offset] + prot->salt_size, 1552 prot->iv_size); 1553 if (err < 0) 1554 goto exit_free; 1555 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1556 } 1557 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1558 1559 /* Prepare AAD */ 1560 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1561 prot->tail_size, 1562 tls_ctx->rx.rec_seq, tlm->control, prot); 1563 1564 /* Prepare sgin */ 1565 sg_init_table(sgin, n_sgin); 1566 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1567 err = skb_to_sgvec(skb, &sgin[1], 1568 rxm->offset + prot->prepend_size, 1569 rxm->full_len - prot->prepend_size); 1570 if (err < 0) 1571 goto exit_free; 1572 1573 if (clear_skb) { 1574 sg_init_table(sgout, n_sgout); 1575 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1576 1577 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1578 data_len + prot->tail_size); 1579 if (err < 0) 1580 goto exit_free; 1581 } else if (out_iov) { 1582 sg_init_table(sgout, n_sgout); 1583 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1584 1585 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1586 (n_sgout - 1 - tail_pages)); 1587 if (err < 0) 1588 goto exit_free_pages; 1589 1590 if (prot->tail_size) { 1591 sg_unmark_end(&sgout[pages]); 1592 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1593 prot->tail_size); 1594 sg_mark_end(&sgout[pages + 1]); 1595 } 1596 } else if (out_sg) { 1597 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1598 } 1599 dctx->free_sgout = !!pages; 1600 1601 /* Prepare and submit AEAD request */ 1602 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1603 data_len + prot->tail_size, aead_req, darg); 1604 if (err) { 1605 if (darg->async_done) 1606 goto exit_free_skb; 1607 goto exit_free_pages; 1608 } 1609 1610 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1611 clear_skb = NULL; 1612 1613 if (unlikely(darg->async)) { 1614 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1615 if (err) 1616 __skb_queue_tail(&ctx->async_hold, darg->skb); 1617 return err; 1618 } 1619 1620 if (unlikely(darg->async_done)) 1621 return 0; 1622 1623 if (prot->tail_size) 1624 darg->tail = dctx->tail; 1625 1626 exit_free_pages: 1627 /* Release the pages in case iov was mapped to pages */ 1628 for (; pages > 0; pages--) 1629 put_page(sg_page(&sgout[pages])); 1630 exit_free: 1631 kfree(mem); 1632 exit_free_skb: 1633 consume_skb(clear_skb); 1634 return err; 1635 } 1636 1637 static int 1638 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1639 struct msghdr *msg, struct tls_decrypt_arg *darg) 1640 { 1641 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1642 struct tls_prot_info *prot = &tls_ctx->prot_info; 1643 struct strp_msg *rxm; 1644 int pad, err; 1645 1646 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1647 if (err < 0) { 1648 if (err == -EBADMSG) 1649 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1650 return err; 1651 } 1652 /* keep going even for ->async, the code below is TLS 1.3 */ 1653 1654 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1655 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1656 darg->tail != TLS_RECORD_TYPE_DATA)) { 1657 darg->zc = false; 1658 if (!darg->tail) 1659 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1660 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1661 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1662 } 1663 1664 pad = tls_padding_length(prot, darg->skb, darg); 1665 if (pad < 0) { 1666 if (darg->skb != tls_strp_msg(ctx)) 1667 consume_skb(darg->skb); 1668 return pad; 1669 } 1670 1671 rxm = strp_msg(darg->skb); 1672 rxm->full_len -= pad; 1673 1674 return 0; 1675 } 1676 1677 static int 1678 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1679 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1680 { 1681 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1682 struct tls_prot_info *prot = &tls_ctx->prot_info; 1683 struct strp_msg *rxm; 1684 int pad, err; 1685 1686 if (tls_ctx->rx_conf != TLS_HW) 1687 return 0; 1688 1689 err = tls_device_decrypted(sk, tls_ctx); 1690 if (err <= 0) 1691 return err; 1692 1693 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1694 if (pad < 0) 1695 return pad; 1696 1697 darg->async = false; 1698 darg->skb = tls_strp_msg(ctx); 1699 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1700 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1701 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1702 1703 rxm = strp_msg(darg->skb); 1704 rxm->full_len -= pad; 1705 1706 if (!darg->zc) { 1707 /* Non-ZC case needs a real skb */ 1708 darg->skb = tls_strp_msg_detach(ctx); 1709 if (!darg->skb) 1710 return -ENOMEM; 1711 } else { 1712 unsigned int off, len; 1713 1714 /* In ZC case nobody cares about the output skb. 1715 * Just copy the data here. Note the skb is not fully trimmed. 1716 */ 1717 off = rxm->offset + prot->prepend_size; 1718 len = rxm->full_len - prot->overhead_size; 1719 1720 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1721 if (err) 1722 return err; 1723 } 1724 return 1; 1725 } 1726 1727 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx, 1728 struct sk_buff *skb) 1729 { 1730 const struct strp_msg *rxm = strp_msg(skb); 1731 const struct tls_msg *tlm = tls_msg(skb); 1732 char hs_type; 1733 int err; 1734 1735 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE)) 1736 return 0; 1737 1738 if (rxm->full_len < 1) 1739 return 0; 1740 1741 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1); 1742 if (err < 0) { 1743 DEBUG_NET_WARN_ON_ONCE(1); 1744 return err; 1745 } 1746 1747 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) { 1748 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx; 1749 1750 WRITE_ONCE(rx_ctx->key_update_pending, true); 1751 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED); 1752 } 1753 1754 return 0; 1755 } 1756 1757 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1758 struct tls_decrypt_arg *darg) 1759 { 1760 struct tls_context *tls_ctx = tls_get_ctx(sk); 1761 struct tls_prot_info *prot = &tls_ctx->prot_info; 1762 struct strp_msg *rxm; 1763 int err; 1764 1765 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1766 if (!err) 1767 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1768 if (err < 0) 1769 return err; 1770 1771 rxm = strp_msg(darg->skb); 1772 rxm->offset += prot->prepend_size; 1773 rxm->full_len -= prot->overhead_size; 1774 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1775 1776 return tls_check_pending_rekey(sk, tls_ctx, darg->skb); 1777 } 1778 1779 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1780 { 1781 struct tls_decrypt_arg darg = { .zc = true, }; 1782 1783 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1784 } 1785 1786 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1787 u8 *control) 1788 { 1789 int err; 1790 1791 if (!*control) { 1792 *control = tlm->control; 1793 if (!*control) 1794 return -EBADMSG; 1795 1796 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1797 sizeof(*control), control); 1798 if (*control != TLS_RECORD_TYPE_DATA) { 1799 if (err || msg->msg_flags & MSG_CTRUNC) 1800 return -EIO; 1801 } 1802 } else if (*control != tlm->control) { 1803 return 0; 1804 } 1805 1806 return 1; 1807 } 1808 1809 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1810 { 1811 tls_strp_msg_done(&ctx->strp); 1812 } 1813 1814 /* This function traverses the rx_list in tls receive context to copies the 1815 * decrypted records into the buffer provided by caller zero copy is not 1816 * true. Further, the records are removed from the rx_list if it is not a peek 1817 * case and the record has been consumed completely. 1818 */ 1819 static int process_rx_list(struct tls_sw_context_rx *ctx, 1820 struct msghdr *msg, 1821 u8 *control, 1822 size_t skip, 1823 size_t len, 1824 bool is_peek, 1825 bool *more) 1826 { 1827 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1828 struct tls_msg *tlm; 1829 ssize_t copied = 0; 1830 int err; 1831 1832 while (skip && skb) { 1833 struct strp_msg *rxm = strp_msg(skb); 1834 tlm = tls_msg(skb); 1835 1836 err = tls_record_content_type(msg, tlm, control); 1837 if (err <= 0) 1838 goto more; 1839 1840 if (skip < rxm->full_len) 1841 break; 1842 1843 skip = skip - rxm->full_len; 1844 skb = skb_peek_next(skb, &ctx->rx_list); 1845 } 1846 1847 while (len && skb) { 1848 struct sk_buff *next_skb; 1849 struct strp_msg *rxm = strp_msg(skb); 1850 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1851 1852 tlm = tls_msg(skb); 1853 1854 err = tls_record_content_type(msg, tlm, control); 1855 if (err <= 0) 1856 goto more; 1857 1858 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1859 msg, chunk); 1860 if (err < 0) 1861 goto more; 1862 1863 len = len - chunk; 1864 copied = copied + chunk; 1865 1866 /* Consume the data from record if it is non-peek case*/ 1867 if (!is_peek) { 1868 rxm->offset = rxm->offset + chunk; 1869 rxm->full_len = rxm->full_len - chunk; 1870 1871 /* Return if there is unconsumed data in the record */ 1872 if (rxm->full_len - skip) 1873 break; 1874 } 1875 1876 /* The remaining skip-bytes must lie in 1st record in rx_list. 1877 * So from the 2nd record, 'skip' should be 0. 1878 */ 1879 skip = 0; 1880 1881 if (msg) 1882 msg->msg_flags |= MSG_EOR; 1883 1884 next_skb = skb_peek_next(skb, &ctx->rx_list); 1885 1886 if (!is_peek) { 1887 __skb_unlink(skb, &ctx->rx_list); 1888 consume_skb(skb); 1889 } 1890 1891 skb = next_skb; 1892 } 1893 err = 0; 1894 1895 out: 1896 return copied ? : err; 1897 more: 1898 if (more) 1899 *more = true; 1900 goto out; 1901 } 1902 1903 static bool 1904 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1905 size_t len_left, size_t decrypted, ssize_t done, 1906 size_t *flushed_at) 1907 { 1908 size_t max_rec; 1909 1910 if (len_left <= decrypted) 1911 return false; 1912 1913 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1914 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1915 return false; 1916 1917 *flushed_at = done; 1918 return sk_flush_backlog(sk); 1919 } 1920 1921 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1922 bool nonblock) 1923 { 1924 long timeo; 1925 int ret; 1926 1927 timeo = sock_rcvtimeo(sk, nonblock); 1928 1929 while (unlikely(ctx->reader_present)) { 1930 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1931 1932 ctx->reader_contended = 1; 1933 1934 add_wait_queue(&ctx->wq, &wait); 1935 ret = sk_wait_event(sk, &timeo, 1936 !READ_ONCE(ctx->reader_present), &wait); 1937 remove_wait_queue(&ctx->wq, &wait); 1938 1939 if (timeo <= 0) 1940 return -EAGAIN; 1941 if (signal_pending(current)) 1942 return sock_intr_errno(timeo); 1943 if (ret < 0) 1944 return ret; 1945 } 1946 1947 WRITE_ONCE(ctx->reader_present, 1); 1948 1949 return 0; 1950 } 1951 1952 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1953 bool nonblock) 1954 { 1955 int err; 1956 1957 lock_sock(sk); 1958 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1959 if (err) 1960 release_sock(sk); 1961 return err; 1962 } 1963 1964 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1965 { 1966 if (unlikely(ctx->reader_contended)) { 1967 if (wq_has_sleeper(&ctx->wq)) 1968 wake_up(&ctx->wq); 1969 else 1970 ctx->reader_contended = 0; 1971 1972 WARN_ON_ONCE(!ctx->reader_present); 1973 } 1974 1975 WRITE_ONCE(ctx->reader_present, 0); 1976 } 1977 1978 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1979 { 1980 tls_rx_reader_release(sk, ctx); 1981 release_sock(sk); 1982 } 1983 1984 int tls_sw_recvmsg(struct sock *sk, 1985 struct msghdr *msg, 1986 size_t len, 1987 int flags, 1988 int *addr_len) 1989 { 1990 struct tls_context *tls_ctx = tls_get_ctx(sk); 1991 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1992 struct tls_prot_info *prot = &tls_ctx->prot_info; 1993 ssize_t decrypted = 0, async_copy_bytes = 0; 1994 struct sk_psock *psock; 1995 unsigned char control = 0; 1996 size_t flushed_at = 0; 1997 struct strp_msg *rxm; 1998 struct tls_msg *tlm; 1999 ssize_t copied = 0; 2000 ssize_t peeked = 0; 2001 bool async = false; 2002 int target, err; 2003 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 2004 bool is_peek = flags & MSG_PEEK; 2005 bool rx_more = false; 2006 bool released = true; 2007 bool bpf_strp_enabled; 2008 bool zc_capable; 2009 2010 if (unlikely(flags & MSG_ERRQUEUE)) 2011 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 2012 2013 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 2014 if (err < 0) 2015 return err; 2016 psock = sk_psock_get(sk); 2017 bpf_strp_enabled = sk_psock_strp_enabled(psock); 2018 2019 /* If crypto failed the connection is broken */ 2020 err = ctx->async_wait.err; 2021 if (err) 2022 goto end; 2023 2024 /* Process pending decrypted records. It must be non-zero-copy */ 2025 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); 2026 if (err < 0) 2027 goto end; 2028 2029 copied = err; 2030 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more) 2031 goto end; 2032 2033 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2034 len = len - copied; 2035 2036 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 2037 ctx->zc_capable; 2038 decrypted = 0; 2039 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 2040 struct tls_decrypt_arg darg; 2041 int to_decrypt, chunk; 2042 2043 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 2044 released); 2045 if (err <= 0) { 2046 if (psock) { 2047 chunk = sk_msg_recvmsg(sk, psock, msg, len, 2048 flags); 2049 if (chunk > 0) { 2050 decrypted += chunk; 2051 len -= chunk; 2052 continue; 2053 } 2054 } 2055 goto recv_end; 2056 } 2057 2058 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2059 2060 rxm = strp_msg(tls_strp_msg(ctx)); 2061 tlm = tls_msg(tls_strp_msg(ctx)); 2062 2063 to_decrypt = rxm->full_len - prot->overhead_size; 2064 2065 if (zc_capable && to_decrypt <= len && 2066 tlm->control == TLS_RECORD_TYPE_DATA) 2067 darg.zc = true; 2068 2069 /* Do not use async mode if record is non-data */ 2070 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2071 darg.async = ctx->async_capable; 2072 else 2073 darg.async = false; 2074 2075 err = tls_rx_one_record(sk, msg, &darg); 2076 if (err < 0) { 2077 tls_err_abort(sk, -EBADMSG); 2078 goto recv_end; 2079 } 2080 2081 async |= darg.async; 2082 2083 /* If the type of records being processed is not known yet, 2084 * set it to record type just dequeued. If it is already known, 2085 * but does not match the record type just dequeued, go to end. 2086 * We always get record type here since for tls1.2, record type 2087 * is known just after record is dequeued from stream parser. 2088 * For tls1.3, we disable async. 2089 */ 2090 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2091 if (err <= 0) { 2092 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2093 tls_rx_rec_done(ctx); 2094 put_on_rx_list_err: 2095 __skb_queue_tail(&ctx->rx_list, darg.skb); 2096 goto recv_end; 2097 } 2098 2099 /* periodically flush backlog, and feed strparser */ 2100 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2101 decrypted + copied, 2102 &flushed_at); 2103 2104 /* TLS 1.3 may have updated the length by more than overhead */ 2105 rxm = strp_msg(darg.skb); 2106 chunk = rxm->full_len; 2107 tls_rx_rec_done(ctx); 2108 2109 if (!darg.zc) { 2110 bool partially_consumed = chunk > len; 2111 struct sk_buff *skb = darg.skb; 2112 2113 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2114 2115 if (async) { 2116 /* TLS 1.2-only, to_decrypt must be text len */ 2117 chunk = min_t(int, to_decrypt, len); 2118 async_copy_bytes += chunk; 2119 put_on_rx_list: 2120 decrypted += chunk; 2121 len -= chunk; 2122 __skb_queue_tail(&ctx->rx_list, skb); 2123 if (unlikely(control != TLS_RECORD_TYPE_DATA)) 2124 break; 2125 continue; 2126 } 2127 2128 if (bpf_strp_enabled) { 2129 released = true; 2130 err = sk_psock_tls_strp_read(psock, skb); 2131 if (err != __SK_PASS) { 2132 rxm->offset = rxm->offset + rxm->full_len; 2133 rxm->full_len = 0; 2134 if (err == __SK_DROP) 2135 consume_skb(skb); 2136 continue; 2137 } 2138 } 2139 2140 if (partially_consumed) 2141 chunk = len; 2142 2143 err = skb_copy_datagram_msg(skb, rxm->offset, 2144 msg, chunk); 2145 if (err < 0) 2146 goto put_on_rx_list_err; 2147 2148 if (is_peek) { 2149 peeked += chunk; 2150 goto put_on_rx_list; 2151 } 2152 2153 if (partially_consumed) { 2154 rxm->offset += chunk; 2155 rxm->full_len -= chunk; 2156 goto put_on_rx_list; 2157 } 2158 2159 consume_skb(skb); 2160 } 2161 2162 decrypted += chunk; 2163 len -= chunk; 2164 2165 /* Return full control message to userspace before trying 2166 * to parse another message type 2167 */ 2168 msg->msg_flags |= MSG_EOR; 2169 if (control != TLS_RECORD_TYPE_DATA) 2170 break; 2171 } 2172 2173 recv_end: 2174 if (async) { 2175 int ret; 2176 2177 /* Wait for all previously submitted records to be decrypted */ 2178 ret = tls_decrypt_async_wait(ctx); 2179 __skb_queue_purge(&ctx->async_hold); 2180 2181 if (ret) { 2182 if (err >= 0 || err == -EINPROGRESS) 2183 err = ret; 2184 goto end; 2185 } 2186 2187 /* Drain records from the rx_list & copy if required */ 2188 if (is_peek) 2189 err = process_rx_list(ctx, msg, &control, copied + peeked, 2190 decrypted - peeked, is_peek, NULL); 2191 else 2192 err = process_rx_list(ctx, msg, &control, 0, 2193 async_copy_bytes, is_peek, NULL); 2194 2195 /* we could have copied less than we wanted, and possibly nothing */ 2196 decrypted += max(err, 0) - async_copy_bytes; 2197 } 2198 2199 copied += decrypted; 2200 2201 end: 2202 tls_rx_reader_unlock(sk, ctx); 2203 if (psock) 2204 sk_psock_put(sk, psock); 2205 return copied ? : err; 2206 } 2207 2208 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2209 struct pipe_inode_info *pipe, 2210 size_t len, unsigned int flags) 2211 { 2212 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2213 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2214 struct strp_msg *rxm = NULL; 2215 struct sock *sk = sock->sk; 2216 struct tls_msg *tlm; 2217 struct sk_buff *skb; 2218 ssize_t copied = 0; 2219 int chunk; 2220 int err; 2221 2222 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2223 if (err < 0) 2224 return err; 2225 2226 if (!skb_queue_empty(&ctx->rx_list)) { 2227 skb = __skb_dequeue(&ctx->rx_list); 2228 } else { 2229 struct tls_decrypt_arg darg; 2230 2231 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2232 true); 2233 if (err <= 0) 2234 goto splice_read_end; 2235 2236 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2237 2238 err = tls_rx_one_record(sk, NULL, &darg); 2239 if (err < 0) { 2240 tls_err_abort(sk, -EBADMSG); 2241 goto splice_read_end; 2242 } 2243 2244 tls_rx_rec_done(ctx); 2245 skb = darg.skb; 2246 } 2247 2248 rxm = strp_msg(skb); 2249 tlm = tls_msg(skb); 2250 2251 /* splice does not support reading control messages */ 2252 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2253 err = -EINVAL; 2254 goto splice_requeue; 2255 } 2256 2257 chunk = min_t(unsigned int, rxm->full_len, len); 2258 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2259 if (copied < 0) 2260 goto splice_requeue; 2261 2262 if (chunk < rxm->full_len) { 2263 rxm->offset += len; 2264 rxm->full_len -= len; 2265 goto splice_requeue; 2266 } 2267 2268 consume_skb(skb); 2269 2270 splice_read_end: 2271 tls_rx_reader_unlock(sk, ctx); 2272 return copied ? : err; 2273 2274 splice_requeue: 2275 __skb_queue_head(&ctx->rx_list, skb); 2276 goto splice_read_end; 2277 } 2278 2279 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2280 sk_read_actor_t read_actor) 2281 { 2282 struct tls_context *tls_ctx = tls_get_ctx(sk); 2283 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2284 struct tls_prot_info *prot = &tls_ctx->prot_info; 2285 struct strp_msg *rxm = NULL; 2286 struct sk_buff *skb = NULL; 2287 struct sk_psock *psock; 2288 size_t flushed_at = 0; 2289 bool released = true; 2290 struct tls_msg *tlm; 2291 ssize_t copied = 0; 2292 ssize_t decrypted; 2293 int err, used; 2294 2295 psock = sk_psock_get(sk); 2296 if (psock) { 2297 sk_psock_put(sk, psock); 2298 return -EINVAL; 2299 } 2300 err = tls_rx_reader_acquire(sk, ctx, true); 2301 if (err < 0) 2302 return err; 2303 2304 /* If crypto failed the connection is broken */ 2305 err = ctx->async_wait.err; 2306 if (err) 2307 goto read_sock_end; 2308 2309 decrypted = 0; 2310 do { 2311 if (!skb_queue_empty(&ctx->rx_list)) { 2312 skb = __skb_dequeue(&ctx->rx_list); 2313 rxm = strp_msg(skb); 2314 tlm = tls_msg(skb); 2315 } else { 2316 struct tls_decrypt_arg darg; 2317 2318 err = tls_rx_rec_wait(sk, NULL, true, released); 2319 if (err <= 0) 2320 goto read_sock_end; 2321 2322 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2323 2324 err = tls_rx_one_record(sk, NULL, &darg); 2325 if (err < 0) { 2326 tls_err_abort(sk, -EBADMSG); 2327 goto read_sock_end; 2328 } 2329 2330 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2331 0, decrypted, 2332 &flushed_at); 2333 skb = darg.skb; 2334 rxm = strp_msg(skb); 2335 tlm = tls_msg(skb); 2336 decrypted += rxm->full_len; 2337 2338 tls_rx_rec_done(ctx); 2339 } 2340 2341 /* read_sock does not support reading control messages */ 2342 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2343 err = -EINVAL; 2344 goto read_sock_requeue; 2345 } 2346 2347 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2348 if (used <= 0) { 2349 if (!copied) 2350 err = used; 2351 goto read_sock_requeue; 2352 } 2353 copied += used; 2354 if (used < rxm->full_len) { 2355 rxm->offset += used; 2356 rxm->full_len -= used; 2357 if (!desc->count) 2358 goto read_sock_requeue; 2359 } else { 2360 consume_skb(skb); 2361 if (!desc->count) 2362 skb = NULL; 2363 } 2364 } while (skb); 2365 2366 read_sock_end: 2367 tls_rx_reader_release(sk, ctx); 2368 return copied ? : err; 2369 2370 read_sock_requeue: 2371 __skb_queue_head(&ctx->rx_list, skb); 2372 goto read_sock_end; 2373 } 2374 2375 bool tls_sw_sock_is_readable(struct sock *sk) 2376 { 2377 struct tls_context *tls_ctx = tls_get_ctx(sk); 2378 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2379 bool ingress_empty = true; 2380 struct sk_psock *psock; 2381 2382 rcu_read_lock(); 2383 psock = sk_psock(sk); 2384 if (psock) 2385 ingress_empty = list_empty(&psock->ingress_msg); 2386 rcu_read_unlock(); 2387 2388 return !ingress_empty || tls_strp_msg_ready(ctx) || 2389 !skb_queue_empty(&ctx->rx_list); 2390 } 2391 2392 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2393 { 2394 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2395 struct tls_prot_info *prot = &tls_ctx->prot_info; 2396 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2397 size_t cipher_overhead; 2398 size_t data_len = 0; 2399 int ret; 2400 2401 /* Verify that we have a full TLS header, or wait for more data */ 2402 if (strp->stm.offset + prot->prepend_size > skb->len) 2403 return 0; 2404 2405 /* Sanity-check size of on-stack buffer. */ 2406 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2407 ret = -EINVAL; 2408 goto read_failure; 2409 } 2410 2411 /* Linearize header to local buffer */ 2412 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2413 if (ret < 0) 2414 goto read_failure; 2415 2416 strp->mark = header[0]; 2417 2418 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2419 2420 cipher_overhead = prot->tag_size; 2421 if (prot->version != TLS_1_3_VERSION && 2422 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2423 cipher_overhead += prot->iv_size; 2424 2425 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2426 prot->tail_size) { 2427 ret = -EMSGSIZE; 2428 goto read_failure; 2429 } 2430 if (data_len < cipher_overhead) { 2431 ret = -EBADMSG; 2432 goto read_failure; 2433 } 2434 2435 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2436 if (header[1] != TLS_1_2_VERSION_MINOR || 2437 header[2] != TLS_1_2_VERSION_MAJOR) { 2438 ret = -EINVAL; 2439 goto read_failure; 2440 } 2441 2442 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2443 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2444 return data_len + TLS_HEADER_SIZE; 2445 2446 read_failure: 2447 tls_err_abort(strp->sk, ret); 2448 2449 return ret; 2450 } 2451 2452 void tls_rx_msg_ready(struct tls_strparser *strp) 2453 { 2454 struct tls_sw_context_rx *ctx; 2455 2456 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2457 ctx->saved_data_ready(strp->sk); 2458 } 2459 2460 static void tls_data_ready(struct sock *sk) 2461 { 2462 struct tls_context *tls_ctx = tls_get_ctx(sk); 2463 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2464 struct sk_psock *psock; 2465 gfp_t alloc_save; 2466 2467 trace_sk_data_ready(sk); 2468 2469 alloc_save = sk->sk_allocation; 2470 sk->sk_allocation = GFP_ATOMIC; 2471 tls_strp_data_ready(&ctx->strp); 2472 sk->sk_allocation = alloc_save; 2473 2474 psock = sk_psock_get(sk); 2475 if (psock) { 2476 if (!list_empty(&psock->ingress_msg)) 2477 ctx->saved_data_ready(sk); 2478 sk_psock_put(sk, psock); 2479 } 2480 } 2481 2482 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2483 { 2484 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2485 2486 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2487 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2488 cancel_delayed_work_sync(&ctx->tx_work.work); 2489 } 2490 2491 void tls_sw_release_resources_tx(struct sock *sk) 2492 { 2493 struct tls_context *tls_ctx = tls_get_ctx(sk); 2494 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2495 struct tls_rec *rec, *tmp; 2496 2497 /* Wait for any pending async encryptions to complete */ 2498 tls_encrypt_async_wait(ctx); 2499 2500 tls_tx_records(sk, -1); 2501 2502 /* Free up un-sent records in tx_list. First, free 2503 * the partially sent record if any at head of tx_list. 2504 */ 2505 if (tls_ctx->partially_sent_record) { 2506 tls_free_partial_record(sk, tls_ctx); 2507 rec = list_first_entry(&ctx->tx_list, 2508 struct tls_rec, list); 2509 list_del(&rec->list); 2510 sk_msg_free(sk, &rec->msg_plaintext); 2511 kfree(rec); 2512 } 2513 2514 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2515 list_del(&rec->list); 2516 sk_msg_free(sk, &rec->msg_encrypted); 2517 sk_msg_free(sk, &rec->msg_plaintext); 2518 kfree(rec); 2519 } 2520 2521 crypto_free_aead(ctx->aead_send); 2522 tls_free_open_rec(sk); 2523 } 2524 2525 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2526 { 2527 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2528 2529 kfree(ctx); 2530 } 2531 2532 void tls_sw_release_resources_rx(struct sock *sk) 2533 { 2534 struct tls_context *tls_ctx = tls_get_ctx(sk); 2535 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2536 2537 if (ctx->aead_recv) { 2538 __skb_queue_purge(&ctx->rx_list); 2539 crypto_free_aead(ctx->aead_recv); 2540 tls_strp_stop(&ctx->strp); 2541 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2542 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2543 * never swapped. 2544 */ 2545 if (ctx->saved_data_ready) { 2546 write_lock_bh(&sk->sk_callback_lock); 2547 sk->sk_data_ready = ctx->saved_data_ready; 2548 write_unlock_bh(&sk->sk_callback_lock); 2549 } 2550 } 2551 } 2552 2553 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2554 { 2555 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2556 2557 tls_strp_done(&ctx->strp); 2558 } 2559 2560 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2561 { 2562 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2563 2564 kfree(ctx); 2565 } 2566 2567 void tls_sw_free_resources_rx(struct sock *sk) 2568 { 2569 struct tls_context *tls_ctx = tls_get_ctx(sk); 2570 2571 tls_sw_release_resources_rx(sk); 2572 tls_sw_free_ctx_rx(tls_ctx); 2573 } 2574 2575 /* The work handler to transmitt the encrypted records in tx_list */ 2576 static void tx_work_handler(struct work_struct *work) 2577 { 2578 struct delayed_work *delayed_work = to_delayed_work(work); 2579 struct tx_work *tx_work = container_of(delayed_work, 2580 struct tx_work, work); 2581 struct sock *sk = tx_work->sk; 2582 struct tls_context *tls_ctx = tls_get_ctx(sk); 2583 struct tls_sw_context_tx *ctx; 2584 2585 if (unlikely(!tls_ctx)) 2586 return; 2587 2588 ctx = tls_sw_ctx_tx(tls_ctx); 2589 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2590 return; 2591 2592 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2593 return; 2594 2595 if (mutex_trylock(&tls_ctx->tx_lock)) { 2596 lock_sock(sk); 2597 tls_tx_records(sk, -1); 2598 release_sock(sk); 2599 mutex_unlock(&tls_ctx->tx_lock); 2600 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2601 /* Someone is holding the tx_lock, they will likely run Tx 2602 * and cancel the work on their way out of the lock section. 2603 * Schedule a long delay just in case. 2604 */ 2605 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2606 } 2607 } 2608 2609 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2610 { 2611 struct tls_rec *rec; 2612 2613 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2614 if (!rec) 2615 return false; 2616 2617 return READ_ONCE(rec->tx_ready); 2618 } 2619 2620 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2621 { 2622 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2623 2624 /* Schedule the transmission if tx list is ready */ 2625 if (tls_is_tx_ready(tx_ctx) && 2626 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2627 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2628 } 2629 2630 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2631 { 2632 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2633 2634 write_lock_bh(&sk->sk_callback_lock); 2635 rx_ctx->saved_data_ready = sk->sk_data_ready; 2636 sk->sk_data_ready = tls_data_ready; 2637 write_unlock_bh(&sk->sk_callback_lock); 2638 } 2639 2640 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2641 { 2642 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2643 2644 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2645 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2646 } 2647 2648 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2649 { 2650 struct tls_sw_context_tx *sw_ctx_tx; 2651 2652 if (!ctx->priv_ctx_tx) { 2653 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2654 if (!sw_ctx_tx) 2655 return NULL; 2656 } else { 2657 sw_ctx_tx = ctx->priv_ctx_tx; 2658 } 2659 2660 crypto_init_wait(&sw_ctx_tx->async_wait); 2661 atomic_set(&sw_ctx_tx->encrypt_pending, 1); 2662 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2663 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2664 sw_ctx_tx->tx_work.sk = sk; 2665 2666 return sw_ctx_tx; 2667 } 2668 2669 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2670 { 2671 struct tls_sw_context_rx *sw_ctx_rx; 2672 2673 if (!ctx->priv_ctx_rx) { 2674 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2675 if (!sw_ctx_rx) 2676 return NULL; 2677 } else { 2678 sw_ctx_rx = ctx->priv_ctx_rx; 2679 } 2680 2681 crypto_init_wait(&sw_ctx_rx->async_wait); 2682 atomic_set(&sw_ctx_rx->decrypt_pending, 1); 2683 init_waitqueue_head(&sw_ctx_rx->wq); 2684 skb_queue_head_init(&sw_ctx_rx->rx_list); 2685 skb_queue_head_init(&sw_ctx_rx->async_hold); 2686 2687 return sw_ctx_rx; 2688 } 2689 2690 int init_prot_info(struct tls_prot_info *prot, 2691 const struct tls_crypto_info *crypto_info, 2692 const struct tls_cipher_desc *cipher_desc) 2693 { 2694 u16 nonce_size = cipher_desc->nonce; 2695 2696 if (crypto_info->version == TLS_1_3_VERSION) { 2697 nonce_size = 0; 2698 prot->aad_size = TLS_HEADER_SIZE; 2699 prot->tail_size = 1; 2700 } else { 2701 prot->aad_size = TLS_AAD_SPACE_SIZE; 2702 prot->tail_size = 0; 2703 } 2704 2705 /* Sanity-check the sizes for stack allocations. */ 2706 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2707 return -EINVAL; 2708 2709 prot->version = crypto_info->version; 2710 prot->cipher_type = crypto_info->cipher_type; 2711 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2712 prot->tag_size = cipher_desc->tag; 2713 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2714 prot->iv_size = cipher_desc->iv; 2715 prot->salt_size = cipher_desc->salt; 2716 prot->rec_seq_size = cipher_desc->rec_seq; 2717 2718 return 0; 2719 } 2720 2721 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx) 2722 { 2723 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx; 2724 2725 WRITE_ONCE(ctx->key_update_pending, false); 2726 /* wake-up pre-existing poll() */ 2727 ctx->saved_data_ready(sk); 2728 } 2729 2730 int tls_set_sw_offload(struct sock *sk, int tx, 2731 struct tls_crypto_info *new_crypto_info) 2732 { 2733 struct tls_crypto_info *crypto_info, *src_crypto_info; 2734 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2735 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2736 const struct tls_cipher_desc *cipher_desc; 2737 char *iv, *rec_seq, *key, *salt; 2738 struct cipher_context *cctx; 2739 struct tls_prot_info *prot; 2740 struct crypto_aead **aead; 2741 struct tls_context *ctx; 2742 struct crypto_tfm *tfm; 2743 int rc = 0; 2744 2745 ctx = tls_get_ctx(sk); 2746 prot = &ctx->prot_info; 2747 2748 /* new_crypto_info != NULL means rekey */ 2749 if (!new_crypto_info) { 2750 if (tx) { 2751 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2752 if (!ctx->priv_ctx_tx) 2753 return -ENOMEM; 2754 } else { 2755 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2756 if (!ctx->priv_ctx_rx) 2757 return -ENOMEM; 2758 } 2759 } 2760 2761 if (tx) { 2762 sw_ctx_tx = ctx->priv_ctx_tx; 2763 crypto_info = &ctx->crypto_send.info; 2764 cctx = &ctx->tx; 2765 aead = &sw_ctx_tx->aead_send; 2766 } else { 2767 sw_ctx_rx = ctx->priv_ctx_rx; 2768 crypto_info = &ctx->crypto_recv.info; 2769 cctx = &ctx->rx; 2770 aead = &sw_ctx_rx->aead_recv; 2771 } 2772 2773 src_crypto_info = new_crypto_info ?: crypto_info; 2774 2775 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type); 2776 if (!cipher_desc) { 2777 rc = -EINVAL; 2778 goto free_priv; 2779 } 2780 2781 rc = init_prot_info(prot, src_crypto_info, cipher_desc); 2782 if (rc) 2783 goto free_priv; 2784 2785 iv = crypto_info_iv(src_crypto_info, cipher_desc); 2786 key = crypto_info_key(src_crypto_info, cipher_desc); 2787 salt = crypto_info_salt(src_crypto_info, cipher_desc); 2788 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc); 2789 2790 if (!*aead) { 2791 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2792 if (IS_ERR(*aead)) { 2793 rc = PTR_ERR(*aead); 2794 *aead = NULL; 2795 goto free_priv; 2796 } 2797 } 2798 2799 ctx->push_pending_record = tls_sw_push_pending_record; 2800 2801 /* setkey is the last operation that could fail during a 2802 * rekey. if it succeeds, we can start modifying the 2803 * context. 2804 */ 2805 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2806 if (rc) { 2807 if (new_crypto_info) 2808 goto out; 2809 else 2810 goto free_aead; 2811 } 2812 2813 if (!new_crypto_info) { 2814 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2815 if (rc) 2816 goto free_aead; 2817 } 2818 2819 if (!tx && !new_crypto_info) { 2820 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2821 2822 tls_update_rx_zc_capable(ctx); 2823 sw_ctx_rx->async_capable = 2824 src_crypto_info->version != TLS_1_3_VERSION && 2825 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2826 2827 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2828 if (rc) 2829 goto free_aead; 2830 } 2831 2832 memcpy(cctx->iv, salt, cipher_desc->salt); 2833 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2834 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2835 2836 if (new_crypto_info) { 2837 unsafe_memcpy(crypto_info, new_crypto_info, 2838 cipher_desc->crypto_info, 2839 /* size was checked in do_tls_setsockopt_conf */); 2840 memzero_explicit(new_crypto_info, cipher_desc->crypto_info); 2841 if (!tx) 2842 tls_finish_key_update(sk, ctx); 2843 } 2844 2845 goto out; 2846 2847 free_aead: 2848 crypto_free_aead(*aead); 2849 *aead = NULL; 2850 free_priv: 2851 if (!new_crypto_info) { 2852 if (tx) { 2853 kfree(ctx->priv_ctx_tx); 2854 ctx->priv_ctx_tx = NULL; 2855 } else { 2856 kfree(ctx->priv_ctx_rx); 2857 ctx->priv_ctx_rx = NULL; 2858 } 2859 } 2860 out: 2861 return rc; 2862 } 2863