1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 bool async_done; 56 u8 tail; 57 ); 58 59 struct sk_buff *skb; 60 }; 61 62 struct tls_decrypt_ctx { 63 struct sock *sk; 64 u8 iv[TLS_MAX_IV_SIZE]; 65 u8 aad[TLS_MAX_AAD_SIZE]; 66 u8 tail; 67 bool free_sgout; 68 struct scatterlist sg[]; 69 }; 70 71 noinline void tls_err_abort(struct sock *sk, int err) 72 { 73 WARN_ON_ONCE(err >= 0); 74 /* sk->sk_err should contain a positive error code. */ 75 WRITE_ONCE(sk->sk_err, -err); 76 /* Paired with smp_rmb() in tcp_poll() */ 77 smp_wmb(); 78 sk_error_report(sk); 79 } 80 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 82 unsigned int recursion_level) 83 { 84 int start = skb_headlen(skb); 85 int i, chunk = start - offset; 86 struct sk_buff *frag_iter; 87 int elt = 0; 88 89 if (unlikely(recursion_level >= 24)) 90 return -EMSGSIZE; 91 92 if (chunk > 0) { 93 if (chunk > len) 94 chunk = len; 95 elt++; 96 len -= chunk; 97 if (len == 0) 98 return elt; 99 offset += chunk; 100 } 101 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 103 int end; 104 105 WARN_ON(start > offset + len); 106 107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 108 chunk = end - offset; 109 if (chunk > 0) { 110 if (chunk > len) 111 chunk = len; 112 elt++; 113 len -= chunk; 114 if (len == 0) 115 return elt; 116 offset += chunk; 117 } 118 start = end; 119 } 120 121 if (unlikely(skb_has_frag_list(skb))) { 122 skb_walk_frags(skb, frag_iter) { 123 int end, ret; 124 125 WARN_ON(start > offset + len); 126 127 end = start + frag_iter->len; 128 chunk = end - offset; 129 if (chunk > 0) { 130 if (chunk > len) 131 chunk = len; 132 ret = __skb_nsg(frag_iter, offset - start, chunk, 133 recursion_level + 1); 134 if (unlikely(ret < 0)) 135 return ret; 136 elt += ret; 137 len -= chunk; 138 if (len == 0) 139 return elt; 140 offset += chunk; 141 } 142 start = end; 143 } 144 } 145 BUG_ON(len); 146 return elt; 147 } 148 149 /* Return the number of scatterlist elements required to completely map the 150 * skb, or -EMSGSIZE if the recursion depth is exceeded. 151 */ 152 static int skb_nsg(struct sk_buff *skb, int offset, int len) 153 { 154 return __skb_nsg(skb, offset, len, 0); 155 } 156 157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 158 struct tls_decrypt_arg *darg) 159 { 160 struct strp_msg *rxm = strp_msg(skb); 161 struct tls_msg *tlm = tls_msg(skb); 162 int sub = 0; 163 164 /* Determine zero-padding length */ 165 if (prot->version == TLS_1_3_VERSION) { 166 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 167 char content_type = darg->zc ? darg->tail : 0; 168 int err; 169 170 while (content_type == 0) { 171 if (offset < prot->prepend_size) 172 return -EBADMSG; 173 err = skb_copy_bits(skb, rxm->offset + offset, 174 &content_type, 1); 175 if (err) 176 return err; 177 if (content_type) 178 break; 179 sub++; 180 offset--; 181 } 182 tlm->control = content_type; 183 } 184 return sub; 185 } 186 187 static void tls_decrypt_done(void *data, int err) 188 { 189 struct aead_request *aead_req = data; 190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 191 struct scatterlist *sgout = aead_req->dst; 192 struct tls_sw_context_rx *ctx; 193 struct tls_decrypt_ctx *dctx; 194 struct tls_context *tls_ctx; 195 struct scatterlist *sg; 196 unsigned int pages; 197 struct sock *sk; 198 int aead_size; 199 200 /* If requests get too backlogged crypto API returns -EBUSY and calls 201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) 202 * to make waiting for backlog to flush with crypto_wait_req() easier. 203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one 204 * -EINPROGRESS -> 0. 205 * We have a single struct crypto_async_request per direction, this 206 * scheme doesn't help us, so just ignore the first ->complete(). 207 */ 208 if (err == -EINPROGRESS) 209 return; 210 211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 212 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 213 dctx = (void *)((u8 *)aead_req + aead_size); 214 215 sk = dctx->sk; 216 tls_ctx = tls_get_ctx(sk); 217 ctx = tls_sw_ctx_rx(tls_ctx); 218 219 /* Propagate if there was an err */ 220 if (err) { 221 if (err == -EBADMSG) 222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 223 ctx->async_wait.err = err; 224 tls_err_abort(sk, err); 225 } 226 227 /* Free the destination pages if skb was not decrypted inplace */ 228 if (dctx->free_sgout) { 229 /* Skip the first S/G entry as it points to AAD */ 230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 231 if (!sg) 232 break; 233 put_page(sg_page(sg)); 234 } 235 } 236 237 kfree(aead_req); 238 239 if (atomic_dec_and_test(&ctx->decrypt_pending)) 240 complete(&ctx->async_wait.completion); 241 } 242 243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) 244 { 245 if (!atomic_dec_and_test(&ctx->decrypt_pending)) 246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 247 atomic_inc(&ctx->decrypt_pending); 248 249 return ctx->async_wait.err; 250 } 251 252 static int tls_do_decryption(struct sock *sk, 253 struct scatterlist *sgin, 254 struct scatterlist *sgout, 255 char *iv_recv, 256 size_t data_len, 257 struct aead_request *aead_req, 258 struct tls_decrypt_arg *darg) 259 { 260 struct tls_context *tls_ctx = tls_get_ctx(sk); 261 struct tls_prot_info *prot = &tls_ctx->prot_info; 262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 263 int ret; 264 265 aead_request_set_tfm(aead_req, ctx->aead_recv); 266 aead_request_set_ad(aead_req, prot->aad_size); 267 aead_request_set_crypt(aead_req, sgin, sgout, 268 data_len + prot->tag_size, 269 (u8 *)iv_recv); 270 271 if (darg->async) { 272 aead_request_set_callback(aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 tls_decrypt_done, aead_req); 275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); 276 atomic_inc(&ctx->decrypt_pending); 277 } else { 278 DECLARE_CRYPTO_WAIT(wait); 279 280 aead_request_set_callback(aead_req, 281 CRYPTO_TFM_REQ_MAY_BACKLOG, 282 crypto_req_done, &wait); 283 ret = crypto_aead_decrypt(aead_req); 284 if (ret == -EINPROGRESS || ret == -EBUSY) 285 ret = crypto_wait_req(ret, &wait); 286 return ret; 287 } 288 289 ret = crypto_aead_decrypt(aead_req); 290 if (ret == -EINPROGRESS) 291 return 0; 292 293 if (ret == -EBUSY) { 294 ret = tls_decrypt_async_wait(ctx); 295 darg->async_done = true; 296 /* all completions have run, we're not doing async anymore */ 297 darg->async = false; 298 return ret; 299 } 300 301 atomic_dec(&ctx->decrypt_pending); 302 darg->async = false; 303 304 return ret; 305 } 306 307 static void tls_trim_both_msgs(struct sock *sk, int target_size) 308 { 309 struct tls_context *tls_ctx = tls_get_ctx(sk); 310 struct tls_prot_info *prot = &tls_ctx->prot_info; 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 312 struct tls_rec *rec = ctx->open_rec; 313 314 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 315 if (target_size > 0) 316 target_size += prot->overhead_size; 317 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 318 } 319 320 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 324 struct tls_rec *rec = ctx->open_rec; 325 struct sk_msg *msg_en = &rec->msg_encrypted; 326 327 return sk_msg_alloc(sk, msg_en, len, 0); 328 } 329 330 static int tls_clone_plaintext_msg(struct sock *sk, int required) 331 { 332 struct tls_context *tls_ctx = tls_get_ctx(sk); 333 struct tls_prot_info *prot = &tls_ctx->prot_info; 334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 335 struct tls_rec *rec = ctx->open_rec; 336 struct sk_msg *msg_pl = &rec->msg_plaintext; 337 struct sk_msg *msg_en = &rec->msg_encrypted; 338 int skip, len; 339 340 /* We add page references worth len bytes from encrypted sg 341 * at the end of plaintext sg. It is guaranteed that msg_en 342 * has enough required room (ensured by caller). 343 */ 344 len = required - msg_pl->sg.size; 345 346 /* Skip initial bytes in msg_en's data to be able to use 347 * same offset of both plain and encrypted data. 348 */ 349 skip = prot->prepend_size + msg_pl->sg.size; 350 351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 352 } 353 354 static struct tls_rec *tls_get_rec(struct sock *sk) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_prot_info *prot = &tls_ctx->prot_info; 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct sk_msg *msg_pl, *msg_en; 360 struct tls_rec *rec; 361 int mem_size; 362 363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 364 365 rec = kzalloc(mem_size, sk->sk_allocation); 366 if (!rec) 367 return NULL; 368 369 msg_pl = &rec->msg_plaintext; 370 msg_en = &rec->msg_encrypted; 371 372 sk_msg_init(msg_pl); 373 sk_msg_init(msg_en); 374 375 sg_init_table(rec->sg_aead_in, 2); 376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 377 sg_unmark_end(&rec->sg_aead_in[1]); 378 379 sg_init_table(rec->sg_aead_out, 2); 380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 381 sg_unmark_end(&rec->sg_aead_out[1]); 382 383 rec->sk = sk; 384 385 return rec; 386 } 387 388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 389 { 390 sk_msg_free(sk, &rec->msg_encrypted); 391 sk_msg_free(sk, &rec->msg_plaintext); 392 kfree(rec); 393 } 394 395 static void tls_free_open_rec(struct sock *sk) 396 { 397 struct tls_context *tls_ctx = tls_get_ctx(sk); 398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 399 struct tls_rec *rec = ctx->open_rec; 400 401 if (rec) { 402 tls_free_rec(sk, rec); 403 ctx->open_rec = NULL; 404 } 405 } 406 407 int tls_tx_records(struct sock *sk, int flags) 408 { 409 struct tls_context *tls_ctx = tls_get_ctx(sk); 410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 411 struct tls_rec *rec, *tmp; 412 struct sk_msg *msg_en; 413 int tx_flags, rc = 0; 414 415 if (tls_is_partially_sent_record(tls_ctx)) { 416 rec = list_first_entry(&ctx->tx_list, 417 struct tls_rec, list); 418 419 if (flags == -1) 420 tx_flags = rec->tx_flags; 421 else 422 tx_flags = flags; 423 424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 425 if (rc) 426 goto tx_err; 427 428 /* Full record has been transmitted. 429 * Remove the head of tx_list 430 */ 431 list_del(&rec->list); 432 sk_msg_free(sk, &rec->msg_plaintext); 433 kfree(rec); 434 } 435 436 /* Tx all ready records */ 437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 438 if (READ_ONCE(rec->tx_ready)) { 439 if (flags == -1) 440 tx_flags = rec->tx_flags; 441 else 442 tx_flags = flags; 443 444 msg_en = &rec->msg_encrypted; 445 rc = tls_push_sg(sk, tls_ctx, 446 &msg_en->sg.data[msg_en->sg.curr], 447 0, tx_flags); 448 if (rc) 449 goto tx_err; 450 451 list_del(&rec->list); 452 sk_msg_free(sk, &rec->msg_plaintext); 453 kfree(rec); 454 } else { 455 break; 456 } 457 } 458 459 tx_err: 460 if (rc < 0 && rc != -EAGAIN) 461 tls_err_abort(sk, rc); 462 463 return rc; 464 } 465 466 static void tls_encrypt_done(void *data, int err) 467 { 468 struct tls_sw_context_tx *ctx; 469 struct tls_context *tls_ctx; 470 struct tls_prot_info *prot; 471 struct tls_rec *rec = data; 472 struct scatterlist *sge; 473 struct sk_msg *msg_en; 474 struct sock *sk; 475 476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ 477 return; 478 479 msg_en = &rec->msg_encrypted; 480 481 sk = rec->sk; 482 tls_ctx = tls_get_ctx(sk); 483 prot = &tls_ctx->prot_info; 484 ctx = tls_sw_ctx_tx(tls_ctx); 485 486 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 487 sge->offset -= prot->prepend_size; 488 sge->length += prot->prepend_size; 489 490 /* Check if error is previously set on socket */ 491 if (err || sk->sk_err) { 492 rec = NULL; 493 494 /* If err is already set on socket, return the same code */ 495 if (sk->sk_err) { 496 ctx->async_wait.err = -sk->sk_err; 497 } else { 498 ctx->async_wait.err = err; 499 tls_err_abort(sk, err); 500 } 501 } 502 503 if (rec) { 504 struct tls_rec *first_rec; 505 506 /* Mark the record as ready for transmission */ 507 smp_store_mb(rec->tx_ready, true); 508 509 /* If received record is at head of tx_list, schedule tx */ 510 first_rec = list_first_entry(&ctx->tx_list, 511 struct tls_rec, list); 512 if (rec == first_rec) { 513 /* Schedule the transmission */ 514 if (!test_and_set_bit(BIT_TX_SCHEDULED, 515 &ctx->tx_bitmask)) 516 schedule_delayed_work(&ctx->tx_work.work, 1); 517 } 518 } 519 520 if (atomic_dec_and_test(&ctx->encrypt_pending)) 521 complete(&ctx->async_wait.completion); 522 } 523 524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) 525 { 526 if (!atomic_dec_and_test(&ctx->encrypt_pending)) 527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 528 atomic_inc(&ctx->encrypt_pending); 529 530 return ctx->async_wait.err; 531 } 532 533 static int tls_do_encryption(struct sock *sk, 534 struct tls_context *tls_ctx, 535 struct tls_sw_context_tx *ctx, 536 struct aead_request *aead_req, 537 size_t data_len, u32 start) 538 { 539 struct tls_prot_info *prot = &tls_ctx->prot_info; 540 struct tls_rec *rec = ctx->open_rec; 541 struct sk_msg *msg_en = &rec->msg_encrypted; 542 struct scatterlist *sge = sk_msg_elem(msg_en, start); 543 int rc, iv_offset = 0; 544 545 /* For CCM based ciphers, first byte of IV is a constant */ 546 switch (prot->cipher_type) { 547 case TLS_CIPHER_AES_CCM_128: 548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 549 iv_offset = 1; 550 break; 551 case TLS_CIPHER_SM4_CCM: 552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 553 iv_offset = 1; 554 break; 555 } 556 557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 558 prot->iv_size + prot->salt_size); 559 560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 561 tls_ctx->tx.rec_seq); 562 563 sge->offset += prot->prepend_size; 564 sge->length -= prot->prepend_size; 565 566 msg_en->sg.curr = start; 567 568 aead_request_set_tfm(aead_req, ctx->aead_send); 569 aead_request_set_ad(aead_req, prot->aad_size); 570 aead_request_set_crypt(aead_req, rec->sg_aead_in, 571 rec->sg_aead_out, 572 data_len, rec->iv_data); 573 574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 575 tls_encrypt_done, rec); 576 577 /* Add the record in tx_list */ 578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); 580 atomic_inc(&ctx->encrypt_pending); 581 582 rc = crypto_aead_encrypt(aead_req); 583 if (rc == -EBUSY) { 584 rc = tls_encrypt_async_wait(ctx); 585 rc = rc ?: -EINPROGRESS; 586 } 587 if (!rc || rc != -EINPROGRESS) { 588 atomic_dec(&ctx->encrypt_pending); 589 sge->offset -= prot->prepend_size; 590 sge->length += prot->prepend_size; 591 } 592 593 if (!rc) { 594 WRITE_ONCE(rec->tx_ready, true); 595 } else if (rc != -EINPROGRESS) { 596 list_del(&rec->list); 597 return rc; 598 } 599 600 /* Unhook the record from context if encryption is not failure */ 601 ctx->open_rec = NULL; 602 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 603 return rc; 604 } 605 606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 607 struct tls_rec **to, struct sk_msg *msg_opl, 608 struct sk_msg *msg_oen, u32 split_point, 609 u32 tx_overhead_size, u32 *orig_end) 610 { 611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 612 struct scatterlist *sge, *osge, *nsge; 613 u32 orig_size = msg_opl->sg.size; 614 struct scatterlist tmp = { }; 615 struct sk_msg *msg_npl; 616 struct tls_rec *new; 617 int ret; 618 619 new = tls_get_rec(sk); 620 if (!new) 621 return -ENOMEM; 622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 623 tx_overhead_size, 0); 624 if (ret < 0) { 625 tls_free_rec(sk, new); 626 return ret; 627 } 628 629 *orig_end = msg_opl->sg.end; 630 i = msg_opl->sg.start; 631 sge = sk_msg_elem(msg_opl, i); 632 while (apply && sge->length) { 633 if (sge->length > apply) { 634 u32 len = sge->length - apply; 635 636 get_page(sg_page(sge)); 637 sg_set_page(&tmp, sg_page(sge), len, 638 sge->offset + apply); 639 sge->length = apply; 640 bytes += apply; 641 apply = 0; 642 } else { 643 apply -= sge->length; 644 bytes += sge->length; 645 } 646 647 sk_msg_iter_var_next(i); 648 if (i == msg_opl->sg.end) 649 break; 650 sge = sk_msg_elem(msg_opl, i); 651 } 652 653 msg_opl->sg.end = i; 654 msg_opl->sg.curr = i; 655 msg_opl->sg.copybreak = 0; 656 msg_opl->apply_bytes = 0; 657 msg_opl->sg.size = bytes; 658 659 msg_npl = &new->msg_plaintext; 660 msg_npl->apply_bytes = apply; 661 msg_npl->sg.size = orig_size - bytes; 662 663 j = msg_npl->sg.start; 664 nsge = sk_msg_elem(msg_npl, j); 665 if (tmp.length) { 666 memcpy(nsge, &tmp, sizeof(*nsge)); 667 sk_msg_iter_var_next(j); 668 nsge = sk_msg_elem(msg_npl, j); 669 } 670 671 osge = sk_msg_elem(msg_opl, i); 672 while (osge->length) { 673 memcpy(nsge, osge, sizeof(*nsge)); 674 sg_unmark_end(nsge); 675 sk_msg_iter_var_next(i); 676 sk_msg_iter_var_next(j); 677 if (i == *orig_end) 678 break; 679 osge = sk_msg_elem(msg_opl, i); 680 nsge = sk_msg_elem(msg_npl, j); 681 } 682 683 msg_npl->sg.end = j; 684 msg_npl->sg.curr = j; 685 msg_npl->sg.copybreak = 0; 686 687 *to = new; 688 return 0; 689 } 690 691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 692 struct tls_rec *from, u32 orig_end) 693 { 694 struct sk_msg *msg_npl = &from->msg_plaintext; 695 struct sk_msg *msg_opl = &to->msg_plaintext; 696 struct scatterlist *osge, *nsge; 697 u32 i, j; 698 699 i = msg_opl->sg.end; 700 sk_msg_iter_var_prev(i); 701 j = msg_npl->sg.start; 702 703 osge = sk_msg_elem(msg_opl, i); 704 nsge = sk_msg_elem(msg_npl, j); 705 706 if (sg_page(osge) == sg_page(nsge) && 707 osge->offset + osge->length == nsge->offset) { 708 osge->length += nsge->length; 709 put_page(sg_page(nsge)); 710 } 711 712 msg_opl->sg.end = orig_end; 713 msg_opl->sg.curr = orig_end; 714 msg_opl->sg.copybreak = 0; 715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 716 msg_opl->sg.size += msg_npl->sg.size; 717 718 sk_msg_free(sk, &to->msg_encrypted); 719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 720 721 kfree(from); 722 } 723 724 static int tls_push_record(struct sock *sk, int flags, 725 unsigned char record_type) 726 { 727 struct tls_context *tls_ctx = tls_get_ctx(sk); 728 struct tls_prot_info *prot = &tls_ctx->prot_info; 729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 731 u32 i, split_point, orig_end; 732 struct sk_msg *msg_pl, *msg_en; 733 struct aead_request *req; 734 bool split; 735 int rc; 736 737 if (!rec) 738 return 0; 739 740 msg_pl = &rec->msg_plaintext; 741 msg_en = &rec->msg_encrypted; 742 743 split_point = msg_pl->apply_bytes; 744 split = split_point && split_point < msg_pl->sg.size; 745 if (unlikely((!split && 746 msg_pl->sg.size + 747 prot->overhead_size > msg_en->sg.size) || 748 (split && 749 split_point + 750 prot->overhead_size > msg_en->sg.size))) { 751 split = true; 752 split_point = msg_en->sg.size; 753 } 754 if (split) { 755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 756 split_point, prot->overhead_size, 757 &orig_end); 758 if (rc < 0) 759 return rc; 760 /* This can happen if above tls_split_open_record allocates 761 * a single large encryption buffer instead of two smaller 762 * ones. In this case adjust pointers and continue without 763 * split. 764 */ 765 if (!msg_pl->sg.size) { 766 tls_merge_open_record(sk, rec, tmp, orig_end); 767 msg_pl = &rec->msg_plaintext; 768 msg_en = &rec->msg_encrypted; 769 split = false; 770 } 771 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 772 prot->overhead_size); 773 } 774 775 rec->tx_flags = flags; 776 req = &rec->aead_req; 777 778 i = msg_pl->sg.end; 779 sk_msg_iter_var_prev(i); 780 781 rec->content_type = record_type; 782 if (prot->version == TLS_1_3_VERSION) { 783 /* Add content type to end of message. No padding added */ 784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 785 sg_mark_end(&rec->sg_content_type); 786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 787 &rec->sg_content_type); 788 } else { 789 sg_mark_end(sk_msg_elem(msg_pl, i)); 790 } 791 792 if (msg_pl->sg.end < msg_pl->sg.start) { 793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 794 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 795 msg_pl->sg.data); 796 } 797 798 i = msg_pl->sg.start; 799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 800 801 i = msg_en->sg.end; 802 sk_msg_iter_var_prev(i); 803 sg_mark_end(sk_msg_elem(msg_en, i)); 804 805 i = msg_en->sg.start; 806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 807 808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 809 tls_ctx->tx.rec_seq, record_type, prot); 810 811 tls_fill_prepend(tls_ctx, 812 page_address(sg_page(&msg_en->sg.data[i])) + 813 msg_en->sg.data[i].offset, 814 msg_pl->sg.size + prot->tail_size, 815 record_type); 816 817 tls_ctx->pending_open_record_frags = false; 818 819 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 820 msg_pl->sg.size + prot->tail_size, i); 821 if (rc < 0) { 822 if (rc != -EINPROGRESS) { 823 tls_err_abort(sk, -EBADMSG); 824 if (split) { 825 tls_ctx->pending_open_record_frags = true; 826 tls_merge_open_record(sk, rec, tmp, orig_end); 827 } 828 } 829 ctx->async_capable = 1; 830 return rc; 831 } else if (split) { 832 msg_pl = &tmp->msg_plaintext; 833 msg_en = &tmp->msg_encrypted; 834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 835 tls_ctx->pending_open_record_frags = true; 836 ctx->open_rec = tmp; 837 } 838 839 return tls_tx_records(sk, flags); 840 } 841 842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 843 bool full_record, u8 record_type, 844 ssize_t *copied, int flags) 845 { 846 struct tls_context *tls_ctx = tls_get_ctx(sk); 847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 848 struct sk_msg msg_redir = { }; 849 struct sk_psock *psock; 850 struct sock *sk_redir; 851 struct tls_rec *rec; 852 bool enospc, policy, redir_ingress; 853 int err = 0, send; 854 u32 delta = 0; 855 856 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 857 psock = sk_psock_get(sk); 858 if (!psock || !policy) { 859 err = tls_push_record(sk, flags, record_type); 860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 861 *copied -= sk_msg_free(sk, msg); 862 tls_free_open_rec(sk); 863 err = -sk->sk_err; 864 } 865 if (psock) 866 sk_psock_put(sk, psock); 867 return err; 868 } 869 more_data: 870 enospc = sk_msg_full(msg); 871 if (psock->eval == __SK_NONE) { 872 delta = msg->sg.size; 873 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 874 delta -= msg->sg.size; 875 876 if ((s32)delta > 0) { 877 /* It indicates that we executed bpf_msg_pop_data(), 878 * causing the plaintext data size to decrease. 879 * Therefore the encrypted data size also needs to 880 * correspondingly decrease. We only need to subtract 881 * delta to calculate the new ciphertext length since 882 * ktls does not support block encryption. 883 */ 884 struct sk_msg *enc = &ctx->open_rec->msg_encrypted; 885 886 sk_msg_trim(sk, enc, enc->sg.size - delta); 887 } 888 } 889 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 890 !enospc && !full_record) { 891 err = -ENOSPC; 892 goto out_err; 893 } 894 msg->cork_bytes = 0; 895 send = msg->sg.size; 896 if (msg->apply_bytes && msg->apply_bytes < send) 897 send = msg->apply_bytes; 898 899 switch (psock->eval) { 900 case __SK_PASS: 901 err = tls_push_record(sk, flags, record_type); 902 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 903 *copied -= sk_msg_free(sk, msg); 904 tls_free_open_rec(sk); 905 err = -sk->sk_err; 906 goto out_err; 907 } 908 break; 909 case __SK_REDIRECT: 910 redir_ingress = psock->redir_ingress; 911 sk_redir = psock->sk_redir; 912 memcpy(&msg_redir, msg, sizeof(*msg)); 913 if (msg->apply_bytes < send) 914 msg->apply_bytes = 0; 915 else 916 msg->apply_bytes -= send; 917 sk_msg_return_zero(sk, msg, send); 918 msg->sg.size -= send; 919 release_sock(sk); 920 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 921 &msg_redir, send, flags); 922 lock_sock(sk); 923 if (err < 0) { 924 /* Regardless of whether the data represented by 925 * msg_redir is sent successfully, we have already 926 * uncharged it via sk_msg_return_zero(). The 927 * msg->sg.size represents the remaining unprocessed 928 * data, which needs to be uncharged here. 929 */ 930 sk_mem_uncharge(sk, msg->sg.size); 931 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 932 msg->sg.size = 0; 933 } 934 if (msg->sg.size == 0) 935 tls_free_open_rec(sk); 936 break; 937 case __SK_DROP: 938 default: 939 sk_msg_free_partial(sk, msg, send); 940 if (msg->apply_bytes < send) 941 msg->apply_bytes = 0; 942 else 943 msg->apply_bytes -= send; 944 if (msg->sg.size == 0) 945 tls_free_open_rec(sk); 946 *copied -= (send + delta); 947 err = -EACCES; 948 } 949 950 if (likely(!err)) { 951 bool reset_eval = !ctx->open_rec; 952 953 rec = ctx->open_rec; 954 if (rec) { 955 msg = &rec->msg_plaintext; 956 if (!msg->apply_bytes) 957 reset_eval = true; 958 } 959 if (reset_eval) { 960 psock->eval = __SK_NONE; 961 if (psock->sk_redir) { 962 sock_put(psock->sk_redir); 963 psock->sk_redir = NULL; 964 } 965 } 966 if (rec) 967 goto more_data; 968 } 969 out_err: 970 sk_psock_put(sk, psock); 971 return err; 972 } 973 974 static int tls_sw_push_pending_record(struct sock *sk, int flags) 975 { 976 struct tls_context *tls_ctx = tls_get_ctx(sk); 977 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 978 struct tls_rec *rec = ctx->open_rec; 979 struct sk_msg *msg_pl; 980 size_t copied; 981 982 if (!rec) 983 return 0; 984 985 msg_pl = &rec->msg_plaintext; 986 copied = msg_pl->sg.size; 987 if (!copied) 988 return 0; 989 990 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 991 &copied, flags); 992 } 993 994 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 995 struct sk_msg *msg_pl, size_t try_to_copy, 996 ssize_t *copied) 997 { 998 struct page *page = NULL, **pages = &page; 999 1000 do { 1001 ssize_t part; 1002 size_t off; 1003 1004 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 1005 try_to_copy, 1, 0, &off); 1006 if (part <= 0) 1007 return part ?: -EIO; 1008 1009 if (WARN_ON_ONCE(!sendpage_ok(page))) { 1010 iov_iter_revert(&msg->msg_iter, part); 1011 return -EIO; 1012 } 1013 1014 sk_msg_page_add(msg_pl, page, part, off); 1015 msg_pl->sg.copybreak = 0; 1016 msg_pl->sg.curr = msg_pl->sg.end; 1017 sk_mem_charge(sk, part); 1018 *copied += part; 1019 try_to_copy -= part; 1020 } while (try_to_copy && !sk_msg_full(msg_pl)); 1021 1022 return 0; 1023 } 1024 1025 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 1026 size_t size) 1027 { 1028 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1029 struct tls_context *tls_ctx = tls_get_ctx(sk); 1030 struct tls_prot_info *prot = &tls_ctx->prot_info; 1031 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1032 bool async_capable = ctx->async_capable; 1033 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1034 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1035 bool eor = !(msg->msg_flags & MSG_MORE); 1036 size_t try_to_copy; 1037 ssize_t copied = 0; 1038 struct sk_msg *msg_pl, *msg_en; 1039 struct tls_rec *rec; 1040 int required_size; 1041 int num_async = 0; 1042 bool full_record; 1043 int record_room; 1044 int num_zc = 0; 1045 int orig_size; 1046 int ret = 0; 1047 1048 if (!eor && (msg->msg_flags & MSG_EOR)) 1049 return -EINVAL; 1050 1051 if (unlikely(msg->msg_controllen)) { 1052 ret = tls_process_cmsg(sk, msg, &record_type); 1053 if (ret) { 1054 if (ret == -EINPROGRESS) 1055 num_async++; 1056 else if (ret != -EAGAIN) 1057 goto end; 1058 } 1059 } 1060 1061 while (msg_data_left(msg)) { 1062 if (sk->sk_err) { 1063 ret = -sk->sk_err; 1064 goto send_end; 1065 } 1066 1067 if (ctx->open_rec) 1068 rec = ctx->open_rec; 1069 else 1070 rec = ctx->open_rec = tls_get_rec(sk); 1071 if (!rec) { 1072 ret = -ENOMEM; 1073 goto send_end; 1074 } 1075 1076 msg_pl = &rec->msg_plaintext; 1077 msg_en = &rec->msg_encrypted; 1078 1079 orig_size = msg_pl->sg.size; 1080 full_record = false; 1081 try_to_copy = msg_data_left(msg); 1082 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1083 if (try_to_copy >= record_room) { 1084 try_to_copy = record_room; 1085 full_record = true; 1086 } 1087 1088 required_size = msg_pl->sg.size + try_to_copy + 1089 prot->overhead_size; 1090 1091 if (!sk_stream_memory_free(sk)) 1092 goto wait_for_sndbuf; 1093 1094 alloc_encrypted: 1095 ret = tls_alloc_encrypted_msg(sk, required_size); 1096 if (ret) { 1097 if (ret != -ENOSPC) 1098 goto wait_for_memory; 1099 1100 /* Adjust try_to_copy according to the amount that was 1101 * actually allocated. The difference is due 1102 * to max sg elements limit 1103 */ 1104 try_to_copy -= required_size - msg_en->sg.size; 1105 full_record = true; 1106 } 1107 1108 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1109 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1110 try_to_copy, &copied); 1111 if (ret < 0) 1112 goto send_end; 1113 tls_ctx->pending_open_record_frags = true; 1114 1115 if (sk_msg_full(msg_pl)) { 1116 full_record = true; 1117 sk_msg_trim(sk, msg_en, 1118 msg_pl->sg.size + prot->overhead_size); 1119 } 1120 1121 if (full_record || eor) 1122 goto copied; 1123 continue; 1124 } 1125 1126 if (!is_kvec && (full_record || eor) && !async_capable) { 1127 u32 first = msg_pl->sg.end; 1128 1129 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1130 msg_pl, try_to_copy); 1131 if (ret) 1132 goto fallback_to_reg_send; 1133 1134 num_zc++; 1135 copied += try_to_copy; 1136 1137 sk_msg_sg_copy_set(msg_pl, first); 1138 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1139 record_type, &copied, 1140 msg->msg_flags); 1141 if (ret) { 1142 if (ret == -EINPROGRESS) 1143 num_async++; 1144 else if (ret == -ENOMEM) 1145 goto wait_for_memory; 1146 else if (ctx->open_rec && ret == -ENOSPC) { 1147 if (msg_pl->cork_bytes) { 1148 ret = 0; 1149 goto send_end; 1150 } 1151 goto rollback_iter; 1152 } else if (ret != -EAGAIN) 1153 goto send_end; 1154 } 1155 1156 /* Transmit if any encryptions have completed */ 1157 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1158 cancel_delayed_work(&ctx->tx_work.work); 1159 tls_tx_records(sk, msg->msg_flags); 1160 } 1161 1162 continue; 1163 rollback_iter: 1164 copied -= try_to_copy; 1165 sk_msg_sg_copy_clear(msg_pl, first); 1166 iov_iter_revert(&msg->msg_iter, 1167 msg_pl->sg.size - orig_size); 1168 fallback_to_reg_send: 1169 sk_msg_trim(sk, msg_pl, orig_size); 1170 } 1171 1172 required_size = msg_pl->sg.size + try_to_copy; 1173 1174 ret = tls_clone_plaintext_msg(sk, required_size); 1175 if (ret) { 1176 if (ret != -ENOSPC) 1177 goto send_end; 1178 1179 /* Adjust try_to_copy according to the amount that was 1180 * actually allocated. The difference is due 1181 * to max sg elements limit 1182 */ 1183 try_to_copy -= required_size - msg_pl->sg.size; 1184 full_record = true; 1185 sk_msg_trim(sk, msg_en, 1186 msg_pl->sg.size + prot->overhead_size); 1187 } 1188 1189 if (try_to_copy) { 1190 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1191 msg_pl, try_to_copy); 1192 if (ret < 0) 1193 goto trim_sgl; 1194 } 1195 1196 /* Open records defined only if successfully copied, otherwise 1197 * we would trim the sg but not reset the open record frags. 1198 */ 1199 tls_ctx->pending_open_record_frags = true; 1200 copied += try_to_copy; 1201 copied: 1202 if (full_record || eor) { 1203 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1204 record_type, &copied, 1205 msg->msg_flags); 1206 if (ret) { 1207 if (ret == -EINPROGRESS) 1208 num_async++; 1209 else if (ret == -ENOMEM) 1210 goto wait_for_memory; 1211 else if (ret != -EAGAIN) { 1212 if (ret == -ENOSPC) 1213 ret = 0; 1214 goto send_end; 1215 } 1216 } 1217 1218 /* Transmit if any encryptions have completed */ 1219 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1220 cancel_delayed_work(&ctx->tx_work.work); 1221 tls_tx_records(sk, msg->msg_flags); 1222 } 1223 } 1224 1225 continue; 1226 1227 wait_for_sndbuf: 1228 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1229 wait_for_memory: 1230 ret = sk_stream_wait_memory(sk, &timeo); 1231 if (ret) { 1232 trim_sgl: 1233 if (ctx->open_rec) 1234 tls_trim_both_msgs(sk, orig_size); 1235 goto send_end; 1236 } 1237 1238 if (ctx->open_rec && msg_en->sg.size < required_size) 1239 goto alloc_encrypted; 1240 } 1241 1242 send_end: 1243 if (!num_async) { 1244 goto end; 1245 } else if (num_zc || eor) { 1246 int err; 1247 1248 /* Wait for pending encryptions to get completed */ 1249 err = tls_encrypt_async_wait(ctx); 1250 if (err) { 1251 ret = err; 1252 copied = 0; 1253 } 1254 } 1255 1256 /* Transmit if any encryptions have completed */ 1257 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1258 cancel_delayed_work(&ctx->tx_work.work); 1259 tls_tx_records(sk, msg->msg_flags); 1260 } 1261 1262 end: 1263 ret = sk_stream_error(sk, msg->msg_flags, ret); 1264 return copied > 0 ? copied : ret; 1265 } 1266 1267 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1268 { 1269 struct tls_context *tls_ctx = tls_get_ctx(sk); 1270 int ret; 1271 1272 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1273 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1274 MSG_SENDPAGE_NOPOLICY)) 1275 return -EOPNOTSUPP; 1276 1277 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1278 if (ret) 1279 return ret; 1280 lock_sock(sk); 1281 ret = tls_sw_sendmsg_locked(sk, msg, size); 1282 release_sock(sk); 1283 mutex_unlock(&tls_ctx->tx_lock); 1284 return ret; 1285 } 1286 1287 /* 1288 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1289 */ 1290 void tls_sw_splice_eof(struct socket *sock) 1291 { 1292 struct sock *sk = sock->sk; 1293 struct tls_context *tls_ctx = tls_get_ctx(sk); 1294 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1295 struct tls_rec *rec; 1296 struct sk_msg *msg_pl; 1297 ssize_t copied = 0; 1298 bool retrying = false; 1299 int ret = 0; 1300 1301 if (!ctx->open_rec) 1302 return; 1303 1304 mutex_lock(&tls_ctx->tx_lock); 1305 lock_sock(sk); 1306 1307 retry: 1308 /* same checks as in tls_sw_push_pending_record() */ 1309 rec = ctx->open_rec; 1310 if (!rec) 1311 goto unlock; 1312 1313 msg_pl = &rec->msg_plaintext; 1314 if (msg_pl->sg.size == 0) 1315 goto unlock; 1316 1317 /* Check the BPF advisor and perform transmission. */ 1318 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1319 &copied, 0); 1320 switch (ret) { 1321 case 0: 1322 case -EAGAIN: 1323 if (retrying) 1324 goto unlock; 1325 retrying = true; 1326 goto retry; 1327 case -EINPROGRESS: 1328 break; 1329 default: 1330 goto unlock; 1331 } 1332 1333 /* Wait for pending encryptions to get completed */ 1334 if (tls_encrypt_async_wait(ctx)) 1335 goto unlock; 1336 1337 /* Transmit if any encryptions have completed */ 1338 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1339 cancel_delayed_work(&ctx->tx_work.work); 1340 tls_tx_records(sk, 0); 1341 } 1342 1343 unlock: 1344 release_sock(sk); 1345 mutex_unlock(&tls_ctx->tx_lock); 1346 } 1347 1348 static int 1349 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1350 bool released) 1351 { 1352 struct tls_context *tls_ctx = tls_get_ctx(sk); 1353 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1354 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1355 int ret = 0; 1356 long timeo; 1357 1358 /* a rekey is pending, let userspace deal with it */ 1359 if (unlikely(ctx->key_update_pending)) 1360 return -EKEYEXPIRED; 1361 1362 timeo = sock_rcvtimeo(sk, nonblock); 1363 1364 while (!tls_strp_msg_ready(ctx)) { 1365 if (!sk_psock_queue_empty(psock)) 1366 return 0; 1367 1368 if (sk->sk_err) 1369 return sock_error(sk); 1370 1371 if (ret < 0) 1372 return ret; 1373 1374 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1375 tls_strp_check_rcv(&ctx->strp); 1376 if (tls_strp_msg_ready(ctx)) 1377 break; 1378 } 1379 1380 if (sk->sk_shutdown & RCV_SHUTDOWN) 1381 return 0; 1382 1383 if (sock_flag(sk, SOCK_DONE)) 1384 return 0; 1385 1386 if (!timeo) 1387 return -EAGAIN; 1388 1389 released = true; 1390 add_wait_queue(sk_sleep(sk), &wait); 1391 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1392 ret = sk_wait_event(sk, &timeo, 1393 tls_strp_msg_ready(ctx) || 1394 !sk_psock_queue_empty(psock), 1395 &wait); 1396 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1397 remove_wait_queue(sk_sleep(sk), &wait); 1398 1399 /* Handle signals */ 1400 if (signal_pending(current)) 1401 return sock_intr_errno(timeo); 1402 } 1403 1404 if (unlikely(!tls_strp_msg_load(&ctx->strp, released))) 1405 return tls_rx_rec_wait(sk, psock, nonblock, false); 1406 1407 return 1; 1408 } 1409 1410 static int tls_setup_from_iter(struct iov_iter *from, 1411 int length, int *pages_used, 1412 struct scatterlist *to, 1413 int to_max_pages) 1414 { 1415 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1416 struct page *pages[MAX_SKB_FRAGS]; 1417 unsigned int size = 0; 1418 ssize_t copied, use; 1419 size_t offset; 1420 1421 while (length > 0) { 1422 i = 0; 1423 maxpages = to_max_pages - num_elem; 1424 if (maxpages == 0) { 1425 rc = -EFAULT; 1426 goto out; 1427 } 1428 copied = iov_iter_get_pages2(from, pages, 1429 length, 1430 maxpages, &offset); 1431 if (copied <= 0) { 1432 rc = -EFAULT; 1433 goto out; 1434 } 1435 1436 length -= copied; 1437 size += copied; 1438 while (copied) { 1439 use = min_t(int, copied, PAGE_SIZE - offset); 1440 1441 sg_set_page(&to[num_elem], 1442 pages[i], use, offset); 1443 sg_unmark_end(&to[num_elem]); 1444 /* We do not uncharge memory from this API */ 1445 1446 offset = 0; 1447 copied -= use; 1448 1449 i++; 1450 num_elem++; 1451 } 1452 } 1453 /* Mark the end in the last sg entry if newly added */ 1454 if (num_elem > *pages_used) 1455 sg_mark_end(&to[num_elem - 1]); 1456 out: 1457 if (rc) 1458 iov_iter_revert(from, size); 1459 *pages_used = num_elem; 1460 1461 return rc; 1462 } 1463 1464 static struct sk_buff * 1465 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1466 unsigned int full_len) 1467 { 1468 struct strp_msg *clr_rxm; 1469 struct sk_buff *clr_skb; 1470 int err; 1471 1472 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1473 &err, sk->sk_allocation); 1474 if (!clr_skb) 1475 return NULL; 1476 1477 skb_copy_header(clr_skb, skb); 1478 clr_skb->len = full_len; 1479 clr_skb->data_len = full_len; 1480 1481 clr_rxm = strp_msg(clr_skb); 1482 clr_rxm->offset = 0; 1483 1484 return clr_skb; 1485 } 1486 1487 /* Decrypt handlers 1488 * 1489 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1490 * They must transform the darg in/out argument are as follows: 1491 * | Input | Output 1492 * ------------------------------------------------------------------- 1493 * zc | Zero-copy decrypt allowed | Zero-copy performed 1494 * async | Async decrypt allowed | Async crypto used / in progress 1495 * skb | * | Output skb 1496 * 1497 * If ZC decryption was performed darg.skb will point to the input skb. 1498 */ 1499 1500 /* This function decrypts the input skb into either out_iov or in out_sg 1501 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1502 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1503 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1504 * NULL, then the decryption happens inside skb buffers itself, i.e. 1505 * zero-copy gets disabled and 'darg->zc' is updated. 1506 */ 1507 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1508 struct scatterlist *out_sg, 1509 struct tls_decrypt_arg *darg) 1510 { 1511 struct tls_context *tls_ctx = tls_get_ctx(sk); 1512 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1513 struct tls_prot_info *prot = &tls_ctx->prot_info; 1514 int n_sgin, n_sgout, aead_size, err, pages = 0; 1515 struct sk_buff *skb = tls_strp_msg(ctx); 1516 const struct strp_msg *rxm = strp_msg(skb); 1517 const struct tls_msg *tlm = tls_msg(skb); 1518 struct aead_request *aead_req; 1519 struct scatterlist *sgin = NULL; 1520 struct scatterlist *sgout = NULL; 1521 const int data_len = rxm->full_len - prot->overhead_size; 1522 int tail_pages = !!prot->tail_size; 1523 struct tls_decrypt_ctx *dctx; 1524 struct sk_buff *clear_skb; 1525 int iv_offset = 0; 1526 u8 *mem; 1527 1528 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1529 rxm->full_len - prot->prepend_size); 1530 if (n_sgin < 1) 1531 return n_sgin ?: -EBADMSG; 1532 1533 if (darg->zc && (out_iov || out_sg)) { 1534 clear_skb = NULL; 1535 1536 if (out_iov) 1537 n_sgout = 1 + tail_pages + 1538 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1539 else 1540 n_sgout = sg_nents(out_sg); 1541 } else { 1542 darg->zc = false; 1543 1544 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1545 if (!clear_skb) 1546 return -ENOMEM; 1547 1548 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1549 } 1550 1551 /* Increment to accommodate AAD */ 1552 n_sgin = n_sgin + 1; 1553 1554 /* Allocate a single block of memory which contains 1555 * aead_req || tls_decrypt_ctx. 1556 * Both structs are variable length. 1557 */ 1558 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1559 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1560 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1561 sk->sk_allocation); 1562 if (!mem) { 1563 err = -ENOMEM; 1564 goto exit_free_skb; 1565 } 1566 1567 /* Segment the allocated memory */ 1568 aead_req = (struct aead_request *)mem; 1569 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1570 dctx->sk = sk; 1571 sgin = &dctx->sg[0]; 1572 sgout = &dctx->sg[n_sgin]; 1573 1574 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1575 switch (prot->cipher_type) { 1576 case TLS_CIPHER_AES_CCM_128: 1577 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1578 iv_offset = 1; 1579 break; 1580 case TLS_CIPHER_SM4_CCM: 1581 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1582 iv_offset = 1; 1583 break; 1584 } 1585 1586 /* Prepare IV */ 1587 if (prot->version == TLS_1_3_VERSION || 1588 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1589 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1590 prot->iv_size + prot->salt_size); 1591 } else { 1592 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1593 &dctx->iv[iv_offset] + prot->salt_size, 1594 prot->iv_size); 1595 if (err < 0) 1596 goto exit_free; 1597 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1598 } 1599 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1600 1601 /* Prepare AAD */ 1602 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1603 prot->tail_size, 1604 tls_ctx->rx.rec_seq, tlm->control, prot); 1605 1606 /* Prepare sgin */ 1607 sg_init_table(sgin, n_sgin); 1608 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1609 err = skb_to_sgvec(skb, &sgin[1], 1610 rxm->offset + prot->prepend_size, 1611 rxm->full_len - prot->prepend_size); 1612 if (err < 0) 1613 goto exit_free; 1614 1615 if (clear_skb) { 1616 sg_init_table(sgout, n_sgout); 1617 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1618 1619 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1620 data_len + prot->tail_size); 1621 if (err < 0) 1622 goto exit_free; 1623 } else if (out_iov) { 1624 sg_init_table(sgout, n_sgout); 1625 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1626 1627 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1628 (n_sgout - 1 - tail_pages)); 1629 if (err < 0) 1630 goto exit_free_pages; 1631 1632 if (prot->tail_size) { 1633 sg_unmark_end(&sgout[pages]); 1634 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1635 prot->tail_size); 1636 sg_mark_end(&sgout[pages + 1]); 1637 } 1638 } else if (out_sg) { 1639 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1640 } 1641 dctx->free_sgout = !!pages; 1642 1643 /* Prepare and submit AEAD request */ 1644 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1645 data_len + prot->tail_size, aead_req, darg); 1646 if (err) { 1647 if (darg->async_done) 1648 goto exit_free_skb; 1649 goto exit_free_pages; 1650 } 1651 1652 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1653 clear_skb = NULL; 1654 1655 if (unlikely(darg->async)) { 1656 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1657 if (err) { 1658 err = tls_decrypt_async_wait(ctx); 1659 darg->async = false; 1660 } 1661 return err; 1662 } 1663 1664 if (unlikely(darg->async_done)) 1665 return 0; 1666 1667 if (prot->tail_size) 1668 darg->tail = dctx->tail; 1669 1670 exit_free_pages: 1671 /* Release the pages in case iov was mapped to pages */ 1672 for (; pages > 0; pages--) 1673 put_page(sg_page(&sgout[pages])); 1674 exit_free: 1675 kfree(mem); 1676 exit_free_skb: 1677 consume_skb(clear_skb); 1678 return err; 1679 } 1680 1681 static int 1682 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1683 struct msghdr *msg, struct tls_decrypt_arg *darg) 1684 { 1685 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1686 struct tls_prot_info *prot = &tls_ctx->prot_info; 1687 struct strp_msg *rxm; 1688 int pad, err; 1689 1690 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1691 if (err < 0) { 1692 if (err == -EBADMSG) 1693 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1694 return err; 1695 } 1696 /* keep going even for ->async, the code below is TLS 1.3 */ 1697 1698 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1699 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1700 darg->tail != TLS_RECORD_TYPE_DATA)) { 1701 darg->zc = false; 1702 if (!darg->tail) 1703 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1704 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1705 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1706 } 1707 1708 pad = tls_padding_length(prot, darg->skb, darg); 1709 if (pad < 0) { 1710 if (darg->skb != tls_strp_msg(ctx)) 1711 consume_skb(darg->skb); 1712 return pad; 1713 } 1714 1715 rxm = strp_msg(darg->skb); 1716 rxm->full_len -= pad; 1717 1718 return 0; 1719 } 1720 1721 static int 1722 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1723 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1724 { 1725 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1726 struct tls_prot_info *prot = &tls_ctx->prot_info; 1727 struct strp_msg *rxm; 1728 int pad, err; 1729 1730 if (tls_ctx->rx_conf != TLS_HW) 1731 return 0; 1732 1733 err = tls_device_decrypted(sk, tls_ctx); 1734 if (err <= 0) 1735 return err; 1736 1737 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1738 if (pad < 0) 1739 return pad; 1740 1741 darg->async = false; 1742 darg->skb = tls_strp_msg(ctx); 1743 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1744 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1745 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1746 1747 rxm = strp_msg(darg->skb); 1748 rxm->full_len -= pad; 1749 1750 if (!darg->zc) { 1751 /* Non-ZC case needs a real skb */ 1752 darg->skb = tls_strp_msg_detach(ctx); 1753 if (!darg->skb) 1754 return -ENOMEM; 1755 } else { 1756 unsigned int off, len; 1757 1758 /* In ZC case nobody cares about the output skb. 1759 * Just copy the data here. Note the skb is not fully trimmed. 1760 */ 1761 off = rxm->offset + prot->prepend_size; 1762 len = rxm->full_len - prot->overhead_size; 1763 1764 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1765 if (err) 1766 return err; 1767 } 1768 return 1; 1769 } 1770 1771 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx, 1772 struct sk_buff *skb) 1773 { 1774 const struct strp_msg *rxm = strp_msg(skb); 1775 const struct tls_msg *tlm = tls_msg(skb); 1776 char hs_type; 1777 int err; 1778 1779 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE)) 1780 return 0; 1781 1782 if (rxm->full_len < 1) 1783 return 0; 1784 1785 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1); 1786 if (err < 0) { 1787 DEBUG_NET_WARN_ON_ONCE(1); 1788 return err; 1789 } 1790 1791 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) { 1792 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx; 1793 1794 WRITE_ONCE(rx_ctx->key_update_pending, true); 1795 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED); 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1802 struct tls_decrypt_arg *darg) 1803 { 1804 struct tls_context *tls_ctx = tls_get_ctx(sk); 1805 struct tls_prot_info *prot = &tls_ctx->prot_info; 1806 struct strp_msg *rxm; 1807 int err; 1808 1809 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1810 if (!err) 1811 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1812 if (err < 0) 1813 return err; 1814 1815 rxm = strp_msg(darg->skb); 1816 rxm->offset += prot->prepend_size; 1817 rxm->full_len -= prot->overhead_size; 1818 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1819 1820 return tls_check_pending_rekey(sk, tls_ctx, darg->skb); 1821 } 1822 1823 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1824 { 1825 struct tls_decrypt_arg darg = { .zc = true, }; 1826 1827 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1828 } 1829 1830 /* All records returned from a recvmsg() call must have the same type. 1831 * 0 is not a valid content type. Use it as "no type reported, yet". 1832 */ 1833 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1834 u8 *control) 1835 { 1836 int err; 1837 1838 if (!*control) { 1839 *control = tlm->control; 1840 if (!*control) 1841 return -EBADMSG; 1842 1843 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1844 sizeof(*control), control); 1845 if (*control != TLS_RECORD_TYPE_DATA) { 1846 if (err || msg->msg_flags & MSG_CTRUNC) 1847 return -EIO; 1848 } 1849 } else if (*control != tlm->control) { 1850 return 0; 1851 } 1852 1853 return 1; 1854 } 1855 1856 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1857 { 1858 tls_strp_msg_done(&ctx->strp); 1859 } 1860 1861 /* This function traverses the rx_list in tls receive context to copies the 1862 * decrypted records into the buffer provided by caller zero copy is not 1863 * true. Further, the records are removed from the rx_list if it is not a peek 1864 * case and the record has been consumed completely. 1865 */ 1866 static int process_rx_list(struct tls_sw_context_rx *ctx, 1867 struct msghdr *msg, 1868 u8 *control, 1869 size_t skip, 1870 size_t len, 1871 bool is_peek, 1872 bool *more) 1873 { 1874 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1875 struct tls_msg *tlm; 1876 ssize_t copied = 0; 1877 int err; 1878 1879 while (skip && skb) { 1880 struct strp_msg *rxm = strp_msg(skb); 1881 tlm = tls_msg(skb); 1882 1883 err = tls_record_content_type(msg, tlm, control); 1884 if (err <= 0) 1885 goto more; 1886 1887 if (skip < rxm->full_len) 1888 break; 1889 1890 skip = skip - rxm->full_len; 1891 skb = skb_peek_next(skb, &ctx->rx_list); 1892 } 1893 1894 while (len && skb) { 1895 struct sk_buff *next_skb; 1896 struct strp_msg *rxm = strp_msg(skb); 1897 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1898 1899 tlm = tls_msg(skb); 1900 1901 err = tls_record_content_type(msg, tlm, control); 1902 if (err <= 0) 1903 goto more; 1904 1905 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1906 msg, chunk); 1907 if (err < 0) 1908 goto more; 1909 1910 len = len - chunk; 1911 copied = copied + chunk; 1912 1913 /* Consume the data from record if it is non-peek case*/ 1914 if (!is_peek) { 1915 rxm->offset = rxm->offset + chunk; 1916 rxm->full_len = rxm->full_len - chunk; 1917 1918 /* Return if there is unconsumed data in the record */ 1919 if (rxm->full_len - skip) 1920 break; 1921 } 1922 1923 /* The remaining skip-bytes must lie in 1st record in rx_list. 1924 * So from the 2nd record, 'skip' should be 0. 1925 */ 1926 skip = 0; 1927 1928 if (msg) 1929 msg->msg_flags |= MSG_EOR; 1930 1931 next_skb = skb_peek_next(skb, &ctx->rx_list); 1932 1933 if (!is_peek) { 1934 __skb_unlink(skb, &ctx->rx_list); 1935 consume_skb(skb); 1936 } 1937 1938 skb = next_skb; 1939 } 1940 err = 0; 1941 1942 out: 1943 return copied ? : err; 1944 more: 1945 if (more) 1946 *more = true; 1947 goto out; 1948 } 1949 1950 static bool 1951 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1952 size_t len_left, size_t decrypted, ssize_t done, 1953 size_t *flushed_at) 1954 { 1955 size_t max_rec; 1956 1957 if (len_left <= decrypted) 1958 return false; 1959 1960 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1961 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1962 return false; 1963 1964 *flushed_at = done; 1965 return sk_flush_backlog(sk); 1966 } 1967 1968 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1969 bool nonblock) 1970 { 1971 long timeo; 1972 int ret; 1973 1974 timeo = sock_rcvtimeo(sk, nonblock); 1975 1976 while (unlikely(ctx->reader_present)) { 1977 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1978 1979 ctx->reader_contended = 1; 1980 1981 add_wait_queue(&ctx->wq, &wait); 1982 ret = sk_wait_event(sk, &timeo, 1983 !READ_ONCE(ctx->reader_present), &wait); 1984 remove_wait_queue(&ctx->wq, &wait); 1985 1986 if (timeo <= 0) 1987 return -EAGAIN; 1988 if (signal_pending(current)) 1989 return sock_intr_errno(timeo); 1990 if (ret < 0) 1991 return ret; 1992 } 1993 1994 WRITE_ONCE(ctx->reader_present, 1); 1995 1996 return 0; 1997 } 1998 1999 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 2000 bool nonblock) 2001 { 2002 int err; 2003 2004 lock_sock(sk); 2005 err = tls_rx_reader_acquire(sk, ctx, nonblock); 2006 if (err) 2007 release_sock(sk); 2008 return err; 2009 } 2010 2011 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 2012 { 2013 if (unlikely(ctx->reader_contended)) { 2014 if (wq_has_sleeper(&ctx->wq)) 2015 wake_up(&ctx->wq); 2016 else 2017 ctx->reader_contended = 0; 2018 2019 WARN_ON_ONCE(!ctx->reader_present); 2020 } 2021 2022 WRITE_ONCE(ctx->reader_present, 0); 2023 } 2024 2025 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 2026 { 2027 tls_rx_reader_release(sk, ctx); 2028 release_sock(sk); 2029 } 2030 2031 int tls_sw_recvmsg(struct sock *sk, 2032 struct msghdr *msg, 2033 size_t len, 2034 int flags, 2035 int *addr_len) 2036 { 2037 struct tls_context *tls_ctx = tls_get_ctx(sk); 2038 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2039 struct tls_prot_info *prot = &tls_ctx->prot_info; 2040 ssize_t decrypted = 0, async_copy_bytes = 0; 2041 struct sk_psock *psock; 2042 unsigned char control = 0; 2043 size_t flushed_at = 0; 2044 struct strp_msg *rxm; 2045 struct tls_msg *tlm; 2046 ssize_t copied = 0; 2047 ssize_t peeked = 0; 2048 bool async = false; 2049 int target, err; 2050 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 2051 bool is_peek = flags & MSG_PEEK; 2052 bool rx_more = false; 2053 bool released = true; 2054 bool bpf_strp_enabled; 2055 bool zc_capable; 2056 2057 if (unlikely(flags & MSG_ERRQUEUE)) 2058 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 2059 2060 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 2061 if (err < 0) 2062 return err; 2063 psock = sk_psock_get(sk); 2064 bpf_strp_enabled = sk_psock_strp_enabled(psock); 2065 2066 /* If crypto failed the connection is broken */ 2067 err = ctx->async_wait.err; 2068 if (err) 2069 goto end; 2070 2071 /* Process pending decrypted records. It must be non-zero-copy */ 2072 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); 2073 if (err < 0) 2074 goto end; 2075 2076 /* process_rx_list() will set @control if it processed any records */ 2077 copied = err; 2078 if (len <= copied || rx_more || 2079 (control && control != TLS_RECORD_TYPE_DATA)) 2080 goto end; 2081 2082 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2083 len = len - copied; 2084 2085 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 2086 ctx->zc_capable; 2087 decrypted = 0; 2088 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 2089 struct tls_decrypt_arg darg; 2090 int to_decrypt, chunk; 2091 2092 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 2093 released); 2094 if (err <= 0) { 2095 if (psock) { 2096 chunk = sk_msg_recvmsg(sk, psock, msg, len, 2097 flags); 2098 if (chunk > 0) { 2099 decrypted += chunk; 2100 len -= chunk; 2101 continue; 2102 } 2103 } 2104 goto recv_end; 2105 } 2106 2107 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2108 2109 rxm = strp_msg(tls_strp_msg(ctx)); 2110 tlm = tls_msg(tls_strp_msg(ctx)); 2111 2112 to_decrypt = rxm->full_len - prot->overhead_size; 2113 2114 if (zc_capable && to_decrypt <= len && 2115 tlm->control == TLS_RECORD_TYPE_DATA) 2116 darg.zc = true; 2117 2118 /* Do not use async mode if record is non-data */ 2119 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2120 darg.async = ctx->async_capable; 2121 else 2122 darg.async = false; 2123 2124 err = tls_rx_one_record(sk, msg, &darg); 2125 if (err < 0) { 2126 tls_err_abort(sk, -EBADMSG); 2127 goto recv_end; 2128 } 2129 2130 async |= darg.async; 2131 2132 /* If the type of records being processed is not known yet, 2133 * set it to record type just dequeued. If it is already known, 2134 * but does not match the record type just dequeued, go to end. 2135 * We always get record type here since for tls1.2, record type 2136 * is known just after record is dequeued from stream parser. 2137 * For tls1.3, we disable async. 2138 */ 2139 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2140 if (err <= 0) { 2141 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2142 tls_rx_rec_done(ctx); 2143 put_on_rx_list_err: 2144 __skb_queue_tail(&ctx->rx_list, darg.skb); 2145 goto recv_end; 2146 } 2147 2148 /* periodically flush backlog, and feed strparser */ 2149 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2150 decrypted + copied, 2151 &flushed_at); 2152 2153 /* TLS 1.3 may have updated the length by more than overhead */ 2154 rxm = strp_msg(darg.skb); 2155 chunk = rxm->full_len; 2156 tls_rx_rec_done(ctx); 2157 2158 if (!darg.zc) { 2159 bool partially_consumed = chunk > len; 2160 struct sk_buff *skb = darg.skb; 2161 2162 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2163 2164 if (async) { 2165 /* TLS 1.2-only, to_decrypt must be text len */ 2166 chunk = min_t(int, to_decrypt, len); 2167 async_copy_bytes += chunk; 2168 put_on_rx_list: 2169 decrypted += chunk; 2170 len -= chunk; 2171 __skb_queue_tail(&ctx->rx_list, skb); 2172 if (unlikely(control != TLS_RECORD_TYPE_DATA)) 2173 break; 2174 continue; 2175 } 2176 2177 if (bpf_strp_enabled) { 2178 released = true; 2179 err = sk_psock_tls_strp_read(psock, skb); 2180 if (err != __SK_PASS) { 2181 rxm->offset = rxm->offset + rxm->full_len; 2182 rxm->full_len = 0; 2183 if (err == __SK_DROP) 2184 consume_skb(skb); 2185 continue; 2186 } 2187 } 2188 2189 if (partially_consumed) 2190 chunk = len; 2191 2192 err = skb_copy_datagram_msg(skb, rxm->offset, 2193 msg, chunk); 2194 if (err < 0) 2195 goto put_on_rx_list_err; 2196 2197 if (is_peek) { 2198 peeked += chunk; 2199 goto put_on_rx_list; 2200 } 2201 2202 if (partially_consumed) { 2203 rxm->offset += chunk; 2204 rxm->full_len -= chunk; 2205 goto put_on_rx_list; 2206 } 2207 2208 consume_skb(skb); 2209 } 2210 2211 decrypted += chunk; 2212 len -= chunk; 2213 2214 /* Return full control message to userspace before trying 2215 * to parse another message type 2216 */ 2217 msg->msg_flags |= MSG_EOR; 2218 if (control != TLS_RECORD_TYPE_DATA) 2219 break; 2220 } 2221 2222 recv_end: 2223 if (async) { 2224 int ret; 2225 2226 /* Wait for all previously submitted records to be decrypted */ 2227 ret = tls_decrypt_async_wait(ctx); 2228 __skb_queue_purge(&ctx->async_hold); 2229 2230 if (ret) { 2231 if (err >= 0 || err == -EINPROGRESS) 2232 err = ret; 2233 goto end; 2234 } 2235 2236 /* Drain records from the rx_list & copy if required */ 2237 if (is_peek) 2238 err = process_rx_list(ctx, msg, &control, copied + peeked, 2239 decrypted - peeked, is_peek, NULL); 2240 else 2241 err = process_rx_list(ctx, msg, &control, 0, 2242 async_copy_bytes, is_peek, NULL); 2243 2244 /* we could have copied less than we wanted, and possibly nothing */ 2245 decrypted += max(err, 0) - async_copy_bytes; 2246 } 2247 2248 copied += decrypted; 2249 2250 end: 2251 tls_rx_reader_unlock(sk, ctx); 2252 if (psock) 2253 sk_psock_put(sk, psock); 2254 return copied ? : err; 2255 } 2256 2257 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2258 struct pipe_inode_info *pipe, 2259 size_t len, unsigned int flags) 2260 { 2261 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2263 struct strp_msg *rxm = NULL; 2264 struct sock *sk = sock->sk; 2265 struct tls_msg *tlm; 2266 struct sk_buff *skb; 2267 ssize_t copied = 0; 2268 int chunk; 2269 int err; 2270 2271 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2272 if (err < 0) 2273 return err; 2274 2275 if (!skb_queue_empty(&ctx->rx_list)) { 2276 skb = __skb_dequeue(&ctx->rx_list); 2277 } else { 2278 struct tls_decrypt_arg darg; 2279 2280 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2281 true); 2282 if (err <= 0) 2283 goto splice_read_end; 2284 2285 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2286 2287 err = tls_rx_one_record(sk, NULL, &darg); 2288 if (err < 0) { 2289 tls_err_abort(sk, -EBADMSG); 2290 goto splice_read_end; 2291 } 2292 2293 tls_rx_rec_done(ctx); 2294 skb = darg.skb; 2295 } 2296 2297 rxm = strp_msg(skb); 2298 tlm = tls_msg(skb); 2299 2300 /* splice does not support reading control messages */ 2301 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2302 err = -EINVAL; 2303 goto splice_requeue; 2304 } 2305 2306 chunk = min_t(unsigned int, rxm->full_len, len); 2307 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2308 if (copied < 0) 2309 goto splice_requeue; 2310 2311 if (chunk < rxm->full_len) { 2312 rxm->offset += len; 2313 rxm->full_len -= len; 2314 goto splice_requeue; 2315 } 2316 2317 consume_skb(skb); 2318 2319 splice_read_end: 2320 tls_rx_reader_unlock(sk, ctx); 2321 return copied ? : err; 2322 2323 splice_requeue: 2324 __skb_queue_head(&ctx->rx_list, skb); 2325 goto splice_read_end; 2326 } 2327 2328 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2329 sk_read_actor_t read_actor) 2330 { 2331 struct tls_context *tls_ctx = tls_get_ctx(sk); 2332 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2333 struct tls_prot_info *prot = &tls_ctx->prot_info; 2334 struct strp_msg *rxm = NULL; 2335 struct sk_buff *skb = NULL; 2336 struct sk_psock *psock; 2337 size_t flushed_at = 0; 2338 bool released = true; 2339 struct tls_msg *tlm; 2340 ssize_t copied = 0; 2341 ssize_t decrypted; 2342 int err, used; 2343 2344 psock = sk_psock_get(sk); 2345 if (psock) { 2346 sk_psock_put(sk, psock); 2347 return -EINVAL; 2348 } 2349 err = tls_rx_reader_acquire(sk, ctx, true); 2350 if (err < 0) 2351 return err; 2352 2353 /* If crypto failed the connection is broken */ 2354 err = ctx->async_wait.err; 2355 if (err) 2356 goto read_sock_end; 2357 2358 decrypted = 0; 2359 do { 2360 if (!skb_queue_empty(&ctx->rx_list)) { 2361 skb = __skb_dequeue(&ctx->rx_list); 2362 rxm = strp_msg(skb); 2363 tlm = tls_msg(skb); 2364 } else { 2365 struct tls_decrypt_arg darg; 2366 2367 err = tls_rx_rec_wait(sk, NULL, true, released); 2368 if (err <= 0) 2369 goto read_sock_end; 2370 2371 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2372 2373 err = tls_rx_one_record(sk, NULL, &darg); 2374 if (err < 0) { 2375 tls_err_abort(sk, -EBADMSG); 2376 goto read_sock_end; 2377 } 2378 2379 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2380 0, decrypted, 2381 &flushed_at); 2382 skb = darg.skb; 2383 rxm = strp_msg(skb); 2384 tlm = tls_msg(skb); 2385 decrypted += rxm->full_len; 2386 2387 tls_rx_rec_done(ctx); 2388 } 2389 2390 /* read_sock does not support reading control messages */ 2391 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2392 err = -EINVAL; 2393 goto read_sock_requeue; 2394 } 2395 2396 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2397 if (used <= 0) { 2398 if (!copied) 2399 err = used; 2400 goto read_sock_requeue; 2401 } 2402 copied += used; 2403 if (used < rxm->full_len) { 2404 rxm->offset += used; 2405 rxm->full_len -= used; 2406 if (!desc->count) 2407 goto read_sock_requeue; 2408 } else { 2409 consume_skb(skb); 2410 if (!desc->count) 2411 skb = NULL; 2412 } 2413 } while (skb); 2414 2415 read_sock_end: 2416 tls_rx_reader_release(sk, ctx); 2417 return copied ? : err; 2418 2419 read_sock_requeue: 2420 __skb_queue_head(&ctx->rx_list, skb); 2421 goto read_sock_end; 2422 } 2423 2424 bool tls_sw_sock_is_readable(struct sock *sk) 2425 { 2426 struct tls_context *tls_ctx = tls_get_ctx(sk); 2427 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2428 bool ingress_empty = true; 2429 struct sk_psock *psock; 2430 2431 rcu_read_lock(); 2432 psock = sk_psock(sk); 2433 if (psock) 2434 ingress_empty = list_empty(&psock->ingress_msg); 2435 rcu_read_unlock(); 2436 2437 return !ingress_empty || tls_strp_msg_ready(ctx) || 2438 !skb_queue_empty(&ctx->rx_list); 2439 } 2440 2441 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2442 { 2443 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2444 struct tls_prot_info *prot = &tls_ctx->prot_info; 2445 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2446 size_t cipher_overhead; 2447 size_t data_len = 0; 2448 int ret; 2449 2450 /* Verify that we have a full TLS header, or wait for more data */ 2451 if (strp->stm.offset + prot->prepend_size > skb->len) 2452 return 0; 2453 2454 /* Sanity-check size of on-stack buffer. */ 2455 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2456 ret = -EINVAL; 2457 goto read_failure; 2458 } 2459 2460 /* Linearize header to local buffer */ 2461 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2462 if (ret < 0) 2463 goto read_failure; 2464 2465 strp->mark = header[0]; 2466 2467 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2468 2469 cipher_overhead = prot->tag_size; 2470 if (prot->version != TLS_1_3_VERSION && 2471 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2472 cipher_overhead += prot->iv_size; 2473 2474 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2475 prot->tail_size) { 2476 ret = -EMSGSIZE; 2477 goto read_failure; 2478 } 2479 if (data_len < cipher_overhead) { 2480 ret = -EBADMSG; 2481 goto read_failure; 2482 } 2483 2484 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2485 if (header[1] != TLS_1_2_VERSION_MINOR || 2486 header[2] != TLS_1_2_VERSION_MAJOR) { 2487 ret = -EINVAL; 2488 goto read_failure; 2489 } 2490 2491 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2492 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2493 return data_len + TLS_HEADER_SIZE; 2494 2495 read_failure: 2496 tls_strp_abort_strp(strp, ret); 2497 return ret; 2498 } 2499 2500 void tls_rx_msg_ready(struct tls_strparser *strp) 2501 { 2502 struct tls_sw_context_rx *ctx; 2503 2504 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2505 ctx->saved_data_ready(strp->sk); 2506 } 2507 2508 static void tls_data_ready(struct sock *sk) 2509 { 2510 struct tls_context *tls_ctx = tls_get_ctx(sk); 2511 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2512 struct sk_psock *psock; 2513 gfp_t alloc_save; 2514 2515 trace_sk_data_ready(sk); 2516 2517 alloc_save = sk->sk_allocation; 2518 sk->sk_allocation = GFP_ATOMIC; 2519 tls_strp_data_ready(&ctx->strp); 2520 sk->sk_allocation = alloc_save; 2521 2522 psock = sk_psock_get(sk); 2523 if (psock) { 2524 if (!list_empty(&psock->ingress_msg)) 2525 ctx->saved_data_ready(sk); 2526 sk_psock_put(sk, psock); 2527 } 2528 } 2529 2530 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2531 { 2532 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2533 2534 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2535 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2536 cancel_delayed_work_sync(&ctx->tx_work.work); 2537 } 2538 2539 void tls_sw_release_resources_tx(struct sock *sk) 2540 { 2541 struct tls_context *tls_ctx = tls_get_ctx(sk); 2542 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2543 struct tls_rec *rec, *tmp; 2544 2545 /* Wait for any pending async encryptions to complete */ 2546 tls_encrypt_async_wait(ctx); 2547 2548 tls_tx_records(sk, -1); 2549 2550 /* Free up un-sent records in tx_list. First, free 2551 * the partially sent record if any at head of tx_list. 2552 */ 2553 if (tls_ctx->partially_sent_record) { 2554 tls_free_partial_record(sk, tls_ctx); 2555 rec = list_first_entry(&ctx->tx_list, 2556 struct tls_rec, list); 2557 list_del(&rec->list); 2558 sk_msg_free(sk, &rec->msg_plaintext); 2559 kfree(rec); 2560 } 2561 2562 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2563 list_del(&rec->list); 2564 sk_msg_free(sk, &rec->msg_encrypted); 2565 sk_msg_free(sk, &rec->msg_plaintext); 2566 kfree(rec); 2567 } 2568 2569 crypto_free_aead(ctx->aead_send); 2570 tls_free_open_rec(sk); 2571 } 2572 2573 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2574 { 2575 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2576 2577 kfree(ctx); 2578 } 2579 2580 void tls_sw_release_resources_rx(struct sock *sk) 2581 { 2582 struct tls_context *tls_ctx = tls_get_ctx(sk); 2583 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2584 2585 if (ctx->aead_recv) { 2586 __skb_queue_purge(&ctx->rx_list); 2587 crypto_free_aead(ctx->aead_recv); 2588 tls_strp_stop(&ctx->strp); 2589 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2590 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2591 * never swapped. 2592 */ 2593 if (ctx->saved_data_ready) { 2594 write_lock_bh(&sk->sk_callback_lock); 2595 sk->sk_data_ready = ctx->saved_data_ready; 2596 write_unlock_bh(&sk->sk_callback_lock); 2597 } 2598 } 2599 } 2600 2601 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2602 { 2603 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2604 2605 tls_strp_done(&ctx->strp); 2606 } 2607 2608 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2609 { 2610 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2611 2612 kfree(ctx); 2613 } 2614 2615 void tls_sw_free_resources_rx(struct sock *sk) 2616 { 2617 struct tls_context *tls_ctx = tls_get_ctx(sk); 2618 2619 tls_sw_release_resources_rx(sk); 2620 tls_sw_free_ctx_rx(tls_ctx); 2621 } 2622 2623 /* The work handler to transmitt the encrypted records in tx_list */ 2624 static void tx_work_handler(struct work_struct *work) 2625 { 2626 struct delayed_work *delayed_work = to_delayed_work(work); 2627 struct tx_work *tx_work = container_of(delayed_work, 2628 struct tx_work, work); 2629 struct sock *sk = tx_work->sk; 2630 struct tls_context *tls_ctx = tls_get_ctx(sk); 2631 struct tls_sw_context_tx *ctx; 2632 2633 if (unlikely(!tls_ctx)) 2634 return; 2635 2636 ctx = tls_sw_ctx_tx(tls_ctx); 2637 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2638 return; 2639 2640 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2641 return; 2642 2643 if (mutex_trylock(&tls_ctx->tx_lock)) { 2644 lock_sock(sk); 2645 tls_tx_records(sk, -1); 2646 release_sock(sk); 2647 mutex_unlock(&tls_ctx->tx_lock); 2648 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2649 /* Someone is holding the tx_lock, they will likely run Tx 2650 * and cancel the work on their way out of the lock section. 2651 * Schedule a long delay just in case. 2652 */ 2653 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2654 } 2655 } 2656 2657 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2658 { 2659 struct tls_rec *rec; 2660 2661 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2662 if (!rec) 2663 return false; 2664 2665 return READ_ONCE(rec->tx_ready); 2666 } 2667 2668 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2669 { 2670 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2671 2672 /* Schedule the transmission if tx list is ready */ 2673 if (tls_is_tx_ready(tx_ctx) && 2674 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2675 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2676 } 2677 2678 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2679 { 2680 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2681 2682 write_lock_bh(&sk->sk_callback_lock); 2683 rx_ctx->saved_data_ready = sk->sk_data_ready; 2684 sk->sk_data_ready = tls_data_ready; 2685 write_unlock_bh(&sk->sk_callback_lock); 2686 } 2687 2688 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2689 { 2690 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2691 2692 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2693 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2694 } 2695 2696 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2697 { 2698 struct tls_sw_context_tx *sw_ctx_tx; 2699 2700 if (!ctx->priv_ctx_tx) { 2701 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2702 if (!sw_ctx_tx) 2703 return NULL; 2704 } else { 2705 sw_ctx_tx = ctx->priv_ctx_tx; 2706 } 2707 2708 crypto_init_wait(&sw_ctx_tx->async_wait); 2709 atomic_set(&sw_ctx_tx->encrypt_pending, 1); 2710 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2711 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2712 sw_ctx_tx->tx_work.sk = sk; 2713 2714 return sw_ctx_tx; 2715 } 2716 2717 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2718 { 2719 struct tls_sw_context_rx *sw_ctx_rx; 2720 2721 if (!ctx->priv_ctx_rx) { 2722 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2723 if (!sw_ctx_rx) 2724 return NULL; 2725 } else { 2726 sw_ctx_rx = ctx->priv_ctx_rx; 2727 } 2728 2729 crypto_init_wait(&sw_ctx_rx->async_wait); 2730 atomic_set(&sw_ctx_rx->decrypt_pending, 1); 2731 init_waitqueue_head(&sw_ctx_rx->wq); 2732 skb_queue_head_init(&sw_ctx_rx->rx_list); 2733 skb_queue_head_init(&sw_ctx_rx->async_hold); 2734 2735 return sw_ctx_rx; 2736 } 2737 2738 int init_prot_info(struct tls_prot_info *prot, 2739 const struct tls_crypto_info *crypto_info, 2740 const struct tls_cipher_desc *cipher_desc) 2741 { 2742 u16 nonce_size = cipher_desc->nonce; 2743 2744 if (crypto_info->version == TLS_1_3_VERSION) { 2745 nonce_size = 0; 2746 prot->aad_size = TLS_HEADER_SIZE; 2747 prot->tail_size = 1; 2748 } else { 2749 prot->aad_size = TLS_AAD_SPACE_SIZE; 2750 prot->tail_size = 0; 2751 } 2752 2753 /* Sanity-check the sizes for stack allocations. */ 2754 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2755 return -EINVAL; 2756 2757 prot->version = crypto_info->version; 2758 prot->cipher_type = crypto_info->cipher_type; 2759 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2760 prot->tag_size = cipher_desc->tag; 2761 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2762 prot->iv_size = cipher_desc->iv; 2763 prot->salt_size = cipher_desc->salt; 2764 prot->rec_seq_size = cipher_desc->rec_seq; 2765 2766 return 0; 2767 } 2768 2769 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx) 2770 { 2771 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx; 2772 2773 WRITE_ONCE(ctx->key_update_pending, false); 2774 /* wake-up pre-existing poll() */ 2775 ctx->saved_data_ready(sk); 2776 } 2777 2778 int tls_set_sw_offload(struct sock *sk, int tx, 2779 struct tls_crypto_info *new_crypto_info) 2780 { 2781 struct tls_crypto_info *crypto_info, *src_crypto_info; 2782 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2783 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2784 const struct tls_cipher_desc *cipher_desc; 2785 char *iv, *rec_seq, *key, *salt; 2786 struct cipher_context *cctx; 2787 struct tls_prot_info *prot; 2788 struct crypto_aead **aead; 2789 struct tls_context *ctx; 2790 struct crypto_tfm *tfm; 2791 int rc = 0; 2792 2793 ctx = tls_get_ctx(sk); 2794 prot = &ctx->prot_info; 2795 2796 /* new_crypto_info != NULL means rekey */ 2797 if (!new_crypto_info) { 2798 if (tx) { 2799 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2800 if (!ctx->priv_ctx_tx) 2801 return -ENOMEM; 2802 } else { 2803 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2804 if (!ctx->priv_ctx_rx) 2805 return -ENOMEM; 2806 } 2807 } 2808 2809 if (tx) { 2810 sw_ctx_tx = ctx->priv_ctx_tx; 2811 crypto_info = &ctx->crypto_send.info; 2812 cctx = &ctx->tx; 2813 aead = &sw_ctx_tx->aead_send; 2814 } else { 2815 sw_ctx_rx = ctx->priv_ctx_rx; 2816 crypto_info = &ctx->crypto_recv.info; 2817 cctx = &ctx->rx; 2818 aead = &sw_ctx_rx->aead_recv; 2819 } 2820 2821 src_crypto_info = new_crypto_info ?: crypto_info; 2822 2823 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type); 2824 if (!cipher_desc) { 2825 rc = -EINVAL; 2826 goto free_priv; 2827 } 2828 2829 rc = init_prot_info(prot, src_crypto_info, cipher_desc); 2830 if (rc) 2831 goto free_priv; 2832 2833 iv = crypto_info_iv(src_crypto_info, cipher_desc); 2834 key = crypto_info_key(src_crypto_info, cipher_desc); 2835 salt = crypto_info_salt(src_crypto_info, cipher_desc); 2836 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc); 2837 2838 if (!*aead) { 2839 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2840 if (IS_ERR(*aead)) { 2841 rc = PTR_ERR(*aead); 2842 *aead = NULL; 2843 goto free_priv; 2844 } 2845 } 2846 2847 ctx->push_pending_record = tls_sw_push_pending_record; 2848 2849 /* setkey is the last operation that could fail during a 2850 * rekey. if it succeeds, we can start modifying the 2851 * context. 2852 */ 2853 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2854 if (rc) { 2855 if (new_crypto_info) 2856 goto out; 2857 else 2858 goto free_aead; 2859 } 2860 2861 if (!new_crypto_info) { 2862 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2863 if (rc) 2864 goto free_aead; 2865 } 2866 2867 if (!tx && !new_crypto_info) { 2868 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2869 2870 tls_update_rx_zc_capable(ctx); 2871 sw_ctx_rx->async_capable = 2872 src_crypto_info->version != TLS_1_3_VERSION && 2873 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2874 2875 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2876 if (rc) 2877 goto free_aead; 2878 } 2879 2880 memcpy(cctx->iv, salt, cipher_desc->salt); 2881 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2882 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2883 2884 if (new_crypto_info) { 2885 unsafe_memcpy(crypto_info, new_crypto_info, 2886 cipher_desc->crypto_info, 2887 /* size was checked in do_tls_setsockopt_conf */); 2888 memzero_explicit(new_crypto_info, cipher_desc->crypto_info); 2889 if (!tx) 2890 tls_finish_key_update(sk, ctx); 2891 } 2892 2893 goto out; 2894 2895 free_aead: 2896 crypto_free_aead(*aead); 2897 *aead = NULL; 2898 free_priv: 2899 if (!new_crypto_info) { 2900 if (tx) { 2901 kfree(ctx->priv_ctx_tx); 2902 ctx->priv_ctx_tx = NULL; 2903 } else { 2904 kfree(ctx->priv_ctx_rx); 2905 ctx->priv_ctx_rx = NULL; 2906 } 2907 } 2908 out: 2909 return rc; 2910 } 2911