xref: /linux/net/tls/tls_sw.c (revision dc0d1c4519095a6c6bbd9ec4a808674aba502741)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  *
8  * This software is available to you under a choice of one of two
9  * licenses.  You may choose to be licensed under the terms of the GNU
10  * General Public License (GPL) Version 2, available from the file
11  * COPYING in the main directory of this source tree, or the
12  * OpenIB.org BSD license below:
13  *
14  *     Redistribution and use in source and binary forms, with or
15  *     without modification, are permitted provided that the following
16  *     conditions are met:
17  *
18  *      - Redistributions of source code must retain the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer.
21  *
22  *      - Redistributions in binary form must reproduce the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer in the documentation and/or other materials
25  *        provided with the distribution.
26  *
27  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34  * SOFTWARE.
35  */
36 
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
40 
41 #include <net/strparser.h>
42 #include <net/tls.h>
43 
44 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
45 
46 static int tls_do_decryption(struct sock *sk,
47 			     struct scatterlist *sgin,
48 			     struct scatterlist *sgout,
49 			     char *iv_recv,
50 			     size_t data_len,
51 			     struct aead_request *aead_req)
52 {
53 	struct tls_context *tls_ctx = tls_get_ctx(sk);
54 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
55 	int ret;
56 
57 	aead_request_set_tfm(aead_req, ctx->aead_recv);
58 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
59 	aead_request_set_crypt(aead_req, sgin, sgout,
60 			       data_len + tls_ctx->rx.tag_size,
61 			       (u8 *)iv_recv);
62 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
63 				  crypto_req_done, &ctx->async_wait);
64 
65 	ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
66 	return ret;
67 }
68 
69 static void trim_sg(struct sock *sk, struct scatterlist *sg,
70 		    int *sg_num_elem, unsigned int *sg_size, int target_size)
71 {
72 	int i = *sg_num_elem - 1;
73 	int trim = *sg_size - target_size;
74 
75 	if (trim <= 0) {
76 		WARN_ON(trim < 0);
77 		return;
78 	}
79 
80 	*sg_size = target_size;
81 	while (trim >= sg[i].length) {
82 		trim -= sg[i].length;
83 		sk_mem_uncharge(sk, sg[i].length);
84 		put_page(sg_page(&sg[i]));
85 		i--;
86 
87 		if (i < 0)
88 			goto out;
89 	}
90 
91 	sg[i].length -= trim;
92 	sk_mem_uncharge(sk, trim);
93 
94 out:
95 	*sg_num_elem = i + 1;
96 }
97 
98 static void trim_both_sgl(struct sock *sk, int target_size)
99 {
100 	struct tls_context *tls_ctx = tls_get_ctx(sk);
101 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
102 
103 	trim_sg(sk, ctx->sg_plaintext_data,
104 		&ctx->sg_plaintext_num_elem,
105 		&ctx->sg_plaintext_size,
106 		target_size);
107 
108 	if (target_size > 0)
109 		target_size += tls_ctx->tx.overhead_size;
110 
111 	trim_sg(sk, ctx->sg_encrypted_data,
112 		&ctx->sg_encrypted_num_elem,
113 		&ctx->sg_encrypted_size,
114 		target_size);
115 }
116 
117 static int alloc_encrypted_sg(struct sock *sk, int len)
118 {
119 	struct tls_context *tls_ctx = tls_get_ctx(sk);
120 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
121 	int rc = 0;
122 
123 	rc = sk_alloc_sg(sk, len,
124 			 ctx->sg_encrypted_data, 0,
125 			 &ctx->sg_encrypted_num_elem,
126 			 &ctx->sg_encrypted_size, 0);
127 
128 	return rc;
129 }
130 
131 static int alloc_plaintext_sg(struct sock *sk, int len)
132 {
133 	struct tls_context *tls_ctx = tls_get_ctx(sk);
134 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
135 	int rc = 0;
136 
137 	rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
138 			 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
139 			 tls_ctx->pending_open_record_frags);
140 
141 	return rc;
142 }
143 
144 static void free_sg(struct sock *sk, struct scatterlist *sg,
145 		    int *sg_num_elem, unsigned int *sg_size)
146 {
147 	int i, n = *sg_num_elem;
148 
149 	for (i = 0; i < n; ++i) {
150 		sk_mem_uncharge(sk, sg[i].length);
151 		put_page(sg_page(&sg[i]));
152 	}
153 	*sg_num_elem = 0;
154 	*sg_size = 0;
155 }
156 
157 static void tls_free_both_sg(struct sock *sk)
158 {
159 	struct tls_context *tls_ctx = tls_get_ctx(sk);
160 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
161 
162 	free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
163 		&ctx->sg_encrypted_size);
164 
165 	free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
166 		&ctx->sg_plaintext_size);
167 }
168 
169 static int tls_do_encryption(struct tls_context *tls_ctx,
170 			     struct tls_sw_context_tx *ctx,
171 			     struct aead_request *aead_req,
172 			     size_t data_len)
173 {
174 	int rc;
175 
176 	ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
177 	ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
178 
179 	aead_request_set_tfm(aead_req, ctx->aead_send);
180 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181 	aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
182 			       data_len, tls_ctx->tx.iv);
183 
184 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
185 				  crypto_req_done, &ctx->async_wait);
186 
187 	rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
188 
189 	ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
190 	ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
191 
192 	return rc;
193 }
194 
195 static int tls_push_record(struct sock *sk, int flags,
196 			   unsigned char record_type)
197 {
198 	struct tls_context *tls_ctx = tls_get_ctx(sk);
199 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
200 	struct aead_request *req;
201 	int rc;
202 
203 	req = aead_request_alloc(ctx->aead_send, sk->sk_allocation);
204 	if (!req)
205 		return -ENOMEM;
206 
207 	sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
208 	sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
209 
210 	tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
211 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
212 		     record_type);
213 
214 	tls_fill_prepend(tls_ctx,
215 			 page_address(sg_page(&ctx->sg_encrypted_data[0])) +
216 			 ctx->sg_encrypted_data[0].offset,
217 			 ctx->sg_plaintext_size, record_type);
218 
219 	tls_ctx->pending_open_record_frags = 0;
220 	set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
221 
222 	rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size);
223 	if (rc < 0) {
224 		/* If we are called from write_space and
225 		 * we fail, we need to set this SOCK_NOSPACE
226 		 * to trigger another write_space in the future.
227 		 */
228 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
229 		goto out_req;
230 	}
231 
232 	free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
233 		&ctx->sg_plaintext_size);
234 
235 	ctx->sg_encrypted_num_elem = 0;
236 	ctx->sg_encrypted_size = 0;
237 
238 	/* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
239 	rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
240 	if (rc < 0 && rc != -EAGAIN)
241 		tls_err_abort(sk, EBADMSG);
242 
243 	tls_advance_record_sn(sk, &tls_ctx->tx);
244 out_req:
245 	aead_request_free(req);
246 	return rc;
247 }
248 
249 static int tls_sw_push_pending_record(struct sock *sk, int flags)
250 {
251 	return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
252 }
253 
254 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
255 			      int length, int *pages_used,
256 			      unsigned int *size_used,
257 			      struct scatterlist *to, int to_max_pages,
258 			      bool charge)
259 {
260 	struct page *pages[MAX_SKB_FRAGS];
261 
262 	size_t offset;
263 	ssize_t copied, use;
264 	int i = 0;
265 	unsigned int size = *size_used;
266 	int num_elem = *pages_used;
267 	int rc = 0;
268 	int maxpages;
269 
270 	while (length > 0) {
271 		i = 0;
272 		maxpages = to_max_pages - num_elem;
273 		if (maxpages == 0) {
274 			rc = -EFAULT;
275 			goto out;
276 		}
277 		copied = iov_iter_get_pages(from, pages,
278 					    length,
279 					    maxpages, &offset);
280 		if (copied <= 0) {
281 			rc = -EFAULT;
282 			goto out;
283 		}
284 
285 		iov_iter_advance(from, copied);
286 
287 		length -= copied;
288 		size += copied;
289 		while (copied) {
290 			use = min_t(int, copied, PAGE_SIZE - offset);
291 
292 			sg_set_page(&to[num_elem],
293 				    pages[i], use, offset);
294 			sg_unmark_end(&to[num_elem]);
295 			if (charge)
296 				sk_mem_charge(sk, use);
297 
298 			offset = 0;
299 			copied -= use;
300 
301 			++i;
302 			++num_elem;
303 		}
304 	}
305 
306 	/* Mark the end in the last sg entry if newly added */
307 	if (num_elem > *pages_used)
308 		sg_mark_end(&to[num_elem - 1]);
309 out:
310 	if (rc)
311 		iov_iter_revert(from, size - *size_used);
312 	*size_used = size;
313 	*pages_used = num_elem;
314 
315 	return rc;
316 }
317 
318 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
319 			     int bytes)
320 {
321 	struct tls_context *tls_ctx = tls_get_ctx(sk);
322 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
323 	struct scatterlist *sg = ctx->sg_plaintext_data;
324 	int copy, i, rc = 0;
325 
326 	for (i = tls_ctx->pending_open_record_frags;
327 	     i < ctx->sg_plaintext_num_elem; ++i) {
328 		copy = sg[i].length;
329 		if (copy_from_iter(
330 				page_address(sg_page(&sg[i])) + sg[i].offset,
331 				copy, from) != copy) {
332 			rc = -EFAULT;
333 			goto out;
334 		}
335 		bytes -= copy;
336 
337 		++tls_ctx->pending_open_record_frags;
338 
339 		if (!bytes)
340 			break;
341 	}
342 
343 out:
344 	return rc;
345 }
346 
347 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
348 {
349 	struct tls_context *tls_ctx = tls_get_ctx(sk);
350 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
351 	int ret = 0;
352 	int required_size;
353 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
354 	bool eor = !(msg->msg_flags & MSG_MORE);
355 	size_t try_to_copy, copied = 0;
356 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
357 	int record_room;
358 	bool full_record;
359 	int orig_size;
360 	bool is_kvec = msg->msg_iter.type & ITER_KVEC;
361 
362 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
363 		return -ENOTSUPP;
364 
365 	lock_sock(sk);
366 
367 	if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
368 		goto send_end;
369 
370 	if (unlikely(msg->msg_controllen)) {
371 		ret = tls_proccess_cmsg(sk, msg, &record_type);
372 		if (ret)
373 			goto send_end;
374 	}
375 
376 	while (msg_data_left(msg)) {
377 		if (sk->sk_err) {
378 			ret = -sk->sk_err;
379 			goto send_end;
380 		}
381 
382 		orig_size = ctx->sg_plaintext_size;
383 		full_record = false;
384 		try_to_copy = msg_data_left(msg);
385 		record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
386 		if (try_to_copy >= record_room) {
387 			try_to_copy = record_room;
388 			full_record = true;
389 		}
390 
391 		required_size = ctx->sg_plaintext_size + try_to_copy +
392 				tls_ctx->tx.overhead_size;
393 
394 		if (!sk_stream_memory_free(sk))
395 			goto wait_for_sndbuf;
396 alloc_encrypted:
397 		ret = alloc_encrypted_sg(sk, required_size);
398 		if (ret) {
399 			if (ret != -ENOSPC)
400 				goto wait_for_memory;
401 
402 			/* Adjust try_to_copy according to the amount that was
403 			 * actually allocated. The difference is due
404 			 * to max sg elements limit
405 			 */
406 			try_to_copy -= required_size - ctx->sg_encrypted_size;
407 			full_record = true;
408 		}
409 		if (!is_kvec && (full_record || eor)) {
410 			ret = zerocopy_from_iter(sk, &msg->msg_iter,
411 				try_to_copy, &ctx->sg_plaintext_num_elem,
412 				&ctx->sg_plaintext_size,
413 				ctx->sg_plaintext_data,
414 				ARRAY_SIZE(ctx->sg_plaintext_data),
415 				true);
416 			if (ret)
417 				goto fallback_to_reg_send;
418 
419 			copied += try_to_copy;
420 			ret = tls_push_record(sk, msg->msg_flags, record_type);
421 			if (ret)
422 				goto send_end;
423 			continue;
424 
425 fallback_to_reg_send:
426 			trim_sg(sk, ctx->sg_plaintext_data,
427 				&ctx->sg_plaintext_num_elem,
428 				&ctx->sg_plaintext_size,
429 				orig_size);
430 		}
431 
432 		required_size = ctx->sg_plaintext_size + try_to_copy;
433 alloc_plaintext:
434 		ret = alloc_plaintext_sg(sk, required_size);
435 		if (ret) {
436 			if (ret != -ENOSPC)
437 				goto wait_for_memory;
438 
439 			/* Adjust try_to_copy according to the amount that was
440 			 * actually allocated. The difference is due
441 			 * to max sg elements limit
442 			 */
443 			try_to_copy -= required_size - ctx->sg_plaintext_size;
444 			full_record = true;
445 
446 			trim_sg(sk, ctx->sg_encrypted_data,
447 				&ctx->sg_encrypted_num_elem,
448 				&ctx->sg_encrypted_size,
449 				ctx->sg_plaintext_size +
450 				tls_ctx->tx.overhead_size);
451 		}
452 
453 		ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
454 		if (ret)
455 			goto trim_sgl;
456 
457 		copied += try_to_copy;
458 		if (full_record || eor) {
459 push_record:
460 			ret = tls_push_record(sk, msg->msg_flags, record_type);
461 			if (ret) {
462 				if (ret == -ENOMEM)
463 					goto wait_for_memory;
464 
465 				goto send_end;
466 			}
467 		}
468 
469 		continue;
470 
471 wait_for_sndbuf:
472 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
473 wait_for_memory:
474 		ret = sk_stream_wait_memory(sk, &timeo);
475 		if (ret) {
476 trim_sgl:
477 			trim_both_sgl(sk, orig_size);
478 			goto send_end;
479 		}
480 
481 		if (tls_is_pending_closed_record(tls_ctx))
482 			goto push_record;
483 
484 		if (ctx->sg_encrypted_size < required_size)
485 			goto alloc_encrypted;
486 
487 		goto alloc_plaintext;
488 	}
489 
490 send_end:
491 	ret = sk_stream_error(sk, msg->msg_flags, ret);
492 
493 	release_sock(sk);
494 	return copied ? copied : ret;
495 }
496 
497 int tls_sw_sendpage(struct sock *sk, struct page *page,
498 		    int offset, size_t size, int flags)
499 {
500 	struct tls_context *tls_ctx = tls_get_ctx(sk);
501 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
502 	int ret = 0;
503 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
504 	bool eor;
505 	size_t orig_size = size;
506 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
507 	struct scatterlist *sg;
508 	bool full_record;
509 	int record_room;
510 
511 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
512 		      MSG_SENDPAGE_NOTLAST))
513 		return -ENOTSUPP;
514 
515 	/* No MSG_EOR from splice, only look at MSG_MORE */
516 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
517 
518 	lock_sock(sk);
519 
520 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
521 
522 	if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
523 		goto sendpage_end;
524 
525 	/* Call the sk_stream functions to manage the sndbuf mem. */
526 	while (size > 0) {
527 		size_t copy, required_size;
528 
529 		if (sk->sk_err) {
530 			ret = -sk->sk_err;
531 			goto sendpage_end;
532 		}
533 
534 		full_record = false;
535 		record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
536 		copy = size;
537 		if (copy >= record_room) {
538 			copy = record_room;
539 			full_record = true;
540 		}
541 		required_size = ctx->sg_plaintext_size + copy +
542 			      tls_ctx->tx.overhead_size;
543 
544 		if (!sk_stream_memory_free(sk))
545 			goto wait_for_sndbuf;
546 alloc_payload:
547 		ret = alloc_encrypted_sg(sk, required_size);
548 		if (ret) {
549 			if (ret != -ENOSPC)
550 				goto wait_for_memory;
551 
552 			/* Adjust copy according to the amount that was
553 			 * actually allocated. The difference is due
554 			 * to max sg elements limit
555 			 */
556 			copy -= required_size - ctx->sg_plaintext_size;
557 			full_record = true;
558 		}
559 
560 		get_page(page);
561 		sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
562 		sg_set_page(sg, page, copy, offset);
563 		sg_unmark_end(sg);
564 
565 		ctx->sg_plaintext_num_elem++;
566 
567 		sk_mem_charge(sk, copy);
568 		offset += copy;
569 		size -= copy;
570 		ctx->sg_plaintext_size += copy;
571 		tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
572 
573 		if (full_record || eor ||
574 		    ctx->sg_plaintext_num_elem ==
575 		    ARRAY_SIZE(ctx->sg_plaintext_data)) {
576 push_record:
577 			ret = tls_push_record(sk, flags, record_type);
578 			if (ret) {
579 				if (ret == -ENOMEM)
580 					goto wait_for_memory;
581 
582 				goto sendpage_end;
583 			}
584 		}
585 		continue;
586 wait_for_sndbuf:
587 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
588 wait_for_memory:
589 		ret = sk_stream_wait_memory(sk, &timeo);
590 		if (ret) {
591 			trim_both_sgl(sk, ctx->sg_plaintext_size);
592 			goto sendpage_end;
593 		}
594 
595 		if (tls_is_pending_closed_record(tls_ctx))
596 			goto push_record;
597 
598 		goto alloc_payload;
599 	}
600 
601 sendpage_end:
602 	if (orig_size > size)
603 		ret = orig_size - size;
604 	else
605 		ret = sk_stream_error(sk, flags, ret);
606 
607 	release_sock(sk);
608 	return ret;
609 }
610 
611 static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
612 				     long timeo, int *err)
613 {
614 	struct tls_context *tls_ctx = tls_get_ctx(sk);
615 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
616 	struct sk_buff *skb;
617 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
618 
619 	while (!(skb = ctx->recv_pkt)) {
620 		if (sk->sk_err) {
621 			*err = sock_error(sk);
622 			return NULL;
623 		}
624 
625 		if (sk->sk_shutdown & RCV_SHUTDOWN)
626 			return NULL;
627 
628 		if (sock_flag(sk, SOCK_DONE))
629 			return NULL;
630 
631 		if ((flags & MSG_DONTWAIT) || !timeo) {
632 			*err = -EAGAIN;
633 			return NULL;
634 		}
635 
636 		add_wait_queue(sk_sleep(sk), &wait);
637 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
638 		sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
639 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
640 		remove_wait_queue(sk_sleep(sk), &wait);
641 
642 		/* Handle signals */
643 		if (signal_pending(current)) {
644 			*err = sock_intr_errno(timeo);
645 			return NULL;
646 		}
647 	}
648 
649 	return skb;
650 }
651 
652 /* This function decrypts the input skb into either out_iov or in out_sg
653  * or in skb buffers itself. The input parameter 'zc' indicates if
654  * zero-copy mode needs to be tried or not. With zero-copy mode, either
655  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
656  * NULL, then the decryption happens inside skb buffers itself, i.e.
657  * zero-copy gets disabled and 'zc' is updated.
658  */
659 
660 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
661 			    struct iov_iter *out_iov,
662 			    struct scatterlist *out_sg,
663 			    int *chunk, bool *zc)
664 {
665 	struct tls_context *tls_ctx = tls_get_ctx(sk);
666 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
667 	struct strp_msg *rxm = strp_msg(skb);
668 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
669 	struct aead_request *aead_req;
670 	struct sk_buff *unused;
671 	u8 *aad, *iv, *mem = NULL;
672 	struct scatterlist *sgin = NULL;
673 	struct scatterlist *sgout = NULL;
674 	const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
675 
676 	if (*zc && (out_iov || out_sg)) {
677 		if (out_iov)
678 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
679 		else
680 			n_sgout = sg_nents(out_sg);
681 	} else {
682 		n_sgout = 0;
683 		*zc = false;
684 	}
685 
686 	n_sgin = skb_cow_data(skb, 0, &unused);
687 	if (n_sgin < 1)
688 		return -EBADMSG;
689 
690 	/* Increment to accommodate AAD */
691 	n_sgin = n_sgin + 1;
692 
693 	nsg = n_sgin + n_sgout;
694 
695 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
696 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
697 	mem_size = mem_size + TLS_AAD_SPACE_SIZE;
698 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
699 
700 	/* Allocate a single block of memory which contains
701 	 * aead_req || sgin[] || sgout[] || aad || iv.
702 	 * This order achieves correct alignment for aead_req, sgin, sgout.
703 	 */
704 	mem = kmalloc(mem_size, sk->sk_allocation);
705 	if (!mem)
706 		return -ENOMEM;
707 
708 	/* Segment the allocated memory */
709 	aead_req = (struct aead_request *)mem;
710 	sgin = (struct scatterlist *)(mem + aead_size);
711 	sgout = sgin + n_sgin;
712 	aad = (u8 *)(sgout + n_sgout);
713 	iv = aad + TLS_AAD_SPACE_SIZE;
714 
715 	/* Prepare IV */
716 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
717 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
718 			    tls_ctx->rx.iv_size);
719 	if (err < 0) {
720 		kfree(mem);
721 		return err;
722 	}
723 	memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
724 
725 	/* Prepare AAD */
726 	tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
727 		     tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
728 		     ctx->control);
729 
730 	/* Prepare sgin */
731 	sg_init_table(sgin, n_sgin);
732 	sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
733 	err = skb_to_sgvec(skb, &sgin[1],
734 			   rxm->offset + tls_ctx->rx.prepend_size,
735 			   rxm->full_len - tls_ctx->rx.prepend_size);
736 	if (err < 0) {
737 		kfree(mem);
738 		return err;
739 	}
740 
741 	if (n_sgout) {
742 		if (out_iov) {
743 			sg_init_table(sgout, n_sgout);
744 			sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
745 
746 			*chunk = 0;
747 			err = zerocopy_from_iter(sk, out_iov, data_len, &pages,
748 						 chunk, &sgout[1],
749 						 (n_sgout - 1), false);
750 			if (err < 0)
751 				goto fallback_to_reg_recv;
752 		} else if (out_sg) {
753 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
754 		} else {
755 			goto fallback_to_reg_recv;
756 		}
757 	} else {
758 fallback_to_reg_recv:
759 		sgout = sgin;
760 		pages = 0;
761 		*chunk = 0;
762 		*zc = false;
763 	}
764 
765 	/* Prepare and submit AEAD request */
766 	err = tls_do_decryption(sk, sgin, sgout, iv, data_len, aead_req);
767 
768 	/* Release the pages in case iov was mapped to pages */
769 	for (; pages > 0; pages--)
770 		put_page(sg_page(&sgout[pages]));
771 
772 	kfree(mem);
773 	return err;
774 }
775 
776 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
777 			      struct iov_iter *dest, int *chunk, bool *zc)
778 {
779 	struct tls_context *tls_ctx = tls_get_ctx(sk);
780 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
781 	struct strp_msg *rxm = strp_msg(skb);
782 	int err = 0;
783 
784 #ifdef CONFIG_TLS_DEVICE
785 	err = tls_device_decrypted(sk, skb);
786 	if (err < 0)
787 		return err;
788 #endif
789 	if (!ctx->decrypted) {
790 		err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
791 		if (err < 0)
792 			return err;
793 	} else {
794 		*zc = false;
795 	}
796 
797 	rxm->offset += tls_ctx->rx.prepend_size;
798 	rxm->full_len -= tls_ctx->rx.overhead_size;
799 	tls_advance_record_sn(sk, &tls_ctx->rx);
800 	ctx->decrypted = true;
801 	ctx->saved_data_ready(sk);
802 
803 	return err;
804 }
805 
806 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
807 		struct scatterlist *sgout)
808 {
809 	bool zc = true;
810 	int chunk;
811 
812 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
813 }
814 
815 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
816 			       unsigned int len)
817 {
818 	struct tls_context *tls_ctx = tls_get_ctx(sk);
819 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
820 	struct strp_msg *rxm = strp_msg(skb);
821 
822 	if (len < rxm->full_len) {
823 		rxm->offset += len;
824 		rxm->full_len -= len;
825 
826 		return false;
827 	}
828 
829 	/* Finished with message */
830 	ctx->recv_pkt = NULL;
831 	kfree_skb(skb);
832 	__strp_unpause(&ctx->strp);
833 
834 	return true;
835 }
836 
837 int tls_sw_recvmsg(struct sock *sk,
838 		   struct msghdr *msg,
839 		   size_t len,
840 		   int nonblock,
841 		   int flags,
842 		   int *addr_len)
843 {
844 	struct tls_context *tls_ctx = tls_get_ctx(sk);
845 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
846 	unsigned char control;
847 	struct strp_msg *rxm;
848 	struct sk_buff *skb;
849 	ssize_t copied = 0;
850 	bool cmsg = false;
851 	int target, err = 0;
852 	long timeo;
853 	bool is_kvec = msg->msg_iter.type & ITER_KVEC;
854 
855 	flags |= nonblock;
856 
857 	if (unlikely(flags & MSG_ERRQUEUE))
858 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
859 
860 	lock_sock(sk);
861 
862 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
863 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
864 	do {
865 		bool zc = false;
866 		int chunk = 0;
867 
868 		skb = tls_wait_data(sk, flags, timeo, &err);
869 		if (!skb)
870 			goto recv_end;
871 
872 		rxm = strp_msg(skb);
873 		if (!cmsg) {
874 			int cerr;
875 
876 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
877 					sizeof(ctx->control), &ctx->control);
878 			cmsg = true;
879 			control = ctx->control;
880 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
881 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
882 					err = -EIO;
883 					goto recv_end;
884 				}
885 			}
886 		} else if (control != ctx->control) {
887 			goto recv_end;
888 		}
889 
890 		if (!ctx->decrypted) {
891 			int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
892 
893 			if (!is_kvec && to_copy <= len &&
894 			    likely(!(flags & MSG_PEEK)))
895 				zc = true;
896 
897 			err = decrypt_skb_update(sk, skb, &msg->msg_iter,
898 						 &chunk, &zc);
899 			if (err < 0) {
900 				tls_err_abort(sk, EBADMSG);
901 				goto recv_end;
902 			}
903 			ctx->decrypted = true;
904 		}
905 
906 		if (!zc) {
907 			chunk = min_t(unsigned int, rxm->full_len, len);
908 			err = skb_copy_datagram_msg(skb, rxm->offset, msg,
909 						    chunk);
910 			if (err < 0)
911 				goto recv_end;
912 		}
913 
914 		copied += chunk;
915 		len -= chunk;
916 		if (likely(!(flags & MSG_PEEK))) {
917 			u8 control = ctx->control;
918 
919 			if (tls_sw_advance_skb(sk, skb, chunk)) {
920 				/* Return full control message to
921 				 * userspace before trying to parse
922 				 * another message type
923 				 */
924 				msg->msg_flags |= MSG_EOR;
925 				if (control != TLS_RECORD_TYPE_DATA)
926 					goto recv_end;
927 			}
928 		}
929 		/* If we have a new message from strparser, continue now. */
930 		if (copied >= target && !ctx->recv_pkt)
931 			break;
932 	} while (len);
933 
934 recv_end:
935 	release_sock(sk);
936 	return copied ? : err;
937 }
938 
939 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
940 			   struct pipe_inode_info *pipe,
941 			   size_t len, unsigned int flags)
942 {
943 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
944 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
945 	struct strp_msg *rxm = NULL;
946 	struct sock *sk = sock->sk;
947 	struct sk_buff *skb;
948 	ssize_t copied = 0;
949 	int err = 0;
950 	long timeo;
951 	int chunk;
952 	bool zc = false;
953 
954 	lock_sock(sk);
955 
956 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
957 
958 	skb = tls_wait_data(sk, flags, timeo, &err);
959 	if (!skb)
960 		goto splice_read_end;
961 
962 	/* splice does not support reading control messages */
963 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
964 		err = -ENOTSUPP;
965 		goto splice_read_end;
966 	}
967 
968 	if (!ctx->decrypted) {
969 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
970 
971 		if (err < 0) {
972 			tls_err_abort(sk, EBADMSG);
973 			goto splice_read_end;
974 		}
975 		ctx->decrypted = true;
976 	}
977 	rxm = strp_msg(skb);
978 
979 	chunk = min_t(unsigned int, rxm->full_len, len);
980 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
981 	if (copied < 0)
982 		goto splice_read_end;
983 
984 	if (likely(!(flags & MSG_PEEK)))
985 		tls_sw_advance_skb(sk, skb, copied);
986 
987 splice_read_end:
988 	release_sock(sk);
989 	return copied ? : err;
990 }
991 
992 unsigned int tls_sw_poll(struct file *file, struct socket *sock,
993 			 struct poll_table_struct *wait)
994 {
995 	unsigned int ret;
996 	struct sock *sk = sock->sk;
997 	struct tls_context *tls_ctx = tls_get_ctx(sk);
998 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
999 
1000 	/* Grab POLLOUT and POLLHUP from the underlying socket */
1001 	ret = ctx->sk_poll(file, sock, wait);
1002 
1003 	/* Clear POLLIN bits, and set based on recv_pkt */
1004 	ret &= ~(POLLIN | POLLRDNORM);
1005 	if (ctx->recv_pkt)
1006 		ret |= POLLIN | POLLRDNORM;
1007 
1008 	return ret;
1009 }
1010 
1011 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1012 {
1013 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1014 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1015 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1016 	struct strp_msg *rxm = strp_msg(skb);
1017 	size_t cipher_overhead;
1018 	size_t data_len = 0;
1019 	int ret;
1020 
1021 	/* Verify that we have a full TLS header, or wait for more data */
1022 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1023 		return 0;
1024 
1025 	/* Sanity-check size of on-stack buffer. */
1026 	if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1027 		ret = -EINVAL;
1028 		goto read_failure;
1029 	}
1030 
1031 	/* Linearize header to local buffer */
1032 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1033 
1034 	if (ret < 0)
1035 		goto read_failure;
1036 
1037 	ctx->control = header[0];
1038 
1039 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1040 
1041 	cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1042 
1043 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1044 		ret = -EMSGSIZE;
1045 		goto read_failure;
1046 	}
1047 	if (data_len < cipher_overhead) {
1048 		ret = -EBADMSG;
1049 		goto read_failure;
1050 	}
1051 
1052 	if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
1053 	    header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
1054 		ret = -EINVAL;
1055 		goto read_failure;
1056 	}
1057 
1058 #ifdef CONFIG_TLS_DEVICE
1059 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1060 			     *(u64*)tls_ctx->rx.rec_seq);
1061 #endif
1062 	return data_len + TLS_HEADER_SIZE;
1063 
1064 read_failure:
1065 	tls_err_abort(strp->sk, ret);
1066 
1067 	return ret;
1068 }
1069 
1070 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1071 {
1072 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1073 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1074 
1075 	ctx->decrypted = false;
1076 
1077 	ctx->recv_pkt = skb;
1078 	strp_pause(strp);
1079 
1080 	ctx->saved_data_ready(strp->sk);
1081 }
1082 
1083 static void tls_data_ready(struct sock *sk)
1084 {
1085 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1086 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1087 
1088 	strp_data_ready(&ctx->strp);
1089 }
1090 
1091 void tls_sw_free_resources_tx(struct sock *sk)
1092 {
1093 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1094 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1095 
1096 	crypto_free_aead(ctx->aead_send);
1097 	tls_free_both_sg(sk);
1098 
1099 	kfree(ctx);
1100 }
1101 
1102 void tls_sw_release_resources_rx(struct sock *sk)
1103 {
1104 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1105 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1106 
1107 	if (ctx->aead_recv) {
1108 		kfree_skb(ctx->recv_pkt);
1109 		ctx->recv_pkt = NULL;
1110 		crypto_free_aead(ctx->aead_recv);
1111 		strp_stop(&ctx->strp);
1112 		write_lock_bh(&sk->sk_callback_lock);
1113 		sk->sk_data_ready = ctx->saved_data_ready;
1114 		write_unlock_bh(&sk->sk_callback_lock);
1115 		release_sock(sk);
1116 		strp_done(&ctx->strp);
1117 		lock_sock(sk);
1118 	}
1119 }
1120 
1121 void tls_sw_free_resources_rx(struct sock *sk)
1122 {
1123 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1124 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1125 
1126 	tls_sw_release_resources_rx(sk);
1127 
1128 	kfree(ctx);
1129 }
1130 
1131 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1132 {
1133 	char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
1134 	struct tls_crypto_info *crypto_info;
1135 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1136 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
1137 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
1138 	struct cipher_context *cctx;
1139 	struct crypto_aead **aead;
1140 	struct strp_callbacks cb;
1141 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
1142 	char *iv, *rec_seq;
1143 	int rc = 0;
1144 
1145 	if (!ctx) {
1146 		rc = -EINVAL;
1147 		goto out;
1148 	}
1149 
1150 	if (tx) {
1151 		if (!ctx->priv_ctx_tx) {
1152 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1153 			if (!sw_ctx_tx) {
1154 				rc = -ENOMEM;
1155 				goto out;
1156 			}
1157 			ctx->priv_ctx_tx = sw_ctx_tx;
1158 		} else {
1159 			sw_ctx_tx =
1160 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1161 		}
1162 	} else {
1163 		if (!ctx->priv_ctx_rx) {
1164 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1165 			if (!sw_ctx_rx) {
1166 				rc = -ENOMEM;
1167 				goto out;
1168 			}
1169 			ctx->priv_ctx_rx = sw_ctx_rx;
1170 		} else {
1171 			sw_ctx_rx =
1172 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1173 		}
1174 	}
1175 
1176 	if (tx) {
1177 		crypto_init_wait(&sw_ctx_tx->async_wait);
1178 		crypto_info = &ctx->crypto_send;
1179 		cctx = &ctx->tx;
1180 		aead = &sw_ctx_tx->aead_send;
1181 	} else {
1182 		crypto_init_wait(&sw_ctx_rx->async_wait);
1183 		crypto_info = &ctx->crypto_recv;
1184 		cctx = &ctx->rx;
1185 		aead = &sw_ctx_rx->aead_recv;
1186 	}
1187 
1188 	switch (crypto_info->cipher_type) {
1189 	case TLS_CIPHER_AES_GCM_128: {
1190 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1191 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1192 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1193 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1194 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1195 		rec_seq =
1196 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1197 		gcm_128_info =
1198 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1199 		break;
1200 	}
1201 	default:
1202 		rc = -EINVAL;
1203 		goto free_priv;
1204 	}
1205 
1206 	/* Sanity-check the IV size for stack allocations. */
1207 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1208 		rc = -EINVAL;
1209 		goto free_priv;
1210 	}
1211 
1212 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1213 	cctx->tag_size = tag_size;
1214 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1215 	cctx->iv_size = iv_size;
1216 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1217 			   GFP_KERNEL);
1218 	if (!cctx->iv) {
1219 		rc = -ENOMEM;
1220 		goto free_priv;
1221 	}
1222 	memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1223 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1224 	cctx->rec_seq_size = rec_seq_size;
1225 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1226 	if (!cctx->rec_seq) {
1227 		rc = -ENOMEM;
1228 		goto free_iv;
1229 	}
1230 
1231 	if (sw_ctx_tx) {
1232 		sg_init_table(sw_ctx_tx->sg_encrypted_data,
1233 			      ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data));
1234 		sg_init_table(sw_ctx_tx->sg_plaintext_data,
1235 			      ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data));
1236 
1237 		sg_init_table(sw_ctx_tx->sg_aead_in, 2);
1238 		sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space,
1239 			   sizeof(sw_ctx_tx->aad_space));
1240 		sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]);
1241 		sg_chain(sw_ctx_tx->sg_aead_in, 2,
1242 			 sw_ctx_tx->sg_plaintext_data);
1243 		sg_init_table(sw_ctx_tx->sg_aead_out, 2);
1244 		sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space,
1245 			   sizeof(sw_ctx_tx->aad_space));
1246 		sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]);
1247 		sg_chain(sw_ctx_tx->sg_aead_out, 2,
1248 			 sw_ctx_tx->sg_encrypted_data);
1249 	}
1250 
1251 	if (!*aead) {
1252 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1253 		if (IS_ERR(*aead)) {
1254 			rc = PTR_ERR(*aead);
1255 			*aead = NULL;
1256 			goto free_rec_seq;
1257 		}
1258 	}
1259 
1260 	ctx->push_pending_record = tls_sw_push_pending_record;
1261 
1262 	memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1263 
1264 	rc = crypto_aead_setkey(*aead, keyval,
1265 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1266 	if (rc)
1267 		goto free_aead;
1268 
1269 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1270 	if (rc)
1271 		goto free_aead;
1272 
1273 	if (sw_ctx_rx) {
1274 		/* Set up strparser */
1275 		memset(&cb, 0, sizeof(cb));
1276 		cb.rcv_msg = tls_queue;
1277 		cb.parse_msg = tls_read_size;
1278 
1279 		strp_init(&sw_ctx_rx->strp, sk, &cb);
1280 
1281 		write_lock_bh(&sk->sk_callback_lock);
1282 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1283 		sk->sk_data_ready = tls_data_ready;
1284 		write_unlock_bh(&sk->sk_callback_lock);
1285 
1286 		sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll;
1287 
1288 		strp_check_rcv(&sw_ctx_rx->strp);
1289 	}
1290 
1291 	goto out;
1292 
1293 free_aead:
1294 	crypto_free_aead(*aead);
1295 	*aead = NULL;
1296 free_rec_seq:
1297 	kfree(cctx->rec_seq);
1298 	cctx->rec_seq = NULL;
1299 free_iv:
1300 	kfree(cctx->iv);
1301 	cctx->iv = NULL;
1302 free_priv:
1303 	if (tx) {
1304 		kfree(ctx->priv_ctx_tx);
1305 		ctx->priv_ctx_tx = NULL;
1306 	} else {
1307 		kfree(ctx->priv_ctx_rx);
1308 		ctx->priv_ctx_rx = NULL;
1309 	}
1310 out:
1311 	return rc;
1312 }
1313