xref: /linux/net/tls/tls_sw.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44 
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48 
49 #include "tls.h"
50 
51 struct tls_decrypt_arg {
52 	struct_group(inargs,
53 	bool zc;
54 	bool async;
55 	u8 tail;
56 	);
57 
58 	struct sk_buff *skb;
59 };
60 
61 struct tls_decrypt_ctx {
62 	struct sock *sk;
63 	u8 iv[TLS_MAX_IV_SIZE];
64 	u8 aad[TLS_MAX_AAD_SIZE];
65 	u8 tail;
66 	struct scatterlist sg[];
67 };
68 
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 	WARN_ON_ONCE(err >= 0);
72 	/* sk->sk_err should contain a positive error code. */
73 	WRITE_ONCE(sk->sk_err, -err);
74 	/* Paired with smp_rmb() in tcp_poll() */
75 	smp_wmb();
76 	sk_error_report(sk);
77 }
78 
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80                      unsigned int recursion_level)
81 {
82         int start = skb_headlen(skb);
83         int i, chunk = start - offset;
84         struct sk_buff *frag_iter;
85         int elt = 0;
86 
87         if (unlikely(recursion_level >= 24))
88                 return -EMSGSIZE;
89 
90         if (chunk > 0) {
91                 if (chunk > len)
92                         chunk = len;
93                 elt++;
94                 len -= chunk;
95                 if (len == 0)
96                         return elt;
97                 offset += chunk;
98         }
99 
100         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101                 int end;
102 
103                 WARN_ON(start > offset + len);
104 
105                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106                 chunk = end - offset;
107                 if (chunk > 0) {
108                         if (chunk > len)
109                                 chunk = len;
110                         elt++;
111                         len -= chunk;
112                         if (len == 0)
113                                 return elt;
114                         offset += chunk;
115                 }
116                 start = end;
117         }
118 
119         if (unlikely(skb_has_frag_list(skb))) {
120                 skb_walk_frags(skb, frag_iter) {
121                         int end, ret;
122 
123                         WARN_ON(start > offset + len);
124 
125                         end = start + frag_iter->len;
126                         chunk = end - offset;
127                         if (chunk > 0) {
128                                 if (chunk > len)
129                                         chunk = len;
130                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
131                                                 recursion_level + 1);
132                                 if (unlikely(ret < 0))
133                                         return ret;
134                                 elt += ret;
135                                 len -= chunk;
136                                 if (len == 0)
137                                         return elt;
138                                 offset += chunk;
139                         }
140                         start = end;
141                 }
142         }
143         BUG_ON(len);
144         return elt;
145 }
146 
147 /* Return the number of scatterlist elements required to completely map the
148  * skb, or -EMSGSIZE if the recursion depth is exceeded.
149  */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152         return __skb_nsg(skb, offset, len, 0);
153 }
154 
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 			      struct tls_decrypt_arg *darg)
157 {
158 	struct strp_msg *rxm = strp_msg(skb);
159 	struct tls_msg *tlm = tls_msg(skb);
160 	int sub = 0;
161 
162 	/* Determine zero-padding length */
163 	if (prot->version == TLS_1_3_VERSION) {
164 		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 		char content_type = darg->zc ? darg->tail : 0;
166 		int err;
167 
168 		while (content_type == 0) {
169 			if (offset < prot->prepend_size)
170 				return -EBADMSG;
171 			err = skb_copy_bits(skb, rxm->offset + offset,
172 					    &content_type, 1);
173 			if (err)
174 				return err;
175 			if (content_type)
176 				break;
177 			sub++;
178 			offset--;
179 		}
180 		tlm->control = content_type;
181 	}
182 	return sub;
183 }
184 
185 static void tls_decrypt_done(void *data, int err)
186 {
187 	struct aead_request *aead_req = data;
188 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 	struct scatterlist *sgout = aead_req->dst;
190 	struct scatterlist *sgin = aead_req->src;
191 	struct tls_sw_context_rx *ctx;
192 	struct tls_decrypt_ctx *dctx;
193 	struct tls_context *tls_ctx;
194 	struct scatterlist *sg;
195 	unsigned int pages;
196 	struct sock *sk;
197 	int aead_size;
198 
199 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 	dctx = (void *)((u8 *)aead_req + aead_size);
202 
203 	sk = dctx->sk;
204 	tls_ctx = tls_get_ctx(sk);
205 	ctx = tls_sw_ctx_rx(tls_ctx);
206 
207 	/* Propagate if there was an err */
208 	if (err) {
209 		if (err == -EBADMSG)
210 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 		ctx->async_wait.err = err;
212 		tls_err_abort(sk, err);
213 	}
214 
215 	/* Free the destination pages if skb was not decrypted inplace */
216 	if (sgout != sgin) {
217 		/* Skip the first S/G entry as it points to AAD */
218 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219 			if (!sg)
220 				break;
221 			put_page(sg_page(sg));
222 		}
223 	}
224 
225 	kfree(aead_req);
226 
227 	spin_lock_bh(&ctx->decrypt_compl_lock);
228 	if (!atomic_dec_return(&ctx->decrypt_pending))
229 		complete(&ctx->async_wait.completion);
230 	spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232 
233 static int tls_do_decryption(struct sock *sk,
234 			     struct scatterlist *sgin,
235 			     struct scatterlist *sgout,
236 			     char *iv_recv,
237 			     size_t data_len,
238 			     struct aead_request *aead_req,
239 			     struct tls_decrypt_arg *darg)
240 {
241 	struct tls_context *tls_ctx = tls_get_ctx(sk);
242 	struct tls_prot_info *prot = &tls_ctx->prot_info;
243 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244 	int ret;
245 
246 	aead_request_set_tfm(aead_req, ctx->aead_recv);
247 	aead_request_set_ad(aead_req, prot->aad_size);
248 	aead_request_set_crypt(aead_req, sgin, sgout,
249 			       data_len + prot->tag_size,
250 			       (u8 *)iv_recv);
251 
252 	if (darg->async) {
253 		aead_request_set_callback(aead_req,
254 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
255 					  tls_decrypt_done, aead_req);
256 		atomic_inc(&ctx->decrypt_pending);
257 	} else {
258 		aead_request_set_callback(aead_req,
259 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
260 					  crypto_req_done, &ctx->async_wait);
261 	}
262 
263 	ret = crypto_aead_decrypt(aead_req);
264 	if (ret == -EINPROGRESS) {
265 		if (darg->async)
266 			return 0;
267 
268 		ret = crypto_wait_req(ret, &ctx->async_wait);
269 	}
270 	darg->async = false;
271 
272 	return ret;
273 }
274 
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277 	struct tls_context *tls_ctx = tls_get_ctx(sk);
278 	struct tls_prot_info *prot = &tls_ctx->prot_info;
279 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 	struct tls_rec *rec = ctx->open_rec;
281 
282 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283 	if (target_size > 0)
284 		target_size += prot->overhead_size;
285 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287 
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290 	struct tls_context *tls_ctx = tls_get_ctx(sk);
291 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 	struct tls_rec *rec = ctx->open_rec;
293 	struct sk_msg *msg_en = &rec->msg_encrypted;
294 
295 	return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297 
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300 	struct tls_context *tls_ctx = tls_get_ctx(sk);
301 	struct tls_prot_info *prot = &tls_ctx->prot_info;
302 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 	struct tls_rec *rec = ctx->open_rec;
304 	struct sk_msg *msg_pl = &rec->msg_plaintext;
305 	struct sk_msg *msg_en = &rec->msg_encrypted;
306 	int skip, len;
307 
308 	/* We add page references worth len bytes from encrypted sg
309 	 * at the end of plaintext sg. It is guaranteed that msg_en
310 	 * has enough required room (ensured by caller).
311 	 */
312 	len = required - msg_pl->sg.size;
313 
314 	/* Skip initial bytes in msg_en's data to be able to use
315 	 * same offset of both plain and encrypted data.
316 	 */
317 	skip = prot->prepend_size + msg_pl->sg.size;
318 
319 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321 
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324 	struct tls_context *tls_ctx = tls_get_ctx(sk);
325 	struct tls_prot_info *prot = &tls_ctx->prot_info;
326 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 	struct sk_msg *msg_pl, *msg_en;
328 	struct tls_rec *rec;
329 	int mem_size;
330 
331 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332 
333 	rec = kzalloc(mem_size, sk->sk_allocation);
334 	if (!rec)
335 		return NULL;
336 
337 	msg_pl = &rec->msg_plaintext;
338 	msg_en = &rec->msg_encrypted;
339 
340 	sk_msg_init(msg_pl);
341 	sk_msg_init(msg_en);
342 
343 	sg_init_table(rec->sg_aead_in, 2);
344 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 	sg_unmark_end(&rec->sg_aead_in[1]);
346 
347 	sg_init_table(rec->sg_aead_out, 2);
348 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 	sg_unmark_end(&rec->sg_aead_out[1]);
350 
351 	rec->sk = sk;
352 
353 	return rec;
354 }
355 
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358 	sk_msg_free(sk, &rec->msg_encrypted);
359 	sk_msg_free(sk, &rec->msg_plaintext);
360 	kfree(rec);
361 }
362 
363 static void tls_free_open_rec(struct sock *sk)
364 {
365 	struct tls_context *tls_ctx = tls_get_ctx(sk);
366 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 	struct tls_rec *rec = ctx->open_rec;
368 
369 	if (rec) {
370 		tls_free_rec(sk, rec);
371 		ctx->open_rec = NULL;
372 	}
373 }
374 
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 	struct tls_rec *rec, *tmp;
380 	struct sk_msg *msg_en;
381 	int tx_flags, rc = 0;
382 
383 	if (tls_is_partially_sent_record(tls_ctx)) {
384 		rec = list_first_entry(&ctx->tx_list,
385 				       struct tls_rec, list);
386 
387 		if (flags == -1)
388 			tx_flags = rec->tx_flags;
389 		else
390 			tx_flags = flags;
391 
392 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393 		if (rc)
394 			goto tx_err;
395 
396 		/* Full record has been transmitted.
397 		 * Remove the head of tx_list
398 		 */
399 		list_del(&rec->list);
400 		sk_msg_free(sk, &rec->msg_plaintext);
401 		kfree(rec);
402 	}
403 
404 	/* Tx all ready records */
405 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 		if (READ_ONCE(rec->tx_ready)) {
407 			if (flags == -1)
408 				tx_flags = rec->tx_flags;
409 			else
410 				tx_flags = flags;
411 
412 			msg_en = &rec->msg_encrypted;
413 			rc = tls_push_sg(sk, tls_ctx,
414 					 &msg_en->sg.data[msg_en->sg.curr],
415 					 0, tx_flags);
416 			if (rc)
417 				goto tx_err;
418 
419 			list_del(&rec->list);
420 			sk_msg_free(sk, &rec->msg_plaintext);
421 			kfree(rec);
422 		} else {
423 			break;
424 		}
425 	}
426 
427 tx_err:
428 	if (rc < 0 && rc != -EAGAIN)
429 		tls_err_abort(sk, -EBADMSG);
430 
431 	return rc;
432 }
433 
434 static void tls_encrypt_done(void *data, int err)
435 {
436 	struct tls_sw_context_tx *ctx;
437 	struct tls_context *tls_ctx;
438 	struct tls_prot_info *prot;
439 	struct tls_rec *rec = data;
440 	struct scatterlist *sge;
441 	struct sk_msg *msg_en;
442 	bool ready = false;
443 	struct sock *sk;
444 	int pending;
445 
446 	msg_en = &rec->msg_encrypted;
447 
448 	sk = rec->sk;
449 	tls_ctx = tls_get_ctx(sk);
450 	prot = &tls_ctx->prot_info;
451 	ctx = tls_sw_ctx_tx(tls_ctx);
452 
453 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 	sge->offset -= prot->prepend_size;
455 	sge->length += prot->prepend_size;
456 
457 	/* Check if error is previously set on socket */
458 	if (err || sk->sk_err) {
459 		rec = NULL;
460 
461 		/* If err is already set on socket, return the same code */
462 		if (sk->sk_err) {
463 			ctx->async_wait.err = -sk->sk_err;
464 		} else {
465 			ctx->async_wait.err = err;
466 			tls_err_abort(sk, err);
467 		}
468 	}
469 
470 	if (rec) {
471 		struct tls_rec *first_rec;
472 
473 		/* Mark the record as ready for transmission */
474 		smp_store_mb(rec->tx_ready, true);
475 
476 		/* If received record is at head of tx_list, schedule tx */
477 		first_rec = list_first_entry(&ctx->tx_list,
478 					     struct tls_rec, list);
479 		if (rec == first_rec)
480 			ready = true;
481 	}
482 
483 	spin_lock_bh(&ctx->encrypt_compl_lock);
484 	pending = atomic_dec_return(&ctx->encrypt_pending);
485 
486 	if (!pending && ctx->async_notify)
487 		complete(&ctx->async_wait.completion);
488 	spin_unlock_bh(&ctx->encrypt_compl_lock);
489 
490 	if (!ready)
491 		return;
492 
493 	/* Schedule the transmission */
494 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 		schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497 
498 static int tls_do_encryption(struct sock *sk,
499 			     struct tls_context *tls_ctx,
500 			     struct tls_sw_context_tx *ctx,
501 			     struct aead_request *aead_req,
502 			     size_t data_len, u32 start)
503 {
504 	struct tls_prot_info *prot = &tls_ctx->prot_info;
505 	struct tls_rec *rec = ctx->open_rec;
506 	struct sk_msg *msg_en = &rec->msg_encrypted;
507 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 	int rc, iv_offset = 0;
509 
510 	/* For CCM based ciphers, first byte of IV is a constant */
511 	switch (prot->cipher_type) {
512 	case TLS_CIPHER_AES_CCM_128:
513 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514 		iv_offset = 1;
515 		break;
516 	case TLS_CIPHER_SM4_CCM:
517 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518 		iv_offset = 1;
519 		break;
520 	}
521 
522 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 	       prot->iv_size + prot->salt_size);
524 
525 	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 			    tls_ctx->tx.rec_seq);
527 
528 	sge->offset += prot->prepend_size;
529 	sge->length -= prot->prepend_size;
530 
531 	msg_en->sg.curr = start;
532 
533 	aead_request_set_tfm(aead_req, ctx->aead_send);
534 	aead_request_set_ad(aead_req, prot->aad_size);
535 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
536 			       rec->sg_aead_out,
537 			       data_len, rec->iv_data);
538 
539 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 				  tls_encrypt_done, rec);
541 
542 	/* Add the record in tx_list */
543 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 	atomic_inc(&ctx->encrypt_pending);
545 
546 	rc = crypto_aead_encrypt(aead_req);
547 	if (!rc || rc != -EINPROGRESS) {
548 		atomic_dec(&ctx->encrypt_pending);
549 		sge->offset -= prot->prepend_size;
550 		sge->length += prot->prepend_size;
551 	}
552 
553 	if (!rc) {
554 		WRITE_ONCE(rec->tx_ready, true);
555 	} else if (rc != -EINPROGRESS) {
556 		list_del(&rec->list);
557 		return rc;
558 	}
559 
560 	/* Unhook the record from context if encryption is not failure */
561 	ctx->open_rec = NULL;
562 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563 	return rc;
564 }
565 
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 				 struct tls_rec **to, struct sk_msg *msg_opl,
568 				 struct sk_msg *msg_oen, u32 split_point,
569 				 u32 tx_overhead_size, u32 *orig_end)
570 {
571 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 	struct scatterlist *sge, *osge, *nsge;
573 	u32 orig_size = msg_opl->sg.size;
574 	struct scatterlist tmp = { };
575 	struct sk_msg *msg_npl;
576 	struct tls_rec *new;
577 	int ret;
578 
579 	new = tls_get_rec(sk);
580 	if (!new)
581 		return -ENOMEM;
582 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 			   tx_overhead_size, 0);
584 	if (ret < 0) {
585 		tls_free_rec(sk, new);
586 		return ret;
587 	}
588 
589 	*orig_end = msg_opl->sg.end;
590 	i = msg_opl->sg.start;
591 	sge = sk_msg_elem(msg_opl, i);
592 	while (apply && sge->length) {
593 		if (sge->length > apply) {
594 			u32 len = sge->length - apply;
595 
596 			get_page(sg_page(sge));
597 			sg_set_page(&tmp, sg_page(sge), len,
598 				    sge->offset + apply);
599 			sge->length = apply;
600 			bytes += apply;
601 			apply = 0;
602 		} else {
603 			apply -= sge->length;
604 			bytes += sge->length;
605 		}
606 
607 		sk_msg_iter_var_next(i);
608 		if (i == msg_opl->sg.end)
609 			break;
610 		sge = sk_msg_elem(msg_opl, i);
611 	}
612 
613 	msg_opl->sg.end = i;
614 	msg_opl->sg.curr = i;
615 	msg_opl->sg.copybreak = 0;
616 	msg_opl->apply_bytes = 0;
617 	msg_opl->sg.size = bytes;
618 
619 	msg_npl = &new->msg_plaintext;
620 	msg_npl->apply_bytes = apply;
621 	msg_npl->sg.size = orig_size - bytes;
622 
623 	j = msg_npl->sg.start;
624 	nsge = sk_msg_elem(msg_npl, j);
625 	if (tmp.length) {
626 		memcpy(nsge, &tmp, sizeof(*nsge));
627 		sk_msg_iter_var_next(j);
628 		nsge = sk_msg_elem(msg_npl, j);
629 	}
630 
631 	osge = sk_msg_elem(msg_opl, i);
632 	while (osge->length) {
633 		memcpy(nsge, osge, sizeof(*nsge));
634 		sg_unmark_end(nsge);
635 		sk_msg_iter_var_next(i);
636 		sk_msg_iter_var_next(j);
637 		if (i == *orig_end)
638 			break;
639 		osge = sk_msg_elem(msg_opl, i);
640 		nsge = sk_msg_elem(msg_npl, j);
641 	}
642 
643 	msg_npl->sg.end = j;
644 	msg_npl->sg.curr = j;
645 	msg_npl->sg.copybreak = 0;
646 
647 	*to = new;
648 	return 0;
649 }
650 
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 				  struct tls_rec *from, u32 orig_end)
653 {
654 	struct sk_msg *msg_npl = &from->msg_plaintext;
655 	struct sk_msg *msg_opl = &to->msg_plaintext;
656 	struct scatterlist *osge, *nsge;
657 	u32 i, j;
658 
659 	i = msg_opl->sg.end;
660 	sk_msg_iter_var_prev(i);
661 	j = msg_npl->sg.start;
662 
663 	osge = sk_msg_elem(msg_opl, i);
664 	nsge = sk_msg_elem(msg_npl, j);
665 
666 	if (sg_page(osge) == sg_page(nsge) &&
667 	    osge->offset + osge->length == nsge->offset) {
668 		osge->length += nsge->length;
669 		put_page(sg_page(nsge));
670 	}
671 
672 	msg_opl->sg.end = orig_end;
673 	msg_opl->sg.curr = orig_end;
674 	msg_opl->sg.copybreak = 0;
675 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 	msg_opl->sg.size += msg_npl->sg.size;
677 
678 	sk_msg_free(sk, &to->msg_encrypted);
679 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680 
681 	kfree(from);
682 }
683 
684 static int tls_push_record(struct sock *sk, int flags,
685 			   unsigned char record_type)
686 {
687 	struct tls_context *tls_ctx = tls_get_ctx(sk);
688 	struct tls_prot_info *prot = &tls_ctx->prot_info;
689 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 	u32 i, split_point, orig_end;
692 	struct sk_msg *msg_pl, *msg_en;
693 	struct aead_request *req;
694 	bool split;
695 	int rc;
696 
697 	if (!rec)
698 		return 0;
699 
700 	msg_pl = &rec->msg_plaintext;
701 	msg_en = &rec->msg_encrypted;
702 
703 	split_point = msg_pl->apply_bytes;
704 	split = split_point && split_point < msg_pl->sg.size;
705 	if (unlikely((!split &&
706 		      msg_pl->sg.size +
707 		      prot->overhead_size > msg_en->sg.size) ||
708 		     (split &&
709 		      split_point +
710 		      prot->overhead_size > msg_en->sg.size))) {
711 		split = true;
712 		split_point = msg_en->sg.size;
713 	}
714 	if (split) {
715 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 					   split_point, prot->overhead_size,
717 					   &orig_end);
718 		if (rc < 0)
719 			return rc;
720 		/* This can happen if above tls_split_open_record allocates
721 		 * a single large encryption buffer instead of two smaller
722 		 * ones. In this case adjust pointers and continue without
723 		 * split.
724 		 */
725 		if (!msg_pl->sg.size) {
726 			tls_merge_open_record(sk, rec, tmp, orig_end);
727 			msg_pl = &rec->msg_plaintext;
728 			msg_en = &rec->msg_encrypted;
729 			split = false;
730 		}
731 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 			    prot->overhead_size);
733 	}
734 
735 	rec->tx_flags = flags;
736 	req = &rec->aead_req;
737 
738 	i = msg_pl->sg.end;
739 	sk_msg_iter_var_prev(i);
740 
741 	rec->content_type = record_type;
742 	if (prot->version == TLS_1_3_VERSION) {
743 		/* Add content type to end of message.  No padding added */
744 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 		sg_mark_end(&rec->sg_content_type);
746 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 			 &rec->sg_content_type);
748 	} else {
749 		sg_mark_end(sk_msg_elem(msg_pl, i));
750 	}
751 
752 	if (msg_pl->sg.end < msg_pl->sg.start) {
753 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755 			 msg_pl->sg.data);
756 	}
757 
758 	i = msg_pl->sg.start;
759 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760 
761 	i = msg_en->sg.end;
762 	sk_msg_iter_var_prev(i);
763 	sg_mark_end(sk_msg_elem(msg_en, i));
764 
765 	i = msg_en->sg.start;
766 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767 
768 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 		     tls_ctx->tx.rec_seq, record_type, prot);
770 
771 	tls_fill_prepend(tls_ctx,
772 			 page_address(sg_page(&msg_en->sg.data[i])) +
773 			 msg_en->sg.data[i].offset,
774 			 msg_pl->sg.size + prot->tail_size,
775 			 record_type);
776 
777 	tls_ctx->pending_open_record_frags = false;
778 
779 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 			       msg_pl->sg.size + prot->tail_size, i);
781 	if (rc < 0) {
782 		if (rc != -EINPROGRESS) {
783 			tls_err_abort(sk, -EBADMSG);
784 			if (split) {
785 				tls_ctx->pending_open_record_frags = true;
786 				tls_merge_open_record(sk, rec, tmp, orig_end);
787 			}
788 		}
789 		ctx->async_capable = 1;
790 		return rc;
791 	} else if (split) {
792 		msg_pl = &tmp->msg_plaintext;
793 		msg_en = &tmp->msg_encrypted;
794 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 		tls_ctx->pending_open_record_frags = true;
796 		ctx->open_rec = tmp;
797 	}
798 
799 	return tls_tx_records(sk, flags);
800 }
801 
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 			       bool full_record, u8 record_type,
804 			       ssize_t *copied, int flags)
805 {
806 	struct tls_context *tls_ctx = tls_get_ctx(sk);
807 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 	struct sk_msg msg_redir = { };
809 	struct sk_psock *psock;
810 	struct sock *sk_redir;
811 	struct tls_rec *rec;
812 	bool enospc, policy, redir_ingress;
813 	int err = 0, send;
814 	u32 delta = 0;
815 
816 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 	psock = sk_psock_get(sk);
818 	if (!psock || !policy) {
819 		err = tls_push_record(sk, flags, record_type);
820 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
821 			*copied -= sk_msg_free(sk, msg);
822 			tls_free_open_rec(sk);
823 			err = -sk->sk_err;
824 		}
825 		if (psock)
826 			sk_psock_put(sk, psock);
827 		return err;
828 	}
829 more_data:
830 	enospc = sk_msg_full(msg);
831 	if (psock->eval == __SK_NONE) {
832 		delta = msg->sg.size;
833 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 		delta -= msg->sg.size;
835 	}
836 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 	    !enospc && !full_record) {
838 		err = -ENOSPC;
839 		goto out_err;
840 	}
841 	msg->cork_bytes = 0;
842 	send = msg->sg.size;
843 	if (msg->apply_bytes && msg->apply_bytes < send)
844 		send = msg->apply_bytes;
845 
846 	switch (psock->eval) {
847 	case __SK_PASS:
848 		err = tls_push_record(sk, flags, record_type);
849 		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
850 			*copied -= sk_msg_free(sk, msg);
851 			tls_free_open_rec(sk);
852 			err = -sk->sk_err;
853 			goto out_err;
854 		}
855 		break;
856 	case __SK_REDIRECT:
857 		redir_ingress = psock->redir_ingress;
858 		sk_redir = psock->sk_redir;
859 		memcpy(&msg_redir, msg, sizeof(*msg));
860 		if (msg->apply_bytes < send)
861 			msg->apply_bytes = 0;
862 		else
863 			msg->apply_bytes -= send;
864 		sk_msg_return_zero(sk, msg, send);
865 		msg->sg.size -= send;
866 		release_sock(sk);
867 		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 					    &msg_redir, send, flags);
869 		lock_sock(sk);
870 		if (err < 0) {
871 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
872 			msg->sg.size = 0;
873 		}
874 		if (msg->sg.size == 0)
875 			tls_free_open_rec(sk);
876 		break;
877 	case __SK_DROP:
878 	default:
879 		sk_msg_free_partial(sk, msg, send);
880 		if (msg->apply_bytes < send)
881 			msg->apply_bytes = 0;
882 		else
883 			msg->apply_bytes -= send;
884 		if (msg->sg.size == 0)
885 			tls_free_open_rec(sk);
886 		*copied -= (send + delta);
887 		err = -EACCES;
888 	}
889 
890 	if (likely(!err)) {
891 		bool reset_eval = !ctx->open_rec;
892 
893 		rec = ctx->open_rec;
894 		if (rec) {
895 			msg = &rec->msg_plaintext;
896 			if (!msg->apply_bytes)
897 				reset_eval = true;
898 		}
899 		if (reset_eval) {
900 			psock->eval = __SK_NONE;
901 			if (psock->sk_redir) {
902 				sock_put(psock->sk_redir);
903 				psock->sk_redir = NULL;
904 			}
905 		}
906 		if (rec)
907 			goto more_data;
908 	}
909  out_err:
910 	sk_psock_put(sk, psock);
911 	return err;
912 }
913 
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916 	struct tls_context *tls_ctx = tls_get_ctx(sk);
917 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 	struct tls_rec *rec = ctx->open_rec;
919 	struct sk_msg *msg_pl;
920 	size_t copied;
921 
922 	if (!rec)
923 		return 0;
924 
925 	msg_pl = &rec->msg_plaintext;
926 	copied = msg_pl->sg.size;
927 	if (!copied)
928 		return 0;
929 
930 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931 				   &copied, flags);
932 }
933 
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 				 struct sk_msg *msg_pl, size_t try_to_copy,
936 				 ssize_t *copied)
937 {
938 	struct page *page = NULL, **pages = &page;
939 
940 	do {
941 		ssize_t part;
942 		size_t off;
943 
944 		part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 					      try_to_copy, 1, 0, &off);
946 		if (part <= 0)
947 			return part ?: -EIO;
948 
949 		if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 			iov_iter_revert(&msg->msg_iter, part);
951 			return -EIO;
952 		}
953 
954 		sk_msg_page_add(msg_pl, page, part, off);
955 		msg_pl->sg.copybreak = 0;
956 		msg_pl->sg.curr = msg_pl->sg.end;
957 		sk_mem_charge(sk, part);
958 		*copied += part;
959 		try_to_copy -= part;
960 	} while (try_to_copy && !sk_msg_full(msg_pl));
961 
962 	return 0;
963 }
964 
965 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
966 				 size_t size)
967 {
968 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
969 	struct tls_context *tls_ctx = tls_get_ctx(sk);
970 	struct tls_prot_info *prot = &tls_ctx->prot_info;
971 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
972 	bool async_capable = ctx->async_capable;
973 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
974 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
975 	bool eor = !(msg->msg_flags & MSG_MORE);
976 	size_t try_to_copy;
977 	ssize_t copied = 0;
978 	struct sk_msg *msg_pl, *msg_en;
979 	struct tls_rec *rec;
980 	int required_size;
981 	int num_async = 0;
982 	bool full_record;
983 	int record_room;
984 	int num_zc = 0;
985 	int orig_size;
986 	int ret = 0;
987 	int pending;
988 
989 	if (!eor && (msg->msg_flags & MSG_EOR))
990 		return -EINVAL;
991 
992 	if (unlikely(msg->msg_controllen)) {
993 		ret = tls_process_cmsg(sk, msg, &record_type);
994 		if (ret) {
995 			if (ret == -EINPROGRESS)
996 				num_async++;
997 			else if (ret != -EAGAIN)
998 				goto send_end;
999 		}
1000 	}
1001 
1002 	while (msg_data_left(msg)) {
1003 		if (sk->sk_err) {
1004 			ret = -sk->sk_err;
1005 			goto send_end;
1006 		}
1007 
1008 		if (ctx->open_rec)
1009 			rec = ctx->open_rec;
1010 		else
1011 			rec = ctx->open_rec = tls_get_rec(sk);
1012 		if (!rec) {
1013 			ret = -ENOMEM;
1014 			goto send_end;
1015 		}
1016 
1017 		msg_pl = &rec->msg_plaintext;
1018 		msg_en = &rec->msg_encrypted;
1019 
1020 		orig_size = msg_pl->sg.size;
1021 		full_record = false;
1022 		try_to_copy = msg_data_left(msg);
1023 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1024 		if (try_to_copy >= record_room) {
1025 			try_to_copy = record_room;
1026 			full_record = true;
1027 		}
1028 
1029 		required_size = msg_pl->sg.size + try_to_copy +
1030 				prot->overhead_size;
1031 
1032 		if (!sk_stream_memory_free(sk))
1033 			goto wait_for_sndbuf;
1034 
1035 alloc_encrypted:
1036 		ret = tls_alloc_encrypted_msg(sk, required_size);
1037 		if (ret) {
1038 			if (ret != -ENOSPC)
1039 				goto wait_for_memory;
1040 
1041 			/* Adjust try_to_copy according to the amount that was
1042 			 * actually allocated. The difference is due
1043 			 * to max sg elements limit
1044 			 */
1045 			try_to_copy -= required_size - msg_en->sg.size;
1046 			full_record = true;
1047 		}
1048 
1049 		if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1050 			ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1051 						    try_to_copy, &copied);
1052 			if (ret < 0)
1053 				goto send_end;
1054 			tls_ctx->pending_open_record_frags = true;
1055 
1056 			if (sk_msg_full(msg_pl))
1057 				full_record = true;
1058 
1059 			if (full_record || eor)
1060 				goto copied;
1061 			continue;
1062 		}
1063 
1064 		if (!is_kvec && (full_record || eor) && !async_capable) {
1065 			u32 first = msg_pl->sg.end;
1066 
1067 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1068 							msg_pl, try_to_copy);
1069 			if (ret)
1070 				goto fallback_to_reg_send;
1071 
1072 			num_zc++;
1073 			copied += try_to_copy;
1074 
1075 			sk_msg_sg_copy_set(msg_pl, first);
1076 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077 						  record_type, &copied,
1078 						  msg->msg_flags);
1079 			if (ret) {
1080 				if (ret == -EINPROGRESS)
1081 					num_async++;
1082 				else if (ret == -ENOMEM)
1083 					goto wait_for_memory;
1084 				else if (ctx->open_rec && ret == -ENOSPC)
1085 					goto rollback_iter;
1086 				else if (ret != -EAGAIN)
1087 					goto send_end;
1088 			}
1089 			continue;
1090 rollback_iter:
1091 			copied -= try_to_copy;
1092 			sk_msg_sg_copy_clear(msg_pl, first);
1093 			iov_iter_revert(&msg->msg_iter,
1094 					msg_pl->sg.size - orig_size);
1095 fallback_to_reg_send:
1096 			sk_msg_trim(sk, msg_pl, orig_size);
1097 		}
1098 
1099 		required_size = msg_pl->sg.size + try_to_copy;
1100 
1101 		ret = tls_clone_plaintext_msg(sk, required_size);
1102 		if (ret) {
1103 			if (ret != -ENOSPC)
1104 				goto send_end;
1105 
1106 			/* Adjust try_to_copy according to the amount that was
1107 			 * actually allocated. The difference is due
1108 			 * to max sg elements limit
1109 			 */
1110 			try_to_copy -= required_size - msg_pl->sg.size;
1111 			full_record = true;
1112 			sk_msg_trim(sk, msg_en,
1113 				    msg_pl->sg.size + prot->overhead_size);
1114 		}
1115 
1116 		if (try_to_copy) {
1117 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1118 						       msg_pl, try_to_copy);
1119 			if (ret < 0)
1120 				goto trim_sgl;
1121 		}
1122 
1123 		/* Open records defined only if successfully copied, otherwise
1124 		 * we would trim the sg but not reset the open record frags.
1125 		 */
1126 		tls_ctx->pending_open_record_frags = true;
1127 		copied += try_to_copy;
1128 copied:
1129 		if (full_record || eor) {
1130 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1131 						  record_type, &copied,
1132 						  msg->msg_flags);
1133 			if (ret) {
1134 				if (ret == -EINPROGRESS)
1135 					num_async++;
1136 				else if (ret == -ENOMEM)
1137 					goto wait_for_memory;
1138 				else if (ret != -EAGAIN) {
1139 					if (ret == -ENOSPC)
1140 						ret = 0;
1141 					goto send_end;
1142 				}
1143 			}
1144 		}
1145 
1146 		continue;
1147 
1148 wait_for_sndbuf:
1149 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1150 wait_for_memory:
1151 		ret = sk_stream_wait_memory(sk, &timeo);
1152 		if (ret) {
1153 trim_sgl:
1154 			if (ctx->open_rec)
1155 				tls_trim_both_msgs(sk, orig_size);
1156 			goto send_end;
1157 		}
1158 
1159 		if (ctx->open_rec && msg_en->sg.size < required_size)
1160 			goto alloc_encrypted;
1161 	}
1162 
1163 	if (!num_async) {
1164 		goto send_end;
1165 	} else if (num_zc) {
1166 		/* Wait for pending encryptions to get completed */
1167 		spin_lock_bh(&ctx->encrypt_compl_lock);
1168 		ctx->async_notify = true;
1169 
1170 		pending = atomic_read(&ctx->encrypt_pending);
1171 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1172 		if (pending)
1173 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1174 		else
1175 			reinit_completion(&ctx->async_wait.completion);
1176 
1177 		/* There can be no concurrent accesses, since we have no
1178 		 * pending encrypt operations
1179 		 */
1180 		WRITE_ONCE(ctx->async_notify, false);
1181 
1182 		if (ctx->async_wait.err) {
1183 			ret = ctx->async_wait.err;
1184 			copied = 0;
1185 		}
1186 	}
1187 
1188 	/* Transmit if any encryptions have completed */
1189 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1190 		cancel_delayed_work(&ctx->tx_work.work);
1191 		tls_tx_records(sk, msg->msg_flags);
1192 	}
1193 
1194 send_end:
1195 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1196 	return copied > 0 ? copied : ret;
1197 }
1198 
1199 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1200 {
1201 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1202 	int ret;
1203 
1204 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1205 			       MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1206 			       MSG_SENDPAGE_NOPOLICY))
1207 		return -EOPNOTSUPP;
1208 
1209 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1210 	if (ret)
1211 		return ret;
1212 	lock_sock(sk);
1213 	ret = tls_sw_sendmsg_locked(sk, msg, size);
1214 	release_sock(sk);
1215 	mutex_unlock(&tls_ctx->tx_lock);
1216 	return ret;
1217 }
1218 
1219 /*
1220  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1221  */
1222 void tls_sw_splice_eof(struct socket *sock)
1223 {
1224 	struct sock *sk = sock->sk;
1225 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1226 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1227 	struct tls_rec *rec;
1228 	struct sk_msg *msg_pl;
1229 	ssize_t copied = 0;
1230 	bool retrying = false;
1231 	int ret = 0;
1232 	int pending;
1233 
1234 	if (!ctx->open_rec)
1235 		return;
1236 
1237 	mutex_lock(&tls_ctx->tx_lock);
1238 	lock_sock(sk);
1239 
1240 retry:
1241 	/* same checks as in tls_sw_push_pending_record() */
1242 	rec = ctx->open_rec;
1243 	if (!rec)
1244 		goto unlock;
1245 
1246 	msg_pl = &rec->msg_plaintext;
1247 	if (msg_pl->sg.size == 0)
1248 		goto unlock;
1249 
1250 	/* Check the BPF advisor and perform transmission. */
1251 	ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1252 				  &copied, 0);
1253 	switch (ret) {
1254 	case 0:
1255 	case -EAGAIN:
1256 		if (retrying)
1257 			goto unlock;
1258 		retrying = true;
1259 		goto retry;
1260 	case -EINPROGRESS:
1261 		break;
1262 	default:
1263 		goto unlock;
1264 	}
1265 
1266 	/* Wait for pending encryptions to get completed */
1267 	spin_lock_bh(&ctx->encrypt_compl_lock);
1268 	ctx->async_notify = true;
1269 
1270 	pending = atomic_read(&ctx->encrypt_pending);
1271 	spin_unlock_bh(&ctx->encrypt_compl_lock);
1272 	if (pending)
1273 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1274 	else
1275 		reinit_completion(&ctx->async_wait.completion);
1276 
1277 	/* There can be no concurrent accesses, since we have no pending
1278 	 * encrypt operations
1279 	 */
1280 	WRITE_ONCE(ctx->async_notify, false);
1281 
1282 	if (ctx->async_wait.err)
1283 		goto unlock;
1284 
1285 	/* Transmit if any encryptions have completed */
1286 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1287 		cancel_delayed_work(&ctx->tx_work.work);
1288 		tls_tx_records(sk, 0);
1289 	}
1290 
1291 unlock:
1292 	release_sock(sk);
1293 	mutex_unlock(&tls_ctx->tx_lock);
1294 }
1295 
1296 static int
1297 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1298 		bool released)
1299 {
1300 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1301 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1302 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1303 	int ret = 0;
1304 	long timeo;
1305 
1306 	timeo = sock_rcvtimeo(sk, nonblock);
1307 
1308 	while (!tls_strp_msg_ready(ctx)) {
1309 		if (!sk_psock_queue_empty(psock))
1310 			return 0;
1311 
1312 		if (sk->sk_err)
1313 			return sock_error(sk);
1314 
1315 		if (ret < 0)
1316 			return ret;
1317 
1318 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1319 			tls_strp_check_rcv(&ctx->strp);
1320 			if (tls_strp_msg_ready(ctx))
1321 				break;
1322 		}
1323 
1324 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1325 			return 0;
1326 
1327 		if (sock_flag(sk, SOCK_DONE))
1328 			return 0;
1329 
1330 		if (!timeo)
1331 			return -EAGAIN;
1332 
1333 		released = true;
1334 		add_wait_queue(sk_sleep(sk), &wait);
1335 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1336 		ret = sk_wait_event(sk, &timeo,
1337 				    tls_strp_msg_ready(ctx) ||
1338 				    !sk_psock_queue_empty(psock),
1339 				    &wait);
1340 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1341 		remove_wait_queue(sk_sleep(sk), &wait);
1342 
1343 		/* Handle signals */
1344 		if (signal_pending(current))
1345 			return sock_intr_errno(timeo);
1346 	}
1347 
1348 	tls_strp_msg_load(&ctx->strp, released);
1349 
1350 	return 1;
1351 }
1352 
1353 static int tls_setup_from_iter(struct iov_iter *from,
1354 			       int length, int *pages_used,
1355 			       struct scatterlist *to,
1356 			       int to_max_pages)
1357 {
1358 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1359 	struct page *pages[MAX_SKB_FRAGS];
1360 	unsigned int size = 0;
1361 	ssize_t copied, use;
1362 	size_t offset;
1363 
1364 	while (length > 0) {
1365 		i = 0;
1366 		maxpages = to_max_pages - num_elem;
1367 		if (maxpages == 0) {
1368 			rc = -EFAULT;
1369 			goto out;
1370 		}
1371 		copied = iov_iter_get_pages2(from, pages,
1372 					    length,
1373 					    maxpages, &offset);
1374 		if (copied <= 0) {
1375 			rc = -EFAULT;
1376 			goto out;
1377 		}
1378 
1379 		length -= copied;
1380 		size += copied;
1381 		while (copied) {
1382 			use = min_t(int, copied, PAGE_SIZE - offset);
1383 
1384 			sg_set_page(&to[num_elem],
1385 				    pages[i], use, offset);
1386 			sg_unmark_end(&to[num_elem]);
1387 			/* We do not uncharge memory from this API */
1388 
1389 			offset = 0;
1390 			copied -= use;
1391 
1392 			i++;
1393 			num_elem++;
1394 		}
1395 	}
1396 	/* Mark the end in the last sg entry if newly added */
1397 	if (num_elem > *pages_used)
1398 		sg_mark_end(&to[num_elem - 1]);
1399 out:
1400 	if (rc)
1401 		iov_iter_revert(from, size);
1402 	*pages_used = num_elem;
1403 
1404 	return rc;
1405 }
1406 
1407 static struct sk_buff *
1408 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1409 		     unsigned int full_len)
1410 {
1411 	struct strp_msg *clr_rxm;
1412 	struct sk_buff *clr_skb;
1413 	int err;
1414 
1415 	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1416 				       &err, sk->sk_allocation);
1417 	if (!clr_skb)
1418 		return NULL;
1419 
1420 	skb_copy_header(clr_skb, skb);
1421 	clr_skb->len = full_len;
1422 	clr_skb->data_len = full_len;
1423 
1424 	clr_rxm = strp_msg(clr_skb);
1425 	clr_rxm->offset = 0;
1426 
1427 	return clr_skb;
1428 }
1429 
1430 /* Decrypt handlers
1431  *
1432  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1433  * They must transform the darg in/out argument are as follows:
1434  *       |          Input            |         Output
1435  * -------------------------------------------------------------------
1436  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1437  * async | Async decrypt allowed     | Async crypto used / in progress
1438  *   skb |            *              | Output skb
1439  *
1440  * If ZC decryption was performed darg.skb will point to the input skb.
1441  */
1442 
1443 /* This function decrypts the input skb into either out_iov or in out_sg
1444  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1445  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1446  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1447  * NULL, then the decryption happens inside skb buffers itself, i.e.
1448  * zero-copy gets disabled and 'darg->zc' is updated.
1449  */
1450 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1451 			  struct scatterlist *out_sg,
1452 			  struct tls_decrypt_arg *darg)
1453 {
1454 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1455 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1456 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1457 	int n_sgin, n_sgout, aead_size, err, pages = 0;
1458 	struct sk_buff *skb = tls_strp_msg(ctx);
1459 	const struct strp_msg *rxm = strp_msg(skb);
1460 	const struct tls_msg *tlm = tls_msg(skb);
1461 	struct aead_request *aead_req;
1462 	struct scatterlist *sgin = NULL;
1463 	struct scatterlist *sgout = NULL;
1464 	const int data_len = rxm->full_len - prot->overhead_size;
1465 	int tail_pages = !!prot->tail_size;
1466 	struct tls_decrypt_ctx *dctx;
1467 	struct sk_buff *clear_skb;
1468 	int iv_offset = 0;
1469 	u8 *mem;
1470 
1471 	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1472 			 rxm->full_len - prot->prepend_size);
1473 	if (n_sgin < 1)
1474 		return n_sgin ?: -EBADMSG;
1475 
1476 	if (darg->zc && (out_iov || out_sg)) {
1477 		clear_skb = NULL;
1478 
1479 		if (out_iov)
1480 			n_sgout = 1 + tail_pages +
1481 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1482 		else
1483 			n_sgout = sg_nents(out_sg);
1484 	} else {
1485 		darg->zc = false;
1486 
1487 		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1488 		if (!clear_skb)
1489 			return -ENOMEM;
1490 
1491 		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1492 	}
1493 
1494 	/* Increment to accommodate AAD */
1495 	n_sgin = n_sgin + 1;
1496 
1497 	/* Allocate a single block of memory which contains
1498 	 *   aead_req || tls_decrypt_ctx.
1499 	 * Both structs are variable length.
1500 	 */
1501 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1502 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
1503 	mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1504 		      sk->sk_allocation);
1505 	if (!mem) {
1506 		err = -ENOMEM;
1507 		goto exit_free_skb;
1508 	}
1509 
1510 	/* Segment the allocated memory */
1511 	aead_req = (struct aead_request *)mem;
1512 	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1513 	dctx->sk = sk;
1514 	sgin = &dctx->sg[0];
1515 	sgout = &dctx->sg[n_sgin];
1516 
1517 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1518 	switch (prot->cipher_type) {
1519 	case TLS_CIPHER_AES_CCM_128:
1520 		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1521 		iv_offset = 1;
1522 		break;
1523 	case TLS_CIPHER_SM4_CCM:
1524 		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1525 		iv_offset = 1;
1526 		break;
1527 	}
1528 
1529 	/* Prepare IV */
1530 	if (prot->version == TLS_1_3_VERSION ||
1531 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1532 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1533 		       prot->iv_size + prot->salt_size);
1534 	} else {
1535 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1536 				    &dctx->iv[iv_offset] + prot->salt_size,
1537 				    prot->iv_size);
1538 		if (err < 0)
1539 			goto exit_free;
1540 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1541 	}
1542 	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1543 
1544 	/* Prepare AAD */
1545 	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1546 		     prot->tail_size,
1547 		     tls_ctx->rx.rec_seq, tlm->control, prot);
1548 
1549 	/* Prepare sgin */
1550 	sg_init_table(sgin, n_sgin);
1551 	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1552 	err = skb_to_sgvec(skb, &sgin[1],
1553 			   rxm->offset + prot->prepend_size,
1554 			   rxm->full_len - prot->prepend_size);
1555 	if (err < 0)
1556 		goto exit_free;
1557 
1558 	if (clear_skb) {
1559 		sg_init_table(sgout, n_sgout);
1560 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1561 
1562 		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1563 				   data_len + prot->tail_size);
1564 		if (err < 0)
1565 			goto exit_free;
1566 	} else if (out_iov) {
1567 		sg_init_table(sgout, n_sgout);
1568 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1569 
1570 		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1571 					  (n_sgout - 1 - tail_pages));
1572 		if (err < 0)
1573 			goto exit_free_pages;
1574 
1575 		if (prot->tail_size) {
1576 			sg_unmark_end(&sgout[pages]);
1577 			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1578 				   prot->tail_size);
1579 			sg_mark_end(&sgout[pages + 1]);
1580 		}
1581 	} else if (out_sg) {
1582 		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1583 	}
1584 
1585 	/* Prepare and submit AEAD request */
1586 	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1587 				data_len + prot->tail_size, aead_req, darg);
1588 	if (err)
1589 		goto exit_free_pages;
1590 
1591 	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1592 	clear_skb = NULL;
1593 
1594 	if (unlikely(darg->async)) {
1595 		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1596 		if (err)
1597 			__skb_queue_tail(&ctx->async_hold, darg->skb);
1598 		return err;
1599 	}
1600 
1601 	if (prot->tail_size)
1602 		darg->tail = dctx->tail;
1603 
1604 exit_free_pages:
1605 	/* Release the pages in case iov was mapped to pages */
1606 	for (; pages > 0; pages--)
1607 		put_page(sg_page(&sgout[pages]));
1608 exit_free:
1609 	kfree(mem);
1610 exit_free_skb:
1611 	consume_skb(clear_skb);
1612 	return err;
1613 }
1614 
1615 static int
1616 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1617 	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1618 {
1619 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1620 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1621 	struct strp_msg *rxm;
1622 	int pad, err;
1623 
1624 	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1625 	if (err < 0) {
1626 		if (err == -EBADMSG)
1627 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1628 		return err;
1629 	}
1630 	/* keep going even for ->async, the code below is TLS 1.3 */
1631 
1632 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1633 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1634 		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1635 		darg->zc = false;
1636 		if (!darg->tail)
1637 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1638 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1639 		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1640 	}
1641 
1642 	pad = tls_padding_length(prot, darg->skb, darg);
1643 	if (pad < 0) {
1644 		if (darg->skb != tls_strp_msg(ctx))
1645 			consume_skb(darg->skb);
1646 		return pad;
1647 	}
1648 
1649 	rxm = strp_msg(darg->skb);
1650 	rxm->full_len -= pad;
1651 
1652 	return 0;
1653 }
1654 
1655 static int
1656 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1657 		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1658 {
1659 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1660 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1661 	struct strp_msg *rxm;
1662 	int pad, err;
1663 
1664 	if (tls_ctx->rx_conf != TLS_HW)
1665 		return 0;
1666 
1667 	err = tls_device_decrypted(sk, tls_ctx);
1668 	if (err <= 0)
1669 		return err;
1670 
1671 	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1672 	if (pad < 0)
1673 		return pad;
1674 
1675 	darg->async = false;
1676 	darg->skb = tls_strp_msg(ctx);
1677 	/* ->zc downgrade check, in case TLS 1.3 gets here */
1678 	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1679 		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1680 
1681 	rxm = strp_msg(darg->skb);
1682 	rxm->full_len -= pad;
1683 
1684 	if (!darg->zc) {
1685 		/* Non-ZC case needs a real skb */
1686 		darg->skb = tls_strp_msg_detach(ctx);
1687 		if (!darg->skb)
1688 			return -ENOMEM;
1689 	} else {
1690 		unsigned int off, len;
1691 
1692 		/* In ZC case nobody cares about the output skb.
1693 		 * Just copy the data here. Note the skb is not fully trimmed.
1694 		 */
1695 		off = rxm->offset + prot->prepend_size;
1696 		len = rxm->full_len - prot->overhead_size;
1697 
1698 		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1699 		if (err)
1700 			return err;
1701 	}
1702 	return 1;
1703 }
1704 
1705 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1706 			     struct tls_decrypt_arg *darg)
1707 {
1708 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1709 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1710 	struct strp_msg *rxm;
1711 	int err;
1712 
1713 	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1714 	if (!err)
1715 		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1716 	if (err < 0)
1717 		return err;
1718 
1719 	rxm = strp_msg(darg->skb);
1720 	rxm->offset += prot->prepend_size;
1721 	rxm->full_len -= prot->overhead_size;
1722 	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1723 
1724 	return 0;
1725 }
1726 
1727 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1728 {
1729 	struct tls_decrypt_arg darg = { .zc = true, };
1730 
1731 	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1732 }
1733 
1734 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1735 				   u8 *control)
1736 {
1737 	int err;
1738 
1739 	if (!*control) {
1740 		*control = tlm->control;
1741 		if (!*control)
1742 			return -EBADMSG;
1743 
1744 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1745 			       sizeof(*control), control);
1746 		if (*control != TLS_RECORD_TYPE_DATA) {
1747 			if (err || msg->msg_flags & MSG_CTRUNC)
1748 				return -EIO;
1749 		}
1750 	} else if (*control != tlm->control) {
1751 		return 0;
1752 	}
1753 
1754 	return 1;
1755 }
1756 
1757 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1758 {
1759 	tls_strp_msg_done(&ctx->strp);
1760 }
1761 
1762 /* This function traverses the rx_list in tls receive context to copies the
1763  * decrypted records into the buffer provided by caller zero copy is not
1764  * true. Further, the records are removed from the rx_list if it is not a peek
1765  * case and the record has been consumed completely.
1766  */
1767 static int process_rx_list(struct tls_sw_context_rx *ctx,
1768 			   struct msghdr *msg,
1769 			   u8 *control,
1770 			   size_t skip,
1771 			   size_t len,
1772 			   bool is_peek)
1773 {
1774 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1775 	struct tls_msg *tlm;
1776 	ssize_t copied = 0;
1777 	int err;
1778 
1779 	while (skip && skb) {
1780 		struct strp_msg *rxm = strp_msg(skb);
1781 		tlm = tls_msg(skb);
1782 
1783 		err = tls_record_content_type(msg, tlm, control);
1784 		if (err <= 0)
1785 			goto out;
1786 
1787 		if (skip < rxm->full_len)
1788 			break;
1789 
1790 		skip = skip - rxm->full_len;
1791 		skb = skb_peek_next(skb, &ctx->rx_list);
1792 	}
1793 
1794 	while (len && skb) {
1795 		struct sk_buff *next_skb;
1796 		struct strp_msg *rxm = strp_msg(skb);
1797 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1798 
1799 		tlm = tls_msg(skb);
1800 
1801 		err = tls_record_content_type(msg, tlm, control);
1802 		if (err <= 0)
1803 			goto out;
1804 
1805 		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1806 					    msg, chunk);
1807 		if (err < 0)
1808 			goto out;
1809 
1810 		len = len - chunk;
1811 		copied = copied + chunk;
1812 
1813 		/* Consume the data from record if it is non-peek case*/
1814 		if (!is_peek) {
1815 			rxm->offset = rxm->offset + chunk;
1816 			rxm->full_len = rxm->full_len - chunk;
1817 
1818 			/* Return if there is unconsumed data in the record */
1819 			if (rxm->full_len - skip)
1820 				break;
1821 		}
1822 
1823 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1824 		 * So from the 2nd record, 'skip' should be 0.
1825 		 */
1826 		skip = 0;
1827 
1828 		if (msg)
1829 			msg->msg_flags |= MSG_EOR;
1830 
1831 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1832 
1833 		if (!is_peek) {
1834 			__skb_unlink(skb, &ctx->rx_list);
1835 			consume_skb(skb);
1836 		}
1837 
1838 		skb = next_skb;
1839 	}
1840 	err = 0;
1841 
1842 out:
1843 	return copied ? : err;
1844 }
1845 
1846 static bool
1847 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1848 		       size_t len_left, size_t decrypted, ssize_t done,
1849 		       size_t *flushed_at)
1850 {
1851 	size_t max_rec;
1852 
1853 	if (len_left <= decrypted)
1854 		return false;
1855 
1856 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1857 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1858 		return false;
1859 
1860 	*flushed_at = done;
1861 	return sk_flush_backlog(sk);
1862 }
1863 
1864 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1865 				 bool nonblock)
1866 {
1867 	long timeo;
1868 	int ret;
1869 
1870 	timeo = sock_rcvtimeo(sk, nonblock);
1871 
1872 	while (unlikely(ctx->reader_present)) {
1873 		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1874 
1875 		ctx->reader_contended = 1;
1876 
1877 		add_wait_queue(&ctx->wq, &wait);
1878 		ret = sk_wait_event(sk, &timeo,
1879 				    !READ_ONCE(ctx->reader_present), &wait);
1880 		remove_wait_queue(&ctx->wq, &wait);
1881 
1882 		if (timeo <= 0)
1883 			return -EAGAIN;
1884 		if (signal_pending(current))
1885 			return sock_intr_errno(timeo);
1886 		if (ret < 0)
1887 			return ret;
1888 	}
1889 
1890 	WRITE_ONCE(ctx->reader_present, 1);
1891 
1892 	return 0;
1893 }
1894 
1895 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1896 			      bool nonblock)
1897 {
1898 	int err;
1899 
1900 	lock_sock(sk);
1901 	err = tls_rx_reader_acquire(sk, ctx, nonblock);
1902 	if (err)
1903 		release_sock(sk);
1904 	return err;
1905 }
1906 
1907 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1908 {
1909 	if (unlikely(ctx->reader_contended)) {
1910 		if (wq_has_sleeper(&ctx->wq))
1911 			wake_up(&ctx->wq);
1912 		else
1913 			ctx->reader_contended = 0;
1914 
1915 		WARN_ON_ONCE(!ctx->reader_present);
1916 	}
1917 
1918 	WRITE_ONCE(ctx->reader_present, 0);
1919 }
1920 
1921 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1922 {
1923 	tls_rx_reader_release(sk, ctx);
1924 	release_sock(sk);
1925 }
1926 
1927 int tls_sw_recvmsg(struct sock *sk,
1928 		   struct msghdr *msg,
1929 		   size_t len,
1930 		   int flags,
1931 		   int *addr_len)
1932 {
1933 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1934 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1935 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1936 	ssize_t decrypted = 0, async_copy_bytes = 0;
1937 	struct sk_psock *psock;
1938 	unsigned char control = 0;
1939 	size_t flushed_at = 0;
1940 	struct strp_msg *rxm;
1941 	struct tls_msg *tlm;
1942 	ssize_t copied = 0;
1943 	bool async = false;
1944 	int target, err;
1945 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1946 	bool is_peek = flags & MSG_PEEK;
1947 	bool released = true;
1948 	bool bpf_strp_enabled;
1949 	bool zc_capable;
1950 
1951 	if (unlikely(flags & MSG_ERRQUEUE))
1952 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1953 
1954 	psock = sk_psock_get(sk);
1955 	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1956 	if (err < 0)
1957 		return err;
1958 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1959 
1960 	/* If crypto failed the connection is broken */
1961 	err = ctx->async_wait.err;
1962 	if (err)
1963 		goto end;
1964 
1965 	/* Process pending decrypted records. It must be non-zero-copy */
1966 	err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1967 	if (err < 0)
1968 		goto end;
1969 
1970 	copied = err;
1971 	if (len <= copied)
1972 		goto end;
1973 
1974 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1975 	len = len - copied;
1976 
1977 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1978 		ctx->zc_capable;
1979 	decrypted = 0;
1980 	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1981 		struct tls_decrypt_arg darg;
1982 		int to_decrypt, chunk;
1983 
1984 		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1985 				      released);
1986 		if (err <= 0) {
1987 			if (psock) {
1988 				chunk = sk_msg_recvmsg(sk, psock, msg, len,
1989 						       flags);
1990 				if (chunk > 0) {
1991 					decrypted += chunk;
1992 					len -= chunk;
1993 					continue;
1994 				}
1995 			}
1996 			goto recv_end;
1997 		}
1998 
1999 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2000 
2001 		rxm = strp_msg(tls_strp_msg(ctx));
2002 		tlm = tls_msg(tls_strp_msg(ctx));
2003 
2004 		to_decrypt = rxm->full_len - prot->overhead_size;
2005 
2006 		if (zc_capable && to_decrypt <= len &&
2007 		    tlm->control == TLS_RECORD_TYPE_DATA)
2008 			darg.zc = true;
2009 
2010 		/* Do not use async mode if record is non-data */
2011 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2012 			darg.async = ctx->async_capable;
2013 		else
2014 			darg.async = false;
2015 
2016 		err = tls_rx_one_record(sk, msg, &darg);
2017 		if (err < 0) {
2018 			tls_err_abort(sk, -EBADMSG);
2019 			goto recv_end;
2020 		}
2021 
2022 		async |= darg.async;
2023 
2024 		/* If the type of records being processed is not known yet,
2025 		 * set it to record type just dequeued. If it is already known,
2026 		 * but does not match the record type just dequeued, go to end.
2027 		 * We always get record type here since for tls1.2, record type
2028 		 * is known just after record is dequeued from stream parser.
2029 		 * For tls1.3, we disable async.
2030 		 */
2031 		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2032 		if (err <= 0) {
2033 			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2034 			tls_rx_rec_done(ctx);
2035 put_on_rx_list_err:
2036 			__skb_queue_tail(&ctx->rx_list, darg.skb);
2037 			goto recv_end;
2038 		}
2039 
2040 		/* periodically flush backlog, and feed strparser */
2041 		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2042 						  decrypted + copied,
2043 						  &flushed_at);
2044 
2045 		/* TLS 1.3 may have updated the length by more than overhead */
2046 		rxm = strp_msg(darg.skb);
2047 		chunk = rxm->full_len;
2048 		tls_rx_rec_done(ctx);
2049 
2050 		if (!darg.zc) {
2051 			bool partially_consumed = chunk > len;
2052 			struct sk_buff *skb = darg.skb;
2053 
2054 			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2055 
2056 			if (async) {
2057 				/* TLS 1.2-only, to_decrypt must be text len */
2058 				chunk = min_t(int, to_decrypt, len);
2059 				async_copy_bytes += chunk;
2060 put_on_rx_list:
2061 				decrypted += chunk;
2062 				len -= chunk;
2063 				__skb_queue_tail(&ctx->rx_list, skb);
2064 				continue;
2065 			}
2066 
2067 			if (bpf_strp_enabled) {
2068 				released = true;
2069 				err = sk_psock_tls_strp_read(psock, skb);
2070 				if (err != __SK_PASS) {
2071 					rxm->offset = rxm->offset + rxm->full_len;
2072 					rxm->full_len = 0;
2073 					if (err == __SK_DROP)
2074 						consume_skb(skb);
2075 					continue;
2076 				}
2077 			}
2078 
2079 			if (partially_consumed)
2080 				chunk = len;
2081 
2082 			err = skb_copy_datagram_msg(skb, rxm->offset,
2083 						    msg, chunk);
2084 			if (err < 0)
2085 				goto put_on_rx_list_err;
2086 
2087 			if (is_peek)
2088 				goto put_on_rx_list;
2089 
2090 			if (partially_consumed) {
2091 				rxm->offset += chunk;
2092 				rxm->full_len -= chunk;
2093 				goto put_on_rx_list;
2094 			}
2095 
2096 			consume_skb(skb);
2097 		}
2098 
2099 		decrypted += chunk;
2100 		len -= chunk;
2101 
2102 		/* Return full control message to userspace before trying
2103 		 * to parse another message type
2104 		 */
2105 		msg->msg_flags |= MSG_EOR;
2106 		if (control != TLS_RECORD_TYPE_DATA)
2107 			break;
2108 	}
2109 
2110 recv_end:
2111 	if (async) {
2112 		int ret, pending;
2113 
2114 		/* Wait for all previously submitted records to be decrypted */
2115 		spin_lock_bh(&ctx->decrypt_compl_lock);
2116 		reinit_completion(&ctx->async_wait.completion);
2117 		pending = atomic_read(&ctx->decrypt_pending);
2118 		spin_unlock_bh(&ctx->decrypt_compl_lock);
2119 		ret = 0;
2120 		if (pending)
2121 			ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2122 		__skb_queue_purge(&ctx->async_hold);
2123 
2124 		if (ret) {
2125 			if (err >= 0 || err == -EINPROGRESS)
2126 				err = ret;
2127 			decrypted = 0;
2128 			goto end;
2129 		}
2130 
2131 		/* Drain records from the rx_list & copy if required */
2132 		if (is_peek || is_kvec)
2133 			err = process_rx_list(ctx, msg, &control, copied,
2134 					      decrypted, is_peek);
2135 		else
2136 			err = process_rx_list(ctx, msg, &control, 0,
2137 					      async_copy_bytes, is_peek);
2138 		decrypted += max(err, 0);
2139 	}
2140 
2141 	copied += decrypted;
2142 
2143 end:
2144 	tls_rx_reader_unlock(sk, ctx);
2145 	if (psock)
2146 		sk_psock_put(sk, psock);
2147 	return copied ? : err;
2148 }
2149 
2150 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2151 			   struct pipe_inode_info *pipe,
2152 			   size_t len, unsigned int flags)
2153 {
2154 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2155 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2156 	struct strp_msg *rxm = NULL;
2157 	struct sock *sk = sock->sk;
2158 	struct tls_msg *tlm;
2159 	struct sk_buff *skb;
2160 	ssize_t copied = 0;
2161 	int chunk;
2162 	int err;
2163 
2164 	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2165 	if (err < 0)
2166 		return err;
2167 
2168 	if (!skb_queue_empty(&ctx->rx_list)) {
2169 		skb = __skb_dequeue(&ctx->rx_list);
2170 	} else {
2171 		struct tls_decrypt_arg darg;
2172 
2173 		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2174 				      true);
2175 		if (err <= 0)
2176 			goto splice_read_end;
2177 
2178 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2179 
2180 		err = tls_rx_one_record(sk, NULL, &darg);
2181 		if (err < 0) {
2182 			tls_err_abort(sk, -EBADMSG);
2183 			goto splice_read_end;
2184 		}
2185 
2186 		tls_rx_rec_done(ctx);
2187 		skb = darg.skb;
2188 	}
2189 
2190 	rxm = strp_msg(skb);
2191 	tlm = tls_msg(skb);
2192 
2193 	/* splice does not support reading control messages */
2194 	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2195 		err = -EINVAL;
2196 		goto splice_requeue;
2197 	}
2198 
2199 	chunk = min_t(unsigned int, rxm->full_len, len);
2200 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2201 	if (copied < 0)
2202 		goto splice_requeue;
2203 
2204 	if (chunk < rxm->full_len) {
2205 		rxm->offset += len;
2206 		rxm->full_len -= len;
2207 		goto splice_requeue;
2208 	}
2209 
2210 	consume_skb(skb);
2211 
2212 splice_read_end:
2213 	tls_rx_reader_unlock(sk, ctx);
2214 	return copied ? : err;
2215 
2216 splice_requeue:
2217 	__skb_queue_head(&ctx->rx_list, skb);
2218 	goto splice_read_end;
2219 }
2220 
2221 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2222 		     sk_read_actor_t read_actor)
2223 {
2224 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2225 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2226 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2227 	struct strp_msg *rxm = NULL;
2228 	struct sk_buff *skb = NULL;
2229 	struct sk_psock *psock;
2230 	size_t flushed_at = 0;
2231 	bool released = true;
2232 	struct tls_msg *tlm;
2233 	ssize_t copied = 0;
2234 	ssize_t decrypted;
2235 	int err, used;
2236 
2237 	psock = sk_psock_get(sk);
2238 	if (psock) {
2239 		sk_psock_put(sk, psock);
2240 		return -EINVAL;
2241 	}
2242 	err = tls_rx_reader_acquire(sk, ctx, true);
2243 	if (err < 0)
2244 		return err;
2245 
2246 	/* If crypto failed the connection is broken */
2247 	err = ctx->async_wait.err;
2248 	if (err)
2249 		goto read_sock_end;
2250 
2251 	decrypted = 0;
2252 	do {
2253 		if (!skb_queue_empty(&ctx->rx_list)) {
2254 			skb = __skb_dequeue(&ctx->rx_list);
2255 			rxm = strp_msg(skb);
2256 			tlm = tls_msg(skb);
2257 		} else {
2258 			struct tls_decrypt_arg darg;
2259 
2260 			err = tls_rx_rec_wait(sk, NULL, true, released);
2261 			if (err <= 0)
2262 				goto read_sock_end;
2263 
2264 			memset(&darg.inargs, 0, sizeof(darg.inargs));
2265 
2266 			err = tls_rx_one_record(sk, NULL, &darg);
2267 			if (err < 0) {
2268 				tls_err_abort(sk, -EBADMSG);
2269 				goto read_sock_end;
2270 			}
2271 
2272 			released = tls_read_flush_backlog(sk, prot, INT_MAX,
2273 							  0, decrypted,
2274 							  &flushed_at);
2275 			skb = darg.skb;
2276 			rxm = strp_msg(skb);
2277 			tlm = tls_msg(skb);
2278 			decrypted += rxm->full_len;
2279 
2280 			tls_rx_rec_done(ctx);
2281 		}
2282 
2283 		/* read_sock does not support reading control messages */
2284 		if (tlm->control != TLS_RECORD_TYPE_DATA) {
2285 			err = -EINVAL;
2286 			goto read_sock_requeue;
2287 		}
2288 
2289 		used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2290 		if (used <= 0) {
2291 			if (!copied)
2292 				err = used;
2293 			goto read_sock_requeue;
2294 		}
2295 		copied += used;
2296 		if (used < rxm->full_len) {
2297 			rxm->offset += used;
2298 			rxm->full_len -= used;
2299 			if (!desc->count)
2300 				goto read_sock_requeue;
2301 		} else {
2302 			consume_skb(skb);
2303 			if (!desc->count)
2304 				skb = NULL;
2305 		}
2306 	} while (skb);
2307 
2308 read_sock_end:
2309 	tls_rx_reader_release(sk, ctx);
2310 	return copied ? : err;
2311 
2312 read_sock_requeue:
2313 	__skb_queue_head(&ctx->rx_list, skb);
2314 	goto read_sock_end;
2315 }
2316 
2317 bool tls_sw_sock_is_readable(struct sock *sk)
2318 {
2319 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2320 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2321 	bool ingress_empty = true;
2322 	struct sk_psock *psock;
2323 
2324 	rcu_read_lock();
2325 	psock = sk_psock(sk);
2326 	if (psock)
2327 		ingress_empty = list_empty(&psock->ingress_msg);
2328 	rcu_read_unlock();
2329 
2330 	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2331 		!skb_queue_empty(&ctx->rx_list);
2332 }
2333 
2334 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2335 {
2336 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2337 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2338 	char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2339 	size_t cipher_overhead;
2340 	size_t data_len = 0;
2341 	int ret;
2342 
2343 	/* Verify that we have a full TLS header, or wait for more data */
2344 	if (strp->stm.offset + prot->prepend_size > skb->len)
2345 		return 0;
2346 
2347 	/* Sanity-check size of on-stack buffer. */
2348 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2349 		ret = -EINVAL;
2350 		goto read_failure;
2351 	}
2352 
2353 	/* Linearize header to local buffer */
2354 	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2355 	if (ret < 0)
2356 		goto read_failure;
2357 
2358 	strp->mark = header[0];
2359 
2360 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2361 
2362 	cipher_overhead = prot->tag_size;
2363 	if (prot->version != TLS_1_3_VERSION &&
2364 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2365 		cipher_overhead += prot->iv_size;
2366 
2367 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2368 	    prot->tail_size) {
2369 		ret = -EMSGSIZE;
2370 		goto read_failure;
2371 	}
2372 	if (data_len < cipher_overhead) {
2373 		ret = -EBADMSG;
2374 		goto read_failure;
2375 	}
2376 
2377 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2378 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2379 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2380 		ret = -EINVAL;
2381 		goto read_failure;
2382 	}
2383 
2384 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2385 				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2386 	return data_len + TLS_HEADER_SIZE;
2387 
2388 read_failure:
2389 	tls_err_abort(strp->sk, ret);
2390 
2391 	return ret;
2392 }
2393 
2394 void tls_rx_msg_ready(struct tls_strparser *strp)
2395 {
2396 	struct tls_sw_context_rx *ctx;
2397 
2398 	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2399 	ctx->saved_data_ready(strp->sk);
2400 }
2401 
2402 static void tls_data_ready(struct sock *sk)
2403 {
2404 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2405 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2406 	struct sk_psock *psock;
2407 	gfp_t alloc_save;
2408 
2409 	trace_sk_data_ready(sk);
2410 
2411 	alloc_save = sk->sk_allocation;
2412 	sk->sk_allocation = GFP_ATOMIC;
2413 	tls_strp_data_ready(&ctx->strp);
2414 	sk->sk_allocation = alloc_save;
2415 
2416 	psock = sk_psock_get(sk);
2417 	if (psock) {
2418 		if (!list_empty(&psock->ingress_msg))
2419 			ctx->saved_data_ready(sk);
2420 		sk_psock_put(sk, psock);
2421 	}
2422 }
2423 
2424 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2425 {
2426 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2427 
2428 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2429 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2430 	cancel_delayed_work_sync(&ctx->tx_work.work);
2431 }
2432 
2433 void tls_sw_release_resources_tx(struct sock *sk)
2434 {
2435 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2436 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2437 	struct tls_rec *rec, *tmp;
2438 	int pending;
2439 
2440 	/* Wait for any pending async encryptions to complete */
2441 	spin_lock_bh(&ctx->encrypt_compl_lock);
2442 	ctx->async_notify = true;
2443 	pending = atomic_read(&ctx->encrypt_pending);
2444 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2445 
2446 	if (pending)
2447 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2448 
2449 	tls_tx_records(sk, -1);
2450 
2451 	/* Free up un-sent records in tx_list. First, free
2452 	 * the partially sent record if any at head of tx_list.
2453 	 */
2454 	if (tls_ctx->partially_sent_record) {
2455 		tls_free_partial_record(sk, tls_ctx);
2456 		rec = list_first_entry(&ctx->tx_list,
2457 				       struct tls_rec, list);
2458 		list_del(&rec->list);
2459 		sk_msg_free(sk, &rec->msg_plaintext);
2460 		kfree(rec);
2461 	}
2462 
2463 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2464 		list_del(&rec->list);
2465 		sk_msg_free(sk, &rec->msg_encrypted);
2466 		sk_msg_free(sk, &rec->msg_plaintext);
2467 		kfree(rec);
2468 	}
2469 
2470 	crypto_free_aead(ctx->aead_send);
2471 	tls_free_open_rec(sk);
2472 }
2473 
2474 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2475 {
2476 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2477 
2478 	kfree(ctx);
2479 }
2480 
2481 void tls_sw_release_resources_rx(struct sock *sk)
2482 {
2483 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2484 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2485 
2486 	if (ctx->aead_recv) {
2487 		__skb_queue_purge(&ctx->rx_list);
2488 		crypto_free_aead(ctx->aead_recv);
2489 		tls_strp_stop(&ctx->strp);
2490 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2491 		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2492 		 * never swapped.
2493 		 */
2494 		if (ctx->saved_data_ready) {
2495 			write_lock_bh(&sk->sk_callback_lock);
2496 			sk->sk_data_ready = ctx->saved_data_ready;
2497 			write_unlock_bh(&sk->sk_callback_lock);
2498 		}
2499 	}
2500 }
2501 
2502 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2503 {
2504 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2505 
2506 	tls_strp_done(&ctx->strp);
2507 }
2508 
2509 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2510 {
2511 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2512 
2513 	kfree(ctx);
2514 }
2515 
2516 void tls_sw_free_resources_rx(struct sock *sk)
2517 {
2518 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2519 
2520 	tls_sw_release_resources_rx(sk);
2521 	tls_sw_free_ctx_rx(tls_ctx);
2522 }
2523 
2524 /* The work handler to transmitt the encrypted records in tx_list */
2525 static void tx_work_handler(struct work_struct *work)
2526 {
2527 	struct delayed_work *delayed_work = to_delayed_work(work);
2528 	struct tx_work *tx_work = container_of(delayed_work,
2529 					       struct tx_work, work);
2530 	struct sock *sk = tx_work->sk;
2531 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2532 	struct tls_sw_context_tx *ctx;
2533 
2534 	if (unlikely(!tls_ctx))
2535 		return;
2536 
2537 	ctx = tls_sw_ctx_tx(tls_ctx);
2538 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2539 		return;
2540 
2541 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2542 		return;
2543 
2544 	if (mutex_trylock(&tls_ctx->tx_lock)) {
2545 		lock_sock(sk);
2546 		tls_tx_records(sk, -1);
2547 		release_sock(sk);
2548 		mutex_unlock(&tls_ctx->tx_lock);
2549 	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2550 		/* Someone is holding the tx_lock, they will likely run Tx
2551 		 * and cancel the work on their way out of the lock section.
2552 		 * Schedule a long delay just in case.
2553 		 */
2554 		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2555 	}
2556 }
2557 
2558 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2559 {
2560 	struct tls_rec *rec;
2561 
2562 	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2563 	if (!rec)
2564 		return false;
2565 
2566 	return READ_ONCE(rec->tx_ready);
2567 }
2568 
2569 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2570 {
2571 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2572 
2573 	/* Schedule the transmission if tx list is ready */
2574 	if (tls_is_tx_ready(tx_ctx) &&
2575 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2576 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2577 }
2578 
2579 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2580 {
2581 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2582 
2583 	write_lock_bh(&sk->sk_callback_lock);
2584 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2585 	sk->sk_data_ready = tls_data_ready;
2586 	write_unlock_bh(&sk->sk_callback_lock);
2587 }
2588 
2589 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2590 {
2591 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2592 
2593 	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2594 		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2595 }
2596 
2597 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2598 {
2599 	struct tls_sw_context_tx *sw_ctx_tx;
2600 
2601 	if (!ctx->priv_ctx_tx) {
2602 		sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2603 		if (!sw_ctx_tx)
2604 			return NULL;
2605 	} else {
2606 		sw_ctx_tx = ctx->priv_ctx_tx;
2607 	}
2608 
2609 	crypto_init_wait(&sw_ctx_tx->async_wait);
2610 	spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2611 	INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2612 	INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2613 	sw_ctx_tx->tx_work.sk = sk;
2614 
2615 	return sw_ctx_tx;
2616 }
2617 
2618 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2619 {
2620 	struct tls_sw_context_rx *sw_ctx_rx;
2621 
2622 	if (!ctx->priv_ctx_rx) {
2623 		sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2624 		if (!sw_ctx_rx)
2625 			return NULL;
2626 	} else {
2627 		sw_ctx_rx = ctx->priv_ctx_rx;
2628 	}
2629 
2630 	crypto_init_wait(&sw_ctx_rx->async_wait);
2631 	spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2632 	init_waitqueue_head(&sw_ctx_rx->wq);
2633 	skb_queue_head_init(&sw_ctx_rx->rx_list);
2634 	skb_queue_head_init(&sw_ctx_rx->async_hold);
2635 
2636 	return sw_ctx_rx;
2637 }
2638 
2639 int init_prot_info(struct tls_prot_info *prot,
2640 		   const struct tls_crypto_info *crypto_info,
2641 		   const struct tls_cipher_desc *cipher_desc)
2642 {
2643 	u16 nonce_size = cipher_desc->nonce;
2644 
2645 	if (crypto_info->version == TLS_1_3_VERSION) {
2646 		nonce_size = 0;
2647 		prot->aad_size = TLS_HEADER_SIZE;
2648 		prot->tail_size = 1;
2649 	} else {
2650 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2651 		prot->tail_size = 0;
2652 	}
2653 
2654 	/* Sanity-check the sizes for stack allocations. */
2655 	if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2656 		return -EINVAL;
2657 
2658 	prot->version = crypto_info->version;
2659 	prot->cipher_type = crypto_info->cipher_type;
2660 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2661 	prot->tag_size = cipher_desc->tag;
2662 	prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2663 	prot->iv_size = cipher_desc->iv;
2664 	prot->salt_size = cipher_desc->salt;
2665 	prot->rec_seq_size = cipher_desc->rec_seq;
2666 
2667 	return 0;
2668 }
2669 
2670 int tls_set_sw_offload(struct sock *sk, int tx)
2671 {
2672 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2673 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2674 	const struct tls_cipher_desc *cipher_desc;
2675 	struct tls_crypto_info *crypto_info;
2676 	char *iv, *rec_seq, *key, *salt;
2677 	struct cipher_context *cctx;
2678 	struct tls_prot_info *prot;
2679 	struct crypto_aead **aead;
2680 	struct tls_context *ctx;
2681 	struct crypto_tfm *tfm;
2682 	int rc = 0;
2683 
2684 	ctx = tls_get_ctx(sk);
2685 	prot = &ctx->prot_info;
2686 
2687 	if (tx) {
2688 		ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2689 		if (!ctx->priv_ctx_tx)
2690 			return -ENOMEM;
2691 
2692 		sw_ctx_tx = ctx->priv_ctx_tx;
2693 		crypto_info = &ctx->crypto_send.info;
2694 		cctx = &ctx->tx;
2695 		aead = &sw_ctx_tx->aead_send;
2696 	} else {
2697 		ctx->priv_ctx_rx = init_ctx_rx(ctx);
2698 		if (!ctx->priv_ctx_rx)
2699 			return -ENOMEM;
2700 
2701 		sw_ctx_rx = ctx->priv_ctx_rx;
2702 		crypto_info = &ctx->crypto_recv.info;
2703 		cctx = &ctx->rx;
2704 		aead = &sw_ctx_rx->aead_recv;
2705 	}
2706 
2707 	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2708 	if (!cipher_desc) {
2709 		rc = -EINVAL;
2710 		goto free_priv;
2711 	}
2712 
2713 	rc = init_prot_info(prot, crypto_info, cipher_desc);
2714 	if (rc)
2715 		goto free_priv;
2716 
2717 	iv = crypto_info_iv(crypto_info, cipher_desc);
2718 	key = crypto_info_key(crypto_info, cipher_desc);
2719 	salt = crypto_info_salt(crypto_info, cipher_desc);
2720 	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2721 
2722 	memcpy(cctx->iv, salt, cipher_desc->salt);
2723 	memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2724 	memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2725 
2726 	if (!*aead) {
2727 		*aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2728 		if (IS_ERR(*aead)) {
2729 			rc = PTR_ERR(*aead);
2730 			*aead = NULL;
2731 			goto free_priv;
2732 		}
2733 	}
2734 
2735 	ctx->push_pending_record = tls_sw_push_pending_record;
2736 
2737 	rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2738 	if (rc)
2739 		goto free_aead;
2740 
2741 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2742 	if (rc)
2743 		goto free_aead;
2744 
2745 	if (sw_ctx_rx) {
2746 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2747 
2748 		tls_update_rx_zc_capable(ctx);
2749 		sw_ctx_rx->async_capable =
2750 			crypto_info->version != TLS_1_3_VERSION &&
2751 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2752 
2753 		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2754 		if (rc)
2755 			goto free_aead;
2756 	}
2757 
2758 	goto out;
2759 
2760 free_aead:
2761 	crypto_free_aead(*aead);
2762 	*aead = NULL;
2763 free_priv:
2764 	if (tx) {
2765 		kfree(ctx->priv_ctx_tx);
2766 		ctx->priv_ctx_tx = NULL;
2767 	} else {
2768 		kfree(ctx->priv_ctx_rx);
2769 		ctx->priv_ctx_rx = NULL;
2770 	}
2771 out:
2772 	return rc;
2773 }
2774