1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 u8 tail; 56 ); 57 58 struct sk_buff *skb; 59 }; 60 61 struct tls_decrypt_ctx { 62 struct sock *sk; 63 u8 iv[TLS_MAX_IV_SIZE]; 64 u8 aad[TLS_MAX_AAD_SIZE]; 65 u8 tail; 66 struct scatterlist sg[]; 67 }; 68 69 noinline void tls_err_abort(struct sock *sk, int err) 70 { 71 WARN_ON_ONCE(err >= 0); 72 /* sk->sk_err should contain a positive error code. */ 73 WRITE_ONCE(sk->sk_err, -err); 74 /* Paired with smp_rmb() in tcp_poll() */ 75 smp_wmb(); 76 sk_error_report(sk); 77 } 78 79 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 80 unsigned int recursion_level) 81 { 82 int start = skb_headlen(skb); 83 int i, chunk = start - offset; 84 struct sk_buff *frag_iter; 85 int elt = 0; 86 87 if (unlikely(recursion_level >= 24)) 88 return -EMSGSIZE; 89 90 if (chunk > 0) { 91 if (chunk > len) 92 chunk = len; 93 elt++; 94 len -= chunk; 95 if (len == 0) 96 return elt; 97 offset += chunk; 98 } 99 100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 101 int end; 102 103 WARN_ON(start > offset + len); 104 105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 106 chunk = end - offset; 107 if (chunk > 0) { 108 if (chunk > len) 109 chunk = len; 110 elt++; 111 len -= chunk; 112 if (len == 0) 113 return elt; 114 offset += chunk; 115 } 116 start = end; 117 } 118 119 if (unlikely(skb_has_frag_list(skb))) { 120 skb_walk_frags(skb, frag_iter) { 121 int end, ret; 122 123 WARN_ON(start > offset + len); 124 125 end = start + frag_iter->len; 126 chunk = end - offset; 127 if (chunk > 0) { 128 if (chunk > len) 129 chunk = len; 130 ret = __skb_nsg(frag_iter, offset - start, chunk, 131 recursion_level + 1); 132 if (unlikely(ret < 0)) 133 return ret; 134 elt += ret; 135 len -= chunk; 136 if (len == 0) 137 return elt; 138 offset += chunk; 139 } 140 start = end; 141 } 142 } 143 BUG_ON(len); 144 return elt; 145 } 146 147 /* Return the number of scatterlist elements required to completely map the 148 * skb, or -EMSGSIZE if the recursion depth is exceeded. 149 */ 150 static int skb_nsg(struct sk_buff *skb, int offset, int len) 151 { 152 return __skb_nsg(skb, offset, len, 0); 153 } 154 155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 156 struct tls_decrypt_arg *darg) 157 { 158 struct strp_msg *rxm = strp_msg(skb); 159 struct tls_msg *tlm = tls_msg(skb); 160 int sub = 0; 161 162 /* Determine zero-padding length */ 163 if (prot->version == TLS_1_3_VERSION) { 164 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 165 char content_type = darg->zc ? darg->tail : 0; 166 int err; 167 168 while (content_type == 0) { 169 if (offset < prot->prepend_size) 170 return -EBADMSG; 171 err = skb_copy_bits(skb, rxm->offset + offset, 172 &content_type, 1); 173 if (err) 174 return err; 175 if (content_type) 176 break; 177 sub++; 178 offset--; 179 } 180 tlm->control = content_type; 181 } 182 return sub; 183 } 184 185 static void tls_decrypt_done(void *data, int err) 186 { 187 struct aead_request *aead_req = data; 188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 189 struct scatterlist *sgout = aead_req->dst; 190 struct scatterlist *sgin = aead_req->src; 191 struct tls_sw_context_rx *ctx; 192 struct tls_decrypt_ctx *dctx; 193 struct tls_context *tls_ctx; 194 struct scatterlist *sg; 195 unsigned int pages; 196 struct sock *sk; 197 int aead_size; 198 199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 200 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 201 dctx = (void *)((u8 *)aead_req + aead_size); 202 203 sk = dctx->sk; 204 tls_ctx = tls_get_ctx(sk); 205 ctx = tls_sw_ctx_rx(tls_ctx); 206 207 /* Propagate if there was an err */ 208 if (err) { 209 if (err == -EBADMSG) 210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 211 ctx->async_wait.err = err; 212 tls_err_abort(sk, err); 213 } 214 215 /* Free the destination pages if skb was not decrypted inplace */ 216 if (sgout != sgin) { 217 /* Skip the first S/G entry as it points to AAD */ 218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 219 if (!sg) 220 break; 221 put_page(sg_page(sg)); 222 } 223 } 224 225 kfree(aead_req); 226 227 spin_lock_bh(&ctx->decrypt_compl_lock); 228 if (!atomic_dec_return(&ctx->decrypt_pending)) 229 complete(&ctx->async_wait.completion); 230 spin_unlock_bh(&ctx->decrypt_compl_lock); 231 } 232 233 static int tls_do_decryption(struct sock *sk, 234 struct scatterlist *sgin, 235 struct scatterlist *sgout, 236 char *iv_recv, 237 size_t data_len, 238 struct aead_request *aead_req, 239 struct tls_decrypt_arg *darg) 240 { 241 struct tls_context *tls_ctx = tls_get_ctx(sk); 242 struct tls_prot_info *prot = &tls_ctx->prot_info; 243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 244 int ret; 245 246 aead_request_set_tfm(aead_req, ctx->aead_recv); 247 aead_request_set_ad(aead_req, prot->aad_size); 248 aead_request_set_crypt(aead_req, sgin, sgout, 249 data_len + prot->tag_size, 250 (u8 *)iv_recv); 251 252 if (darg->async) { 253 aead_request_set_callback(aead_req, 254 CRYPTO_TFM_REQ_MAY_BACKLOG, 255 tls_decrypt_done, aead_req); 256 atomic_inc(&ctx->decrypt_pending); 257 } else { 258 aead_request_set_callback(aead_req, 259 CRYPTO_TFM_REQ_MAY_BACKLOG, 260 crypto_req_done, &ctx->async_wait); 261 } 262 263 ret = crypto_aead_decrypt(aead_req); 264 if (ret == -EINPROGRESS) { 265 if (darg->async) 266 return 0; 267 268 ret = crypto_wait_req(ret, &ctx->async_wait); 269 } 270 darg->async = false; 271 272 return ret; 273 } 274 275 static void tls_trim_both_msgs(struct sock *sk, int target_size) 276 { 277 struct tls_context *tls_ctx = tls_get_ctx(sk); 278 struct tls_prot_info *prot = &tls_ctx->prot_info; 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 282 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 283 if (target_size > 0) 284 target_size += prot->overhead_size; 285 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 286 } 287 288 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 289 { 290 struct tls_context *tls_ctx = tls_get_ctx(sk); 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 292 struct tls_rec *rec = ctx->open_rec; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 295 return sk_msg_alloc(sk, msg_en, len, 0); 296 } 297 298 static int tls_clone_plaintext_msg(struct sock *sk, int required) 299 { 300 struct tls_context *tls_ctx = tls_get_ctx(sk); 301 struct tls_prot_info *prot = &tls_ctx->prot_info; 302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 303 struct tls_rec *rec = ctx->open_rec; 304 struct sk_msg *msg_pl = &rec->msg_plaintext; 305 struct sk_msg *msg_en = &rec->msg_encrypted; 306 int skip, len; 307 308 /* We add page references worth len bytes from encrypted sg 309 * at the end of plaintext sg. It is guaranteed that msg_en 310 * has enough required room (ensured by caller). 311 */ 312 len = required - msg_pl->sg.size; 313 314 /* Skip initial bytes in msg_en's data to be able to use 315 * same offset of both plain and encrypted data. 316 */ 317 skip = prot->prepend_size + msg_pl->sg.size; 318 319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 320 } 321 322 static struct tls_rec *tls_get_rec(struct sock *sk) 323 { 324 struct tls_context *tls_ctx = tls_get_ctx(sk); 325 struct tls_prot_info *prot = &tls_ctx->prot_info; 326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 327 struct sk_msg *msg_pl, *msg_en; 328 struct tls_rec *rec; 329 int mem_size; 330 331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 332 333 rec = kzalloc(mem_size, sk->sk_allocation); 334 if (!rec) 335 return NULL; 336 337 msg_pl = &rec->msg_plaintext; 338 msg_en = &rec->msg_encrypted; 339 340 sk_msg_init(msg_pl); 341 sk_msg_init(msg_en); 342 343 sg_init_table(rec->sg_aead_in, 2); 344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 345 sg_unmark_end(&rec->sg_aead_in[1]); 346 347 sg_init_table(rec->sg_aead_out, 2); 348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 349 sg_unmark_end(&rec->sg_aead_out[1]); 350 351 rec->sk = sk; 352 353 return rec; 354 } 355 356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 357 { 358 sk_msg_free(sk, &rec->msg_encrypted); 359 sk_msg_free(sk, &rec->msg_plaintext); 360 kfree(rec); 361 } 362 363 static void tls_free_open_rec(struct sock *sk) 364 { 365 struct tls_context *tls_ctx = tls_get_ctx(sk); 366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 367 struct tls_rec *rec = ctx->open_rec; 368 369 if (rec) { 370 tls_free_rec(sk, rec); 371 ctx->open_rec = NULL; 372 } 373 } 374 375 int tls_tx_records(struct sock *sk, int flags) 376 { 377 struct tls_context *tls_ctx = tls_get_ctx(sk); 378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 379 struct tls_rec *rec, *tmp; 380 struct sk_msg *msg_en; 381 int tx_flags, rc = 0; 382 383 if (tls_is_partially_sent_record(tls_ctx)) { 384 rec = list_first_entry(&ctx->tx_list, 385 struct tls_rec, list); 386 387 if (flags == -1) 388 tx_flags = rec->tx_flags; 389 else 390 tx_flags = flags; 391 392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 393 if (rc) 394 goto tx_err; 395 396 /* Full record has been transmitted. 397 * Remove the head of tx_list 398 */ 399 list_del(&rec->list); 400 sk_msg_free(sk, &rec->msg_plaintext); 401 kfree(rec); 402 } 403 404 /* Tx all ready records */ 405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 406 if (READ_ONCE(rec->tx_ready)) { 407 if (flags == -1) 408 tx_flags = rec->tx_flags; 409 else 410 tx_flags = flags; 411 412 msg_en = &rec->msg_encrypted; 413 rc = tls_push_sg(sk, tls_ctx, 414 &msg_en->sg.data[msg_en->sg.curr], 415 0, tx_flags); 416 if (rc) 417 goto tx_err; 418 419 list_del(&rec->list); 420 sk_msg_free(sk, &rec->msg_plaintext); 421 kfree(rec); 422 } else { 423 break; 424 } 425 } 426 427 tx_err: 428 if (rc < 0 && rc != -EAGAIN) 429 tls_err_abort(sk, -EBADMSG); 430 431 return rc; 432 } 433 434 static void tls_encrypt_done(void *data, int err) 435 { 436 struct tls_sw_context_tx *ctx; 437 struct tls_context *tls_ctx; 438 struct tls_prot_info *prot; 439 struct tls_rec *rec = data; 440 struct scatterlist *sge; 441 struct sk_msg *msg_en; 442 bool ready = false; 443 struct sock *sk; 444 int pending; 445 446 msg_en = &rec->msg_encrypted; 447 448 sk = rec->sk; 449 tls_ctx = tls_get_ctx(sk); 450 prot = &tls_ctx->prot_info; 451 ctx = tls_sw_ctx_tx(tls_ctx); 452 453 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 454 sge->offset -= prot->prepend_size; 455 sge->length += prot->prepend_size; 456 457 /* Check if error is previously set on socket */ 458 if (err || sk->sk_err) { 459 rec = NULL; 460 461 /* If err is already set on socket, return the same code */ 462 if (sk->sk_err) { 463 ctx->async_wait.err = -sk->sk_err; 464 } else { 465 ctx->async_wait.err = err; 466 tls_err_abort(sk, err); 467 } 468 } 469 470 if (rec) { 471 struct tls_rec *first_rec; 472 473 /* Mark the record as ready for transmission */ 474 smp_store_mb(rec->tx_ready, true); 475 476 /* If received record is at head of tx_list, schedule tx */ 477 first_rec = list_first_entry(&ctx->tx_list, 478 struct tls_rec, list); 479 if (rec == first_rec) 480 ready = true; 481 } 482 483 spin_lock_bh(&ctx->encrypt_compl_lock); 484 pending = atomic_dec_return(&ctx->encrypt_pending); 485 486 if (!pending && ctx->async_notify) 487 complete(&ctx->async_wait.completion); 488 spin_unlock_bh(&ctx->encrypt_compl_lock); 489 490 if (!ready) 491 return; 492 493 /* Schedule the transmission */ 494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 495 schedule_delayed_work(&ctx->tx_work.work, 1); 496 } 497 498 static int tls_do_encryption(struct sock *sk, 499 struct tls_context *tls_ctx, 500 struct tls_sw_context_tx *ctx, 501 struct aead_request *aead_req, 502 size_t data_len, u32 start) 503 { 504 struct tls_prot_info *prot = &tls_ctx->prot_info; 505 struct tls_rec *rec = ctx->open_rec; 506 struct sk_msg *msg_en = &rec->msg_encrypted; 507 struct scatterlist *sge = sk_msg_elem(msg_en, start); 508 int rc, iv_offset = 0; 509 510 /* For CCM based ciphers, first byte of IV is a constant */ 511 switch (prot->cipher_type) { 512 case TLS_CIPHER_AES_CCM_128: 513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 514 iv_offset = 1; 515 break; 516 case TLS_CIPHER_SM4_CCM: 517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 518 iv_offset = 1; 519 break; 520 } 521 522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 523 prot->iv_size + prot->salt_size); 524 525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 526 tls_ctx->tx.rec_seq); 527 528 sge->offset += prot->prepend_size; 529 sge->length -= prot->prepend_size; 530 531 msg_en->sg.curr = start; 532 533 aead_request_set_tfm(aead_req, ctx->aead_send); 534 aead_request_set_ad(aead_req, prot->aad_size); 535 aead_request_set_crypt(aead_req, rec->sg_aead_in, 536 rec->sg_aead_out, 537 data_len, rec->iv_data); 538 539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 540 tls_encrypt_done, rec); 541 542 /* Add the record in tx_list */ 543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 544 atomic_inc(&ctx->encrypt_pending); 545 546 rc = crypto_aead_encrypt(aead_req); 547 if (!rc || rc != -EINPROGRESS) { 548 atomic_dec(&ctx->encrypt_pending); 549 sge->offset -= prot->prepend_size; 550 sge->length += prot->prepend_size; 551 } 552 553 if (!rc) { 554 WRITE_ONCE(rec->tx_ready, true); 555 } else if (rc != -EINPROGRESS) { 556 list_del(&rec->list); 557 return rc; 558 } 559 560 /* Unhook the record from context if encryption is not failure */ 561 ctx->open_rec = NULL; 562 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 563 return rc; 564 } 565 566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 567 struct tls_rec **to, struct sk_msg *msg_opl, 568 struct sk_msg *msg_oen, u32 split_point, 569 u32 tx_overhead_size, u32 *orig_end) 570 { 571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 572 struct scatterlist *sge, *osge, *nsge; 573 u32 orig_size = msg_opl->sg.size; 574 struct scatterlist tmp = { }; 575 struct sk_msg *msg_npl; 576 struct tls_rec *new; 577 int ret; 578 579 new = tls_get_rec(sk); 580 if (!new) 581 return -ENOMEM; 582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 583 tx_overhead_size, 0); 584 if (ret < 0) { 585 tls_free_rec(sk, new); 586 return ret; 587 } 588 589 *orig_end = msg_opl->sg.end; 590 i = msg_opl->sg.start; 591 sge = sk_msg_elem(msg_opl, i); 592 while (apply && sge->length) { 593 if (sge->length > apply) { 594 u32 len = sge->length - apply; 595 596 get_page(sg_page(sge)); 597 sg_set_page(&tmp, sg_page(sge), len, 598 sge->offset + apply); 599 sge->length = apply; 600 bytes += apply; 601 apply = 0; 602 } else { 603 apply -= sge->length; 604 bytes += sge->length; 605 } 606 607 sk_msg_iter_var_next(i); 608 if (i == msg_opl->sg.end) 609 break; 610 sge = sk_msg_elem(msg_opl, i); 611 } 612 613 msg_opl->sg.end = i; 614 msg_opl->sg.curr = i; 615 msg_opl->sg.copybreak = 0; 616 msg_opl->apply_bytes = 0; 617 msg_opl->sg.size = bytes; 618 619 msg_npl = &new->msg_plaintext; 620 msg_npl->apply_bytes = apply; 621 msg_npl->sg.size = orig_size - bytes; 622 623 j = msg_npl->sg.start; 624 nsge = sk_msg_elem(msg_npl, j); 625 if (tmp.length) { 626 memcpy(nsge, &tmp, sizeof(*nsge)); 627 sk_msg_iter_var_next(j); 628 nsge = sk_msg_elem(msg_npl, j); 629 } 630 631 osge = sk_msg_elem(msg_opl, i); 632 while (osge->length) { 633 memcpy(nsge, osge, sizeof(*nsge)); 634 sg_unmark_end(nsge); 635 sk_msg_iter_var_next(i); 636 sk_msg_iter_var_next(j); 637 if (i == *orig_end) 638 break; 639 osge = sk_msg_elem(msg_opl, i); 640 nsge = sk_msg_elem(msg_npl, j); 641 } 642 643 msg_npl->sg.end = j; 644 msg_npl->sg.curr = j; 645 msg_npl->sg.copybreak = 0; 646 647 *to = new; 648 return 0; 649 } 650 651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 652 struct tls_rec *from, u32 orig_end) 653 { 654 struct sk_msg *msg_npl = &from->msg_plaintext; 655 struct sk_msg *msg_opl = &to->msg_plaintext; 656 struct scatterlist *osge, *nsge; 657 u32 i, j; 658 659 i = msg_opl->sg.end; 660 sk_msg_iter_var_prev(i); 661 j = msg_npl->sg.start; 662 663 osge = sk_msg_elem(msg_opl, i); 664 nsge = sk_msg_elem(msg_npl, j); 665 666 if (sg_page(osge) == sg_page(nsge) && 667 osge->offset + osge->length == nsge->offset) { 668 osge->length += nsge->length; 669 put_page(sg_page(nsge)); 670 } 671 672 msg_opl->sg.end = orig_end; 673 msg_opl->sg.curr = orig_end; 674 msg_opl->sg.copybreak = 0; 675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 676 msg_opl->sg.size += msg_npl->sg.size; 677 678 sk_msg_free(sk, &to->msg_encrypted); 679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 680 681 kfree(from); 682 } 683 684 static int tls_push_record(struct sock *sk, int flags, 685 unsigned char record_type) 686 { 687 struct tls_context *tls_ctx = tls_get_ctx(sk); 688 struct tls_prot_info *prot = &tls_ctx->prot_info; 689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 691 u32 i, split_point, orig_end; 692 struct sk_msg *msg_pl, *msg_en; 693 struct aead_request *req; 694 bool split; 695 int rc; 696 697 if (!rec) 698 return 0; 699 700 msg_pl = &rec->msg_plaintext; 701 msg_en = &rec->msg_encrypted; 702 703 split_point = msg_pl->apply_bytes; 704 split = split_point && split_point < msg_pl->sg.size; 705 if (unlikely((!split && 706 msg_pl->sg.size + 707 prot->overhead_size > msg_en->sg.size) || 708 (split && 709 split_point + 710 prot->overhead_size > msg_en->sg.size))) { 711 split = true; 712 split_point = msg_en->sg.size; 713 } 714 if (split) { 715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 716 split_point, prot->overhead_size, 717 &orig_end); 718 if (rc < 0) 719 return rc; 720 /* This can happen if above tls_split_open_record allocates 721 * a single large encryption buffer instead of two smaller 722 * ones. In this case adjust pointers and continue without 723 * split. 724 */ 725 if (!msg_pl->sg.size) { 726 tls_merge_open_record(sk, rec, tmp, orig_end); 727 msg_pl = &rec->msg_plaintext; 728 msg_en = &rec->msg_encrypted; 729 split = false; 730 } 731 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 732 prot->overhead_size); 733 } 734 735 rec->tx_flags = flags; 736 req = &rec->aead_req; 737 738 i = msg_pl->sg.end; 739 sk_msg_iter_var_prev(i); 740 741 rec->content_type = record_type; 742 if (prot->version == TLS_1_3_VERSION) { 743 /* Add content type to end of message. No padding added */ 744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 745 sg_mark_end(&rec->sg_content_type); 746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 747 &rec->sg_content_type); 748 } else { 749 sg_mark_end(sk_msg_elem(msg_pl, i)); 750 } 751 752 if (msg_pl->sg.end < msg_pl->sg.start) { 753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 754 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 755 msg_pl->sg.data); 756 } 757 758 i = msg_pl->sg.start; 759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 760 761 i = msg_en->sg.end; 762 sk_msg_iter_var_prev(i); 763 sg_mark_end(sk_msg_elem(msg_en, i)); 764 765 i = msg_en->sg.start; 766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 767 768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 769 tls_ctx->tx.rec_seq, record_type, prot); 770 771 tls_fill_prepend(tls_ctx, 772 page_address(sg_page(&msg_en->sg.data[i])) + 773 msg_en->sg.data[i].offset, 774 msg_pl->sg.size + prot->tail_size, 775 record_type); 776 777 tls_ctx->pending_open_record_frags = false; 778 779 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 780 msg_pl->sg.size + prot->tail_size, i); 781 if (rc < 0) { 782 if (rc != -EINPROGRESS) { 783 tls_err_abort(sk, -EBADMSG); 784 if (split) { 785 tls_ctx->pending_open_record_frags = true; 786 tls_merge_open_record(sk, rec, tmp, orig_end); 787 } 788 } 789 ctx->async_capable = 1; 790 return rc; 791 } else if (split) { 792 msg_pl = &tmp->msg_plaintext; 793 msg_en = &tmp->msg_encrypted; 794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 795 tls_ctx->pending_open_record_frags = true; 796 ctx->open_rec = tmp; 797 } 798 799 return tls_tx_records(sk, flags); 800 } 801 802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 803 bool full_record, u8 record_type, 804 ssize_t *copied, int flags) 805 { 806 struct tls_context *tls_ctx = tls_get_ctx(sk); 807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 808 struct sk_msg msg_redir = { }; 809 struct sk_psock *psock; 810 struct sock *sk_redir; 811 struct tls_rec *rec; 812 bool enospc, policy, redir_ingress; 813 int err = 0, send; 814 u32 delta = 0; 815 816 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 817 psock = sk_psock_get(sk); 818 if (!psock || !policy) { 819 err = tls_push_record(sk, flags, record_type); 820 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 821 *copied -= sk_msg_free(sk, msg); 822 tls_free_open_rec(sk); 823 err = -sk->sk_err; 824 } 825 if (psock) 826 sk_psock_put(sk, psock); 827 return err; 828 } 829 more_data: 830 enospc = sk_msg_full(msg); 831 if (psock->eval == __SK_NONE) { 832 delta = msg->sg.size; 833 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 834 delta -= msg->sg.size; 835 } 836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 837 !enospc && !full_record) { 838 err = -ENOSPC; 839 goto out_err; 840 } 841 msg->cork_bytes = 0; 842 send = msg->sg.size; 843 if (msg->apply_bytes && msg->apply_bytes < send) 844 send = msg->apply_bytes; 845 846 switch (psock->eval) { 847 case __SK_PASS: 848 err = tls_push_record(sk, flags, record_type); 849 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 850 *copied -= sk_msg_free(sk, msg); 851 tls_free_open_rec(sk); 852 err = -sk->sk_err; 853 goto out_err; 854 } 855 break; 856 case __SK_REDIRECT: 857 redir_ingress = psock->redir_ingress; 858 sk_redir = psock->sk_redir; 859 memcpy(&msg_redir, msg, sizeof(*msg)); 860 if (msg->apply_bytes < send) 861 msg->apply_bytes = 0; 862 else 863 msg->apply_bytes -= send; 864 sk_msg_return_zero(sk, msg, send); 865 msg->sg.size -= send; 866 release_sock(sk); 867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 868 &msg_redir, send, flags); 869 lock_sock(sk); 870 if (err < 0) { 871 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 872 msg->sg.size = 0; 873 } 874 if (msg->sg.size == 0) 875 tls_free_open_rec(sk); 876 break; 877 case __SK_DROP: 878 default: 879 sk_msg_free_partial(sk, msg, send); 880 if (msg->apply_bytes < send) 881 msg->apply_bytes = 0; 882 else 883 msg->apply_bytes -= send; 884 if (msg->sg.size == 0) 885 tls_free_open_rec(sk); 886 *copied -= (send + delta); 887 err = -EACCES; 888 } 889 890 if (likely(!err)) { 891 bool reset_eval = !ctx->open_rec; 892 893 rec = ctx->open_rec; 894 if (rec) { 895 msg = &rec->msg_plaintext; 896 if (!msg->apply_bytes) 897 reset_eval = true; 898 } 899 if (reset_eval) { 900 psock->eval = __SK_NONE; 901 if (psock->sk_redir) { 902 sock_put(psock->sk_redir); 903 psock->sk_redir = NULL; 904 } 905 } 906 if (rec) 907 goto more_data; 908 } 909 out_err: 910 sk_psock_put(sk, psock); 911 return err; 912 } 913 914 static int tls_sw_push_pending_record(struct sock *sk, int flags) 915 { 916 struct tls_context *tls_ctx = tls_get_ctx(sk); 917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 918 struct tls_rec *rec = ctx->open_rec; 919 struct sk_msg *msg_pl; 920 size_t copied; 921 922 if (!rec) 923 return 0; 924 925 msg_pl = &rec->msg_plaintext; 926 copied = msg_pl->sg.size; 927 if (!copied) 928 return 0; 929 930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 931 &copied, flags); 932 } 933 934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 935 struct sk_msg *msg_pl, size_t try_to_copy, 936 ssize_t *copied) 937 { 938 struct page *page = NULL, **pages = &page; 939 940 do { 941 ssize_t part; 942 size_t off; 943 944 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 945 try_to_copy, 1, 0, &off); 946 if (part <= 0) 947 return part ?: -EIO; 948 949 if (WARN_ON_ONCE(!sendpage_ok(page))) { 950 iov_iter_revert(&msg->msg_iter, part); 951 return -EIO; 952 } 953 954 sk_msg_page_add(msg_pl, page, part, off); 955 msg_pl->sg.copybreak = 0; 956 msg_pl->sg.curr = msg_pl->sg.end; 957 sk_mem_charge(sk, part); 958 *copied += part; 959 try_to_copy -= part; 960 } while (try_to_copy && !sk_msg_full(msg_pl)); 961 962 return 0; 963 } 964 965 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 966 size_t size) 967 { 968 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 969 struct tls_context *tls_ctx = tls_get_ctx(sk); 970 struct tls_prot_info *prot = &tls_ctx->prot_info; 971 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 972 bool async_capable = ctx->async_capable; 973 unsigned char record_type = TLS_RECORD_TYPE_DATA; 974 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 975 bool eor = !(msg->msg_flags & MSG_MORE); 976 size_t try_to_copy; 977 ssize_t copied = 0; 978 struct sk_msg *msg_pl, *msg_en; 979 struct tls_rec *rec; 980 int required_size; 981 int num_async = 0; 982 bool full_record; 983 int record_room; 984 int num_zc = 0; 985 int orig_size; 986 int ret = 0; 987 int pending; 988 989 if (!eor && (msg->msg_flags & MSG_EOR)) 990 return -EINVAL; 991 992 if (unlikely(msg->msg_controllen)) { 993 ret = tls_process_cmsg(sk, msg, &record_type); 994 if (ret) { 995 if (ret == -EINPROGRESS) 996 num_async++; 997 else if (ret != -EAGAIN) 998 goto send_end; 999 } 1000 } 1001 1002 while (msg_data_left(msg)) { 1003 if (sk->sk_err) { 1004 ret = -sk->sk_err; 1005 goto send_end; 1006 } 1007 1008 if (ctx->open_rec) 1009 rec = ctx->open_rec; 1010 else 1011 rec = ctx->open_rec = tls_get_rec(sk); 1012 if (!rec) { 1013 ret = -ENOMEM; 1014 goto send_end; 1015 } 1016 1017 msg_pl = &rec->msg_plaintext; 1018 msg_en = &rec->msg_encrypted; 1019 1020 orig_size = msg_pl->sg.size; 1021 full_record = false; 1022 try_to_copy = msg_data_left(msg); 1023 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1024 if (try_to_copy >= record_room) { 1025 try_to_copy = record_room; 1026 full_record = true; 1027 } 1028 1029 required_size = msg_pl->sg.size + try_to_copy + 1030 prot->overhead_size; 1031 1032 if (!sk_stream_memory_free(sk)) 1033 goto wait_for_sndbuf; 1034 1035 alloc_encrypted: 1036 ret = tls_alloc_encrypted_msg(sk, required_size); 1037 if (ret) { 1038 if (ret != -ENOSPC) 1039 goto wait_for_memory; 1040 1041 /* Adjust try_to_copy according to the amount that was 1042 * actually allocated. The difference is due 1043 * to max sg elements limit 1044 */ 1045 try_to_copy -= required_size - msg_en->sg.size; 1046 full_record = true; 1047 } 1048 1049 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1050 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1051 try_to_copy, &copied); 1052 if (ret < 0) 1053 goto send_end; 1054 tls_ctx->pending_open_record_frags = true; 1055 if (full_record || eor || sk_msg_full(msg_pl)) 1056 goto copied; 1057 continue; 1058 } 1059 1060 if (!is_kvec && (full_record || eor) && !async_capable) { 1061 u32 first = msg_pl->sg.end; 1062 1063 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1064 msg_pl, try_to_copy); 1065 if (ret) 1066 goto fallback_to_reg_send; 1067 1068 num_zc++; 1069 copied += try_to_copy; 1070 1071 sk_msg_sg_copy_set(msg_pl, first); 1072 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1073 record_type, &copied, 1074 msg->msg_flags); 1075 if (ret) { 1076 if (ret == -EINPROGRESS) 1077 num_async++; 1078 else if (ret == -ENOMEM) 1079 goto wait_for_memory; 1080 else if (ctx->open_rec && ret == -ENOSPC) 1081 goto rollback_iter; 1082 else if (ret != -EAGAIN) 1083 goto send_end; 1084 } 1085 continue; 1086 rollback_iter: 1087 copied -= try_to_copy; 1088 sk_msg_sg_copy_clear(msg_pl, first); 1089 iov_iter_revert(&msg->msg_iter, 1090 msg_pl->sg.size - orig_size); 1091 fallback_to_reg_send: 1092 sk_msg_trim(sk, msg_pl, orig_size); 1093 } 1094 1095 required_size = msg_pl->sg.size + try_to_copy; 1096 1097 ret = tls_clone_plaintext_msg(sk, required_size); 1098 if (ret) { 1099 if (ret != -ENOSPC) 1100 goto send_end; 1101 1102 /* Adjust try_to_copy according to the amount that was 1103 * actually allocated. The difference is due 1104 * to max sg elements limit 1105 */ 1106 try_to_copy -= required_size - msg_pl->sg.size; 1107 full_record = true; 1108 sk_msg_trim(sk, msg_en, 1109 msg_pl->sg.size + prot->overhead_size); 1110 } 1111 1112 if (try_to_copy) { 1113 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1114 msg_pl, try_to_copy); 1115 if (ret < 0) 1116 goto trim_sgl; 1117 } 1118 1119 /* Open records defined only if successfully copied, otherwise 1120 * we would trim the sg but not reset the open record frags. 1121 */ 1122 tls_ctx->pending_open_record_frags = true; 1123 copied += try_to_copy; 1124 copied: 1125 if (full_record || eor) { 1126 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1127 record_type, &copied, 1128 msg->msg_flags); 1129 if (ret) { 1130 if (ret == -EINPROGRESS) 1131 num_async++; 1132 else if (ret == -ENOMEM) 1133 goto wait_for_memory; 1134 else if (ret != -EAGAIN) { 1135 if (ret == -ENOSPC) 1136 ret = 0; 1137 goto send_end; 1138 } 1139 } 1140 } 1141 1142 continue; 1143 1144 wait_for_sndbuf: 1145 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1146 wait_for_memory: 1147 ret = sk_stream_wait_memory(sk, &timeo); 1148 if (ret) { 1149 trim_sgl: 1150 if (ctx->open_rec) 1151 tls_trim_both_msgs(sk, orig_size); 1152 goto send_end; 1153 } 1154 1155 if (ctx->open_rec && msg_en->sg.size < required_size) 1156 goto alloc_encrypted; 1157 } 1158 1159 if (!num_async) { 1160 goto send_end; 1161 } else if (num_zc) { 1162 /* Wait for pending encryptions to get completed */ 1163 spin_lock_bh(&ctx->encrypt_compl_lock); 1164 ctx->async_notify = true; 1165 1166 pending = atomic_read(&ctx->encrypt_pending); 1167 spin_unlock_bh(&ctx->encrypt_compl_lock); 1168 if (pending) 1169 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1170 else 1171 reinit_completion(&ctx->async_wait.completion); 1172 1173 /* There can be no concurrent accesses, since we have no 1174 * pending encrypt operations 1175 */ 1176 WRITE_ONCE(ctx->async_notify, false); 1177 1178 if (ctx->async_wait.err) { 1179 ret = ctx->async_wait.err; 1180 copied = 0; 1181 } 1182 } 1183 1184 /* Transmit if any encryptions have completed */ 1185 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1186 cancel_delayed_work(&ctx->tx_work.work); 1187 tls_tx_records(sk, msg->msg_flags); 1188 } 1189 1190 send_end: 1191 ret = sk_stream_error(sk, msg->msg_flags, ret); 1192 return copied > 0 ? copied : ret; 1193 } 1194 1195 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1196 { 1197 struct tls_context *tls_ctx = tls_get_ctx(sk); 1198 int ret; 1199 1200 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1201 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1202 MSG_SENDPAGE_NOPOLICY)) 1203 return -EOPNOTSUPP; 1204 1205 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1206 if (ret) 1207 return ret; 1208 lock_sock(sk); 1209 ret = tls_sw_sendmsg_locked(sk, msg, size); 1210 release_sock(sk); 1211 mutex_unlock(&tls_ctx->tx_lock); 1212 return ret; 1213 } 1214 1215 /* 1216 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1217 */ 1218 void tls_sw_splice_eof(struct socket *sock) 1219 { 1220 struct sock *sk = sock->sk; 1221 struct tls_context *tls_ctx = tls_get_ctx(sk); 1222 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1223 struct tls_rec *rec; 1224 struct sk_msg *msg_pl; 1225 ssize_t copied = 0; 1226 bool retrying = false; 1227 int ret = 0; 1228 int pending; 1229 1230 if (!ctx->open_rec) 1231 return; 1232 1233 mutex_lock(&tls_ctx->tx_lock); 1234 lock_sock(sk); 1235 1236 retry: 1237 /* same checks as in tls_sw_push_pending_record() */ 1238 rec = ctx->open_rec; 1239 if (!rec) 1240 goto unlock; 1241 1242 msg_pl = &rec->msg_plaintext; 1243 if (msg_pl->sg.size == 0) 1244 goto unlock; 1245 1246 /* Check the BPF advisor and perform transmission. */ 1247 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1248 &copied, 0); 1249 switch (ret) { 1250 case 0: 1251 case -EAGAIN: 1252 if (retrying) 1253 goto unlock; 1254 retrying = true; 1255 goto retry; 1256 case -EINPROGRESS: 1257 break; 1258 default: 1259 goto unlock; 1260 } 1261 1262 /* Wait for pending encryptions to get completed */ 1263 spin_lock_bh(&ctx->encrypt_compl_lock); 1264 ctx->async_notify = true; 1265 1266 pending = atomic_read(&ctx->encrypt_pending); 1267 spin_unlock_bh(&ctx->encrypt_compl_lock); 1268 if (pending) 1269 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1270 else 1271 reinit_completion(&ctx->async_wait.completion); 1272 1273 /* There can be no concurrent accesses, since we have no pending 1274 * encrypt operations 1275 */ 1276 WRITE_ONCE(ctx->async_notify, false); 1277 1278 if (ctx->async_wait.err) 1279 goto unlock; 1280 1281 /* Transmit if any encryptions have completed */ 1282 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1283 cancel_delayed_work(&ctx->tx_work.work); 1284 tls_tx_records(sk, 0); 1285 } 1286 1287 unlock: 1288 release_sock(sk); 1289 mutex_unlock(&tls_ctx->tx_lock); 1290 } 1291 1292 static int 1293 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1294 bool released) 1295 { 1296 struct tls_context *tls_ctx = tls_get_ctx(sk); 1297 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1298 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1299 int ret = 0; 1300 long timeo; 1301 1302 timeo = sock_rcvtimeo(sk, nonblock); 1303 1304 while (!tls_strp_msg_ready(ctx)) { 1305 if (!sk_psock_queue_empty(psock)) 1306 return 0; 1307 1308 if (sk->sk_err) 1309 return sock_error(sk); 1310 1311 if (ret < 0) 1312 return ret; 1313 1314 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1315 tls_strp_check_rcv(&ctx->strp); 1316 if (tls_strp_msg_ready(ctx)) 1317 break; 1318 } 1319 1320 if (sk->sk_shutdown & RCV_SHUTDOWN) 1321 return 0; 1322 1323 if (sock_flag(sk, SOCK_DONE)) 1324 return 0; 1325 1326 if (!timeo) 1327 return -EAGAIN; 1328 1329 released = true; 1330 add_wait_queue(sk_sleep(sk), &wait); 1331 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1332 ret = sk_wait_event(sk, &timeo, 1333 tls_strp_msg_ready(ctx) || 1334 !sk_psock_queue_empty(psock), 1335 &wait); 1336 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1337 remove_wait_queue(sk_sleep(sk), &wait); 1338 1339 /* Handle signals */ 1340 if (signal_pending(current)) 1341 return sock_intr_errno(timeo); 1342 } 1343 1344 tls_strp_msg_load(&ctx->strp, released); 1345 1346 return 1; 1347 } 1348 1349 static int tls_setup_from_iter(struct iov_iter *from, 1350 int length, int *pages_used, 1351 struct scatterlist *to, 1352 int to_max_pages) 1353 { 1354 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1355 struct page *pages[MAX_SKB_FRAGS]; 1356 unsigned int size = 0; 1357 ssize_t copied, use; 1358 size_t offset; 1359 1360 while (length > 0) { 1361 i = 0; 1362 maxpages = to_max_pages - num_elem; 1363 if (maxpages == 0) { 1364 rc = -EFAULT; 1365 goto out; 1366 } 1367 copied = iov_iter_get_pages2(from, pages, 1368 length, 1369 maxpages, &offset); 1370 if (copied <= 0) { 1371 rc = -EFAULT; 1372 goto out; 1373 } 1374 1375 length -= copied; 1376 size += copied; 1377 while (copied) { 1378 use = min_t(int, copied, PAGE_SIZE - offset); 1379 1380 sg_set_page(&to[num_elem], 1381 pages[i], use, offset); 1382 sg_unmark_end(&to[num_elem]); 1383 /* We do not uncharge memory from this API */ 1384 1385 offset = 0; 1386 copied -= use; 1387 1388 i++; 1389 num_elem++; 1390 } 1391 } 1392 /* Mark the end in the last sg entry if newly added */ 1393 if (num_elem > *pages_used) 1394 sg_mark_end(&to[num_elem - 1]); 1395 out: 1396 if (rc) 1397 iov_iter_revert(from, size); 1398 *pages_used = num_elem; 1399 1400 return rc; 1401 } 1402 1403 static struct sk_buff * 1404 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1405 unsigned int full_len) 1406 { 1407 struct strp_msg *clr_rxm; 1408 struct sk_buff *clr_skb; 1409 int err; 1410 1411 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1412 &err, sk->sk_allocation); 1413 if (!clr_skb) 1414 return NULL; 1415 1416 skb_copy_header(clr_skb, skb); 1417 clr_skb->len = full_len; 1418 clr_skb->data_len = full_len; 1419 1420 clr_rxm = strp_msg(clr_skb); 1421 clr_rxm->offset = 0; 1422 1423 return clr_skb; 1424 } 1425 1426 /* Decrypt handlers 1427 * 1428 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1429 * They must transform the darg in/out argument are as follows: 1430 * | Input | Output 1431 * ------------------------------------------------------------------- 1432 * zc | Zero-copy decrypt allowed | Zero-copy performed 1433 * async | Async decrypt allowed | Async crypto used / in progress 1434 * skb | * | Output skb 1435 * 1436 * If ZC decryption was performed darg.skb will point to the input skb. 1437 */ 1438 1439 /* This function decrypts the input skb into either out_iov or in out_sg 1440 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1441 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1442 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1443 * NULL, then the decryption happens inside skb buffers itself, i.e. 1444 * zero-copy gets disabled and 'darg->zc' is updated. 1445 */ 1446 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1447 struct scatterlist *out_sg, 1448 struct tls_decrypt_arg *darg) 1449 { 1450 struct tls_context *tls_ctx = tls_get_ctx(sk); 1451 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1452 struct tls_prot_info *prot = &tls_ctx->prot_info; 1453 int n_sgin, n_sgout, aead_size, err, pages = 0; 1454 struct sk_buff *skb = tls_strp_msg(ctx); 1455 const struct strp_msg *rxm = strp_msg(skb); 1456 const struct tls_msg *tlm = tls_msg(skb); 1457 struct aead_request *aead_req; 1458 struct scatterlist *sgin = NULL; 1459 struct scatterlist *sgout = NULL; 1460 const int data_len = rxm->full_len - prot->overhead_size; 1461 int tail_pages = !!prot->tail_size; 1462 struct tls_decrypt_ctx *dctx; 1463 struct sk_buff *clear_skb; 1464 int iv_offset = 0; 1465 u8 *mem; 1466 1467 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1468 rxm->full_len - prot->prepend_size); 1469 if (n_sgin < 1) 1470 return n_sgin ?: -EBADMSG; 1471 1472 if (darg->zc && (out_iov || out_sg)) { 1473 clear_skb = NULL; 1474 1475 if (out_iov) 1476 n_sgout = 1 + tail_pages + 1477 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1478 else 1479 n_sgout = sg_nents(out_sg); 1480 } else { 1481 darg->zc = false; 1482 1483 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1484 if (!clear_skb) 1485 return -ENOMEM; 1486 1487 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1488 } 1489 1490 /* Increment to accommodate AAD */ 1491 n_sgin = n_sgin + 1; 1492 1493 /* Allocate a single block of memory which contains 1494 * aead_req || tls_decrypt_ctx. 1495 * Both structs are variable length. 1496 */ 1497 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1498 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1499 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1500 sk->sk_allocation); 1501 if (!mem) { 1502 err = -ENOMEM; 1503 goto exit_free_skb; 1504 } 1505 1506 /* Segment the allocated memory */ 1507 aead_req = (struct aead_request *)mem; 1508 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1509 dctx->sk = sk; 1510 sgin = &dctx->sg[0]; 1511 sgout = &dctx->sg[n_sgin]; 1512 1513 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1514 switch (prot->cipher_type) { 1515 case TLS_CIPHER_AES_CCM_128: 1516 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1517 iv_offset = 1; 1518 break; 1519 case TLS_CIPHER_SM4_CCM: 1520 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1521 iv_offset = 1; 1522 break; 1523 } 1524 1525 /* Prepare IV */ 1526 if (prot->version == TLS_1_3_VERSION || 1527 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1528 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1529 prot->iv_size + prot->salt_size); 1530 } else { 1531 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1532 &dctx->iv[iv_offset] + prot->salt_size, 1533 prot->iv_size); 1534 if (err < 0) 1535 goto exit_free; 1536 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1537 } 1538 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1539 1540 /* Prepare AAD */ 1541 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1542 prot->tail_size, 1543 tls_ctx->rx.rec_seq, tlm->control, prot); 1544 1545 /* Prepare sgin */ 1546 sg_init_table(sgin, n_sgin); 1547 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1548 err = skb_to_sgvec(skb, &sgin[1], 1549 rxm->offset + prot->prepend_size, 1550 rxm->full_len - prot->prepend_size); 1551 if (err < 0) 1552 goto exit_free; 1553 1554 if (clear_skb) { 1555 sg_init_table(sgout, n_sgout); 1556 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1557 1558 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1559 data_len + prot->tail_size); 1560 if (err < 0) 1561 goto exit_free; 1562 } else if (out_iov) { 1563 sg_init_table(sgout, n_sgout); 1564 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1565 1566 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1567 (n_sgout - 1 - tail_pages)); 1568 if (err < 0) 1569 goto exit_free_pages; 1570 1571 if (prot->tail_size) { 1572 sg_unmark_end(&sgout[pages]); 1573 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1574 prot->tail_size); 1575 sg_mark_end(&sgout[pages + 1]); 1576 } 1577 } else if (out_sg) { 1578 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1579 } 1580 1581 /* Prepare and submit AEAD request */ 1582 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1583 data_len + prot->tail_size, aead_req, darg); 1584 if (err) 1585 goto exit_free_pages; 1586 1587 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1588 clear_skb = NULL; 1589 1590 if (unlikely(darg->async)) { 1591 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1592 if (err) 1593 __skb_queue_tail(&ctx->async_hold, darg->skb); 1594 return err; 1595 } 1596 1597 if (prot->tail_size) 1598 darg->tail = dctx->tail; 1599 1600 exit_free_pages: 1601 /* Release the pages in case iov was mapped to pages */ 1602 for (; pages > 0; pages--) 1603 put_page(sg_page(&sgout[pages])); 1604 exit_free: 1605 kfree(mem); 1606 exit_free_skb: 1607 consume_skb(clear_skb); 1608 return err; 1609 } 1610 1611 static int 1612 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1613 struct msghdr *msg, struct tls_decrypt_arg *darg) 1614 { 1615 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1616 struct tls_prot_info *prot = &tls_ctx->prot_info; 1617 struct strp_msg *rxm; 1618 int pad, err; 1619 1620 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1621 if (err < 0) { 1622 if (err == -EBADMSG) 1623 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1624 return err; 1625 } 1626 /* keep going even for ->async, the code below is TLS 1.3 */ 1627 1628 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1629 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1630 darg->tail != TLS_RECORD_TYPE_DATA)) { 1631 darg->zc = false; 1632 if (!darg->tail) 1633 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1634 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1635 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1636 } 1637 1638 pad = tls_padding_length(prot, darg->skb, darg); 1639 if (pad < 0) { 1640 if (darg->skb != tls_strp_msg(ctx)) 1641 consume_skb(darg->skb); 1642 return pad; 1643 } 1644 1645 rxm = strp_msg(darg->skb); 1646 rxm->full_len -= pad; 1647 1648 return 0; 1649 } 1650 1651 static int 1652 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1653 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1654 { 1655 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1656 struct tls_prot_info *prot = &tls_ctx->prot_info; 1657 struct strp_msg *rxm; 1658 int pad, err; 1659 1660 if (tls_ctx->rx_conf != TLS_HW) 1661 return 0; 1662 1663 err = tls_device_decrypted(sk, tls_ctx); 1664 if (err <= 0) 1665 return err; 1666 1667 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1668 if (pad < 0) 1669 return pad; 1670 1671 darg->async = false; 1672 darg->skb = tls_strp_msg(ctx); 1673 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1674 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1675 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1676 1677 rxm = strp_msg(darg->skb); 1678 rxm->full_len -= pad; 1679 1680 if (!darg->zc) { 1681 /* Non-ZC case needs a real skb */ 1682 darg->skb = tls_strp_msg_detach(ctx); 1683 if (!darg->skb) 1684 return -ENOMEM; 1685 } else { 1686 unsigned int off, len; 1687 1688 /* In ZC case nobody cares about the output skb. 1689 * Just copy the data here. Note the skb is not fully trimmed. 1690 */ 1691 off = rxm->offset + prot->prepend_size; 1692 len = rxm->full_len - prot->overhead_size; 1693 1694 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1695 if (err) 1696 return err; 1697 } 1698 return 1; 1699 } 1700 1701 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1702 struct tls_decrypt_arg *darg) 1703 { 1704 struct tls_context *tls_ctx = tls_get_ctx(sk); 1705 struct tls_prot_info *prot = &tls_ctx->prot_info; 1706 struct strp_msg *rxm; 1707 int err; 1708 1709 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1710 if (!err) 1711 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1712 if (err < 0) 1713 return err; 1714 1715 rxm = strp_msg(darg->skb); 1716 rxm->offset += prot->prepend_size; 1717 rxm->full_len -= prot->overhead_size; 1718 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1719 1720 return 0; 1721 } 1722 1723 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1724 { 1725 struct tls_decrypt_arg darg = { .zc = true, }; 1726 1727 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1728 } 1729 1730 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1731 u8 *control) 1732 { 1733 int err; 1734 1735 if (!*control) { 1736 *control = tlm->control; 1737 if (!*control) 1738 return -EBADMSG; 1739 1740 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1741 sizeof(*control), control); 1742 if (*control != TLS_RECORD_TYPE_DATA) { 1743 if (err || msg->msg_flags & MSG_CTRUNC) 1744 return -EIO; 1745 } 1746 } else if (*control != tlm->control) { 1747 return 0; 1748 } 1749 1750 return 1; 1751 } 1752 1753 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1754 { 1755 tls_strp_msg_done(&ctx->strp); 1756 } 1757 1758 /* This function traverses the rx_list in tls receive context to copies the 1759 * decrypted records into the buffer provided by caller zero copy is not 1760 * true. Further, the records are removed from the rx_list if it is not a peek 1761 * case and the record has been consumed completely. 1762 */ 1763 static int process_rx_list(struct tls_sw_context_rx *ctx, 1764 struct msghdr *msg, 1765 u8 *control, 1766 size_t skip, 1767 size_t len, 1768 bool is_peek) 1769 { 1770 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1771 struct tls_msg *tlm; 1772 ssize_t copied = 0; 1773 int err; 1774 1775 while (skip && skb) { 1776 struct strp_msg *rxm = strp_msg(skb); 1777 tlm = tls_msg(skb); 1778 1779 err = tls_record_content_type(msg, tlm, control); 1780 if (err <= 0) 1781 goto out; 1782 1783 if (skip < rxm->full_len) 1784 break; 1785 1786 skip = skip - rxm->full_len; 1787 skb = skb_peek_next(skb, &ctx->rx_list); 1788 } 1789 1790 while (len && skb) { 1791 struct sk_buff *next_skb; 1792 struct strp_msg *rxm = strp_msg(skb); 1793 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1794 1795 tlm = tls_msg(skb); 1796 1797 err = tls_record_content_type(msg, tlm, control); 1798 if (err <= 0) 1799 goto out; 1800 1801 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1802 msg, chunk); 1803 if (err < 0) 1804 goto out; 1805 1806 len = len - chunk; 1807 copied = copied + chunk; 1808 1809 /* Consume the data from record if it is non-peek case*/ 1810 if (!is_peek) { 1811 rxm->offset = rxm->offset + chunk; 1812 rxm->full_len = rxm->full_len - chunk; 1813 1814 /* Return if there is unconsumed data in the record */ 1815 if (rxm->full_len - skip) 1816 break; 1817 } 1818 1819 /* The remaining skip-bytes must lie in 1st record in rx_list. 1820 * So from the 2nd record, 'skip' should be 0. 1821 */ 1822 skip = 0; 1823 1824 if (msg) 1825 msg->msg_flags |= MSG_EOR; 1826 1827 next_skb = skb_peek_next(skb, &ctx->rx_list); 1828 1829 if (!is_peek) { 1830 __skb_unlink(skb, &ctx->rx_list); 1831 consume_skb(skb); 1832 } 1833 1834 skb = next_skb; 1835 } 1836 err = 0; 1837 1838 out: 1839 return copied ? : err; 1840 } 1841 1842 static bool 1843 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1844 size_t len_left, size_t decrypted, ssize_t done, 1845 size_t *flushed_at) 1846 { 1847 size_t max_rec; 1848 1849 if (len_left <= decrypted) 1850 return false; 1851 1852 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1853 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1854 return false; 1855 1856 *flushed_at = done; 1857 return sk_flush_backlog(sk); 1858 } 1859 1860 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1861 bool nonblock) 1862 { 1863 long timeo; 1864 int ret; 1865 1866 timeo = sock_rcvtimeo(sk, nonblock); 1867 1868 while (unlikely(ctx->reader_present)) { 1869 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1870 1871 ctx->reader_contended = 1; 1872 1873 add_wait_queue(&ctx->wq, &wait); 1874 ret = sk_wait_event(sk, &timeo, 1875 !READ_ONCE(ctx->reader_present), &wait); 1876 remove_wait_queue(&ctx->wq, &wait); 1877 1878 if (timeo <= 0) 1879 return -EAGAIN; 1880 if (signal_pending(current)) 1881 return sock_intr_errno(timeo); 1882 if (ret < 0) 1883 return ret; 1884 } 1885 1886 WRITE_ONCE(ctx->reader_present, 1); 1887 1888 return 0; 1889 } 1890 1891 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1892 bool nonblock) 1893 { 1894 int err; 1895 1896 lock_sock(sk); 1897 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1898 if (err) 1899 release_sock(sk); 1900 return err; 1901 } 1902 1903 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1904 { 1905 if (unlikely(ctx->reader_contended)) { 1906 if (wq_has_sleeper(&ctx->wq)) 1907 wake_up(&ctx->wq); 1908 else 1909 ctx->reader_contended = 0; 1910 1911 WARN_ON_ONCE(!ctx->reader_present); 1912 } 1913 1914 WRITE_ONCE(ctx->reader_present, 0); 1915 } 1916 1917 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1918 { 1919 tls_rx_reader_release(sk, ctx); 1920 release_sock(sk); 1921 } 1922 1923 int tls_sw_recvmsg(struct sock *sk, 1924 struct msghdr *msg, 1925 size_t len, 1926 int flags, 1927 int *addr_len) 1928 { 1929 struct tls_context *tls_ctx = tls_get_ctx(sk); 1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1931 struct tls_prot_info *prot = &tls_ctx->prot_info; 1932 ssize_t decrypted = 0, async_copy_bytes = 0; 1933 struct sk_psock *psock; 1934 unsigned char control = 0; 1935 size_t flushed_at = 0; 1936 struct strp_msg *rxm; 1937 struct tls_msg *tlm; 1938 ssize_t copied = 0; 1939 bool async = false; 1940 int target, err; 1941 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1942 bool is_peek = flags & MSG_PEEK; 1943 bool released = true; 1944 bool bpf_strp_enabled; 1945 bool zc_capable; 1946 1947 if (unlikely(flags & MSG_ERRQUEUE)) 1948 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1949 1950 psock = sk_psock_get(sk); 1951 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1952 if (err < 0) 1953 return err; 1954 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1955 1956 /* If crypto failed the connection is broken */ 1957 err = ctx->async_wait.err; 1958 if (err) 1959 goto end; 1960 1961 /* Process pending decrypted records. It must be non-zero-copy */ 1962 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1963 if (err < 0) 1964 goto end; 1965 1966 copied = err; 1967 if (len <= copied) 1968 goto end; 1969 1970 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1971 len = len - copied; 1972 1973 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1974 ctx->zc_capable; 1975 decrypted = 0; 1976 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1977 struct tls_decrypt_arg darg; 1978 int to_decrypt, chunk; 1979 1980 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1981 released); 1982 if (err <= 0) { 1983 if (psock) { 1984 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1985 flags); 1986 if (chunk > 0) { 1987 decrypted += chunk; 1988 len -= chunk; 1989 continue; 1990 } 1991 } 1992 goto recv_end; 1993 } 1994 1995 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1996 1997 rxm = strp_msg(tls_strp_msg(ctx)); 1998 tlm = tls_msg(tls_strp_msg(ctx)); 1999 2000 to_decrypt = rxm->full_len - prot->overhead_size; 2001 2002 if (zc_capable && to_decrypt <= len && 2003 tlm->control == TLS_RECORD_TYPE_DATA) 2004 darg.zc = true; 2005 2006 /* Do not use async mode if record is non-data */ 2007 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2008 darg.async = ctx->async_capable; 2009 else 2010 darg.async = false; 2011 2012 err = tls_rx_one_record(sk, msg, &darg); 2013 if (err < 0) { 2014 tls_err_abort(sk, -EBADMSG); 2015 goto recv_end; 2016 } 2017 2018 async |= darg.async; 2019 2020 /* If the type of records being processed is not known yet, 2021 * set it to record type just dequeued. If it is already known, 2022 * but does not match the record type just dequeued, go to end. 2023 * We always get record type here since for tls1.2, record type 2024 * is known just after record is dequeued from stream parser. 2025 * For tls1.3, we disable async. 2026 */ 2027 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2028 if (err <= 0) { 2029 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2030 tls_rx_rec_done(ctx); 2031 put_on_rx_list_err: 2032 __skb_queue_tail(&ctx->rx_list, darg.skb); 2033 goto recv_end; 2034 } 2035 2036 /* periodically flush backlog, and feed strparser */ 2037 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2038 decrypted + copied, 2039 &flushed_at); 2040 2041 /* TLS 1.3 may have updated the length by more than overhead */ 2042 rxm = strp_msg(darg.skb); 2043 chunk = rxm->full_len; 2044 tls_rx_rec_done(ctx); 2045 2046 if (!darg.zc) { 2047 bool partially_consumed = chunk > len; 2048 struct sk_buff *skb = darg.skb; 2049 2050 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2051 2052 if (async) { 2053 /* TLS 1.2-only, to_decrypt must be text len */ 2054 chunk = min_t(int, to_decrypt, len); 2055 async_copy_bytes += chunk; 2056 put_on_rx_list: 2057 decrypted += chunk; 2058 len -= chunk; 2059 __skb_queue_tail(&ctx->rx_list, skb); 2060 continue; 2061 } 2062 2063 if (bpf_strp_enabled) { 2064 released = true; 2065 err = sk_psock_tls_strp_read(psock, skb); 2066 if (err != __SK_PASS) { 2067 rxm->offset = rxm->offset + rxm->full_len; 2068 rxm->full_len = 0; 2069 if (err == __SK_DROP) 2070 consume_skb(skb); 2071 continue; 2072 } 2073 } 2074 2075 if (partially_consumed) 2076 chunk = len; 2077 2078 err = skb_copy_datagram_msg(skb, rxm->offset, 2079 msg, chunk); 2080 if (err < 0) 2081 goto put_on_rx_list_err; 2082 2083 if (is_peek) 2084 goto put_on_rx_list; 2085 2086 if (partially_consumed) { 2087 rxm->offset += chunk; 2088 rxm->full_len -= chunk; 2089 goto put_on_rx_list; 2090 } 2091 2092 consume_skb(skb); 2093 } 2094 2095 decrypted += chunk; 2096 len -= chunk; 2097 2098 /* Return full control message to userspace before trying 2099 * to parse another message type 2100 */ 2101 msg->msg_flags |= MSG_EOR; 2102 if (control != TLS_RECORD_TYPE_DATA) 2103 break; 2104 } 2105 2106 recv_end: 2107 if (async) { 2108 int ret, pending; 2109 2110 /* Wait for all previously submitted records to be decrypted */ 2111 spin_lock_bh(&ctx->decrypt_compl_lock); 2112 reinit_completion(&ctx->async_wait.completion); 2113 pending = atomic_read(&ctx->decrypt_pending); 2114 spin_unlock_bh(&ctx->decrypt_compl_lock); 2115 ret = 0; 2116 if (pending) 2117 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2118 __skb_queue_purge(&ctx->async_hold); 2119 2120 if (ret) { 2121 if (err >= 0 || err == -EINPROGRESS) 2122 err = ret; 2123 decrypted = 0; 2124 goto end; 2125 } 2126 2127 /* Drain records from the rx_list & copy if required */ 2128 if (is_peek || is_kvec) 2129 err = process_rx_list(ctx, msg, &control, copied, 2130 decrypted, is_peek); 2131 else 2132 err = process_rx_list(ctx, msg, &control, 0, 2133 async_copy_bytes, is_peek); 2134 decrypted += max(err, 0); 2135 } 2136 2137 copied += decrypted; 2138 2139 end: 2140 tls_rx_reader_unlock(sk, ctx); 2141 if (psock) 2142 sk_psock_put(sk, psock); 2143 return copied ? : err; 2144 } 2145 2146 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2147 struct pipe_inode_info *pipe, 2148 size_t len, unsigned int flags) 2149 { 2150 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2151 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2152 struct strp_msg *rxm = NULL; 2153 struct sock *sk = sock->sk; 2154 struct tls_msg *tlm; 2155 struct sk_buff *skb; 2156 ssize_t copied = 0; 2157 int chunk; 2158 int err; 2159 2160 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2161 if (err < 0) 2162 return err; 2163 2164 if (!skb_queue_empty(&ctx->rx_list)) { 2165 skb = __skb_dequeue(&ctx->rx_list); 2166 } else { 2167 struct tls_decrypt_arg darg; 2168 2169 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2170 true); 2171 if (err <= 0) 2172 goto splice_read_end; 2173 2174 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2175 2176 err = tls_rx_one_record(sk, NULL, &darg); 2177 if (err < 0) { 2178 tls_err_abort(sk, -EBADMSG); 2179 goto splice_read_end; 2180 } 2181 2182 tls_rx_rec_done(ctx); 2183 skb = darg.skb; 2184 } 2185 2186 rxm = strp_msg(skb); 2187 tlm = tls_msg(skb); 2188 2189 /* splice does not support reading control messages */ 2190 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2191 err = -EINVAL; 2192 goto splice_requeue; 2193 } 2194 2195 chunk = min_t(unsigned int, rxm->full_len, len); 2196 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2197 if (copied < 0) 2198 goto splice_requeue; 2199 2200 if (chunk < rxm->full_len) { 2201 rxm->offset += len; 2202 rxm->full_len -= len; 2203 goto splice_requeue; 2204 } 2205 2206 consume_skb(skb); 2207 2208 splice_read_end: 2209 tls_rx_reader_unlock(sk, ctx); 2210 return copied ? : err; 2211 2212 splice_requeue: 2213 __skb_queue_head(&ctx->rx_list, skb); 2214 goto splice_read_end; 2215 } 2216 2217 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2218 sk_read_actor_t read_actor) 2219 { 2220 struct tls_context *tls_ctx = tls_get_ctx(sk); 2221 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2222 struct tls_prot_info *prot = &tls_ctx->prot_info; 2223 struct strp_msg *rxm = NULL; 2224 struct sk_buff *skb = NULL; 2225 struct sk_psock *psock; 2226 size_t flushed_at = 0; 2227 bool released = true; 2228 struct tls_msg *tlm; 2229 ssize_t copied = 0; 2230 ssize_t decrypted; 2231 int err, used; 2232 2233 psock = sk_psock_get(sk); 2234 if (psock) { 2235 sk_psock_put(sk, psock); 2236 return -EINVAL; 2237 } 2238 err = tls_rx_reader_acquire(sk, ctx, true); 2239 if (err < 0) 2240 return err; 2241 2242 /* If crypto failed the connection is broken */ 2243 err = ctx->async_wait.err; 2244 if (err) 2245 goto read_sock_end; 2246 2247 decrypted = 0; 2248 do { 2249 if (!skb_queue_empty(&ctx->rx_list)) { 2250 skb = __skb_dequeue(&ctx->rx_list); 2251 rxm = strp_msg(skb); 2252 tlm = tls_msg(skb); 2253 } else { 2254 struct tls_decrypt_arg darg; 2255 2256 err = tls_rx_rec_wait(sk, NULL, true, released); 2257 if (err <= 0) 2258 goto read_sock_end; 2259 2260 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2261 2262 err = tls_rx_one_record(sk, NULL, &darg); 2263 if (err < 0) { 2264 tls_err_abort(sk, -EBADMSG); 2265 goto read_sock_end; 2266 } 2267 2268 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2269 0, decrypted, 2270 &flushed_at); 2271 skb = darg.skb; 2272 rxm = strp_msg(skb); 2273 tlm = tls_msg(skb); 2274 decrypted += rxm->full_len; 2275 2276 tls_rx_rec_done(ctx); 2277 } 2278 2279 /* read_sock does not support reading control messages */ 2280 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2281 err = -EINVAL; 2282 goto read_sock_requeue; 2283 } 2284 2285 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2286 if (used <= 0) { 2287 if (!copied) 2288 err = used; 2289 goto read_sock_requeue; 2290 } 2291 copied += used; 2292 if (used < rxm->full_len) { 2293 rxm->offset += used; 2294 rxm->full_len -= used; 2295 if (!desc->count) 2296 goto read_sock_requeue; 2297 } else { 2298 consume_skb(skb); 2299 if (!desc->count) 2300 skb = NULL; 2301 } 2302 } while (skb); 2303 2304 read_sock_end: 2305 tls_rx_reader_release(sk, ctx); 2306 return copied ? : err; 2307 2308 read_sock_requeue: 2309 __skb_queue_head(&ctx->rx_list, skb); 2310 goto read_sock_end; 2311 } 2312 2313 bool tls_sw_sock_is_readable(struct sock *sk) 2314 { 2315 struct tls_context *tls_ctx = tls_get_ctx(sk); 2316 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2317 bool ingress_empty = true; 2318 struct sk_psock *psock; 2319 2320 rcu_read_lock(); 2321 psock = sk_psock(sk); 2322 if (psock) 2323 ingress_empty = list_empty(&psock->ingress_msg); 2324 rcu_read_unlock(); 2325 2326 return !ingress_empty || tls_strp_msg_ready(ctx) || 2327 !skb_queue_empty(&ctx->rx_list); 2328 } 2329 2330 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2331 { 2332 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2333 struct tls_prot_info *prot = &tls_ctx->prot_info; 2334 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2335 size_t cipher_overhead; 2336 size_t data_len = 0; 2337 int ret; 2338 2339 /* Verify that we have a full TLS header, or wait for more data */ 2340 if (strp->stm.offset + prot->prepend_size > skb->len) 2341 return 0; 2342 2343 /* Sanity-check size of on-stack buffer. */ 2344 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2345 ret = -EINVAL; 2346 goto read_failure; 2347 } 2348 2349 /* Linearize header to local buffer */ 2350 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2351 if (ret < 0) 2352 goto read_failure; 2353 2354 strp->mark = header[0]; 2355 2356 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2357 2358 cipher_overhead = prot->tag_size; 2359 if (prot->version != TLS_1_3_VERSION && 2360 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2361 cipher_overhead += prot->iv_size; 2362 2363 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2364 prot->tail_size) { 2365 ret = -EMSGSIZE; 2366 goto read_failure; 2367 } 2368 if (data_len < cipher_overhead) { 2369 ret = -EBADMSG; 2370 goto read_failure; 2371 } 2372 2373 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2374 if (header[1] != TLS_1_2_VERSION_MINOR || 2375 header[2] != TLS_1_2_VERSION_MAJOR) { 2376 ret = -EINVAL; 2377 goto read_failure; 2378 } 2379 2380 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2381 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2382 return data_len + TLS_HEADER_SIZE; 2383 2384 read_failure: 2385 tls_err_abort(strp->sk, ret); 2386 2387 return ret; 2388 } 2389 2390 void tls_rx_msg_ready(struct tls_strparser *strp) 2391 { 2392 struct tls_sw_context_rx *ctx; 2393 2394 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2395 ctx->saved_data_ready(strp->sk); 2396 } 2397 2398 static void tls_data_ready(struct sock *sk) 2399 { 2400 struct tls_context *tls_ctx = tls_get_ctx(sk); 2401 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2402 struct sk_psock *psock; 2403 gfp_t alloc_save; 2404 2405 trace_sk_data_ready(sk); 2406 2407 alloc_save = sk->sk_allocation; 2408 sk->sk_allocation = GFP_ATOMIC; 2409 tls_strp_data_ready(&ctx->strp); 2410 sk->sk_allocation = alloc_save; 2411 2412 psock = sk_psock_get(sk); 2413 if (psock) { 2414 if (!list_empty(&psock->ingress_msg)) 2415 ctx->saved_data_ready(sk); 2416 sk_psock_put(sk, psock); 2417 } 2418 } 2419 2420 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2421 { 2422 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2423 2424 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2425 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2426 cancel_delayed_work_sync(&ctx->tx_work.work); 2427 } 2428 2429 void tls_sw_release_resources_tx(struct sock *sk) 2430 { 2431 struct tls_context *tls_ctx = tls_get_ctx(sk); 2432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2433 struct tls_rec *rec, *tmp; 2434 int pending; 2435 2436 /* Wait for any pending async encryptions to complete */ 2437 spin_lock_bh(&ctx->encrypt_compl_lock); 2438 ctx->async_notify = true; 2439 pending = atomic_read(&ctx->encrypt_pending); 2440 spin_unlock_bh(&ctx->encrypt_compl_lock); 2441 2442 if (pending) 2443 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2444 2445 tls_tx_records(sk, -1); 2446 2447 /* Free up un-sent records in tx_list. First, free 2448 * the partially sent record if any at head of tx_list. 2449 */ 2450 if (tls_ctx->partially_sent_record) { 2451 tls_free_partial_record(sk, tls_ctx); 2452 rec = list_first_entry(&ctx->tx_list, 2453 struct tls_rec, list); 2454 list_del(&rec->list); 2455 sk_msg_free(sk, &rec->msg_plaintext); 2456 kfree(rec); 2457 } 2458 2459 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2460 list_del(&rec->list); 2461 sk_msg_free(sk, &rec->msg_encrypted); 2462 sk_msg_free(sk, &rec->msg_plaintext); 2463 kfree(rec); 2464 } 2465 2466 crypto_free_aead(ctx->aead_send); 2467 tls_free_open_rec(sk); 2468 } 2469 2470 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2471 { 2472 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2473 2474 kfree(ctx); 2475 } 2476 2477 void tls_sw_release_resources_rx(struct sock *sk) 2478 { 2479 struct tls_context *tls_ctx = tls_get_ctx(sk); 2480 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2481 2482 if (ctx->aead_recv) { 2483 __skb_queue_purge(&ctx->rx_list); 2484 crypto_free_aead(ctx->aead_recv); 2485 tls_strp_stop(&ctx->strp); 2486 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2487 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2488 * never swapped. 2489 */ 2490 if (ctx->saved_data_ready) { 2491 write_lock_bh(&sk->sk_callback_lock); 2492 sk->sk_data_ready = ctx->saved_data_ready; 2493 write_unlock_bh(&sk->sk_callback_lock); 2494 } 2495 } 2496 } 2497 2498 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2499 { 2500 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2501 2502 tls_strp_done(&ctx->strp); 2503 } 2504 2505 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2506 { 2507 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2508 2509 kfree(ctx); 2510 } 2511 2512 void tls_sw_free_resources_rx(struct sock *sk) 2513 { 2514 struct tls_context *tls_ctx = tls_get_ctx(sk); 2515 2516 tls_sw_release_resources_rx(sk); 2517 tls_sw_free_ctx_rx(tls_ctx); 2518 } 2519 2520 /* The work handler to transmitt the encrypted records in tx_list */ 2521 static void tx_work_handler(struct work_struct *work) 2522 { 2523 struct delayed_work *delayed_work = to_delayed_work(work); 2524 struct tx_work *tx_work = container_of(delayed_work, 2525 struct tx_work, work); 2526 struct sock *sk = tx_work->sk; 2527 struct tls_context *tls_ctx = tls_get_ctx(sk); 2528 struct tls_sw_context_tx *ctx; 2529 2530 if (unlikely(!tls_ctx)) 2531 return; 2532 2533 ctx = tls_sw_ctx_tx(tls_ctx); 2534 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2535 return; 2536 2537 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2538 return; 2539 2540 if (mutex_trylock(&tls_ctx->tx_lock)) { 2541 lock_sock(sk); 2542 tls_tx_records(sk, -1); 2543 release_sock(sk); 2544 mutex_unlock(&tls_ctx->tx_lock); 2545 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2546 /* Someone is holding the tx_lock, they will likely run Tx 2547 * and cancel the work on their way out of the lock section. 2548 * Schedule a long delay just in case. 2549 */ 2550 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2551 } 2552 } 2553 2554 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2555 { 2556 struct tls_rec *rec; 2557 2558 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2559 if (!rec) 2560 return false; 2561 2562 return READ_ONCE(rec->tx_ready); 2563 } 2564 2565 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2566 { 2567 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2568 2569 /* Schedule the transmission if tx list is ready */ 2570 if (tls_is_tx_ready(tx_ctx) && 2571 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2572 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2573 } 2574 2575 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2576 { 2577 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2578 2579 write_lock_bh(&sk->sk_callback_lock); 2580 rx_ctx->saved_data_ready = sk->sk_data_ready; 2581 sk->sk_data_ready = tls_data_ready; 2582 write_unlock_bh(&sk->sk_callback_lock); 2583 } 2584 2585 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2586 { 2587 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2588 2589 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2590 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2591 } 2592 2593 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2594 { 2595 struct tls_sw_context_tx *sw_ctx_tx; 2596 2597 if (!ctx->priv_ctx_tx) { 2598 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2599 if (!sw_ctx_tx) 2600 return NULL; 2601 } else { 2602 sw_ctx_tx = ctx->priv_ctx_tx; 2603 } 2604 2605 crypto_init_wait(&sw_ctx_tx->async_wait); 2606 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2607 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2608 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2609 sw_ctx_tx->tx_work.sk = sk; 2610 2611 return sw_ctx_tx; 2612 } 2613 2614 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2615 { 2616 struct tls_sw_context_rx *sw_ctx_rx; 2617 2618 if (!ctx->priv_ctx_rx) { 2619 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2620 if (!sw_ctx_rx) 2621 return NULL; 2622 } else { 2623 sw_ctx_rx = ctx->priv_ctx_rx; 2624 } 2625 2626 crypto_init_wait(&sw_ctx_rx->async_wait); 2627 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2628 init_waitqueue_head(&sw_ctx_rx->wq); 2629 skb_queue_head_init(&sw_ctx_rx->rx_list); 2630 skb_queue_head_init(&sw_ctx_rx->async_hold); 2631 2632 return sw_ctx_rx; 2633 } 2634 2635 int init_prot_info(struct tls_prot_info *prot, 2636 const struct tls_crypto_info *crypto_info, 2637 const struct tls_cipher_desc *cipher_desc) 2638 { 2639 u16 nonce_size = cipher_desc->nonce; 2640 2641 if (crypto_info->version == TLS_1_3_VERSION) { 2642 nonce_size = 0; 2643 prot->aad_size = TLS_HEADER_SIZE; 2644 prot->tail_size = 1; 2645 } else { 2646 prot->aad_size = TLS_AAD_SPACE_SIZE; 2647 prot->tail_size = 0; 2648 } 2649 2650 /* Sanity-check the sizes for stack allocations. */ 2651 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2652 return -EINVAL; 2653 2654 prot->version = crypto_info->version; 2655 prot->cipher_type = crypto_info->cipher_type; 2656 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2657 prot->tag_size = cipher_desc->tag; 2658 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2659 prot->iv_size = cipher_desc->iv; 2660 prot->salt_size = cipher_desc->salt; 2661 prot->rec_seq_size = cipher_desc->rec_seq; 2662 2663 return 0; 2664 } 2665 2666 int tls_set_sw_offload(struct sock *sk, int tx) 2667 { 2668 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2669 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2670 const struct tls_cipher_desc *cipher_desc; 2671 struct tls_crypto_info *crypto_info; 2672 char *iv, *rec_seq, *key, *salt; 2673 struct cipher_context *cctx; 2674 struct tls_prot_info *prot; 2675 struct crypto_aead **aead; 2676 struct tls_context *ctx; 2677 struct crypto_tfm *tfm; 2678 int rc = 0; 2679 2680 ctx = tls_get_ctx(sk); 2681 prot = &ctx->prot_info; 2682 2683 if (tx) { 2684 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2685 if (!ctx->priv_ctx_tx) 2686 return -ENOMEM; 2687 2688 sw_ctx_tx = ctx->priv_ctx_tx; 2689 crypto_info = &ctx->crypto_send.info; 2690 cctx = &ctx->tx; 2691 aead = &sw_ctx_tx->aead_send; 2692 } else { 2693 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2694 if (!ctx->priv_ctx_rx) 2695 return -ENOMEM; 2696 2697 sw_ctx_rx = ctx->priv_ctx_rx; 2698 crypto_info = &ctx->crypto_recv.info; 2699 cctx = &ctx->rx; 2700 aead = &sw_ctx_rx->aead_recv; 2701 } 2702 2703 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 2704 if (!cipher_desc) { 2705 rc = -EINVAL; 2706 goto free_priv; 2707 } 2708 2709 rc = init_prot_info(prot, crypto_info, cipher_desc); 2710 if (rc) 2711 goto free_priv; 2712 2713 iv = crypto_info_iv(crypto_info, cipher_desc); 2714 key = crypto_info_key(crypto_info, cipher_desc); 2715 salt = crypto_info_salt(crypto_info, cipher_desc); 2716 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); 2717 2718 memcpy(cctx->iv, salt, cipher_desc->salt); 2719 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2720 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2721 2722 if (!*aead) { 2723 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2724 if (IS_ERR(*aead)) { 2725 rc = PTR_ERR(*aead); 2726 *aead = NULL; 2727 goto free_priv; 2728 } 2729 } 2730 2731 ctx->push_pending_record = tls_sw_push_pending_record; 2732 2733 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2734 if (rc) 2735 goto free_aead; 2736 2737 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2738 if (rc) 2739 goto free_aead; 2740 2741 if (sw_ctx_rx) { 2742 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2743 2744 tls_update_rx_zc_capable(ctx); 2745 sw_ctx_rx->async_capable = 2746 crypto_info->version != TLS_1_3_VERSION && 2747 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2748 2749 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2750 if (rc) 2751 goto free_aead; 2752 } 2753 2754 goto out; 2755 2756 free_aead: 2757 crypto_free_aead(*aead); 2758 *aead = NULL; 2759 free_priv: 2760 if (tx) { 2761 kfree(ctx->priv_ctx_tx); 2762 ctx->priv_ctx_tx = NULL; 2763 } else { 2764 kfree(ctx->priv_ctx_rx); 2765 ctx->priv_ctx_rx = NULL; 2766 } 2767 out: 2768 return rc; 2769 } 2770