1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * 8 * This software is available to you under a choice of one of two 9 * licenses. You may choose to be licensed under the terms of the GNU 10 * General Public License (GPL) Version 2, available from the file 11 * COPYING in the main directory of this source tree, or the 12 * OpenIB.org BSD license below: 13 * 14 * Redistribution and use in source and binary forms, with or 15 * without modification, are permitted provided that the following 16 * conditions are met: 17 * 18 * - Redistributions of source code must retain the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer. 21 * 22 * - Redistributions in binary form must reproduce the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer in the documentation and/or other materials 25 * provided with the distribution. 26 * 27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 34 * SOFTWARE. 35 */ 36 37 #include <linux/sched/signal.h> 38 #include <linux/module.h> 39 #include <crypto/aead.h> 40 41 #include <net/strparser.h> 42 #include <net/tls.h> 43 44 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 45 46 static int tls_do_decryption(struct sock *sk, 47 struct scatterlist *sgin, 48 struct scatterlist *sgout, 49 char *iv_recv, 50 size_t data_len, 51 struct sk_buff *skb, 52 gfp_t flags) 53 { 54 struct tls_context *tls_ctx = tls_get_ctx(sk); 55 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 56 struct strp_msg *rxm = strp_msg(skb); 57 struct aead_request *aead_req; 58 59 int ret; 60 unsigned int req_size = sizeof(struct aead_request) + 61 crypto_aead_reqsize(ctx->aead_recv); 62 63 aead_req = kzalloc(req_size, flags); 64 if (!aead_req) 65 return -ENOMEM; 66 67 aead_request_set_tfm(aead_req, ctx->aead_recv); 68 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 69 aead_request_set_crypt(aead_req, sgin, sgout, 70 data_len + tls_ctx->rx.tag_size, 71 (u8 *)iv_recv); 72 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 73 crypto_req_done, &ctx->async_wait); 74 75 ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait); 76 77 if (ret < 0) 78 goto out; 79 80 rxm->offset += tls_ctx->rx.prepend_size; 81 rxm->full_len -= tls_ctx->rx.overhead_size; 82 tls_advance_record_sn(sk, &tls_ctx->rx); 83 84 ctx->decrypted = true; 85 86 ctx->saved_data_ready(sk); 87 88 out: 89 kfree(aead_req); 90 return ret; 91 } 92 93 static void trim_sg(struct sock *sk, struct scatterlist *sg, 94 int *sg_num_elem, unsigned int *sg_size, int target_size) 95 { 96 int i = *sg_num_elem - 1; 97 int trim = *sg_size - target_size; 98 99 if (trim <= 0) { 100 WARN_ON(trim < 0); 101 return; 102 } 103 104 *sg_size = target_size; 105 while (trim >= sg[i].length) { 106 trim -= sg[i].length; 107 sk_mem_uncharge(sk, sg[i].length); 108 put_page(sg_page(&sg[i])); 109 i--; 110 111 if (i < 0) 112 goto out; 113 } 114 115 sg[i].length -= trim; 116 sk_mem_uncharge(sk, trim); 117 118 out: 119 *sg_num_elem = i + 1; 120 } 121 122 static void trim_both_sgl(struct sock *sk, int target_size) 123 { 124 struct tls_context *tls_ctx = tls_get_ctx(sk); 125 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 126 127 trim_sg(sk, ctx->sg_plaintext_data, 128 &ctx->sg_plaintext_num_elem, 129 &ctx->sg_plaintext_size, 130 target_size); 131 132 if (target_size > 0) 133 target_size += tls_ctx->tx.overhead_size; 134 135 trim_sg(sk, ctx->sg_encrypted_data, 136 &ctx->sg_encrypted_num_elem, 137 &ctx->sg_encrypted_size, 138 target_size); 139 } 140 141 static int alloc_encrypted_sg(struct sock *sk, int len) 142 { 143 struct tls_context *tls_ctx = tls_get_ctx(sk); 144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 145 int rc = 0; 146 147 rc = sk_alloc_sg(sk, len, 148 ctx->sg_encrypted_data, 0, 149 &ctx->sg_encrypted_num_elem, 150 &ctx->sg_encrypted_size, 0); 151 152 return rc; 153 } 154 155 static int alloc_plaintext_sg(struct sock *sk, int len) 156 { 157 struct tls_context *tls_ctx = tls_get_ctx(sk); 158 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 159 int rc = 0; 160 161 rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0, 162 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, 163 tls_ctx->pending_open_record_frags); 164 165 return rc; 166 } 167 168 static void free_sg(struct sock *sk, struct scatterlist *sg, 169 int *sg_num_elem, unsigned int *sg_size) 170 { 171 int i, n = *sg_num_elem; 172 173 for (i = 0; i < n; ++i) { 174 sk_mem_uncharge(sk, sg[i].length); 175 put_page(sg_page(&sg[i])); 176 } 177 *sg_num_elem = 0; 178 *sg_size = 0; 179 } 180 181 static void tls_free_both_sg(struct sock *sk) 182 { 183 struct tls_context *tls_ctx = tls_get_ctx(sk); 184 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 185 186 free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, 187 &ctx->sg_encrypted_size); 188 189 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 190 &ctx->sg_plaintext_size); 191 } 192 193 static int tls_do_encryption(struct tls_context *tls_ctx, 194 struct tls_sw_context_tx *ctx, 195 struct aead_request *aead_req, 196 size_t data_len) 197 { 198 int rc; 199 200 ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size; 201 ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size; 202 203 aead_request_set_tfm(aead_req, ctx->aead_send); 204 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 205 aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out, 206 data_len, tls_ctx->tx.iv); 207 208 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 209 crypto_req_done, &ctx->async_wait); 210 211 rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait); 212 213 ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size; 214 ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size; 215 216 return rc; 217 } 218 219 static int tls_push_record(struct sock *sk, int flags, 220 unsigned char record_type) 221 { 222 struct tls_context *tls_ctx = tls_get_ctx(sk); 223 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 224 struct aead_request *req; 225 int rc; 226 227 req = kzalloc(sizeof(struct aead_request) + 228 crypto_aead_reqsize(ctx->aead_send), sk->sk_allocation); 229 if (!req) 230 return -ENOMEM; 231 232 sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1); 233 sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1); 234 235 tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size, 236 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, 237 record_type); 238 239 tls_fill_prepend(tls_ctx, 240 page_address(sg_page(&ctx->sg_encrypted_data[0])) + 241 ctx->sg_encrypted_data[0].offset, 242 ctx->sg_plaintext_size, record_type); 243 244 tls_ctx->pending_open_record_frags = 0; 245 set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags); 246 247 rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size); 248 if (rc < 0) { 249 /* If we are called from write_space and 250 * we fail, we need to set this SOCK_NOSPACE 251 * to trigger another write_space in the future. 252 */ 253 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 254 goto out_req; 255 } 256 257 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 258 &ctx->sg_plaintext_size); 259 260 ctx->sg_encrypted_num_elem = 0; 261 ctx->sg_encrypted_size = 0; 262 263 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */ 264 rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags); 265 if (rc < 0 && rc != -EAGAIN) 266 tls_err_abort(sk, EBADMSG); 267 268 tls_advance_record_sn(sk, &tls_ctx->tx); 269 out_req: 270 kfree(req); 271 return rc; 272 } 273 274 static int tls_sw_push_pending_record(struct sock *sk, int flags) 275 { 276 return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); 277 } 278 279 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 280 int length, int *pages_used, 281 unsigned int *size_used, 282 struct scatterlist *to, int to_max_pages, 283 bool charge) 284 { 285 struct page *pages[MAX_SKB_FRAGS]; 286 287 size_t offset; 288 ssize_t copied, use; 289 int i = 0; 290 unsigned int size = *size_used; 291 int num_elem = *pages_used; 292 int rc = 0; 293 int maxpages; 294 295 while (length > 0) { 296 i = 0; 297 maxpages = to_max_pages - num_elem; 298 if (maxpages == 0) { 299 rc = -EFAULT; 300 goto out; 301 } 302 copied = iov_iter_get_pages(from, pages, 303 length, 304 maxpages, &offset); 305 if (copied <= 0) { 306 rc = -EFAULT; 307 goto out; 308 } 309 310 iov_iter_advance(from, copied); 311 312 length -= copied; 313 size += copied; 314 while (copied) { 315 use = min_t(int, copied, PAGE_SIZE - offset); 316 317 sg_set_page(&to[num_elem], 318 pages[i], use, offset); 319 sg_unmark_end(&to[num_elem]); 320 if (charge) 321 sk_mem_charge(sk, use); 322 323 offset = 0; 324 copied -= use; 325 326 ++i; 327 ++num_elem; 328 } 329 } 330 331 out: 332 *size_used = size; 333 *pages_used = num_elem; 334 335 return rc; 336 } 337 338 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, 339 int bytes) 340 { 341 struct tls_context *tls_ctx = tls_get_ctx(sk); 342 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 343 struct scatterlist *sg = ctx->sg_plaintext_data; 344 int copy, i, rc = 0; 345 346 for (i = tls_ctx->pending_open_record_frags; 347 i < ctx->sg_plaintext_num_elem; ++i) { 348 copy = sg[i].length; 349 if (copy_from_iter( 350 page_address(sg_page(&sg[i])) + sg[i].offset, 351 copy, from) != copy) { 352 rc = -EFAULT; 353 goto out; 354 } 355 bytes -= copy; 356 357 ++tls_ctx->pending_open_record_frags; 358 359 if (!bytes) 360 break; 361 } 362 363 out: 364 return rc; 365 } 366 367 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 int ret = 0; 372 int required_size; 373 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 374 bool eor = !(msg->msg_flags & MSG_MORE); 375 size_t try_to_copy, copied = 0; 376 unsigned char record_type = TLS_RECORD_TYPE_DATA; 377 int record_room; 378 bool full_record; 379 int orig_size; 380 381 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 382 return -ENOTSUPP; 383 384 lock_sock(sk); 385 386 if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo)) 387 goto send_end; 388 389 if (unlikely(msg->msg_controllen)) { 390 ret = tls_proccess_cmsg(sk, msg, &record_type); 391 if (ret) 392 goto send_end; 393 } 394 395 while (msg_data_left(msg)) { 396 if (sk->sk_err) { 397 ret = -sk->sk_err; 398 goto send_end; 399 } 400 401 orig_size = ctx->sg_plaintext_size; 402 full_record = false; 403 try_to_copy = msg_data_left(msg); 404 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 405 if (try_to_copy >= record_room) { 406 try_to_copy = record_room; 407 full_record = true; 408 } 409 410 required_size = ctx->sg_plaintext_size + try_to_copy + 411 tls_ctx->tx.overhead_size; 412 413 if (!sk_stream_memory_free(sk)) 414 goto wait_for_sndbuf; 415 alloc_encrypted: 416 ret = alloc_encrypted_sg(sk, required_size); 417 if (ret) { 418 if (ret != -ENOSPC) 419 goto wait_for_memory; 420 421 /* Adjust try_to_copy according to the amount that was 422 * actually allocated. The difference is due 423 * to max sg elements limit 424 */ 425 try_to_copy -= required_size - ctx->sg_encrypted_size; 426 full_record = true; 427 } 428 429 if (full_record || eor) { 430 ret = zerocopy_from_iter(sk, &msg->msg_iter, 431 try_to_copy, &ctx->sg_plaintext_num_elem, 432 &ctx->sg_plaintext_size, 433 ctx->sg_plaintext_data, 434 ARRAY_SIZE(ctx->sg_plaintext_data), 435 true); 436 if (ret) 437 goto fallback_to_reg_send; 438 439 copied += try_to_copy; 440 ret = tls_push_record(sk, msg->msg_flags, record_type); 441 if (!ret) 442 continue; 443 if (ret < 0) 444 goto send_end; 445 446 copied -= try_to_copy; 447 fallback_to_reg_send: 448 iov_iter_revert(&msg->msg_iter, 449 ctx->sg_plaintext_size - orig_size); 450 trim_sg(sk, ctx->sg_plaintext_data, 451 &ctx->sg_plaintext_num_elem, 452 &ctx->sg_plaintext_size, 453 orig_size); 454 } 455 456 required_size = ctx->sg_plaintext_size + try_to_copy; 457 alloc_plaintext: 458 ret = alloc_plaintext_sg(sk, required_size); 459 if (ret) { 460 if (ret != -ENOSPC) 461 goto wait_for_memory; 462 463 /* Adjust try_to_copy according to the amount that was 464 * actually allocated. The difference is due 465 * to max sg elements limit 466 */ 467 try_to_copy -= required_size - ctx->sg_plaintext_size; 468 full_record = true; 469 470 trim_sg(sk, ctx->sg_encrypted_data, 471 &ctx->sg_encrypted_num_elem, 472 &ctx->sg_encrypted_size, 473 ctx->sg_plaintext_size + 474 tls_ctx->tx.overhead_size); 475 } 476 477 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); 478 if (ret) 479 goto trim_sgl; 480 481 copied += try_to_copy; 482 if (full_record || eor) { 483 push_record: 484 ret = tls_push_record(sk, msg->msg_flags, record_type); 485 if (ret) { 486 if (ret == -ENOMEM) 487 goto wait_for_memory; 488 489 goto send_end; 490 } 491 } 492 493 continue; 494 495 wait_for_sndbuf: 496 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 497 wait_for_memory: 498 ret = sk_stream_wait_memory(sk, &timeo); 499 if (ret) { 500 trim_sgl: 501 trim_both_sgl(sk, orig_size); 502 goto send_end; 503 } 504 505 if (tls_is_pending_closed_record(tls_ctx)) 506 goto push_record; 507 508 if (ctx->sg_encrypted_size < required_size) 509 goto alloc_encrypted; 510 511 goto alloc_plaintext; 512 } 513 514 send_end: 515 ret = sk_stream_error(sk, msg->msg_flags, ret); 516 517 release_sock(sk); 518 return copied ? copied : ret; 519 } 520 521 int tls_sw_sendpage(struct sock *sk, struct page *page, 522 int offset, size_t size, int flags) 523 { 524 struct tls_context *tls_ctx = tls_get_ctx(sk); 525 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 526 int ret = 0; 527 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 528 bool eor; 529 size_t orig_size = size; 530 unsigned char record_type = TLS_RECORD_TYPE_DATA; 531 struct scatterlist *sg; 532 bool full_record; 533 int record_room; 534 535 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 536 MSG_SENDPAGE_NOTLAST)) 537 return -ENOTSUPP; 538 539 /* No MSG_EOR from splice, only look at MSG_MORE */ 540 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 541 542 lock_sock(sk); 543 544 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 545 546 if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo)) 547 goto sendpage_end; 548 549 /* Call the sk_stream functions to manage the sndbuf mem. */ 550 while (size > 0) { 551 size_t copy, required_size; 552 553 if (sk->sk_err) { 554 ret = -sk->sk_err; 555 goto sendpage_end; 556 } 557 558 full_record = false; 559 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 560 copy = size; 561 if (copy >= record_room) { 562 copy = record_room; 563 full_record = true; 564 } 565 required_size = ctx->sg_plaintext_size + copy + 566 tls_ctx->tx.overhead_size; 567 568 if (!sk_stream_memory_free(sk)) 569 goto wait_for_sndbuf; 570 alloc_payload: 571 ret = alloc_encrypted_sg(sk, required_size); 572 if (ret) { 573 if (ret != -ENOSPC) 574 goto wait_for_memory; 575 576 /* Adjust copy according to the amount that was 577 * actually allocated. The difference is due 578 * to max sg elements limit 579 */ 580 copy -= required_size - ctx->sg_plaintext_size; 581 full_record = true; 582 } 583 584 get_page(page); 585 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem; 586 sg_set_page(sg, page, copy, offset); 587 sg_unmark_end(sg); 588 589 ctx->sg_plaintext_num_elem++; 590 591 sk_mem_charge(sk, copy); 592 offset += copy; 593 size -= copy; 594 ctx->sg_plaintext_size += copy; 595 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem; 596 597 if (full_record || eor || 598 ctx->sg_plaintext_num_elem == 599 ARRAY_SIZE(ctx->sg_plaintext_data)) { 600 push_record: 601 ret = tls_push_record(sk, flags, record_type); 602 if (ret) { 603 if (ret == -ENOMEM) 604 goto wait_for_memory; 605 606 goto sendpage_end; 607 } 608 } 609 continue; 610 wait_for_sndbuf: 611 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 612 wait_for_memory: 613 ret = sk_stream_wait_memory(sk, &timeo); 614 if (ret) { 615 trim_both_sgl(sk, ctx->sg_plaintext_size); 616 goto sendpage_end; 617 } 618 619 if (tls_is_pending_closed_record(tls_ctx)) 620 goto push_record; 621 622 goto alloc_payload; 623 } 624 625 sendpage_end: 626 if (orig_size > size) 627 ret = orig_size - size; 628 else 629 ret = sk_stream_error(sk, flags, ret); 630 631 release_sock(sk); 632 return ret; 633 } 634 635 static struct sk_buff *tls_wait_data(struct sock *sk, int flags, 636 long timeo, int *err) 637 { 638 struct tls_context *tls_ctx = tls_get_ctx(sk); 639 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 640 struct sk_buff *skb; 641 DEFINE_WAIT_FUNC(wait, woken_wake_function); 642 643 while (!(skb = ctx->recv_pkt)) { 644 if (sk->sk_err) { 645 *err = sock_error(sk); 646 return NULL; 647 } 648 649 if (sk->sk_shutdown & RCV_SHUTDOWN) 650 return NULL; 651 652 if (sock_flag(sk, SOCK_DONE)) 653 return NULL; 654 655 if ((flags & MSG_DONTWAIT) || !timeo) { 656 *err = -EAGAIN; 657 return NULL; 658 } 659 660 add_wait_queue(sk_sleep(sk), &wait); 661 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 662 sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait); 663 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 664 remove_wait_queue(sk_sleep(sk), &wait); 665 666 /* Handle signals */ 667 if (signal_pending(current)) { 668 *err = sock_intr_errno(timeo); 669 return NULL; 670 } 671 } 672 673 return skb; 674 } 675 676 static int decrypt_skb(struct sock *sk, struct sk_buff *skb, 677 struct scatterlist *sgout) 678 { 679 struct tls_context *tls_ctx = tls_get_ctx(sk); 680 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 681 char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE]; 682 struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2]; 683 struct scatterlist *sgin = &sgin_arr[0]; 684 struct strp_msg *rxm = strp_msg(skb); 685 int ret, nsg = ARRAY_SIZE(sgin_arr); 686 struct sk_buff *unused; 687 688 ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 689 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 690 tls_ctx->rx.iv_size); 691 if (ret < 0) 692 return ret; 693 694 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 695 if (!sgout) { 696 nsg = skb_cow_data(skb, 0, &unused) + 1; 697 sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation); 698 sgout = sgin; 699 } 700 701 sg_init_table(sgin, nsg); 702 sg_set_buf(&sgin[0], ctx->rx_aad_ciphertext, TLS_AAD_SPACE_SIZE); 703 704 nsg = skb_to_sgvec(skb, &sgin[1], 705 rxm->offset + tls_ctx->rx.prepend_size, 706 rxm->full_len - tls_ctx->rx.prepend_size); 707 if (nsg < 0) { 708 ret = nsg; 709 goto out; 710 } 711 712 tls_make_aad(ctx->rx_aad_ciphertext, 713 rxm->full_len - tls_ctx->rx.overhead_size, 714 tls_ctx->rx.rec_seq, 715 tls_ctx->rx.rec_seq_size, 716 ctx->control); 717 718 ret = tls_do_decryption(sk, sgin, sgout, iv, 719 rxm->full_len - tls_ctx->rx.overhead_size, 720 skb, sk->sk_allocation); 721 722 out: 723 if (sgin != &sgin_arr[0]) 724 kfree(sgin); 725 726 return ret; 727 } 728 729 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 730 unsigned int len) 731 { 732 struct tls_context *tls_ctx = tls_get_ctx(sk); 733 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 734 struct strp_msg *rxm = strp_msg(skb); 735 736 if (len < rxm->full_len) { 737 rxm->offset += len; 738 rxm->full_len -= len; 739 740 return false; 741 } 742 743 /* Finished with message */ 744 ctx->recv_pkt = NULL; 745 kfree_skb(skb); 746 __strp_unpause(&ctx->strp); 747 748 return true; 749 } 750 751 int tls_sw_recvmsg(struct sock *sk, 752 struct msghdr *msg, 753 size_t len, 754 int nonblock, 755 int flags, 756 int *addr_len) 757 { 758 struct tls_context *tls_ctx = tls_get_ctx(sk); 759 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 760 unsigned char control; 761 struct strp_msg *rxm; 762 struct sk_buff *skb; 763 ssize_t copied = 0; 764 bool cmsg = false; 765 int target, err = 0; 766 long timeo; 767 768 flags |= nonblock; 769 770 if (unlikely(flags & MSG_ERRQUEUE)) 771 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 772 773 lock_sock(sk); 774 775 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 776 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 777 do { 778 bool zc = false; 779 int chunk = 0; 780 781 skb = tls_wait_data(sk, flags, timeo, &err); 782 if (!skb) 783 goto recv_end; 784 785 rxm = strp_msg(skb); 786 if (!cmsg) { 787 int cerr; 788 789 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 790 sizeof(ctx->control), &ctx->control); 791 cmsg = true; 792 control = ctx->control; 793 if (ctx->control != TLS_RECORD_TYPE_DATA) { 794 if (cerr || msg->msg_flags & MSG_CTRUNC) { 795 err = -EIO; 796 goto recv_end; 797 } 798 } 799 } else if (control != ctx->control) { 800 goto recv_end; 801 } 802 803 if (!ctx->decrypted) { 804 int page_count; 805 int to_copy; 806 807 page_count = iov_iter_npages(&msg->msg_iter, 808 MAX_SKB_FRAGS); 809 to_copy = rxm->full_len - tls_ctx->rx.overhead_size; 810 if (to_copy <= len && page_count < MAX_SKB_FRAGS && 811 likely(!(flags & MSG_PEEK))) { 812 struct scatterlist sgin[MAX_SKB_FRAGS + 1]; 813 int pages = 0; 814 815 zc = true; 816 sg_init_table(sgin, MAX_SKB_FRAGS + 1); 817 sg_set_buf(&sgin[0], ctx->rx_aad_plaintext, 818 TLS_AAD_SPACE_SIZE); 819 820 err = zerocopy_from_iter(sk, &msg->msg_iter, 821 to_copy, &pages, 822 &chunk, &sgin[1], 823 MAX_SKB_FRAGS, false); 824 if (err < 0) 825 goto fallback_to_reg_recv; 826 827 err = decrypt_skb(sk, skb, sgin); 828 for (; pages > 0; pages--) 829 put_page(sg_page(&sgin[pages])); 830 if (err < 0) { 831 tls_err_abort(sk, EBADMSG); 832 goto recv_end; 833 } 834 } else { 835 fallback_to_reg_recv: 836 err = decrypt_skb(sk, skb, NULL); 837 if (err < 0) { 838 tls_err_abort(sk, EBADMSG); 839 goto recv_end; 840 } 841 } 842 ctx->decrypted = true; 843 } 844 845 if (!zc) { 846 chunk = min_t(unsigned int, rxm->full_len, len); 847 err = skb_copy_datagram_msg(skb, rxm->offset, msg, 848 chunk); 849 if (err < 0) 850 goto recv_end; 851 } 852 853 copied += chunk; 854 len -= chunk; 855 if (likely(!(flags & MSG_PEEK))) { 856 u8 control = ctx->control; 857 858 if (tls_sw_advance_skb(sk, skb, chunk)) { 859 /* Return full control message to 860 * userspace before trying to parse 861 * another message type 862 */ 863 msg->msg_flags |= MSG_EOR; 864 if (control != TLS_RECORD_TYPE_DATA) 865 goto recv_end; 866 } 867 } 868 /* If we have a new message from strparser, continue now. */ 869 if (copied >= target && !ctx->recv_pkt) 870 break; 871 } while (len); 872 873 recv_end: 874 release_sock(sk); 875 return copied ? : err; 876 } 877 878 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 879 struct pipe_inode_info *pipe, 880 size_t len, unsigned int flags) 881 { 882 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 883 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 884 struct strp_msg *rxm = NULL; 885 struct sock *sk = sock->sk; 886 struct sk_buff *skb; 887 ssize_t copied = 0; 888 int err = 0; 889 long timeo; 890 int chunk; 891 892 lock_sock(sk); 893 894 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 895 896 skb = tls_wait_data(sk, flags, timeo, &err); 897 if (!skb) 898 goto splice_read_end; 899 900 /* splice does not support reading control messages */ 901 if (ctx->control != TLS_RECORD_TYPE_DATA) { 902 err = -ENOTSUPP; 903 goto splice_read_end; 904 } 905 906 if (!ctx->decrypted) { 907 err = decrypt_skb(sk, skb, NULL); 908 909 if (err < 0) { 910 tls_err_abort(sk, EBADMSG); 911 goto splice_read_end; 912 } 913 ctx->decrypted = true; 914 } 915 rxm = strp_msg(skb); 916 917 chunk = min_t(unsigned int, rxm->full_len, len); 918 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 919 if (copied < 0) 920 goto splice_read_end; 921 922 if (likely(!(flags & MSG_PEEK))) 923 tls_sw_advance_skb(sk, skb, copied); 924 925 splice_read_end: 926 release_sock(sk); 927 return copied ? : err; 928 } 929 930 unsigned int tls_sw_poll(struct file *file, struct socket *sock, 931 struct poll_table_struct *wait) 932 { 933 unsigned int ret; 934 struct sock *sk = sock->sk; 935 struct tls_context *tls_ctx = tls_get_ctx(sk); 936 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 937 938 /* Grab POLLOUT and POLLHUP from the underlying socket */ 939 ret = ctx->sk_poll(file, sock, wait); 940 941 /* Clear POLLIN bits, and set based on recv_pkt */ 942 ret &= ~(POLLIN | POLLRDNORM); 943 if (ctx->recv_pkt) 944 ret |= POLLIN | POLLRDNORM; 945 946 return ret; 947 } 948 949 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 950 { 951 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 952 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 953 char header[tls_ctx->rx.prepend_size]; 954 struct strp_msg *rxm = strp_msg(skb); 955 size_t cipher_overhead; 956 size_t data_len = 0; 957 int ret; 958 959 /* Verify that we have a full TLS header, or wait for more data */ 960 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) 961 return 0; 962 963 /* Linearize header to local buffer */ 964 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); 965 966 if (ret < 0) 967 goto read_failure; 968 969 ctx->control = header[0]; 970 971 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 972 973 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; 974 975 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { 976 ret = -EMSGSIZE; 977 goto read_failure; 978 } 979 if (data_len < cipher_overhead) { 980 ret = -EBADMSG; 981 goto read_failure; 982 } 983 984 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) || 985 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) { 986 ret = -EINVAL; 987 goto read_failure; 988 } 989 990 return data_len + TLS_HEADER_SIZE; 991 992 read_failure: 993 tls_err_abort(strp->sk, ret); 994 995 return ret; 996 } 997 998 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 999 { 1000 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1001 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1002 struct strp_msg *rxm; 1003 1004 rxm = strp_msg(skb); 1005 1006 ctx->decrypted = false; 1007 1008 ctx->recv_pkt = skb; 1009 strp_pause(strp); 1010 1011 strp->sk->sk_state_change(strp->sk); 1012 } 1013 1014 static void tls_data_ready(struct sock *sk) 1015 { 1016 struct tls_context *tls_ctx = tls_get_ctx(sk); 1017 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1018 1019 strp_data_ready(&ctx->strp); 1020 } 1021 1022 void tls_sw_free_resources_tx(struct sock *sk) 1023 { 1024 struct tls_context *tls_ctx = tls_get_ctx(sk); 1025 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1026 1027 if (ctx->aead_send) 1028 crypto_free_aead(ctx->aead_send); 1029 tls_free_both_sg(sk); 1030 1031 kfree(ctx); 1032 } 1033 1034 void tls_sw_free_resources_rx(struct sock *sk) 1035 { 1036 struct tls_context *tls_ctx = tls_get_ctx(sk); 1037 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1038 1039 if (ctx->aead_recv) { 1040 if (ctx->recv_pkt) { 1041 kfree_skb(ctx->recv_pkt); 1042 ctx->recv_pkt = NULL; 1043 } 1044 crypto_free_aead(ctx->aead_recv); 1045 strp_stop(&ctx->strp); 1046 write_lock_bh(&sk->sk_callback_lock); 1047 sk->sk_data_ready = ctx->saved_data_ready; 1048 write_unlock_bh(&sk->sk_callback_lock); 1049 release_sock(sk); 1050 strp_done(&ctx->strp); 1051 lock_sock(sk); 1052 } 1053 1054 kfree(ctx); 1055 } 1056 1057 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 1058 { 1059 char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; 1060 struct tls_crypto_info *crypto_info; 1061 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 1062 struct tls_sw_context_tx *sw_ctx_tx = NULL; 1063 struct tls_sw_context_rx *sw_ctx_rx = NULL; 1064 struct cipher_context *cctx; 1065 struct crypto_aead **aead; 1066 struct strp_callbacks cb; 1067 u16 nonce_size, tag_size, iv_size, rec_seq_size; 1068 char *iv, *rec_seq; 1069 int rc = 0; 1070 1071 if (!ctx) { 1072 rc = -EINVAL; 1073 goto out; 1074 } 1075 1076 if (tx) { 1077 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 1078 if (!sw_ctx_tx) { 1079 rc = -ENOMEM; 1080 goto out; 1081 } 1082 crypto_init_wait(&sw_ctx_tx->async_wait); 1083 ctx->priv_ctx_tx = sw_ctx_tx; 1084 } else { 1085 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 1086 if (!sw_ctx_rx) { 1087 rc = -ENOMEM; 1088 goto out; 1089 } 1090 crypto_init_wait(&sw_ctx_rx->async_wait); 1091 ctx->priv_ctx_rx = sw_ctx_rx; 1092 } 1093 1094 if (tx) { 1095 crypto_info = &ctx->crypto_send; 1096 cctx = &ctx->tx; 1097 aead = &sw_ctx_tx->aead_send; 1098 } else { 1099 crypto_info = &ctx->crypto_recv; 1100 cctx = &ctx->rx; 1101 aead = &sw_ctx_rx->aead_recv; 1102 } 1103 1104 switch (crypto_info->cipher_type) { 1105 case TLS_CIPHER_AES_GCM_128: { 1106 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1107 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1108 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1109 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1110 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1111 rec_seq = 1112 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1113 gcm_128_info = 1114 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 1115 break; 1116 } 1117 default: 1118 rc = -EINVAL; 1119 goto free_priv; 1120 } 1121 1122 /* Sanity-check the IV size for stack allocations. */ 1123 if (iv_size > MAX_IV_SIZE) { 1124 rc = -EINVAL; 1125 goto free_priv; 1126 } 1127 1128 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; 1129 cctx->tag_size = tag_size; 1130 cctx->overhead_size = cctx->prepend_size + cctx->tag_size; 1131 cctx->iv_size = iv_size; 1132 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1133 GFP_KERNEL); 1134 if (!cctx->iv) { 1135 rc = -ENOMEM; 1136 goto free_priv; 1137 } 1138 memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1139 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1140 cctx->rec_seq_size = rec_seq_size; 1141 cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL); 1142 if (!cctx->rec_seq) { 1143 rc = -ENOMEM; 1144 goto free_iv; 1145 } 1146 memcpy(cctx->rec_seq, rec_seq, rec_seq_size); 1147 1148 if (sw_ctx_tx) { 1149 sg_init_table(sw_ctx_tx->sg_encrypted_data, 1150 ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data)); 1151 sg_init_table(sw_ctx_tx->sg_plaintext_data, 1152 ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data)); 1153 1154 sg_init_table(sw_ctx_tx->sg_aead_in, 2); 1155 sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space, 1156 sizeof(sw_ctx_tx->aad_space)); 1157 sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]); 1158 sg_chain(sw_ctx_tx->sg_aead_in, 2, 1159 sw_ctx_tx->sg_plaintext_data); 1160 sg_init_table(sw_ctx_tx->sg_aead_out, 2); 1161 sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space, 1162 sizeof(sw_ctx_tx->aad_space)); 1163 sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]); 1164 sg_chain(sw_ctx_tx->sg_aead_out, 2, 1165 sw_ctx_tx->sg_encrypted_data); 1166 } 1167 1168 if (!*aead) { 1169 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 1170 if (IS_ERR(*aead)) { 1171 rc = PTR_ERR(*aead); 1172 *aead = NULL; 1173 goto free_rec_seq; 1174 } 1175 } 1176 1177 ctx->push_pending_record = tls_sw_push_pending_record; 1178 1179 memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1180 1181 rc = crypto_aead_setkey(*aead, keyval, 1182 TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1183 if (rc) 1184 goto free_aead; 1185 1186 rc = crypto_aead_setauthsize(*aead, cctx->tag_size); 1187 if (rc) 1188 goto free_aead; 1189 1190 if (sw_ctx_rx) { 1191 /* Set up strparser */ 1192 memset(&cb, 0, sizeof(cb)); 1193 cb.rcv_msg = tls_queue; 1194 cb.parse_msg = tls_read_size; 1195 1196 strp_init(&sw_ctx_rx->strp, sk, &cb); 1197 1198 write_lock_bh(&sk->sk_callback_lock); 1199 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 1200 sk->sk_data_ready = tls_data_ready; 1201 write_unlock_bh(&sk->sk_callback_lock); 1202 1203 sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll; 1204 1205 strp_check_rcv(&sw_ctx_rx->strp); 1206 } 1207 1208 goto out; 1209 1210 free_aead: 1211 crypto_free_aead(*aead); 1212 *aead = NULL; 1213 free_rec_seq: 1214 kfree(cctx->rec_seq); 1215 cctx->rec_seq = NULL; 1216 free_iv: 1217 kfree(cctx->iv); 1218 cctx->iv = NULL; 1219 free_priv: 1220 if (tx) { 1221 kfree(ctx->priv_ctx_tx); 1222 ctx->priv_ctx_tx = NULL; 1223 } else { 1224 kfree(ctx->priv_ctx_rx); 1225 ctx->priv_ctx_rx = NULL; 1226 } 1227 out: 1228 return rc; 1229 } 1230