1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * 8 * This software is available to you under a choice of one of two 9 * licenses. You may choose to be licensed under the terms of the GNU 10 * General Public License (GPL) Version 2, available from the file 11 * COPYING in the main directory of this source tree, or the 12 * OpenIB.org BSD license below: 13 * 14 * Redistribution and use in source and binary forms, with or 15 * without modification, are permitted provided that the following 16 * conditions are met: 17 * 18 * - Redistributions of source code must retain the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer. 21 * 22 * - Redistributions in binary form must reproduce the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer in the documentation and/or other materials 25 * provided with the distribution. 26 * 27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 34 * SOFTWARE. 35 */ 36 37 #include <linux/module.h> 38 #include <crypto/aead.h> 39 40 #include <net/tls.h> 41 42 static inline void tls_make_aad(int recv, 43 char *buf, 44 size_t size, 45 char *record_sequence, 46 int record_sequence_size, 47 unsigned char record_type) 48 { 49 memcpy(buf, record_sequence, record_sequence_size); 50 51 buf[8] = record_type; 52 buf[9] = TLS_1_2_VERSION_MAJOR; 53 buf[10] = TLS_1_2_VERSION_MINOR; 54 buf[11] = size >> 8; 55 buf[12] = size & 0xFF; 56 } 57 58 static void trim_sg(struct sock *sk, struct scatterlist *sg, 59 int *sg_num_elem, unsigned int *sg_size, int target_size) 60 { 61 int i = *sg_num_elem - 1; 62 int trim = *sg_size - target_size; 63 64 if (trim <= 0) { 65 WARN_ON(trim < 0); 66 return; 67 } 68 69 *sg_size = target_size; 70 while (trim >= sg[i].length) { 71 trim -= sg[i].length; 72 sk_mem_uncharge(sk, sg[i].length); 73 put_page(sg_page(&sg[i])); 74 i--; 75 76 if (i < 0) 77 goto out; 78 } 79 80 sg[i].length -= trim; 81 sk_mem_uncharge(sk, trim); 82 83 out: 84 *sg_num_elem = i + 1; 85 } 86 87 static void trim_both_sgl(struct sock *sk, int target_size) 88 { 89 struct tls_context *tls_ctx = tls_get_ctx(sk); 90 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 91 92 trim_sg(sk, ctx->sg_plaintext_data, 93 &ctx->sg_plaintext_num_elem, 94 &ctx->sg_plaintext_size, 95 target_size); 96 97 if (target_size > 0) 98 target_size += tls_ctx->overhead_size; 99 100 trim_sg(sk, ctx->sg_encrypted_data, 101 &ctx->sg_encrypted_num_elem, 102 &ctx->sg_encrypted_size, 103 target_size); 104 } 105 106 static int alloc_sg(struct sock *sk, int len, struct scatterlist *sg, 107 int *sg_num_elem, unsigned int *sg_size, 108 int first_coalesce) 109 { 110 struct page_frag *pfrag; 111 unsigned int size = *sg_size; 112 int num_elem = *sg_num_elem, use = 0, rc = 0; 113 struct scatterlist *sge; 114 unsigned int orig_offset; 115 116 len -= size; 117 pfrag = sk_page_frag(sk); 118 119 while (len > 0) { 120 if (!sk_page_frag_refill(sk, pfrag)) { 121 rc = -ENOMEM; 122 goto out; 123 } 124 125 use = min_t(int, len, pfrag->size - pfrag->offset); 126 127 if (!sk_wmem_schedule(sk, use)) { 128 rc = -ENOMEM; 129 goto out; 130 } 131 132 sk_mem_charge(sk, use); 133 size += use; 134 orig_offset = pfrag->offset; 135 pfrag->offset += use; 136 137 sge = sg + num_elem - 1; 138 if (num_elem > first_coalesce && sg_page(sg) == pfrag->page && 139 sg->offset + sg->length == orig_offset) { 140 sg->length += use; 141 } else { 142 sge++; 143 sg_unmark_end(sge); 144 sg_set_page(sge, pfrag->page, use, orig_offset); 145 get_page(pfrag->page); 146 ++num_elem; 147 if (num_elem == MAX_SKB_FRAGS) { 148 rc = -ENOSPC; 149 break; 150 } 151 } 152 153 len -= use; 154 } 155 goto out; 156 157 out: 158 *sg_size = size; 159 *sg_num_elem = num_elem; 160 return rc; 161 } 162 163 static int alloc_encrypted_sg(struct sock *sk, int len) 164 { 165 struct tls_context *tls_ctx = tls_get_ctx(sk); 166 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 167 int rc = 0; 168 169 rc = alloc_sg(sk, len, ctx->sg_encrypted_data, 170 &ctx->sg_encrypted_num_elem, &ctx->sg_encrypted_size, 0); 171 172 return rc; 173 } 174 175 static int alloc_plaintext_sg(struct sock *sk, int len) 176 { 177 struct tls_context *tls_ctx = tls_get_ctx(sk); 178 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 179 int rc = 0; 180 181 rc = alloc_sg(sk, len, ctx->sg_plaintext_data, 182 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, 183 tls_ctx->pending_open_record_frags); 184 185 return rc; 186 } 187 188 static void free_sg(struct sock *sk, struct scatterlist *sg, 189 int *sg_num_elem, unsigned int *sg_size) 190 { 191 int i, n = *sg_num_elem; 192 193 for (i = 0; i < n; ++i) { 194 sk_mem_uncharge(sk, sg[i].length); 195 put_page(sg_page(&sg[i])); 196 } 197 *sg_num_elem = 0; 198 *sg_size = 0; 199 } 200 201 static void tls_free_both_sg(struct sock *sk) 202 { 203 struct tls_context *tls_ctx = tls_get_ctx(sk); 204 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 205 206 free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, 207 &ctx->sg_encrypted_size); 208 209 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 210 &ctx->sg_plaintext_size); 211 } 212 213 static int tls_do_encryption(struct tls_context *tls_ctx, 214 struct tls_sw_context *ctx, size_t data_len, 215 gfp_t flags) 216 { 217 unsigned int req_size = sizeof(struct aead_request) + 218 crypto_aead_reqsize(ctx->aead_send); 219 struct aead_request *aead_req; 220 int rc; 221 222 aead_req = kmalloc(req_size, flags); 223 if (!aead_req) 224 return -ENOMEM; 225 226 ctx->sg_encrypted_data[0].offset += tls_ctx->prepend_size; 227 ctx->sg_encrypted_data[0].length -= tls_ctx->prepend_size; 228 229 aead_request_set_tfm(aead_req, ctx->aead_send); 230 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 231 aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out, 232 data_len, tls_ctx->iv); 233 rc = crypto_aead_encrypt(aead_req); 234 235 ctx->sg_encrypted_data[0].offset -= tls_ctx->prepend_size; 236 ctx->sg_encrypted_data[0].length += tls_ctx->prepend_size; 237 238 kfree(aead_req); 239 return rc; 240 } 241 242 static int tls_push_record(struct sock *sk, int flags, 243 unsigned char record_type) 244 { 245 struct tls_context *tls_ctx = tls_get_ctx(sk); 246 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 247 int rc; 248 249 sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1); 250 sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1); 251 252 tls_make_aad(0, ctx->aad_space, ctx->sg_plaintext_size, 253 tls_ctx->rec_seq, tls_ctx->rec_seq_size, 254 record_type); 255 256 tls_fill_prepend(tls_ctx, 257 page_address(sg_page(&ctx->sg_encrypted_data[0])) + 258 ctx->sg_encrypted_data[0].offset, 259 ctx->sg_plaintext_size, record_type); 260 261 tls_ctx->pending_open_record_frags = 0; 262 set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags); 263 264 rc = tls_do_encryption(tls_ctx, ctx, ctx->sg_plaintext_size, 265 sk->sk_allocation); 266 if (rc < 0) { 267 /* If we are called from write_space and 268 * we fail, we need to set this SOCK_NOSPACE 269 * to trigger another write_space in the future. 270 */ 271 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 272 return rc; 273 } 274 275 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 276 &ctx->sg_plaintext_size); 277 278 ctx->sg_encrypted_num_elem = 0; 279 ctx->sg_encrypted_size = 0; 280 281 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */ 282 rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags); 283 if (rc < 0 && rc != -EAGAIN) 284 tls_err_abort(sk); 285 286 tls_advance_record_sn(sk, tls_ctx); 287 return rc; 288 } 289 290 static int tls_sw_push_pending_record(struct sock *sk, int flags) 291 { 292 return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); 293 } 294 295 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 296 int length) 297 { 298 struct tls_context *tls_ctx = tls_get_ctx(sk); 299 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 300 struct page *pages[MAX_SKB_FRAGS]; 301 302 size_t offset; 303 ssize_t copied, use; 304 int i = 0; 305 unsigned int size = ctx->sg_plaintext_size; 306 int num_elem = ctx->sg_plaintext_num_elem; 307 int rc = 0; 308 int maxpages; 309 310 while (length > 0) { 311 i = 0; 312 maxpages = ARRAY_SIZE(ctx->sg_plaintext_data) - num_elem; 313 if (maxpages == 0) { 314 rc = -EFAULT; 315 goto out; 316 } 317 copied = iov_iter_get_pages(from, pages, 318 length, 319 maxpages, &offset); 320 if (copied <= 0) { 321 rc = -EFAULT; 322 goto out; 323 } 324 325 iov_iter_advance(from, copied); 326 327 length -= copied; 328 size += copied; 329 while (copied) { 330 use = min_t(int, copied, PAGE_SIZE - offset); 331 332 sg_set_page(&ctx->sg_plaintext_data[num_elem], 333 pages[i], use, offset); 334 sg_unmark_end(&ctx->sg_plaintext_data[num_elem]); 335 sk_mem_charge(sk, use); 336 337 offset = 0; 338 copied -= use; 339 340 ++i; 341 ++num_elem; 342 } 343 } 344 345 out: 346 ctx->sg_plaintext_size = size; 347 ctx->sg_plaintext_num_elem = num_elem; 348 return rc; 349 } 350 351 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, 352 int bytes) 353 { 354 struct tls_context *tls_ctx = tls_get_ctx(sk); 355 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 356 struct scatterlist *sg = ctx->sg_plaintext_data; 357 int copy, i, rc = 0; 358 359 for (i = tls_ctx->pending_open_record_frags; 360 i < ctx->sg_plaintext_num_elem; ++i) { 361 copy = sg[i].length; 362 if (copy_from_iter( 363 page_address(sg_page(&sg[i])) + sg[i].offset, 364 copy, from) != copy) { 365 rc = -EFAULT; 366 goto out; 367 } 368 bytes -= copy; 369 370 ++tls_ctx->pending_open_record_frags; 371 372 if (!bytes) 373 break; 374 } 375 376 out: 377 return rc; 378 } 379 380 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 381 { 382 struct tls_context *tls_ctx = tls_get_ctx(sk); 383 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 384 int ret = 0; 385 int required_size; 386 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 387 bool eor = !(msg->msg_flags & MSG_MORE); 388 size_t try_to_copy, copied = 0; 389 unsigned char record_type = TLS_RECORD_TYPE_DATA; 390 int record_room; 391 bool full_record; 392 int orig_size; 393 394 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 395 return -ENOTSUPP; 396 397 lock_sock(sk); 398 399 if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo)) 400 goto send_end; 401 402 if (unlikely(msg->msg_controllen)) { 403 ret = tls_proccess_cmsg(sk, msg, &record_type); 404 if (ret) 405 goto send_end; 406 } 407 408 while (msg_data_left(msg)) { 409 if (sk->sk_err) { 410 ret = sk->sk_err; 411 goto send_end; 412 } 413 414 orig_size = ctx->sg_plaintext_size; 415 full_record = false; 416 try_to_copy = msg_data_left(msg); 417 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 418 if (try_to_copy >= record_room) { 419 try_to_copy = record_room; 420 full_record = true; 421 } 422 423 required_size = ctx->sg_plaintext_size + try_to_copy + 424 tls_ctx->overhead_size; 425 426 if (!sk_stream_memory_free(sk)) 427 goto wait_for_sndbuf; 428 alloc_encrypted: 429 ret = alloc_encrypted_sg(sk, required_size); 430 if (ret) { 431 if (ret != -ENOSPC) 432 goto wait_for_memory; 433 434 /* Adjust try_to_copy according to the amount that was 435 * actually allocated. The difference is due 436 * to max sg elements limit 437 */ 438 try_to_copy -= required_size - ctx->sg_encrypted_size; 439 full_record = true; 440 } 441 442 if (full_record || eor) { 443 ret = zerocopy_from_iter(sk, &msg->msg_iter, 444 try_to_copy); 445 if (ret) 446 goto fallback_to_reg_send; 447 448 copied += try_to_copy; 449 ret = tls_push_record(sk, msg->msg_flags, record_type); 450 if (!ret) 451 continue; 452 if (ret == -EAGAIN) 453 goto send_end; 454 455 copied -= try_to_copy; 456 fallback_to_reg_send: 457 iov_iter_revert(&msg->msg_iter, 458 ctx->sg_plaintext_size - orig_size); 459 trim_sg(sk, ctx->sg_plaintext_data, 460 &ctx->sg_plaintext_num_elem, 461 &ctx->sg_plaintext_size, 462 orig_size); 463 } 464 465 required_size = ctx->sg_plaintext_size + try_to_copy; 466 alloc_plaintext: 467 ret = alloc_plaintext_sg(sk, required_size); 468 if (ret) { 469 if (ret != -ENOSPC) 470 goto wait_for_memory; 471 472 /* Adjust try_to_copy according to the amount that was 473 * actually allocated. The difference is due 474 * to max sg elements limit 475 */ 476 try_to_copy -= required_size - ctx->sg_plaintext_size; 477 full_record = true; 478 479 trim_sg(sk, ctx->sg_encrypted_data, 480 &ctx->sg_encrypted_num_elem, 481 &ctx->sg_encrypted_size, 482 ctx->sg_plaintext_size + 483 tls_ctx->overhead_size); 484 } 485 486 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); 487 if (ret) 488 goto trim_sgl; 489 490 copied += try_to_copy; 491 if (full_record || eor) { 492 push_record: 493 ret = tls_push_record(sk, msg->msg_flags, record_type); 494 if (ret) { 495 if (ret == -ENOMEM) 496 goto wait_for_memory; 497 498 goto send_end; 499 } 500 } 501 502 continue; 503 504 wait_for_sndbuf: 505 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 506 wait_for_memory: 507 ret = sk_stream_wait_memory(sk, &timeo); 508 if (ret) { 509 trim_sgl: 510 trim_both_sgl(sk, orig_size); 511 goto send_end; 512 } 513 514 if (tls_is_pending_closed_record(tls_ctx)) 515 goto push_record; 516 517 if (ctx->sg_encrypted_size < required_size) 518 goto alloc_encrypted; 519 520 goto alloc_plaintext; 521 } 522 523 send_end: 524 ret = sk_stream_error(sk, msg->msg_flags, ret); 525 526 release_sock(sk); 527 return copied ? copied : ret; 528 } 529 530 int tls_sw_sendpage(struct sock *sk, struct page *page, 531 int offset, size_t size, int flags) 532 { 533 struct tls_context *tls_ctx = tls_get_ctx(sk); 534 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 535 int ret = 0; 536 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 537 bool eor; 538 size_t orig_size = size; 539 unsigned char record_type = TLS_RECORD_TYPE_DATA; 540 struct scatterlist *sg; 541 bool full_record; 542 int record_room; 543 544 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 545 MSG_SENDPAGE_NOTLAST)) 546 return -ENOTSUPP; 547 548 /* No MSG_EOR from splice, only look at MSG_MORE */ 549 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 550 551 lock_sock(sk); 552 553 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 554 555 if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo)) 556 goto sendpage_end; 557 558 /* Call the sk_stream functions to manage the sndbuf mem. */ 559 while (size > 0) { 560 size_t copy, required_size; 561 562 if (sk->sk_err) { 563 ret = sk->sk_err; 564 goto sendpage_end; 565 } 566 567 full_record = false; 568 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 569 copy = size; 570 if (copy >= record_room) { 571 copy = record_room; 572 full_record = true; 573 } 574 required_size = ctx->sg_plaintext_size + copy + 575 tls_ctx->overhead_size; 576 577 if (!sk_stream_memory_free(sk)) 578 goto wait_for_sndbuf; 579 alloc_payload: 580 ret = alloc_encrypted_sg(sk, required_size); 581 if (ret) { 582 if (ret != -ENOSPC) 583 goto wait_for_memory; 584 585 /* Adjust copy according to the amount that was 586 * actually allocated. The difference is due 587 * to max sg elements limit 588 */ 589 copy -= required_size - ctx->sg_plaintext_size; 590 full_record = true; 591 } 592 593 get_page(page); 594 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem; 595 sg_set_page(sg, page, copy, offset); 596 ctx->sg_plaintext_num_elem++; 597 598 sk_mem_charge(sk, copy); 599 offset += copy; 600 size -= copy; 601 ctx->sg_plaintext_size += copy; 602 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem; 603 604 if (full_record || eor || 605 ctx->sg_plaintext_num_elem == 606 ARRAY_SIZE(ctx->sg_plaintext_data)) { 607 push_record: 608 ret = tls_push_record(sk, flags, record_type); 609 if (ret) { 610 if (ret == -ENOMEM) 611 goto wait_for_memory; 612 613 goto sendpage_end; 614 } 615 } 616 continue; 617 wait_for_sndbuf: 618 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 619 wait_for_memory: 620 ret = sk_stream_wait_memory(sk, &timeo); 621 if (ret) { 622 trim_both_sgl(sk, ctx->sg_plaintext_size); 623 goto sendpage_end; 624 } 625 626 if (tls_is_pending_closed_record(tls_ctx)) 627 goto push_record; 628 629 goto alloc_payload; 630 } 631 632 sendpage_end: 633 if (orig_size > size) 634 ret = orig_size - size; 635 else 636 ret = sk_stream_error(sk, flags, ret); 637 638 release_sock(sk); 639 return ret; 640 } 641 642 static void tls_sw_free_resources(struct sock *sk) 643 { 644 struct tls_context *tls_ctx = tls_get_ctx(sk); 645 struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx); 646 647 if (ctx->aead_send) 648 crypto_free_aead(ctx->aead_send); 649 650 tls_free_both_sg(sk); 651 652 kfree(ctx); 653 } 654 655 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx) 656 { 657 char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; 658 struct tls_crypto_info *crypto_info; 659 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 660 struct tls_sw_context *sw_ctx; 661 u16 nonce_size, tag_size, iv_size, rec_seq_size; 662 char *iv, *rec_seq; 663 int rc = 0; 664 665 if (!ctx) { 666 rc = -EINVAL; 667 goto out; 668 } 669 670 if (ctx->priv_ctx) { 671 rc = -EEXIST; 672 goto out; 673 } 674 675 sw_ctx = kzalloc(sizeof(*sw_ctx), GFP_KERNEL); 676 if (!sw_ctx) { 677 rc = -ENOMEM; 678 goto out; 679 } 680 681 ctx->priv_ctx = (struct tls_offload_context *)sw_ctx; 682 ctx->free_resources = tls_sw_free_resources; 683 684 crypto_info = &ctx->crypto_send; 685 switch (crypto_info->cipher_type) { 686 case TLS_CIPHER_AES_GCM_128: { 687 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 688 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 689 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 690 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 691 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 692 rec_seq = 693 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 694 gcm_128_info = 695 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 696 break; 697 } 698 default: 699 rc = -EINVAL; 700 goto out; 701 } 702 703 ctx->prepend_size = TLS_HEADER_SIZE + nonce_size; 704 ctx->tag_size = tag_size; 705 ctx->overhead_size = ctx->prepend_size + ctx->tag_size; 706 ctx->iv_size = iv_size; 707 ctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 708 GFP_KERNEL); 709 if (!ctx->iv) { 710 rc = -ENOMEM; 711 goto out; 712 } 713 memcpy(ctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 714 memcpy(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 715 ctx->rec_seq_size = rec_seq_size; 716 ctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL); 717 if (!ctx->rec_seq) { 718 rc = -ENOMEM; 719 goto free_iv; 720 } 721 memcpy(ctx->rec_seq, rec_seq, rec_seq_size); 722 723 sg_init_table(sw_ctx->sg_encrypted_data, 724 ARRAY_SIZE(sw_ctx->sg_encrypted_data)); 725 sg_init_table(sw_ctx->sg_plaintext_data, 726 ARRAY_SIZE(sw_ctx->sg_plaintext_data)); 727 728 sg_init_table(sw_ctx->sg_aead_in, 2); 729 sg_set_buf(&sw_ctx->sg_aead_in[0], sw_ctx->aad_space, 730 sizeof(sw_ctx->aad_space)); 731 sg_unmark_end(&sw_ctx->sg_aead_in[1]); 732 sg_chain(sw_ctx->sg_aead_in, 2, sw_ctx->sg_plaintext_data); 733 sg_init_table(sw_ctx->sg_aead_out, 2); 734 sg_set_buf(&sw_ctx->sg_aead_out[0], sw_ctx->aad_space, 735 sizeof(sw_ctx->aad_space)); 736 sg_unmark_end(&sw_ctx->sg_aead_out[1]); 737 sg_chain(sw_ctx->sg_aead_out, 2, sw_ctx->sg_encrypted_data); 738 739 if (!sw_ctx->aead_send) { 740 sw_ctx->aead_send = crypto_alloc_aead("gcm(aes)", 0, 0); 741 if (IS_ERR(sw_ctx->aead_send)) { 742 rc = PTR_ERR(sw_ctx->aead_send); 743 sw_ctx->aead_send = NULL; 744 goto free_rec_seq; 745 } 746 } 747 748 ctx->push_pending_record = tls_sw_push_pending_record; 749 750 memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); 751 752 rc = crypto_aead_setkey(sw_ctx->aead_send, keyval, 753 TLS_CIPHER_AES_GCM_128_KEY_SIZE); 754 if (rc) 755 goto free_aead; 756 757 rc = crypto_aead_setauthsize(sw_ctx->aead_send, ctx->tag_size); 758 if (!rc) 759 goto out; 760 761 free_aead: 762 crypto_free_aead(sw_ctx->aead_send); 763 sw_ctx->aead_send = NULL; 764 free_rec_seq: 765 kfree(ctx->rec_seq); 766 ctx->rec_seq = NULL; 767 free_iv: 768 kfree(ctx->iv); 769 ctx->iv = NULL; 770 out: 771 return rc; 772 } 773