1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 u8 tail; 56 ); 57 58 struct sk_buff *skb; 59 }; 60 61 struct tls_decrypt_ctx { 62 struct sock *sk; 63 u8 iv[MAX_IV_SIZE]; 64 u8 aad[TLS_MAX_AAD_SIZE]; 65 u8 tail; 66 struct scatterlist sg[]; 67 }; 68 69 noinline void tls_err_abort(struct sock *sk, int err) 70 { 71 WARN_ON_ONCE(err >= 0); 72 /* sk->sk_err should contain a positive error code. */ 73 WRITE_ONCE(sk->sk_err, -err); 74 /* Paired with smp_rmb() in tcp_poll() */ 75 smp_wmb(); 76 sk_error_report(sk); 77 } 78 79 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 80 unsigned int recursion_level) 81 { 82 int start = skb_headlen(skb); 83 int i, chunk = start - offset; 84 struct sk_buff *frag_iter; 85 int elt = 0; 86 87 if (unlikely(recursion_level >= 24)) 88 return -EMSGSIZE; 89 90 if (chunk > 0) { 91 if (chunk > len) 92 chunk = len; 93 elt++; 94 len -= chunk; 95 if (len == 0) 96 return elt; 97 offset += chunk; 98 } 99 100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 101 int end; 102 103 WARN_ON(start > offset + len); 104 105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 106 chunk = end - offset; 107 if (chunk > 0) { 108 if (chunk > len) 109 chunk = len; 110 elt++; 111 len -= chunk; 112 if (len == 0) 113 return elt; 114 offset += chunk; 115 } 116 start = end; 117 } 118 119 if (unlikely(skb_has_frag_list(skb))) { 120 skb_walk_frags(skb, frag_iter) { 121 int end, ret; 122 123 WARN_ON(start > offset + len); 124 125 end = start + frag_iter->len; 126 chunk = end - offset; 127 if (chunk > 0) { 128 if (chunk > len) 129 chunk = len; 130 ret = __skb_nsg(frag_iter, offset - start, chunk, 131 recursion_level + 1); 132 if (unlikely(ret < 0)) 133 return ret; 134 elt += ret; 135 len -= chunk; 136 if (len == 0) 137 return elt; 138 offset += chunk; 139 } 140 start = end; 141 } 142 } 143 BUG_ON(len); 144 return elt; 145 } 146 147 /* Return the number of scatterlist elements required to completely map the 148 * skb, or -EMSGSIZE if the recursion depth is exceeded. 149 */ 150 static int skb_nsg(struct sk_buff *skb, int offset, int len) 151 { 152 return __skb_nsg(skb, offset, len, 0); 153 } 154 155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 156 struct tls_decrypt_arg *darg) 157 { 158 struct strp_msg *rxm = strp_msg(skb); 159 struct tls_msg *tlm = tls_msg(skb); 160 int sub = 0; 161 162 /* Determine zero-padding length */ 163 if (prot->version == TLS_1_3_VERSION) { 164 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 165 char content_type = darg->zc ? darg->tail : 0; 166 int err; 167 168 while (content_type == 0) { 169 if (offset < prot->prepend_size) 170 return -EBADMSG; 171 err = skb_copy_bits(skb, rxm->offset + offset, 172 &content_type, 1); 173 if (err) 174 return err; 175 if (content_type) 176 break; 177 sub++; 178 offset--; 179 } 180 tlm->control = content_type; 181 } 182 return sub; 183 } 184 185 static void tls_decrypt_done(void *data, int err) 186 { 187 struct aead_request *aead_req = data; 188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 189 struct scatterlist *sgout = aead_req->dst; 190 struct scatterlist *sgin = aead_req->src; 191 struct tls_sw_context_rx *ctx; 192 struct tls_decrypt_ctx *dctx; 193 struct tls_context *tls_ctx; 194 struct scatterlist *sg; 195 unsigned int pages; 196 struct sock *sk; 197 int aead_size; 198 199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 200 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 201 dctx = (void *)((u8 *)aead_req + aead_size); 202 203 sk = dctx->sk; 204 tls_ctx = tls_get_ctx(sk); 205 ctx = tls_sw_ctx_rx(tls_ctx); 206 207 /* Propagate if there was an err */ 208 if (err) { 209 if (err == -EBADMSG) 210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 211 ctx->async_wait.err = err; 212 tls_err_abort(sk, err); 213 } 214 215 /* Free the destination pages if skb was not decrypted inplace */ 216 if (sgout != sgin) { 217 /* Skip the first S/G entry as it points to AAD */ 218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 219 if (!sg) 220 break; 221 put_page(sg_page(sg)); 222 } 223 } 224 225 kfree(aead_req); 226 227 spin_lock_bh(&ctx->decrypt_compl_lock); 228 if (!atomic_dec_return(&ctx->decrypt_pending)) 229 complete(&ctx->async_wait.completion); 230 spin_unlock_bh(&ctx->decrypt_compl_lock); 231 } 232 233 static int tls_do_decryption(struct sock *sk, 234 struct scatterlist *sgin, 235 struct scatterlist *sgout, 236 char *iv_recv, 237 size_t data_len, 238 struct aead_request *aead_req, 239 struct tls_decrypt_arg *darg) 240 { 241 struct tls_context *tls_ctx = tls_get_ctx(sk); 242 struct tls_prot_info *prot = &tls_ctx->prot_info; 243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 244 int ret; 245 246 aead_request_set_tfm(aead_req, ctx->aead_recv); 247 aead_request_set_ad(aead_req, prot->aad_size); 248 aead_request_set_crypt(aead_req, sgin, sgout, 249 data_len + prot->tag_size, 250 (u8 *)iv_recv); 251 252 if (darg->async) { 253 aead_request_set_callback(aead_req, 254 CRYPTO_TFM_REQ_MAY_BACKLOG, 255 tls_decrypt_done, aead_req); 256 atomic_inc(&ctx->decrypt_pending); 257 } else { 258 aead_request_set_callback(aead_req, 259 CRYPTO_TFM_REQ_MAY_BACKLOG, 260 crypto_req_done, &ctx->async_wait); 261 } 262 263 ret = crypto_aead_decrypt(aead_req); 264 if (ret == -EINPROGRESS) { 265 if (darg->async) 266 return 0; 267 268 ret = crypto_wait_req(ret, &ctx->async_wait); 269 } 270 darg->async = false; 271 272 return ret; 273 } 274 275 static void tls_trim_both_msgs(struct sock *sk, int target_size) 276 { 277 struct tls_context *tls_ctx = tls_get_ctx(sk); 278 struct tls_prot_info *prot = &tls_ctx->prot_info; 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 282 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 283 if (target_size > 0) 284 target_size += prot->overhead_size; 285 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 286 } 287 288 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 289 { 290 struct tls_context *tls_ctx = tls_get_ctx(sk); 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 292 struct tls_rec *rec = ctx->open_rec; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 295 return sk_msg_alloc(sk, msg_en, len, 0); 296 } 297 298 static int tls_clone_plaintext_msg(struct sock *sk, int required) 299 { 300 struct tls_context *tls_ctx = tls_get_ctx(sk); 301 struct tls_prot_info *prot = &tls_ctx->prot_info; 302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 303 struct tls_rec *rec = ctx->open_rec; 304 struct sk_msg *msg_pl = &rec->msg_plaintext; 305 struct sk_msg *msg_en = &rec->msg_encrypted; 306 int skip, len; 307 308 /* We add page references worth len bytes from encrypted sg 309 * at the end of plaintext sg. It is guaranteed that msg_en 310 * has enough required room (ensured by caller). 311 */ 312 len = required - msg_pl->sg.size; 313 314 /* Skip initial bytes in msg_en's data to be able to use 315 * same offset of both plain and encrypted data. 316 */ 317 skip = prot->prepend_size + msg_pl->sg.size; 318 319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 320 } 321 322 static struct tls_rec *tls_get_rec(struct sock *sk) 323 { 324 struct tls_context *tls_ctx = tls_get_ctx(sk); 325 struct tls_prot_info *prot = &tls_ctx->prot_info; 326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 327 struct sk_msg *msg_pl, *msg_en; 328 struct tls_rec *rec; 329 int mem_size; 330 331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 332 333 rec = kzalloc(mem_size, sk->sk_allocation); 334 if (!rec) 335 return NULL; 336 337 msg_pl = &rec->msg_plaintext; 338 msg_en = &rec->msg_encrypted; 339 340 sk_msg_init(msg_pl); 341 sk_msg_init(msg_en); 342 343 sg_init_table(rec->sg_aead_in, 2); 344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 345 sg_unmark_end(&rec->sg_aead_in[1]); 346 347 sg_init_table(rec->sg_aead_out, 2); 348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 349 sg_unmark_end(&rec->sg_aead_out[1]); 350 351 rec->sk = sk; 352 353 return rec; 354 } 355 356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 357 { 358 sk_msg_free(sk, &rec->msg_encrypted); 359 sk_msg_free(sk, &rec->msg_plaintext); 360 kfree(rec); 361 } 362 363 static void tls_free_open_rec(struct sock *sk) 364 { 365 struct tls_context *tls_ctx = tls_get_ctx(sk); 366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 367 struct tls_rec *rec = ctx->open_rec; 368 369 if (rec) { 370 tls_free_rec(sk, rec); 371 ctx->open_rec = NULL; 372 } 373 } 374 375 int tls_tx_records(struct sock *sk, int flags) 376 { 377 struct tls_context *tls_ctx = tls_get_ctx(sk); 378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 379 struct tls_rec *rec, *tmp; 380 struct sk_msg *msg_en; 381 int tx_flags, rc = 0; 382 383 if (tls_is_partially_sent_record(tls_ctx)) { 384 rec = list_first_entry(&ctx->tx_list, 385 struct tls_rec, list); 386 387 if (flags == -1) 388 tx_flags = rec->tx_flags; 389 else 390 tx_flags = flags; 391 392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 393 if (rc) 394 goto tx_err; 395 396 /* Full record has been transmitted. 397 * Remove the head of tx_list 398 */ 399 list_del(&rec->list); 400 sk_msg_free(sk, &rec->msg_plaintext); 401 kfree(rec); 402 } 403 404 /* Tx all ready records */ 405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 406 if (READ_ONCE(rec->tx_ready)) { 407 if (flags == -1) 408 tx_flags = rec->tx_flags; 409 else 410 tx_flags = flags; 411 412 msg_en = &rec->msg_encrypted; 413 rc = tls_push_sg(sk, tls_ctx, 414 &msg_en->sg.data[msg_en->sg.curr], 415 0, tx_flags); 416 if (rc) 417 goto tx_err; 418 419 list_del(&rec->list); 420 sk_msg_free(sk, &rec->msg_plaintext); 421 kfree(rec); 422 } else { 423 break; 424 } 425 } 426 427 tx_err: 428 if (rc < 0 && rc != -EAGAIN) 429 tls_err_abort(sk, -EBADMSG); 430 431 return rc; 432 } 433 434 static void tls_encrypt_done(void *data, int err) 435 { 436 struct tls_sw_context_tx *ctx; 437 struct tls_context *tls_ctx; 438 struct tls_prot_info *prot; 439 struct tls_rec *rec = data; 440 struct scatterlist *sge; 441 struct sk_msg *msg_en; 442 bool ready = false; 443 struct sock *sk; 444 int pending; 445 446 msg_en = &rec->msg_encrypted; 447 448 sk = rec->sk; 449 tls_ctx = tls_get_ctx(sk); 450 prot = &tls_ctx->prot_info; 451 ctx = tls_sw_ctx_tx(tls_ctx); 452 453 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 454 sge->offset -= prot->prepend_size; 455 sge->length += prot->prepend_size; 456 457 /* Check if error is previously set on socket */ 458 if (err || sk->sk_err) { 459 rec = NULL; 460 461 /* If err is already set on socket, return the same code */ 462 if (sk->sk_err) { 463 ctx->async_wait.err = -sk->sk_err; 464 } else { 465 ctx->async_wait.err = err; 466 tls_err_abort(sk, err); 467 } 468 } 469 470 if (rec) { 471 struct tls_rec *first_rec; 472 473 /* Mark the record as ready for transmission */ 474 smp_store_mb(rec->tx_ready, true); 475 476 /* If received record is at head of tx_list, schedule tx */ 477 first_rec = list_first_entry(&ctx->tx_list, 478 struct tls_rec, list); 479 if (rec == first_rec) 480 ready = true; 481 } 482 483 spin_lock_bh(&ctx->encrypt_compl_lock); 484 pending = atomic_dec_return(&ctx->encrypt_pending); 485 486 if (!pending && ctx->async_notify) 487 complete(&ctx->async_wait.completion); 488 spin_unlock_bh(&ctx->encrypt_compl_lock); 489 490 if (!ready) 491 return; 492 493 /* Schedule the transmission */ 494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 495 schedule_delayed_work(&ctx->tx_work.work, 1); 496 } 497 498 static int tls_do_encryption(struct sock *sk, 499 struct tls_context *tls_ctx, 500 struct tls_sw_context_tx *ctx, 501 struct aead_request *aead_req, 502 size_t data_len, u32 start) 503 { 504 struct tls_prot_info *prot = &tls_ctx->prot_info; 505 struct tls_rec *rec = ctx->open_rec; 506 struct sk_msg *msg_en = &rec->msg_encrypted; 507 struct scatterlist *sge = sk_msg_elem(msg_en, start); 508 int rc, iv_offset = 0; 509 510 /* For CCM based ciphers, first byte of IV is a constant */ 511 switch (prot->cipher_type) { 512 case TLS_CIPHER_AES_CCM_128: 513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 514 iv_offset = 1; 515 break; 516 case TLS_CIPHER_SM4_CCM: 517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 518 iv_offset = 1; 519 break; 520 } 521 522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 523 prot->iv_size + prot->salt_size); 524 525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 526 tls_ctx->tx.rec_seq); 527 528 sge->offset += prot->prepend_size; 529 sge->length -= prot->prepend_size; 530 531 msg_en->sg.curr = start; 532 533 aead_request_set_tfm(aead_req, ctx->aead_send); 534 aead_request_set_ad(aead_req, prot->aad_size); 535 aead_request_set_crypt(aead_req, rec->sg_aead_in, 536 rec->sg_aead_out, 537 data_len, rec->iv_data); 538 539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 540 tls_encrypt_done, rec); 541 542 /* Add the record in tx_list */ 543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 544 atomic_inc(&ctx->encrypt_pending); 545 546 rc = crypto_aead_encrypt(aead_req); 547 if (!rc || rc != -EINPROGRESS) { 548 atomic_dec(&ctx->encrypt_pending); 549 sge->offset -= prot->prepend_size; 550 sge->length += prot->prepend_size; 551 } 552 553 if (!rc) { 554 WRITE_ONCE(rec->tx_ready, true); 555 } else if (rc != -EINPROGRESS) { 556 list_del(&rec->list); 557 return rc; 558 } 559 560 /* Unhook the record from context if encryption is not failure */ 561 ctx->open_rec = NULL; 562 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 563 return rc; 564 } 565 566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 567 struct tls_rec **to, struct sk_msg *msg_opl, 568 struct sk_msg *msg_oen, u32 split_point, 569 u32 tx_overhead_size, u32 *orig_end) 570 { 571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 572 struct scatterlist *sge, *osge, *nsge; 573 u32 orig_size = msg_opl->sg.size; 574 struct scatterlist tmp = { }; 575 struct sk_msg *msg_npl; 576 struct tls_rec *new; 577 int ret; 578 579 new = tls_get_rec(sk); 580 if (!new) 581 return -ENOMEM; 582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 583 tx_overhead_size, 0); 584 if (ret < 0) { 585 tls_free_rec(sk, new); 586 return ret; 587 } 588 589 *orig_end = msg_opl->sg.end; 590 i = msg_opl->sg.start; 591 sge = sk_msg_elem(msg_opl, i); 592 while (apply && sge->length) { 593 if (sge->length > apply) { 594 u32 len = sge->length - apply; 595 596 get_page(sg_page(sge)); 597 sg_set_page(&tmp, sg_page(sge), len, 598 sge->offset + apply); 599 sge->length = apply; 600 bytes += apply; 601 apply = 0; 602 } else { 603 apply -= sge->length; 604 bytes += sge->length; 605 } 606 607 sk_msg_iter_var_next(i); 608 if (i == msg_opl->sg.end) 609 break; 610 sge = sk_msg_elem(msg_opl, i); 611 } 612 613 msg_opl->sg.end = i; 614 msg_opl->sg.curr = i; 615 msg_opl->sg.copybreak = 0; 616 msg_opl->apply_bytes = 0; 617 msg_opl->sg.size = bytes; 618 619 msg_npl = &new->msg_plaintext; 620 msg_npl->apply_bytes = apply; 621 msg_npl->sg.size = orig_size - bytes; 622 623 j = msg_npl->sg.start; 624 nsge = sk_msg_elem(msg_npl, j); 625 if (tmp.length) { 626 memcpy(nsge, &tmp, sizeof(*nsge)); 627 sk_msg_iter_var_next(j); 628 nsge = sk_msg_elem(msg_npl, j); 629 } 630 631 osge = sk_msg_elem(msg_opl, i); 632 while (osge->length) { 633 memcpy(nsge, osge, sizeof(*nsge)); 634 sg_unmark_end(nsge); 635 sk_msg_iter_var_next(i); 636 sk_msg_iter_var_next(j); 637 if (i == *orig_end) 638 break; 639 osge = sk_msg_elem(msg_opl, i); 640 nsge = sk_msg_elem(msg_npl, j); 641 } 642 643 msg_npl->sg.end = j; 644 msg_npl->sg.curr = j; 645 msg_npl->sg.copybreak = 0; 646 647 *to = new; 648 return 0; 649 } 650 651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 652 struct tls_rec *from, u32 orig_end) 653 { 654 struct sk_msg *msg_npl = &from->msg_plaintext; 655 struct sk_msg *msg_opl = &to->msg_plaintext; 656 struct scatterlist *osge, *nsge; 657 u32 i, j; 658 659 i = msg_opl->sg.end; 660 sk_msg_iter_var_prev(i); 661 j = msg_npl->sg.start; 662 663 osge = sk_msg_elem(msg_opl, i); 664 nsge = sk_msg_elem(msg_npl, j); 665 666 if (sg_page(osge) == sg_page(nsge) && 667 osge->offset + osge->length == nsge->offset) { 668 osge->length += nsge->length; 669 put_page(sg_page(nsge)); 670 } 671 672 msg_opl->sg.end = orig_end; 673 msg_opl->sg.curr = orig_end; 674 msg_opl->sg.copybreak = 0; 675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 676 msg_opl->sg.size += msg_npl->sg.size; 677 678 sk_msg_free(sk, &to->msg_encrypted); 679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 680 681 kfree(from); 682 } 683 684 static int tls_push_record(struct sock *sk, int flags, 685 unsigned char record_type) 686 { 687 struct tls_context *tls_ctx = tls_get_ctx(sk); 688 struct tls_prot_info *prot = &tls_ctx->prot_info; 689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 691 u32 i, split_point, orig_end; 692 struct sk_msg *msg_pl, *msg_en; 693 struct aead_request *req; 694 bool split; 695 int rc; 696 697 if (!rec) 698 return 0; 699 700 msg_pl = &rec->msg_plaintext; 701 msg_en = &rec->msg_encrypted; 702 703 split_point = msg_pl->apply_bytes; 704 split = split_point && split_point < msg_pl->sg.size; 705 if (unlikely((!split && 706 msg_pl->sg.size + 707 prot->overhead_size > msg_en->sg.size) || 708 (split && 709 split_point + 710 prot->overhead_size > msg_en->sg.size))) { 711 split = true; 712 split_point = msg_en->sg.size; 713 } 714 if (split) { 715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 716 split_point, prot->overhead_size, 717 &orig_end); 718 if (rc < 0) 719 return rc; 720 /* This can happen if above tls_split_open_record allocates 721 * a single large encryption buffer instead of two smaller 722 * ones. In this case adjust pointers and continue without 723 * split. 724 */ 725 if (!msg_pl->sg.size) { 726 tls_merge_open_record(sk, rec, tmp, orig_end); 727 msg_pl = &rec->msg_plaintext; 728 msg_en = &rec->msg_encrypted; 729 split = false; 730 } 731 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 732 prot->overhead_size); 733 } 734 735 rec->tx_flags = flags; 736 req = &rec->aead_req; 737 738 i = msg_pl->sg.end; 739 sk_msg_iter_var_prev(i); 740 741 rec->content_type = record_type; 742 if (prot->version == TLS_1_3_VERSION) { 743 /* Add content type to end of message. No padding added */ 744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 745 sg_mark_end(&rec->sg_content_type); 746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 747 &rec->sg_content_type); 748 } else { 749 sg_mark_end(sk_msg_elem(msg_pl, i)); 750 } 751 752 if (msg_pl->sg.end < msg_pl->sg.start) { 753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 754 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 755 msg_pl->sg.data); 756 } 757 758 i = msg_pl->sg.start; 759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 760 761 i = msg_en->sg.end; 762 sk_msg_iter_var_prev(i); 763 sg_mark_end(sk_msg_elem(msg_en, i)); 764 765 i = msg_en->sg.start; 766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 767 768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 769 tls_ctx->tx.rec_seq, record_type, prot); 770 771 tls_fill_prepend(tls_ctx, 772 page_address(sg_page(&msg_en->sg.data[i])) + 773 msg_en->sg.data[i].offset, 774 msg_pl->sg.size + prot->tail_size, 775 record_type); 776 777 tls_ctx->pending_open_record_frags = false; 778 779 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 780 msg_pl->sg.size + prot->tail_size, i); 781 if (rc < 0) { 782 if (rc != -EINPROGRESS) { 783 tls_err_abort(sk, -EBADMSG); 784 if (split) { 785 tls_ctx->pending_open_record_frags = true; 786 tls_merge_open_record(sk, rec, tmp, orig_end); 787 } 788 } 789 ctx->async_capable = 1; 790 return rc; 791 } else if (split) { 792 msg_pl = &tmp->msg_plaintext; 793 msg_en = &tmp->msg_encrypted; 794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 795 tls_ctx->pending_open_record_frags = true; 796 ctx->open_rec = tmp; 797 } 798 799 return tls_tx_records(sk, flags); 800 } 801 802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 803 bool full_record, u8 record_type, 804 ssize_t *copied, int flags) 805 { 806 struct tls_context *tls_ctx = tls_get_ctx(sk); 807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 808 struct sk_msg msg_redir = { }; 809 struct sk_psock *psock; 810 struct sock *sk_redir; 811 struct tls_rec *rec; 812 bool enospc, policy, redir_ingress; 813 int err = 0, send; 814 u32 delta = 0; 815 816 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 817 psock = sk_psock_get(sk); 818 if (!psock || !policy) { 819 err = tls_push_record(sk, flags, record_type); 820 if (err && sk->sk_err == EBADMSG) { 821 *copied -= sk_msg_free(sk, msg); 822 tls_free_open_rec(sk); 823 err = -sk->sk_err; 824 } 825 if (psock) 826 sk_psock_put(sk, psock); 827 return err; 828 } 829 more_data: 830 enospc = sk_msg_full(msg); 831 if (psock->eval == __SK_NONE) { 832 delta = msg->sg.size; 833 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 834 delta -= msg->sg.size; 835 } 836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 837 !enospc && !full_record) { 838 err = -ENOSPC; 839 goto out_err; 840 } 841 msg->cork_bytes = 0; 842 send = msg->sg.size; 843 if (msg->apply_bytes && msg->apply_bytes < send) 844 send = msg->apply_bytes; 845 846 switch (psock->eval) { 847 case __SK_PASS: 848 err = tls_push_record(sk, flags, record_type); 849 if (err && sk->sk_err == EBADMSG) { 850 *copied -= sk_msg_free(sk, msg); 851 tls_free_open_rec(sk); 852 err = -sk->sk_err; 853 goto out_err; 854 } 855 break; 856 case __SK_REDIRECT: 857 redir_ingress = psock->redir_ingress; 858 sk_redir = psock->sk_redir; 859 memcpy(&msg_redir, msg, sizeof(*msg)); 860 if (msg->apply_bytes < send) 861 msg->apply_bytes = 0; 862 else 863 msg->apply_bytes -= send; 864 sk_msg_return_zero(sk, msg, send); 865 msg->sg.size -= send; 866 release_sock(sk); 867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 868 &msg_redir, send, flags); 869 lock_sock(sk); 870 if (err < 0) { 871 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 872 msg->sg.size = 0; 873 } 874 if (msg->sg.size == 0) 875 tls_free_open_rec(sk); 876 break; 877 case __SK_DROP: 878 default: 879 sk_msg_free_partial(sk, msg, send); 880 if (msg->apply_bytes < send) 881 msg->apply_bytes = 0; 882 else 883 msg->apply_bytes -= send; 884 if (msg->sg.size == 0) 885 tls_free_open_rec(sk); 886 *copied -= (send + delta); 887 err = -EACCES; 888 } 889 890 if (likely(!err)) { 891 bool reset_eval = !ctx->open_rec; 892 893 rec = ctx->open_rec; 894 if (rec) { 895 msg = &rec->msg_plaintext; 896 if (!msg->apply_bytes) 897 reset_eval = true; 898 } 899 if (reset_eval) { 900 psock->eval = __SK_NONE; 901 if (psock->sk_redir) { 902 sock_put(psock->sk_redir); 903 psock->sk_redir = NULL; 904 } 905 } 906 if (rec) 907 goto more_data; 908 } 909 out_err: 910 sk_psock_put(sk, psock); 911 return err; 912 } 913 914 static int tls_sw_push_pending_record(struct sock *sk, int flags) 915 { 916 struct tls_context *tls_ctx = tls_get_ctx(sk); 917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 918 struct tls_rec *rec = ctx->open_rec; 919 struct sk_msg *msg_pl; 920 size_t copied; 921 922 if (!rec) 923 return 0; 924 925 msg_pl = &rec->msg_plaintext; 926 copied = msg_pl->sg.size; 927 if (!copied) 928 return 0; 929 930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 931 &copied, flags); 932 } 933 934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 935 struct sk_msg *msg_pl, size_t try_to_copy, 936 ssize_t *copied) 937 { 938 struct page *page = NULL, **pages = &page; 939 940 do { 941 ssize_t part; 942 size_t off; 943 944 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 945 try_to_copy, 1, 0, &off); 946 if (part <= 0) 947 return part ?: -EIO; 948 949 if (WARN_ON_ONCE(!sendpage_ok(page))) { 950 iov_iter_revert(&msg->msg_iter, part); 951 return -EIO; 952 } 953 954 sk_msg_page_add(msg_pl, page, part, off); 955 sk_mem_charge(sk, part); 956 *copied += part; 957 try_to_copy -= part; 958 } while (try_to_copy && !sk_msg_full(msg_pl)); 959 960 return 0; 961 } 962 963 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 964 size_t size) 965 { 966 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 967 struct tls_context *tls_ctx = tls_get_ctx(sk); 968 struct tls_prot_info *prot = &tls_ctx->prot_info; 969 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 970 bool async_capable = ctx->async_capable; 971 unsigned char record_type = TLS_RECORD_TYPE_DATA; 972 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 973 bool eor = !(msg->msg_flags & MSG_MORE); 974 size_t try_to_copy; 975 ssize_t copied = 0; 976 struct sk_msg *msg_pl, *msg_en; 977 struct tls_rec *rec; 978 int required_size; 979 int num_async = 0; 980 bool full_record; 981 int record_room; 982 int num_zc = 0; 983 int orig_size; 984 int ret = 0; 985 int pending; 986 987 if (unlikely(msg->msg_controllen)) { 988 ret = tls_process_cmsg(sk, msg, &record_type); 989 if (ret) { 990 if (ret == -EINPROGRESS) 991 num_async++; 992 else if (ret != -EAGAIN) 993 goto send_end; 994 } 995 } 996 997 while (msg_data_left(msg)) { 998 if (sk->sk_err) { 999 ret = -sk->sk_err; 1000 goto send_end; 1001 } 1002 1003 if (ctx->open_rec) 1004 rec = ctx->open_rec; 1005 else 1006 rec = ctx->open_rec = tls_get_rec(sk); 1007 if (!rec) { 1008 ret = -ENOMEM; 1009 goto send_end; 1010 } 1011 1012 msg_pl = &rec->msg_plaintext; 1013 msg_en = &rec->msg_encrypted; 1014 1015 orig_size = msg_pl->sg.size; 1016 full_record = false; 1017 try_to_copy = msg_data_left(msg); 1018 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1019 if (try_to_copy >= record_room) { 1020 try_to_copy = record_room; 1021 full_record = true; 1022 } 1023 1024 required_size = msg_pl->sg.size + try_to_copy + 1025 prot->overhead_size; 1026 1027 if (!sk_stream_memory_free(sk)) 1028 goto wait_for_sndbuf; 1029 1030 alloc_encrypted: 1031 ret = tls_alloc_encrypted_msg(sk, required_size); 1032 if (ret) { 1033 if (ret != -ENOSPC) 1034 goto wait_for_memory; 1035 1036 /* Adjust try_to_copy according to the amount that was 1037 * actually allocated. The difference is due 1038 * to max sg elements limit 1039 */ 1040 try_to_copy -= required_size - msg_en->sg.size; 1041 full_record = true; 1042 } 1043 1044 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1045 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1046 try_to_copy, &copied); 1047 if (ret < 0) 1048 goto send_end; 1049 tls_ctx->pending_open_record_frags = true; 1050 if (full_record || eor || sk_msg_full(msg_pl)) 1051 goto copied; 1052 continue; 1053 } 1054 1055 if (!is_kvec && (full_record || eor) && !async_capable) { 1056 u32 first = msg_pl->sg.end; 1057 1058 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1059 msg_pl, try_to_copy); 1060 if (ret) 1061 goto fallback_to_reg_send; 1062 1063 num_zc++; 1064 copied += try_to_copy; 1065 1066 sk_msg_sg_copy_set(msg_pl, first); 1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1068 record_type, &copied, 1069 msg->msg_flags); 1070 if (ret) { 1071 if (ret == -EINPROGRESS) 1072 num_async++; 1073 else if (ret == -ENOMEM) 1074 goto wait_for_memory; 1075 else if (ctx->open_rec && ret == -ENOSPC) 1076 goto rollback_iter; 1077 else if (ret != -EAGAIN) 1078 goto send_end; 1079 } 1080 continue; 1081 rollback_iter: 1082 copied -= try_to_copy; 1083 sk_msg_sg_copy_clear(msg_pl, first); 1084 iov_iter_revert(&msg->msg_iter, 1085 msg_pl->sg.size - orig_size); 1086 fallback_to_reg_send: 1087 sk_msg_trim(sk, msg_pl, orig_size); 1088 } 1089 1090 required_size = msg_pl->sg.size + try_to_copy; 1091 1092 ret = tls_clone_plaintext_msg(sk, required_size); 1093 if (ret) { 1094 if (ret != -ENOSPC) 1095 goto send_end; 1096 1097 /* Adjust try_to_copy according to the amount that was 1098 * actually allocated. The difference is due 1099 * to max sg elements limit 1100 */ 1101 try_to_copy -= required_size - msg_pl->sg.size; 1102 full_record = true; 1103 sk_msg_trim(sk, msg_en, 1104 msg_pl->sg.size + prot->overhead_size); 1105 } 1106 1107 if (try_to_copy) { 1108 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1109 msg_pl, try_to_copy); 1110 if (ret < 0) 1111 goto trim_sgl; 1112 } 1113 1114 /* Open records defined only if successfully copied, otherwise 1115 * we would trim the sg but not reset the open record frags. 1116 */ 1117 tls_ctx->pending_open_record_frags = true; 1118 copied += try_to_copy; 1119 copied: 1120 if (full_record || eor) { 1121 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1122 record_type, &copied, 1123 msg->msg_flags); 1124 if (ret) { 1125 if (ret == -EINPROGRESS) 1126 num_async++; 1127 else if (ret == -ENOMEM) 1128 goto wait_for_memory; 1129 else if (ret != -EAGAIN) { 1130 if (ret == -ENOSPC) 1131 ret = 0; 1132 goto send_end; 1133 } 1134 } 1135 } 1136 1137 continue; 1138 1139 wait_for_sndbuf: 1140 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1141 wait_for_memory: 1142 ret = sk_stream_wait_memory(sk, &timeo); 1143 if (ret) { 1144 trim_sgl: 1145 if (ctx->open_rec) 1146 tls_trim_both_msgs(sk, orig_size); 1147 goto send_end; 1148 } 1149 1150 if (ctx->open_rec && msg_en->sg.size < required_size) 1151 goto alloc_encrypted; 1152 } 1153 1154 if (!num_async) { 1155 goto send_end; 1156 } else if (num_zc) { 1157 /* Wait for pending encryptions to get completed */ 1158 spin_lock_bh(&ctx->encrypt_compl_lock); 1159 ctx->async_notify = true; 1160 1161 pending = atomic_read(&ctx->encrypt_pending); 1162 spin_unlock_bh(&ctx->encrypt_compl_lock); 1163 if (pending) 1164 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1165 else 1166 reinit_completion(&ctx->async_wait.completion); 1167 1168 /* There can be no concurrent accesses, since we have no 1169 * pending encrypt operations 1170 */ 1171 WRITE_ONCE(ctx->async_notify, false); 1172 1173 if (ctx->async_wait.err) { 1174 ret = ctx->async_wait.err; 1175 copied = 0; 1176 } 1177 } 1178 1179 /* Transmit if any encryptions have completed */ 1180 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1181 cancel_delayed_work(&ctx->tx_work.work); 1182 tls_tx_records(sk, msg->msg_flags); 1183 } 1184 1185 send_end: 1186 ret = sk_stream_error(sk, msg->msg_flags, ret); 1187 return copied > 0 ? copied : ret; 1188 } 1189 1190 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1191 { 1192 struct tls_context *tls_ctx = tls_get_ctx(sk); 1193 int ret; 1194 1195 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1196 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | 1197 MSG_SENDPAGE_NOPOLICY)) 1198 return -EOPNOTSUPP; 1199 1200 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1201 if (ret) 1202 return ret; 1203 lock_sock(sk); 1204 ret = tls_sw_sendmsg_locked(sk, msg, size); 1205 release_sock(sk); 1206 mutex_unlock(&tls_ctx->tx_lock); 1207 return ret; 1208 } 1209 1210 /* 1211 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1212 */ 1213 void tls_sw_splice_eof(struct socket *sock) 1214 { 1215 struct sock *sk = sock->sk; 1216 struct tls_context *tls_ctx = tls_get_ctx(sk); 1217 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1218 struct tls_rec *rec; 1219 struct sk_msg *msg_pl; 1220 ssize_t copied = 0; 1221 bool retrying = false; 1222 int ret = 0; 1223 int pending; 1224 1225 if (!ctx->open_rec) 1226 return; 1227 1228 mutex_lock(&tls_ctx->tx_lock); 1229 lock_sock(sk); 1230 1231 retry: 1232 rec = ctx->open_rec; 1233 if (!rec) 1234 goto unlock; 1235 1236 msg_pl = &rec->msg_plaintext; 1237 1238 /* Check the BPF advisor and perform transmission. */ 1239 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1240 &copied, 0); 1241 switch (ret) { 1242 case 0: 1243 case -EAGAIN: 1244 if (retrying) 1245 goto unlock; 1246 retrying = true; 1247 goto retry; 1248 case -EINPROGRESS: 1249 break; 1250 default: 1251 goto unlock; 1252 } 1253 1254 /* Wait for pending encryptions to get completed */ 1255 spin_lock_bh(&ctx->encrypt_compl_lock); 1256 ctx->async_notify = true; 1257 1258 pending = atomic_read(&ctx->encrypt_pending); 1259 spin_unlock_bh(&ctx->encrypt_compl_lock); 1260 if (pending) 1261 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1262 else 1263 reinit_completion(&ctx->async_wait.completion); 1264 1265 /* There can be no concurrent accesses, since we have no pending 1266 * encrypt operations 1267 */ 1268 WRITE_ONCE(ctx->async_notify, false); 1269 1270 if (ctx->async_wait.err) 1271 goto unlock; 1272 1273 /* Transmit if any encryptions have completed */ 1274 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1275 cancel_delayed_work(&ctx->tx_work.work); 1276 tls_tx_records(sk, 0); 1277 } 1278 1279 unlock: 1280 release_sock(sk); 1281 mutex_unlock(&tls_ctx->tx_lock); 1282 } 1283 1284 static int 1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1286 bool released) 1287 { 1288 struct tls_context *tls_ctx = tls_get_ctx(sk); 1289 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1290 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1291 long timeo; 1292 1293 timeo = sock_rcvtimeo(sk, nonblock); 1294 1295 while (!tls_strp_msg_ready(ctx)) { 1296 if (!sk_psock_queue_empty(psock)) 1297 return 0; 1298 1299 if (sk->sk_err) 1300 return sock_error(sk); 1301 1302 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1303 tls_strp_check_rcv(&ctx->strp); 1304 if (tls_strp_msg_ready(ctx)) 1305 break; 1306 } 1307 1308 if (sk->sk_shutdown & RCV_SHUTDOWN) 1309 return 0; 1310 1311 if (sock_flag(sk, SOCK_DONE)) 1312 return 0; 1313 1314 if (!timeo) 1315 return -EAGAIN; 1316 1317 released = true; 1318 add_wait_queue(sk_sleep(sk), &wait); 1319 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1320 sk_wait_event(sk, &timeo, 1321 tls_strp_msg_ready(ctx) || 1322 !sk_psock_queue_empty(psock), 1323 &wait); 1324 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1325 remove_wait_queue(sk_sleep(sk), &wait); 1326 1327 /* Handle signals */ 1328 if (signal_pending(current)) 1329 return sock_intr_errno(timeo); 1330 } 1331 1332 tls_strp_msg_load(&ctx->strp, released); 1333 1334 return 1; 1335 } 1336 1337 static int tls_setup_from_iter(struct iov_iter *from, 1338 int length, int *pages_used, 1339 struct scatterlist *to, 1340 int to_max_pages) 1341 { 1342 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1343 struct page *pages[MAX_SKB_FRAGS]; 1344 unsigned int size = 0; 1345 ssize_t copied, use; 1346 size_t offset; 1347 1348 while (length > 0) { 1349 i = 0; 1350 maxpages = to_max_pages - num_elem; 1351 if (maxpages == 0) { 1352 rc = -EFAULT; 1353 goto out; 1354 } 1355 copied = iov_iter_get_pages2(from, pages, 1356 length, 1357 maxpages, &offset); 1358 if (copied <= 0) { 1359 rc = -EFAULT; 1360 goto out; 1361 } 1362 1363 length -= copied; 1364 size += copied; 1365 while (copied) { 1366 use = min_t(int, copied, PAGE_SIZE - offset); 1367 1368 sg_set_page(&to[num_elem], 1369 pages[i], use, offset); 1370 sg_unmark_end(&to[num_elem]); 1371 /* We do not uncharge memory from this API */ 1372 1373 offset = 0; 1374 copied -= use; 1375 1376 i++; 1377 num_elem++; 1378 } 1379 } 1380 /* Mark the end in the last sg entry if newly added */ 1381 if (num_elem > *pages_used) 1382 sg_mark_end(&to[num_elem - 1]); 1383 out: 1384 if (rc) 1385 iov_iter_revert(from, size); 1386 *pages_used = num_elem; 1387 1388 return rc; 1389 } 1390 1391 static struct sk_buff * 1392 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1393 unsigned int full_len) 1394 { 1395 struct strp_msg *clr_rxm; 1396 struct sk_buff *clr_skb; 1397 int err; 1398 1399 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1400 &err, sk->sk_allocation); 1401 if (!clr_skb) 1402 return NULL; 1403 1404 skb_copy_header(clr_skb, skb); 1405 clr_skb->len = full_len; 1406 clr_skb->data_len = full_len; 1407 1408 clr_rxm = strp_msg(clr_skb); 1409 clr_rxm->offset = 0; 1410 1411 return clr_skb; 1412 } 1413 1414 /* Decrypt handlers 1415 * 1416 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1417 * They must transform the darg in/out argument are as follows: 1418 * | Input | Output 1419 * ------------------------------------------------------------------- 1420 * zc | Zero-copy decrypt allowed | Zero-copy performed 1421 * async | Async decrypt allowed | Async crypto used / in progress 1422 * skb | * | Output skb 1423 * 1424 * If ZC decryption was performed darg.skb will point to the input skb. 1425 */ 1426 1427 /* This function decrypts the input skb into either out_iov or in out_sg 1428 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1429 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1430 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1431 * NULL, then the decryption happens inside skb buffers itself, i.e. 1432 * zero-copy gets disabled and 'darg->zc' is updated. 1433 */ 1434 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1435 struct scatterlist *out_sg, 1436 struct tls_decrypt_arg *darg) 1437 { 1438 struct tls_context *tls_ctx = tls_get_ctx(sk); 1439 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1440 struct tls_prot_info *prot = &tls_ctx->prot_info; 1441 int n_sgin, n_sgout, aead_size, err, pages = 0; 1442 struct sk_buff *skb = tls_strp_msg(ctx); 1443 const struct strp_msg *rxm = strp_msg(skb); 1444 const struct tls_msg *tlm = tls_msg(skb); 1445 struct aead_request *aead_req; 1446 struct scatterlist *sgin = NULL; 1447 struct scatterlist *sgout = NULL; 1448 const int data_len = rxm->full_len - prot->overhead_size; 1449 int tail_pages = !!prot->tail_size; 1450 struct tls_decrypt_ctx *dctx; 1451 struct sk_buff *clear_skb; 1452 int iv_offset = 0; 1453 u8 *mem; 1454 1455 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1456 rxm->full_len - prot->prepend_size); 1457 if (n_sgin < 1) 1458 return n_sgin ?: -EBADMSG; 1459 1460 if (darg->zc && (out_iov || out_sg)) { 1461 clear_skb = NULL; 1462 1463 if (out_iov) 1464 n_sgout = 1 + tail_pages + 1465 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1466 else 1467 n_sgout = sg_nents(out_sg); 1468 } else { 1469 darg->zc = false; 1470 1471 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1472 if (!clear_skb) 1473 return -ENOMEM; 1474 1475 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1476 } 1477 1478 /* Increment to accommodate AAD */ 1479 n_sgin = n_sgin + 1; 1480 1481 /* Allocate a single block of memory which contains 1482 * aead_req || tls_decrypt_ctx. 1483 * Both structs are variable length. 1484 */ 1485 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1486 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1487 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1488 sk->sk_allocation); 1489 if (!mem) { 1490 err = -ENOMEM; 1491 goto exit_free_skb; 1492 } 1493 1494 /* Segment the allocated memory */ 1495 aead_req = (struct aead_request *)mem; 1496 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1497 dctx->sk = sk; 1498 sgin = &dctx->sg[0]; 1499 sgout = &dctx->sg[n_sgin]; 1500 1501 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1502 switch (prot->cipher_type) { 1503 case TLS_CIPHER_AES_CCM_128: 1504 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1505 iv_offset = 1; 1506 break; 1507 case TLS_CIPHER_SM4_CCM: 1508 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1509 iv_offset = 1; 1510 break; 1511 } 1512 1513 /* Prepare IV */ 1514 if (prot->version == TLS_1_3_VERSION || 1515 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1516 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1517 prot->iv_size + prot->salt_size); 1518 } else { 1519 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1520 &dctx->iv[iv_offset] + prot->salt_size, 1521 prot->iv_size); 1522 if (err < 0) 1523 goto exit_free; 1524 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1525 } 1526 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1527 1528 /* Prepare AAD */ 1529 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1530 prot->tail_size, 1531 tls_ctx->rx.rec_seq, tlm->control, prot); 1532 1533 /* Prepare sgin */ 1534 sg_init_table(sgin, n_sgin); 1535 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1536 err = skb_to_sgvec(skb, &sgin[1], 1537 rxm->offset + prot->prepend_size, 1538 rxm->full_len - prot->prepend_size); 1539 if (err < 0) 1540 goto exit_free; 1541 1542 if (clear_skb) { 1543 sg_init_table(sgout, n_sgout); 1544 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1545 1546 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1547 data_len + prot->tail_size); 1548 if (err < 0) 1549 goto exit_free; 1550 } else if (out_iov) { 1551 sg_init_table(sgout, n_sgout); 1552 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1553 1554 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1555 (n_sgout - 1 - tail_pages)); 1556 if (err < 0) 1557 goto exit_free_pages; 1558 1559 if (prot->tail_size) { 1560 sg_unmark_end(&sgout[pages]); 1561 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1562 prot->tail_size); 1563 sg_mark_end(&sgout[pages + 1]); 1564 } 1565 } else if (out_sg) { 1566 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1567 } 1568 1569 /* Prepare and submit AEAD request */ 1570 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1571 data_len + prot->tail_size, aead_req, darg); 1572 if (err) 1573 goto exit_free_pages; 1574 1575 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1576 clear_skb = NULL; 1577 1578 if (unlikely(darg->async)) { 1579 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1580 if (err) 1581 __skb_queue_tail(&ctx->async_hold, darg->skb); 1582 return err; 1583 } 1584 1585 if (prot->tail_size) 1586 darg->tail = dctx->tail; 1587 1588 exit_free_pages: 1589 /* Release the pages in case iov was mapped to pages */ 1590 for (; pages > 0; pages--) 1591 put_page(sg_page(&sgout[pages])); 1592 exit_free: 1593 kfree(mem); 1594 exit_free_skb: 1595 consume_skb(clear_skb); 1596 return err; 1597 } 1598 1599 static int 1600 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1601 struct msghdr *msg, struct tls_decrypt_arg *darg) 1602 { 1603 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1604 struct tls_prot_info *prot = &tls_ctx->prot_info; 1605 struct strp_msg *rxm; 1606 int pad, err; 1607 1608 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1609 if (err < 0) { 1610 if (err == -EBADMSG) 1611 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1612 return err; 1613 } 1614 /* keep going even for ->async, the code below is TLS 1.3 */ 1615 1616 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1617 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1618 darg->tail != TLS_RECORD_TYPE_DATA)) { 1619 darg->zc = false; 1620 if (!darg->tail) 1621 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1622 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1623 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1624 } 1625 1626 pad = tls_padding_length(prot, darg->skb, darg); 1627 if (pad < 0) { 1628 if (darg->skb != tls_strp_msg(ctx)) 1629 consume_skb(darg->skb); 1630 return pad; 1631 } 1632 1633 rxm = strp_msg(darg->skb); 1634 rxm->full_len -= pad; 1635 1636 return 0; 1637 } 1638 1639 static int 1640 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1641 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1642 { 1643 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1644 struct tls_prot_info *prot = &tls_ctx->prot_info; 1645 struct strp_msg *rxm; 1646 int pad, err; 1647 1648 if (tls_ctx->rx_conf != TLS_HW) 1649 return 0; 1650 1651 err = tls_device_decrypted(sk, tls_ctx); 1652 if (err <= 0) 1653 return err; 1654 1655 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1656 if (pad < 0) 1657 return pad; 1658 1659 darg->async = false; 1660 darg->skb = tls_strp_msg(ctx); 1661 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1662 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1663 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1664 1665 rxm = strp_msg(darg->skb); 1666 rxm->full_len -= pad; 1667 1668 if (!darg->zc) { 1669 /* Non-ZC case needs a real skb */ 1670 darg->skb = tls_strp_msg_detach(ctx); 1671 if (!darg->skb) 1672 return -ENOMEM; 1673 } else { 1674 unsigned int off, len; 1675 1676 /* In ZC case nobody cares about the output skb. 1677 * Just copy the data here. Note the skb is not fully trimmed. 1678 */ 1679 off = rxm->offset + prot->prepend_size; 1680 len = rxm->full_len - prot->overhead_size; 1681 1682 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1683 if (err) 1684 return err; 1685 } 1686 return 1; 1687 } 1688 1689 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1690 struct tls_decrypt_arg *darg) 1691 { 1692 struct tls_context *tls_ctx = tls_get_ctx(sk); 1693 struct tls_prot_info *prot = &tls_ctx->prot_info; 1694 struct strp_msg *rxm; 1695 int err; 1696 1697 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1698 if (!err) 1699 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1700 if (err < 0) 1701 return err; 1702 1703 rxm = strp_msg(darg->skb); 1704 rxm->offset += prot->prepend_size; 1705 rxm->full_len -= prot->overhead_size; 1706 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1707 1708 return 0; 1709 } 1710 1711 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1712 { 1713 struct tls_decrypt_arg darg = { .zc = true, }; 1714 1715 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1716 } 1717 1718 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1719 u8 *control) 1720 { 1721 int err; 1722 1723 if (!*control) { 1724 *control = tlm->control; 1725 if (!*control) 1726 return -EBADMSG; 1727 1728 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1729 sizeof(*control), control); 1730 if (*control != TLS_RECORD_TYPE_DATA) { 1731 if (err || msg->msg_flags & MSG_CTRUNC) 1732 return -EIO; 1733 } 1734 } else if (*control != tlm->control) { 1735 return 0; 1736 } 1737 1738 return 1; 1739 } 1740 1741 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1742 { 1743 tls_strp_msg_done(&ctx->strp); 1744 } 1745 1746 /* This function traverses the rx_list in tls receive context to copies the 1747 * decrypted records into the buffer provided by caller zero copy is not 1748 * true. Further, the records are removed from the rx_list if it is not a peek 1749 * case and the record has been consumed completely. 1750 */ 1751 static int process_rx_list(struct tls_sw_context_rx *ctx, 1752 struct msghdr *msg, 1753 u8 *control, 1754 size_t skip, 1755 size_t len, 1756 bool is_peek) 1757 { 1758 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1759 struct tls_msg *tlm; 1760 ssize_t copied = 0; 1761 int err; 1762 1763 while (skip && skb) { 1764 struct strp_msg *rxm = strp_msg(skb); 1765 tlm = tls_msg(skb); 1766 1767 err = tls_record_content_type(msg, tlm, control); 1768 if (err <= 0) 1769 goto out; 1770 1771 if (skip < rxm->full_len) 1772 break; 1773 1774 skip = skip - rxm->full_len; 1775 skb = skb_peek_next(skb, &ctx->rx_list); 1776 } 1777 1778 while (len && skb) { 1779 struct sk_buff *next_skb; 1780 struct strp_msg *rxm = strp_msg(skb); 1781 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1782 1783 tlm = tls_msg(skb); 1784 1785 err = tls_record_content_type(msg, tlm, control); 1786 if (err <= 0) 1787 goto out; 1788 1789 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1790 msg, chunk); 1791 if (err < 0) 1792 goto out; 1793 1794 len = len - chunk; 1795 copied = copied + chunk; 1796 1797 /* Consume the data from record if it is non-peek case*/ 1798 if (!is_peek) { 1799 rxm->offset = rxm->offset + chunk; 1800 rxm->full_len = rxm->full_len - chunk; 1801 1802 /* Return if there is unconsumed data in the record */ 1803 if (rxm->full_len - skip) 1804 break; 1805 } 1806 1807 /* The remaining skip-bytes must lie in 1st record in rx_list. 1808 * So from the 2nd record, 'skip' should be 0. 1809 */ 1810 skip = 0; 1811 1812 if (msg) 1813 msg->msg_flags |= MSG_EOR; 1814 1815 next_skb = skb_peek_next(skb, &ctx->rx_list); 1816 1817 if (!is_peek) { 1818 __skb_unlink(skb, &ctx->rx_list); 1819 consume_skb(skb); 1820 } 1821 1822 skb = next_skb; 1823 } 1824 err = 0; 1825 1826 out: 1827 return copied ? : err; 1828 } 1829 1830 static bool 1831 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1832 size_t len_left, size_t decrypted, ssize_t done, 1833 size_t *flushed_at) 1834 { 1835 size_t max_rec; 1836 1837 if (len_left <= decrypted) 1838 return false; 1839 1840 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1841 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1842 return false; 1843 1844 *flushed_at = done; 1845 return sk_flush_backlog(sk); 1846 } 1847 1848 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1849 bool nonblock) 1850 { 1851 long timeo; 1852 int err; 1853 1854 lock_sock(sk); 1855 1856 timeo = sock_rcvtimeo(sk, nonblock); 1857 1858 while (unlikely(ctx->reader_present)) { 1859 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1860 1861 ctx->reader_contended = 1; 1862 1863 add_wait_queue(&ctx->wq, &wait); 1864 sk_wait_event(sk, &timeo, 1865 !READ_ONCE(ctx->reader_present), &wait); 1866 remove_wait_queue(&ctx->wq, &wait); 1867 1868 if (timeo <= 0) { 1869 err = -EAGAIN; 1870 goto err_unlock; 1871 } 1872 if (signal_pending(current)) { 1873 err = sock_intr_errno(timeo); 1874 goto err_unlock; 1875 } 1876 } 1877 1878 WRITE_ONCE(ctx->reader_present, 1); 1879 1880 return 0; 1881 1882 err_unlock: 1883 release_sock(sk); 1884 return err; 1885 } 1886 1887 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1888 { 1889 if (unlikely(ctx->reader_contended)) { 1890 if (wq_has_sleeper(&ctx->wq)) 1891 wake_up(&ctx->wq); 1892 else 1893 ctx->reader_contended = 0; 1894 1895 WARN_ON_ONCE(!ctx->reader_present); 1896 } 1897 1898 WRITE_ONCE(ctx->reader_present, 0); 1899 release_sock(sk); 1900 } 1901 1902 int tls_sw_recvmsg(struct sock *sk, 1903 struct msghdr *msg, 1904 size_t len, 1905 int flags, 1906 int *addr_len) 1907 { 1908 struct tls_context *tls_ctx = tls_get_ctx(sk); 1909 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1910 struct tls_prot_info *prot = &tls_ctx->prot_info; 1911 ssize_t decrypted = 0, async_copy_bytes = 0; 1912 struct sk_psock *psock; 1913 unsigned char control = 0; 1914 size_t flushed_at = 0; 1915 struct strp_msg *rxm; 1916 struct tls_msg *tlm; 1917 ssize_t copied = 0; 1918 bool async = false; 1919 int target, err; 1920 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1921 bool is_peek = flags & MSG_PEEK; 1922 bool released = true; 1923 bool bpf_strp_enabled; 1924 bool zc_capable; 1925 1926 if (unlikely(flags & MSG_ERRQUEUE)) 1927 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1928 1929 psock = sk_psock_get(sk); 1930 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1931 if (err < 0) 1932 return err; 1933 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1934 1935 /* If crypto failed the connection is broken */ 1936 err = ctx->async_wait.err; 1937 if (err) 1938 goto end; 1939 1940 /* Process pending decrypted records. It must be non-zero-copy */ 1941 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1942 if (err < 0) 1943 goto end; 1944 1945 copied = err; 1946 if (len <= copied) 1947 goto end; 1948 1949 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1950 len = len - copied; 1951 1952 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1953 ctx->zc_capable; 1954 decrypted = 0; 1955 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1956 struct tls_decrypt_arg darg; 1957 int to_decrypt, chunk; 1958 1959 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1960 released); 1961 if (err <= 0) { 1962 if (psock) { 1963 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1964 flags); 1965 if (chunk > 0) { 1966 decrypted += chunk; 1967 len -= chunk; 1968 continue; 1969 } 1970 } 1971 goto recv_end; 1972 } 1973 1974 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1975 1976 rxm = strp_msg(tls_strp_msg(ctx)); 1977 tlm = tls_msg(tls_strp_msg(ctx)); 1978 1979 to_decrypt = rxm->full_len - prot->overhead_size; 1980 1981 if (zc_capable && to_decrypt <= len && 1982 tlm->control == TLS_RECORD_TYPE_DATA) 1983 darg.zc = true; 1984 1985 /* Do not use async mode if record is non-data */ 1986 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1987 darg.async = ctx->async_capable; 1988 else 1989 darg.async = false; 1990 1991 err = tls_rx_one_record(sk, msg, &darg); 1992 if (err < 0) { 1993 tls_err_abort(sk, -EBADMSG); 1994 goto recv_end; 1995 } 1996 1997 async |= darg.async; 1998 1999 /* If the type of records being processed is not known yet, 2000 * set it to record type just dequeued. If it is already known, 2001 * but does not match the record type just dequeued, go to end. 2002 * We always get record type here since for tls1.2, record type 2003 * is known just after record is dequeued from stream parser. 2004 * For tls1.3, we disable async. 2005 */ 2006 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2007 if (err <= 0) { 2008 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2009 tls_rx_rec_done(ctx); 2010 put_on_rx_list_err: 2011 __skb_queue_tail(&ctx->rx_list, darg.skb); 2012 goto recv_end; 2013 } 2014 2015 /* periodically flush backlog, and feed strparser */ 2016 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2017 decrypted + copied, 2018 &flushed_at); 2019 2020 /* TLS 1.3 may have updated the length by more than overhead */ 2021 rxm = strp_msg(darg.skb); 2022 chunk = rxm->full_len; 2023 tls_rx_rec_done(ctx); 2024 2025 if (!darg.zc) { 2026 bool partially_consumed = chunk > len; 2027 struct sk_buff *skb = darg.skb; 2028 2029 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2030 2031 if (async) { 2032 /* TLS 1.2-only, to_decrypt must be text len */ 2033 chunk = min_t(int, to_decrypt, len); 2034 async_copy_bytes += chunk; 2035 put_on_rx_list: 2036 decrypted += chunk; 2037 len -= chunk; 2038 __skb_queue_tail(&ctx->rx_list, skb); 2039 continue; 2040 } 2041 2042 if (bpf_strp_enabled) { 2043 released = true; 2044 err = sk_psock_tls_strp_read(psock, skb); 2045 if (err != __SK_PASS) { 2046 rxm->offset = rxm->offset + rxm->full_len; 2047 rxm->full_len = 0; 2048 if (err == __SK_DROP) 2049 consume_skb(skb); 2050 continue; 2051 } 2052 } 2053 2054 if (partially_consumed) 2055 chunk = len; 2056 2057 err = skb_copy_datagram_msg(skb, rxm->offset, 2058 msg, chunk); 2059 if (err < 0) 2060 goto put_on_rx_list_err; 2061 2062 if (is_peek) 2063 goto put_on_rx_list; 2064 2065 if (partially_consumed) { 2066 rxm->offset += chunk; 2067 rxm->full_len -= chunk; 2068 goto put_on_rx_list; 2069 } 2070 2071 consume_skb(skb); 2072 } 2073 2074 decrypted += chunk; 2075 len -= chunk; 2076 2077 /* Return full control message to userspace before trying 2078 * to parse another message type 2079 */ 2080 msg->msg_flags |= MSG_EOR; 2081 if (control != TLS_RECORD_TYPE_DATA) 2082 break; 2083 } 2084 2085 recv_end: 2086 if (async) { 2087 int ret, pending; 2088 2089 /* Wait for all previously submitted records to be decrypted */ 2090 spin_lock_bh(&ctx->decrypt_compl_lock); 2091 reinit_completion(&ctx->async_wait.completion); 2092 pending = atomic_read(&ctx->decrypt_pending); 2093 spin_unlock_bh(&ctx->decrypt_compl_lock); 2094 ret = 0; 2095 if (pending) 2096 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2097 __skb_queue_purge(&ctx->async_hold); 2098 2099 if (ret) { 2100 if (err >= 0 || err == -EINPROGRESS) 2101 err = ret; 2102 decrypted = 0; 2103 goto end; 2104 } 2105 2106 /* Drain records from the rx_list & copy if required */ 2107 if (is_peek || is_kvec) 2108 err = process_rx_list(ctx, msg, &control, copied, 2109 decrypted, is_peek); 2110 else 2111 err = process_rx_list(ctx, msg, &control, 0, 2112 async_copy_bytes, is_peek); 2113 decrypted += max(err, 0); 2114 } 2115 2116 copied += decrypted; 2117 2118 end: 2119 tls_rx_reader_unlock(sk, ctx); 2120 if (psock) 2121 sk_psock_put(sk, psock); 2122 return copied ? : err; 2123 } 2124 2125 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2126 struct pipe_inode_info *pipe, 2127 size_t len, unsigned int flags) 2128 { 2129 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2131 struct strp_msg *rxm = NULL; 2132 struct sock *sk = sock->sk; 2133 struct tls_msg *tlm; 2134 struct sk_buff *skb; 2135 ssize_t copied = 0; 2136 int chunk; 2137 int err; 2138 2139 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2140 if (err < 0) 2141 return err; 2142 2143 if (!skb_queue_empty(&ctx->rx_list)) { 2144 skb = __skb_dequeue(&ctx->rx_list); 2145 } else { 2146 struct tls_decrypt_arg darg; 2147 2148 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2149 true); 2150 if (err <= 0) 2151 goto splice_read_end; 2152 2153 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2154 2155 err = tls_rx_one_record(sk, NULL, &darg); 2156 if (err < 0) { 2157 tls_err_abort(sk, -EBADMSG); 2158 goto splice_read_end; 2159 } 2160 2161 tls_rx_rec_done(ctx); 2162 skb = darg.skb; 2163 } 2164 2165 rxm = strp_msg(skb); 2166 tlm = tls_msg(skb); 2167 2168 /* splice does not support reading control messages */ 2169 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2170 err = -EINVAL; 2171 goto splice_requeue; 2172 } 2173 2174 chunk = min_t(unsigned int, rxm->full_len, len); 2175 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2176 if (copied < 0) 2177 goto splice_requeue; 2178 2179 if (chunk < rxm->full_len) { 2180 rxm->offset += len; 2181 rxm->full_len -= len; 2182 goto splice_requeue; 2183 } 2184 2185 consume_skb(skb); 2186 2187 splice_read_end: 2188 tls_rx_reader_unlock(sk, ctx); 2189 return copied ? : err; 2190 2191 splice_requeue: 2192 __skb_queue_head(&ctx->rx_list, skb); 2193 goto splice_read_end; 2194 } 2195 2196 bool tls_sw_sock_is_readable(struct sock *sk) 2197 { 2198 struct tls_context *tls_ctx = tls_get_ctx(sk); 2199 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2200 bool ingress_empty = true; 2201 struct sk_psock *psock; 2202 2203 rcu_read_lock(); 2204 psock = sk_psock(sk); 2205 if (psock) 2206 ingress_empty = list_empty(&psock->ingress_msg); 2207 rcu_read_unlock(); 2208 2209 return !ingress_empty || tls_strp_msg_ready(ctx) || 2210 !skb_queue_empty(&ctx->rx_list); 2211 } 2212 2213 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2214 { 2215 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2216 struct tls_prot_info *prot = &tls_ctx->prot_info; 2217 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2218 size_t cipher_overhead; 2219 size_t data_len = 0; 2220 int ret; 2221 2222 /* Verify that we have a full TLS header, or wait for more data */ 2223 if (strp->stm.offset + prot->prepend_size > skb->len) 2224 return 0; 2225 2226 /* Sanity-check size of on-stack buffer. */ 2227 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2228 ret = -EINVAL; 2229 goto read_failure; 2230 } 2231 2232 /* Linearize header to local buffer */ 2233 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2234 if (ret < 0) 2235 goto read_failure; 2236 2237 strp->mark = header[0]; 2238 2239 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2240 2241 cipher_overhead = prot->tag_size; 2242 if (prot->version != TLS_1_3_VERSION && 2243 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2244 cipher_overhead += prot->iv_size; 2245 2246 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2247 prot->tail_size) { 2248 ret = -EMSGSIZE; 2249 goto read_failure; 2250 } 2251 if (data_len < cipher_overhead) { 2252 ret = -EBADMSG; 2253 goto read_failure; 2254 } 2255 2256 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2257 if (header[1] != TLS_1_2_VERSION_MINOR || 2258 header[2] != TLS_1_2_VERSION_MAJOR) { 2259 ret = -EINVAL; 2260 goto read_failure; 2261 } 2262 2263 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2264 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2265 return data_len + TLS_HEADER_SIZE; 2266 2267 read_failure: 2268 tls_err_abort(strp->sk, ret); 2269 2270 return ret; 2271 } 2272 2273 void tls_rx_msg_ready(struct tls_strparser *strp) 2274 { 2275 struct tls_sw_context_rx *ctx; 2276 2277 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2278 ctx->saved_data_ready(strp->sk); 2279 } 2280 2281 static void tls_data_ready(struct sock *sk) 2282 { 2283 struct tls_context *tls_ctx = tls_get_ctx(sk); 2284 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2285 struct sk_psock *psock; 2286 gfp_t alloc_save; 2287 2288 trace_sk_data_ready(sk); 2289 2290 alloc_save = sk->sk_allocation; 2291 sk->sk_allocation = GFP_ATOMIC; 2292 tls_strp_data_ready(&ctx->strp); 2293 sk->sk_allocation = alloc_save; 2294 2295 psock = sk_psock_get(sk); 2296 if (psock) { 2297 if (!list_empty(&psock->ingress_msg)) 2298 ctx->saved_data_ready(sk); 2299 sk_psock_put(sk, psock); 2300 } 2301 } 2302 2303 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2304 { 2305 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2306 2307 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2308 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2309 cancel_delayed_work_sync(&ctx->tx_work.work); 2310 } 2311 2312 void tls_sw_release_resources_tx(struct sock *sk) 2313 { 2314 struct tls_context *tls_ctx = tls_get_ctx(sk); 2315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2316 struct tls_rec *rec, *tmp; 2317 int pending; 2318 2319 /* Wait for any pending async encryptions to complete */ 2320 spin_lock_bh(&ctx->encrypt_compl_lock); 2321 ctx->async_notify = true; 2322 pending = atomic_read(&ctx->encrypt_pending); 2323 spin_unlock_bh(&ctx->encrypt_compl_lock); 2324 2325 if (pending) 2326 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2327 2328 tls_tx_records(sk, -1); 2329 2330 /* Free up un-sent records in tx_list. First, free 2331 * the partially sent record if any at head of tx_list. 2332 */ 2333 if (tls_ctx->partially_sent_record) { 2334 tls_free_partial_record(sk, tls_ctx); 2335 rec = list_first_entry(&ctx->tx_list, 2336 struct tls_rec, list); 2337 list_del(&rec->list); 2338 sk_msg_free(sk, &rec->msg_plaintext); 2339 kfree(rec); 2340 } 2341 2342 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2343 list_del(&rec->list); 2344 sk_msg_free(sk, &rec->msg_encrypted); 2345 sk_msg_free(sk, &rec->msg_plaintext); 2346 kfree(rec); 2347 } 2348 2349 crypto_free_aead(ctx->aead_send); 2350 tls_free_open_rec(sk); 2351 } 2352 2353 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2354 { 2355 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2356 2357 kfree(ctx); 2358 } 2359 2360 void tls_sw_release_resources_rx(struct sock *sk) 2361 { 2362 struct tls_context *tls_ctx = tls_get_ctx(sk); 2363 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2364 2365 kfree(tls_ctx->rx.rec_seq); 2366 kfree(tls_ctx->rx.iv); 2367 2368 if (ctx->aead_recv) { 2369 __skb_queue_purge(&ctx->rx_list); 2370 crypto_free_aead(ctx->aead_recv); 2371 tls_strp_stop(&ctx->strp); 2372 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2373 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2374 * never swapped. 2375 */ 2376 if (ctx->saved_data_ready) { 2377 write_lock_bh(&sk->sk_callback_lock); 2378 sk->sk_data_ready = ctx->saved_data_ready; 2379 write_unlock_bh(&sk->sk_callback_lock); 2380 } 2381 } 2382 } 2383 2384 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2385 { 2386 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2387 2388 tls_strp_done(&ctx->strp); 2389 } 2390 2391 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2392 { 2393 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2394 2395 kfree(ctx); 2396 } 2397 2398 void tls_sw_free_resources_rx(struct sock *sk) 2399 { 2400 struct tls_context *tls_ctx = tls_get_ctx(sk); 2401 2402 tls_sw_release_resources_rx(sk); 2403 tls_sw_free_ctx_rx(tls_ctx); 2404 } 2405 2406 /* The work handler to transmitt the encrypted records in tx_list */ 2407 static void tx_work_handler(struct work_struct *work) 2408 { 2409 struct delayed_work *delayed_work = to_delayed_work(work); 2410 struct tx_work *tx_work = container_of(delayed_work, 2411 struct tx_work, work); 2412 struct sock *sk = tx_work->sk; 2413 struct tls_context *tls_ctx = tls_get_ctx(sk); 2414 struct tls_sw_context_tx *ctx; 2415 2416 if (unlikely(!tls_ctx)) 2417 return; 2418 2419 ctx = tls_sw_ctx_tx(tls_ctx); 2420 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2421 return; 2422 2423 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2424 return; 2425 2426 if (mutex_trylock(&tls_ctx->tx_lock)) { 2427 lock_sock(sk); 2428 tls_tx_records(sk, -1); 2429 release_sock(sk); 2430 mutex_unlock(&tls_ctx->tx_lock); 2431 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2432 /* Someone is holding the tx_lock, they will likely run Tx 2433 * and cancel the work on their way out of the lock section. 2434 * Schedule a long delay just in case. 2435 */ 2436 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2437 } 2438 } 2439 2440 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2441 { 2442 struct tls_rec *rec; 2443 2444 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2445 if (!rec) 2446 return false; 2447 2448 return READ_ONCE(rec->tx_ready); 2449 } 2450 2451 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2452 { 2453 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2454 2455 /* Schedule the transmission if tx list is ready */ 2456 if (tls_is_tx_ready(tx_ctx) && 2457 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2458 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2459 } 2460 2461 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2462 { 2463 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2464 2465 write_lock_bh(&sk->sk_callback_lock); 2466 rx_ctx->saved_data_ready = sk->sk_data_ready; 2467 sk->sk_data_ready = tls_data_ready; 2468 write_unlock_bh(&sk->sk_callback_lock); 2469 } 2470 2471 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2472 { 2473 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2474 2475 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2476 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2477 } 2478 2479 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2480 { 2481 struct tls_context *tls_ctx = tls_get_ctx(sk); 2482 struct tls_prot_info *prot = &tls_ctx->prot_info; 2483 struct tls_crypto_info *crypto_info; 2484 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2485 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2486 struct cipher_context *cctx; 2487 struct crypto_aead **aead; 2488 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2489 struct crypto_tfm *tfm; 2490 char *iv, *rec_seq, *key, *salt, *cipher_name; 2491 size_t keysize; 2492 int rc = 0; 2493 2494 if (!ctx) { 2495 rc = -EINVAL; 2496 goto out; 2497 } 2498 2499 if (tx) { 2500 if (!ctx->priv_ctx_tx) { 2501 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2502 if (!sw_ctx_tx) { 2503 rc = -ENOMEM; 2504 goto out; 2505 } 2506 ctx->priv_ctx_tx = sw_ctx_tx; 2507 } else { 2508 sw_ctx_tx = 2509 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2510 } 2511 } else { 2512 if (!ctx->priv_ctx_rx) { 2513 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2514 if (!sw_ctx_rx) { 2515 rc = -ENOMEM; 2516 goto out; 2517 } 2518 ctx->priv_ctx_rx = sw_ctx_rx; 2519 } else { 2520 sw_ctx_rx = 2521 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2522 } 2523 } 2524 2525 if (tx) { 2526 crypto_init_wait(&sw_ctx_tx->async_wait); 2527 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2528 crypto_info = &ctx->crypto_send.info; 2529 cctx = &ctx->tx; 2530 aead = &sw_ctx_tx->aead_send; 2531 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2532 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2533 sw_ctx_tx->tx_work.sk = sk; 2534 } else { 2535 crypto_init_wait(&sw_ctx_rx->async_wait); 2536 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2537 init_waitqueue_head(&sw_ctx_rx->wq); 2538 crypto_info = &ctx->crypto_recv.info; 2539 cctx = &ctx->rx; 2540 skb_queue_head_init(&sw_ctx_rx->rx_list); 2541 skb_queue_head_init(&sw_ctx_rx->async_hold); 2542 aead = &sw_ctx_rx->aead_recv; 2543 } 2544 2545 switch (crypto_info->cipher_type) { 2546 case TLS_CIPHER_AES_GCM_128: { 2547 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2548 2549 gcm_128_info = (void *)crypto_info; 2550 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2551 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2552 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2553 iv = gcm_128_info->iv; 2554 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2555 rec_seq = gcm_128_info->rec_seq; 2556 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2557 key = gcm_128_info->key; 2558 salt = gcm_128_info->salt; 2559 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2560 cipher_name = "gcm(aes)"; 2561 break; 2562 } 2563 case TLS_CIPHER_AES_GCM_256: { 2564 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2565 2566 gcm_256_info = (void *)crypto_info; 2567 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2568 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2569 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2570 iv = gcm_256_info->iv; 2571 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2572 rec_seq = gcm_256_info->rec_seq; 2573 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2574 key = gcm_256_info->key; 2575 salt = gcm_256_info->salt; 2576 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2577 cipher_name = "gcm(aes)"; 2578 break; 2579 } 2580 case TLS_CIPHER_AES_CCM_128: { 2581 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2582 2583 ccm_128_info = (void *)crypto_info; 2584 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2585 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2586 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2587 iv = ccm_128_info->iv; 2588 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2589 rec_seq = ccm_128_info->rec_seq; 2590 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2591 key = ccm_128_info->key; 2592 salt = ccm_128_info->salt; 2593 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2594 cipher_name = "ccm(aes)"; 2595 break; 2596 } 2597 case TLS_CIPHER_CHACHA20_POLY1305: { 2598 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2599 2600 chacha20_poly1305_info = (void *)crypto_info; 2601 nonce_size = 0; 2602 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2603 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2604 iv = chacha20_poly1305_info->iv; 2605 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2606 rec_seq = chacha20_poly1305_info->rec_seq; 2607 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2608 key = chacha20_poly1305_info->key; 2609 salt = chacha20_poly1305_info->salt; 2610 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2611 cipher_name = "rfc7539(chacha20,poly1305)"; 2612 break; 2613 } 2614 case TLS_CIPHER_SM4_GCM: { 2615 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2616 2617 sm4_gcm_info = (void *)crypto_info; 2618 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2619 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2620 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2621 iv = sm4_gcm_info->iv; 2622 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2623 rec_seq = sm4_gcm_info->rec_seq; 2624 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2625 key = sm4_gcm_info->key; 2626 salt = sm4_gcm_info->salt; 2627 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2628 cipher_name = "gcm(sm4)"; 2629 break; 2630 } 2631 case TLS_CIPHER_SM4_CCM: { 2632 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2633 2634 sm4_ccm_info = (void *)crypto_info; 2635 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2636 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2637 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2638 iv = sm4_ccm_info->iv; 2639 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2640 rec_seq = sm4_ccm_info->rec_seq; 2641 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2642 key = sm4_ccm_info->key; 2643 salt = sm4_ccm_info->salt; 2644 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2645 cipher_name = "ccm(sm4)"; 2646 break; 2647 } 2648 case TLS_CIPHER_ARIA_GCM_128: { 2649 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info; 2650 2651 aria_gcm_128_info = (void *)crypto_info; 2652 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2653 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE; 2654 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2655 iv = aria_gcm_128_info->iv; 2656 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE; 2657 rec_seq = aria_gcm_128_info->rec_seq; 2658 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE; 2659 key = aria_gcm_128_info->key; 2660 salt = aria_gcm_128_info->salt; 2661 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE; 2662 cipher_name = "gcm(aria)"; 2663 break; 2664 } 2665 case TLS_CIPHER_ARIA_GCM_256: { 2666 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info; 2667 2668 gcm_256_info = (void *)crypto_info; 2669 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2670 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE; 2671 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2672 iv = gcm_256_info->iv; 2673 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE; 2674 rec_seq = gcm_256_info->rec_seq; 2675 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE; 2676 key = gcm_256_info->key; 2677 salt = gcm_256_info->salt; 2678 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE; 2679 cipher_name = "gcm(aria)"; 2680 break; 2681 } 2682 default: 2683 rc = -EINVAL; 2684 goto free_priv; 2685 } 2686 2687 if (crypto_info->version == TLS_1_3_VERSION) { 2688 nonce_size = 0; 2689 prot->aad_size = TLS_HEADER_SIZE; 2690 prot->tail_size = 1; 2691 } else { 2692 prot->aad_size = TLS_AAD_SPACE_SIZE; 2693 prot->tail_size = 0; 2694 } 2695 2696 /* Sanity-check the sizes for stack allocations. */ 2697 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2698 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2699 prot->aad_size > TLS_MAX_AAD_SIZE) { 2700 rc = -EINVAL; 2701 goto free_priv; 2702 } 2703 2704 prot->version = crypto_info->version; 2705 prot->cipher_type = crypto_info->cipher_type; 2706 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2707 prot->tag_size = tag_size; 2708 prot->overhead_size = prot->prepend_size + 2709 prot->tag_size + prot->tail_size; 2710 prot->iv_size = iv_size; 2711 prot->salt_size = salt_size; 2712 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2713 if (!cctx->iv) { 2714 rc = -ENOMEM; 2715 goto free_priv; 2716 } 2717 /* Note: 128 & 256 bit salt are the same size */ 2718 prot->rec_seq_size = rec_seq_size; 2719 memcpy(cctx->iv, salt, salt_size); 2720 memcpy(cctx->iv + salt_size, iv, iv_size); 2721 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2722 if (!cctx->rec_seq) { 2723 rc = -ENOMEM; 2724 goto free_iv; 2725 } 2726 2727 if (!*aead) { 2728 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2729 if (IS_ERR(*aead)) { 2730 rc = PTR_ERR(*aead); 2731 *aead = NULL; 2732 goto free_rec_seq; 2733 } 2734 } 2735 2736 ctx->push_pending_record = tls_sw_push_pending_record; 2737 2738 rc = crypto_aead_setkey(*aead, key, keysize); 2739 2740 if (rc) 2741 goto free_aead; 2742 2743 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2744 if (rc) 2745 goto free_aead; 2746 2747 if (sw_ctx_rx) { 2748 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2749 2750 tls_update_rx_zc_capable(ctx); 2751 sw_ctx_rx->async_capable = 2752 crypto_info->version != TLS_1_3_VERSION && 2753 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2754 2755 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2756 if (rc) 2757 goto free_aead; 2758 } 2759 2760 goto out; 2761 2762 free_aead: 2763 crypto_free_aead(*aead); 2764 *aead = NULL; 2765 free_rec_seq: 2766 kfree(cctx->rec_seq); 2767 cctx->rec_seq = NULL; 2768 free_iv: 2769 kfree(cctx->iv); 2770 cctx->iv = NULL; 2771 free_priv: 2772 if (tx) { 2773 kfree(ctx->priv_ctx_tx); 2774 ctx->priv_ctx_tx = NULL; 2775 } else { 2776 kfree(ctx->priv_ctx_rx); 2777 ctx->priv_ctx_rx = NULL; 2778 } 2779 out: 2780 return rc; 2781 } 2782