xref: /linux/net/tls/tls_sw.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
46 
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54 
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57 
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67 
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70 
71                 WARN_ON(start > offset + len);
72 
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86 
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90 
91                         WARN_ON(start > offset + len);
92 
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114 
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122 
123 static int padding_length(struct tls_sw_context_rx *ctx,
124 			  struct tls_context *tls_ctx, struct sk_buff *skb)
125 {
126 	struct strp_msg *rxm = strp_msg(skb);
127 	int sub = 0;
128 
129 	/* Determine zero-padding length */
130 	if (tls_ctx->crypto_recv.info.version == TLS_1_3_VERSION) {
131 		char content_type = 0;
132 		int err;
133 		int back = 17;
134 
135 		while (content_type == 0) {
136 			if (back > rxm->full_len)
137 				return -EBADMSG;
138 			err = skb_copy_bits(skb,
139 					    rxm->offset + rxm->full_len - back,
140 					    &content_type, 1);
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct scatterlist *sg;
159 	struct sk_buff *skb;
160 	unsigned int pages;
161 	int pending;
162 
163 	skb = (struct sk_buff *)req->data;
164 	tls_ctx = tls_get_ctx(skb->sk);
165 	ctx = tls_sw_ctx_rx(tls_ctx);
166 
167 	/* Propagate if there was an err */
168 	if (err) {
169 		ctx->async_wait.err = err;
170 		tls_err_abort(skb->sk, err);
171 	} else {
172 		struct strp_msg *rxm = strp_msg(skb);
173 		rxm->full_len -= padding_length(ctx, tls_ctx, skb);
174 		rxm->offset += tls_ctx->rx.prepend_size;
175 		rxm->full_len -= tls_ctx->rx.overhead_size;
176 	}
177 
178 	/* After using skb->sk to propagate sk through crypto async callback
179 	 * we need to NULL it again.
180 	 */
181 	skb->sk = NULL;
182 
183 
184 	/* Free the destination pages if skb was not decrypted inplace */
185 	if (sgout != sgin) {
186 		/* Skip the first S/G entry as it points to AAD */
187 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
188 			if (!sg)
189 				break;
190 			put_page(sg_page(sg));
191 		}
192 	}
193 
194 	kfree(aead_req);
195 
196 	pending = atomic_dec_return(&ctx->decrypt_pending);
197 
198 	if (!pending && READ_ONCE(ctx->async_notify))
199 		complete(&ctx->async_wait.completion);
200 }
201 
202 static int tls_do_decryption(struct sock *sk,
203 			     struct sk_buff *skb,
204 			     struct scatterlist *sgin,
205 			     struct scatterlist *sgout,
206 			     char *iv_recv,
207 			     size_t data_len,
208 			     struct aead_request *aead_req,
209 			     bool async)
210 {
211 	struct tls_context *tls_ctx = tls_get_ctx(sk);
212 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
213 	int ret;
214 
215 	aead_request_set_tfm(aead_req, ctx->aead_recv);
216 	aead_request_set_ad(aead_req, tls_ctx->rx.aad_size);
217 	aead_request_set_crypt(aead_req, sgin, sgout,
218 			       data_len + tls_ctx->rx.tag_size,
219 			       (u8 *)iv_recv);
220 
221 	if (async) {
222 		/* Using skb->sk to push sk through to crypto async callback
223 		 * handler. This allows propagating errors up to the socket
224 		 * if needed. It _must_ be cleared in the async handler
225 		 * before kfree_skb is called. We _know_ skb->sk is NULL
226 		 * because it is a clone from strparser.
227 		 */
228 		skb->sk = sk;
229 		aead_request_set_callback(aead_req,
230 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
231 					  tls_decrypt_done, skb);
232 		atomic_inc(&ctx->decrypt_pending);
233 	} else {
234 		aead_request_set_callback(aead_req,
235 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
236 					  crypto_req_done, &ctx->async_wait);
237 	}
238 
239 	ret = crypto_aead_decrypt(aead_req);
240 	if (ret == -EINPROGRESS) {
241 		if (async)
242 			return ret;
243 
244 		ret = crypto_wait_req(ret, &ctx->async_wait);
245 	}
246 
247 	if (async)
248 		atomic_dec(&ctx->decrypt_pending);
249 
250 	return ret;
251 }
252 
253 static void tls_trim_both_msgs(struct sock *sk, int target_size)
254 {
255 	struct tls_context *tls_ctx = tls_get_ctx(sk);
256 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
257 	struct tls_rec *rec = ctx->open_rec;
258 
259 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
260 	if (target_size > 0)
261 		target_size += tls_ctx->tx.overhead_size;
262 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
263 }
264 
265 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
266 {
267 	struct tls_context *tls_ctx = tls_get_ctx(sk);
268 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269 	struct tls_rec *rec = ctx->open_rec;
270 	struct sk_msg *msg_en = &rec->msg_encrypted;
271 
272 	return sk_msg_alloc(sk, msg_en, len, 0);
273 }
274 
275 static int tls_clone_plaintext_msg(struct sock *sk, int required)
276 {
277 	struct tls_context *tls_ctx = tls_get_ctx(sk);
278 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
279 	struct tls_rec *rec = ctx->open_rec;
280 	struct sk_msg *msg_pl = &rec->msg_plaintext;
281 	struct sk_msg *msg_en = &rec->msg_encrypted;
282 	int skip, len;
283 
284 	/* We add page references worth len bytes from encrypted sg
285 	 * at the end of plaintext sg. It is guaranteed that msg_en
286 	 * has enough required room (ensured by caller).
287 	 */
288 	len = required - msg_pl->sg.size;
289 
290 	/* Skip initial bytes in msg_en's data to be able to use
291 	 * same offset of both plain and encrypted data.
292 	 */
293 	skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
294 
295 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
296 }
297 
298 static struct tls_rec *tls_get_rec(struct sock *sk)
299 {
300 	struct tls_context *tls_ctx = tls_get_ctx(sk);
301 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
302 	struct sk_msg *msg_pl, *msg_en;
303 	struct tls_rec *rec;
304 	int mem_size;
305 
306 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
307 
308 	rec = kzalloc(mem_size, sk->sk_allocation);
309 	if (!rec)
310 		return NULL;
311 
312 	msg_pl = &rec->msg_plaintext;
313 	msg_en = &rec->msg_encrypted;
314 
315 	sk_msg_init(msg_pl);
316 	sk_msg_init(msg_en);
317 
318 	sg_init_table(rec->sg_aead_in, 2);
319 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
320 		   tls_ctx->tx.aad_size);
321 	sg_unmark_end(&rec->sg_aead_in[1]);
322 
323 	sg_init_table(rec->sg_aead_out, 2);
324 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
325 		   tls_ctx->tx.aad_size);
326 	sg_unmark_end(&rec->sg_aead_out[1]);
327 
328 	return rec;
329 }
330 
331 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
332 {
333 	sk_msg_free(sk, &rec->msg_encrypted);
334 	sk_msg_free(sk, &rec->msg_plaintext);
335 	kfree(rec);
336 }
337 
338 static void tls_free_open_rec(struct sock *sk)
339 {
340 	struct tls_context *tls_ctx = tls_get_ctx(sk);
341 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
342 	struct tls_rec *rec = ctx->open_rec;
343 
344 	if (rec) {
345 		tls_free_rec(sk, rec);
346 		ctx->open_rec = NULL;
347 	}
348 }
349 
350 int tls_tx_records(struct sock *sk, int flags)
351 {
352 	struct tls_context *tls_ctx = tls_get_ctx(sk);
353 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354 	struct tls_rec *rec, *tmp;
355 	struct sk_msg *msg_en;
356 	int tx_flags, rc = 0;
357 
358 	if (tls_is_partially_sent_record(tls_ctx)) {
359 		rec = list_first_entry(&ctx->tx_list,
360 				       struct tls_rec, list);
361 
362 		if (flags == -1)
363 			tx_flags = rec->tx_flags;
364 		else
365 			tx_flags = flags;
366 
367 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
368 		if (rc)
369 			goto tx_err;
370 
371 		/* Full record has been transmitted.
372 		 * Remove the head of tx_list
373 		 */
374 		list_del(&rec->list);
375 		sk_msg_free(sk, &rec->msg_plaintext);
376 		kfree(rec);
377 	}
378 
379 	/* Tx all ready records */
380 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
381 		if (READ_ONCE(rec->tx_ready)) {
382 			if (flags == -1)
383 				tx_flags = rec->tx_flags;
384 			else
385 				tx_flags = flags;
386 
387 			msg_en = &rec->msg_encrypted;
388 			rc = tls_push_sg(sk, tls_ctx,
389 					 &msg_en->sg.data[msg_en->sg.curr],
390 					 0, tx_flags);
391 			if (rc)
392 				goto tx_err;
393 
394 			list_del(&rec->list);
395 			sk_msg_free(sk, &rec->msg_plaintext);
396 			kfree(rec);
397 		} else {
398 			break;
399 		}
400 	}
401 
402 tx_err:
403 	if (rc < 0 && rc != -EAGAIN)
404 		tls_err_abort(sk, EBADMSG);
405 
406 	return rc;
407 }
408 
409 static void tls_encrypt_done(struct crypto_async_request *req, int err)
410 {
411 	struct aead_request *aead_req = (struct aead_request *)req;
412 	struct sock *sk = req->data;
413 	struct tls_context *tls_ctx = tls_get_ctx(sk);
414 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
415 	struct scatterlist *sge;
416 	struct sk_msg *msg_en;
417 	struct tls_rec *rec;
418 	bool ready = false;
419 	int pending;
420 
421 	rec = container_of(aead_req, struct tls_rec, aead_req);
422 	msg_en = &rec->msg_encrypted;
423 
424 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
425 	sge->offset -= tls_ctx->tx.prepend_size;
426 	sge->length += tls_ctx->tx.prepend_size;
427 
428 	/* Check if error is previously set on socket */
429 	if (err || sk->sk_err) {
430 		rec = NULL;
431 
432 		/* If err is already set on socket, return the same code */
433 		if (sk->sk_err) {
434 			ctx->async_wait.err = sk->sk_err;
435 		} else {
436 			ctx->async_wait.err = err;
437 			tls_err_abort(sk, err);
438 		}
439 	}
440 
441 	if (rec) {
442 		struct tls_rec *first_rec;
443 
444 		/* Mark the record as ready for transmission */
445 		smp_store_mb(rec->tx_ready, true);
446 
447 		/* If received record is at head of tx_list, schedule tx */
448 		first_rec = list_first_entry(&ctx->tx_list,
449 					     struct tls_rec, list);
450 		if (rec == first_rec)
451 			ready = true;
452 	}
453 
454 	pending = atomic_dec_return(&ctx->encrypt_pending);
455 
456 	if (!pending && READ_ONCE(ctx->async_notify))
457 		complete(&ctx->async_wait.completion);
458 
459 	if (!ready)
460 		return;
461 
462 	/* Schedule the transmission */
463 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
464 		schedule_delayed_work(&ctx->tx_work.work, 1);
465 }
466 
467 static int tls_do_encryption(struct sock *sk,
468 			     struct tls_context *tls_ctx,
469 			     struct tls_sw_context_tx *ctx,
470 			     struct aead_request *aead_req,
471 			     size_t data_len, u32 start)
472 {
473 	struct tls_rec *rec = ctx->open_rec;
474 	struct sk_msg *msg_en = &rec->msg_encrypted;
475 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
476 	int rc;
477 
478 	memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
479 	xor_iv_with_seq(tls_ctx->crypto_send.info.version, rec->iv_data,
480 			tls_ctx->tx.rec_seq);
481 
482 	sge->offset += tls_ctx->tx.prepend_size;
483 	sge->length -= tls_ctx->tx.prepend_size;
484 
485 	msg_en->sg.curr = start;
486 
487 	aead_request_set_tfm(aead_req, ctx->aead_send);
488 	aead_request_set_ad(aead_req, tls_ctx->tx.aad_size);
489 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
490 			       rec->sg_aead_out,
491 			       data_len, rec->iv_data);
492 
493 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
494 				  tls_encrypt_done, sk);
495 
496 	/* Add the record in tx_list */
497 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
498 	atomic_inc(&ctx->encrypt_pending);
499 
500 	rc = crypto_aead_encrypt(aead_req);
501 	if (!rc || rc != -EINPROGRESS) {
502 		atomic_dec(&ctx->encrypt_pending);
503 		sge->offset -= tls_ctx->tx.prepend_size;
504 		sge->length += tls_ctx->tx.prepend_size;
505 	}
506 
507 	if (!rc) {
508 		WRITE_ONCE(rec->tx_ready, true);
509 	} else if (rc != -EINPROGRESS) {
510 		list_del(&rec->list);
511 		return rc;
512 	}
513 
514 	/* Unhook the record from context if encryption is not failure */
515 	ctx->open_rec = NULL;
516 	tls_advance_record_sn(sk, &tls_ctx->tx,
517 			      tls_ctx->crypto_send.info.version);
518 	return rc;
519 }
520 
521 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
522 				 struct tls_rec **to, struct sk_msg *msg_opl,
523 				 struct sk_msg *msg_oen, u32 split_point,
524 				 u32 tx_overhead_size, u32 *orig_end)
525 {
526 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
527 	struct scatterlist *sge, *osge, *nsge;
528 	u32 orig_size = msg_opl->sg.size;
529 	struct scatterlist tmp = { };
530 	struct sk_msg *msg_npl;
531 	struct tls_rec *new;
532 	int ret;
533 
534 	new = tls_get_rec(sk);
535 	if (!new)
536 		return -ENOMEM;
537 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
538 			   tx_overhead_size, 0);
539 	if (ret < 0) {
540 		tls_free_rec(sk, new);
541 		return ret;
542 	}
543 
544 	*orig_end = msg_opl->sg.end;
545 	i = msg_opl->sg.start;
546 	sge = sk_msg_elem(msg_opl, i);
547 	while (apply && sge->length) {
548 		if (sge->length > apply) {
549 			u32 len = sge->length - apply;
550 
551 			get_page(sg_page(sge));
552 			sg_set_page(&tmp, sg_page(sge), len,
553 				    sge->offset + apply);
554 			sge->length = apply;
555 			bytes += apply;
556 			apply = 0;
557 		} else {
558 			apply -= sge->length;
559 			bytes += sge->length;
560 		}
561 
562 		sk_msg_iter_var_next(i);
563 		if (i == msg_opl->sg.end)
564 			break;
565 		sge = sk_msg_elem(msg_opl, i);
566 	}
567 
568 	msg_opl->sg.end = i;
569 	msg_opl->sg.curr = i;
570 	msg_opl->sg.copybreak = 0;
571 	msg_opl->apply_bytes = 0;
572 	msg_opl->sg.size = bytes;
573 
574 	msg_npl = &new->msg_plaintext;
575 	msg_npl->apply_bytes = apply;
576 	msg_npl->sg.size = orig_size - bytes;
577 
578 	j = msg_npl->sg.start;
579 	nsge = sk_msg_elem(msg_npl, j);
580 	if (tmp.length) {
581 		memcpy(nsge, &tmp, sizeof(*nsge));
582 		sk_msg_iter_var_next(j);
583 		nsge = sk_msg_elem(msg_npl, j);
584 	}
585 
586 	osge = sk_msg_elem(msg_opl, i);
587 	while (osge->length) {
588 		memcpy(nsge, osge, sizeof(*nsge));
589 		sg_unmark_end(nsge);
590 		sk_msg_iter_var_next(i);
591 		sk_msg_iter_var_next(j);
592 		if (i == *orig_end)
593 			break;
594 		osge = sk_msg_elem(msg_opl, i);
595 		nsge = sk_msg_elem(msg_npl, j);
596 	}
597 
598 	msg_npl->sg.end = j;
599 	msg_npl->sg.curr = j;
600 	msg_npl->sg.copybreak = 0;
601 
602 	*to = new;
603 	return 0;
604 }
605 
606 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
607 				  struct tls_rec *from, u32 orig_end)
608 {
609 	struct sk_msg *msg_npl = &from->msg_plaintext;
610 	struct sk_msg *msg_opl = &to->msg_plaintext;
611 	struct scatterlist *osge, *nsge;
612 	u32 i, j;
613 
614 	i = msg_opl->sg.end;
615 	sk_msg_iter_var_prev(i);
616 	j = msg_npl->sg.start;
617 
618 	osge = sk_msg_elem(msg_opl, i);
619 	nsge = sk_msg_elem(msg_npl, j);
620 
621 	if (sg_page(osge) == sg_page(nsge) &&
622 	    osge->offset + osge->length == nsge->offset) {
623 		osge->length += nsge->length;
624 		put_page(sg_page(nsge));
625 	}
626 
627 	msg_opl->sg.end = orig_end;
628 	msg_opl->sg.curr = orig_end;
629 	msg_opl->sg.copybreak = 0;
630 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
631 	msg_opl->sg.size += msg_npl->sg.size;
632 
633 	sk_msg_free(sk, &to->msg_encrypted);
634 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
635 
636 	kfree(from);
637 }
638 
639 static int tls_push_record(struct sock *sk, int flags,
640 			   unsigned char record_type)
641 {
642 	struct tls_context *tls_ctx = tls_get_ctx(sk);
643 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
644 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
645 	u32 i, split_point, uninitialized_var(orig_end);
646 	struct sk_msg *msg_pl, *msg_en;
647 	struct aead_request *req;
648 	bool split;
649 	int rc;
650 
651 	if (!rec)
652 		return 0;
653 
654 	msg_pl = &rec->msg_plaintext;
655 	msg_en = &rec->msg_encrypted;
656 
657 	split_point = msg_pl->apply_bytes;
658 	split = split_point && split_point < msg_pl->sg.size;
659 	if (split) {
660 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
661 					   split_point, tls_ctx->tx.overhead_size,
662 					   &orig_end);
663 		if (rc < 0)
664 			return rc;
665 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
666 			    tls_ctx->tx.overhead_size);
667 	}
668 
669 	rec->tx_flags = flags;
670 	req = &rec->aead_req;
671 
672 	i = msg_pl->sg.end;
673 	sk_msg_iter_var_prev(i);
674 
675 	rec->content_type = record_type;
676 	if (tls_ctx->crypto_send.info.version == TLS_1_3_VERSION) {
677 		/* Add content type to end of message.  No padding added */
678 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
679 		sg_mark_end(&rec->sg_content_type);
680 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
681 			 &rec->sg_content_type);
682 	} else {
683 		sg_mark_end(sk_msg_elem(msg_pl, i));
684 	}
685 
686 	i = msg_pl->sg.start;
687 	sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
688 		 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
689 
690 	i = msg_en->sg.end;
691 	sk_msg_iter_var_prev(i);
692 	sg_mark_end(sk_msg_elem(msg_en, i));
693 
694 	i = msg_en->sg.start;
695 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
696 
697 	tls_make_aad(rec->aad_space, msg_pl->sg.size + tls_ctx->tx.tail_size,
698 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
699 		     record_type,
700 		     tls_ctx->crypto_send.info.version);
701 
702 	tls_fill_prepend(tls_ctx,
703 			 page_address(sg_page(&msg_en->sg.data[i])) +
704 			 msg_en->sg.data[i].offset,
705 			 msg_pl->sg.size + tls_ctx->tx.tail_size,
706 			 record_type,
707 			 tls_ctx->crypto_send.info.version);
708 
709 	tls_ctx->pending_open_record_frags = false;
710 
711 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
712 			       msg_pl->sg.size + tls_ctx->tx.tail_size, i);
713 	if (rc < 0) {
714 		if (rc != -EINPROGRESS) {
715 			tls_err_abort(sk, EBADMSG);
716 			if (split) {
717 				tls_ctx->pending_open_record_frags = true;
718 				tls_merge_open_record(sk, rec, tmp, orig_end);
719 			}
720 		}
721 		ctx->async_capable = 1;
722 		return rc;
723 	} else if (split) {
724 		msg_pl = &tmp->msg_plaintext;
725 		msg_en = &tmp->msg_encrypted;
726 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
727 			    tls_ctx->tx.overhead_size);
728 		tls_ctx->pending_open_record_frags = true;
729 		ctx->open_rec = tmp;
730 	}
731 
732 	return tls_tx_records(sk, flags);
733 }
734 
735 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
736 			       bool full_record, u8 record_type,
737 			       size_t *copied, int flags)
738 {
739 	struct tls_context *tls_ctx = tls_get_ctx(sk);
740 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
741 	struct sk_msg msg_redir = { };
742 	struct sk_psock *psock;
743 	struct sock *sk_redir;
744 	struct tls_rec *rec;
745 	bool enospc, policy;
746 	int err = 0, send;
747 	u32 delta = 0;
748 
749 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
750 	psock = sk_psock_get(sk);
751 	if (!psock || !policy)
752 		return tls_push_record(sk, flags, record_type);
753 more_data:
754 	enospc = sk_msg_full(msg);
755 	if (psock->eval == __SK_NONE) {
756 		delta = msg->sg.size;
757 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
758 		if (delta < msg->sg.size)
759 			delta -= msg->sg.size;
760 		else
761 			delta = 0;
762 	}
763 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
764 	    !enospc && !full_record) {
765 		err = -ENOSPC;
766 		goto out_err;
767 	}
768 	msg->cork_bytes = 0;
769 	send = msg->sg.size;
770 	if (msg->apply_bytes && msg->apply_bytes < send)
771 		send = msg->apply_bytes;
772 
773 	switch (psock->eval) {
774 	case __SK_PASS:
775 		err = tls_push_record(sk, flags, record_type);
776 		if (err < 0) {
777 			*copied -= sk_msg_free(sk, msg);
778 			tls_free_open_rec(sk);
779 			goto out_err;
780 		}
781 		break;
782 	case __SK_REDIRECT:
783 		sk_redir = psock->sk_redir;
784 		memcpy(&msg_redir, msg, sizeof(*msg));
785 		if (msg->apply_bytes < send)
786 			msg->apply_bytes = 0;
787 		else
788 			msg->apply_bytes -= send;
789 		sk_msg_return_zero(sk, msg, send);
790 		msg->sg.size -= send;
791 		release_sock(sk);
792 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
793 		lock_sock(sk);
794 		if (err < 0) {
795 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
796 			msg->sg.size = 0;
797 		}
798 		if (msg->sg.size == 0)
799 			tls_free_open_rec(sk);
800 		break;
801 	case __SK_DROP:
802 	default:
803 		sk_msg_free_partial(sk, msg, send);
804 		if (msg->apply_bytes < send)
805 			msg->apply_bytes = 0;
806 		else
807 			msg->apply_bytes -= send;
808 		if (msg->sg.size == 0)
809 			tls_free_open_rec(sk);
810 		*copied -= (send + delta);
811 		err = -EACCES;
812 	}
813 
814 	if (likely(!err)) {
815 		bool reset_eval = !ctx->open_rec;
816 
817 		rec = ctx->open_rec;
818 		if (rec) {
819 			msg = &rec->msg_plaintext;
820 			if (!msg->apply_bytes)
821 				reset_eval = true;
822 		}
823 		if (reset_eval) {
824 			psock->eval = __SK_NONE;
825 			if (psock->sk_redir) {
826 				sock_put(psock->sk_redir);
827 				psock->sk_redir = NULL;
828 			}
829 		}
830 		if (rec)
831 			goto more_data;
832 	}
833  out_err:
834 	sk_psock_put(sk, psock);
835 	return err;
836 }
837 
838 static int tls_sw_push_pending_record(struct sock *sk, int flags)
839 {
840 	struct tls_context *tls_ctx = tls_get_ctx(sk);
841 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
842 	struct tls_rec *rec = ctx->open_rec;
843 	struct sk_msg *msg_pl;
844 	size_t copied;
845 
846 	if (!rec)
847 		return 0;
848 
849 	msg_pl = &rec->msg_plaintext;
850 	copied = msg_pl->sg.size;
851 	if (!copied)
852 		return 0;
853 
854 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
855 				   &copied, flags);
856 }
857 
858 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
859 {
860 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
861 	struct tls_context *tls_ctx = tls_get_ctx(sk);
862 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
863 	bool async_capable = ctx->async_capable;
864 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
865 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
866 	bool eor = !(msg->msg_flags & MSG_MORE);
867 	size_t try_to_copy, copied = 0;
868 	struct sk_msg *msg_pl, *msg_en;
869 	struct tls_rec *rec;
870 	int required_size;
871 	int num_async = 0;
872 	bool full_record;
873 	int record_room;
874 	int num_zc = 0;
875 	int orig_size;
876 	int ret = 0;
877 
878 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
879 		return -ENOTSUPP;
880 
881 	lock_sock(sk);
882 
883 	/* Wait till there is any pending write on socket */
884 	if (unlikely(sk->sk_write_pending)) {
885 		ret = wait_on_pending_writer(sk, &timeo);
886 		if (unlikely(ret))
887 			goto send_end;
888 	}
889 
890 	if (unlikely(msg->msg_controllen)) {
891 		ret = tls_proccess_cmsg(sk, msg, &record_type);
892 		if (ret) {
893 			if (ret == -EINPROGRESS)
894 				num_async++;
895 			else if (ret != -EAGAIN)
896 				goto send_end;
897 		}
898 	}
899 
900 	while (msg_data_left(msg)) {
901 		if (sk->sk_err) {
902 			ret = -sk->sk_err;
903 			goto send_end;
904 		}
905 
906 		if (ctx->open_rec)
907 			rec = ctx->open_rec;
908 		else
909 			rec = ctx->open_rec = tls_get_rec(sk);
910 		if (!rec) {
911 			ret = -ENOMEM;
912 			goto send_end;
913 		}
914 
915 		msg_pl = &rec->msg_plaintext;
916 		msg_en = &rec->msg_encrypted;
917 
918 		orig_size = msg_pl->sg.size;
919 		full_record = false;
920 		try_to_copy = msg_data_left(msg);
921 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
922 		if (try_to_copy >= record_room) {
923 			try_to_copy = record_room;
924 			full_record = true;
925 		}
926 
927 		required_size = msg_pl->sg.size + try_to_copy +
928 				tls_ctx->tx.overhead_size;
929 
930 		if (!sk_stream_memory_free(sk))
931 			goto wait_for_sndbuf;
932 
933 alloc_encrypted:
934 		ret = tls_alloc_encrypted_msg(sk, required_size);
935 		if (ret) {
936 			if (ret != -ENOSPC)
937 				goto wait_for_memory;
938 
939 			/* Adjust try_to_copy according to the amount that was
940 			 * actually allocated. The difference is due
941 			 * to max sg elements limit
942 			 */
943 			try_to_copy -= required_size - msg_en->sg.size;
944 			full_record = true;
945 		}
946 
947 		if (!is_kvec && (full_record || eor) && !async_capable) {
948 			u32 first = msg_pl->sg.end;
949 
950 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
951 							msg_pl, try_to_copy);
952 			if (ret)
953 				goto fallback_to_reg_send;
954 
955 			rec->inplace_crypto = 0;
956 
957 			num_zc++;
958 			copied += try_to_copy;
959 
960 			sk_msg_sg_copy_set(msg_pl, first);
961 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
962 						  record_type, &copied,
963 						  msg->msg_flags);
964 			if (ret) {
965 				if (ret == -EINPROGRESS)
966 					num_async++;
967 				else if (ret == -ENOMEM)
968 					goto wait_for_memory;
969 				else if (ret == -ENOSPC)
970 					goto rollback_iter;
971 				else if (ret != -EAGAIN)
972 					goto send_end;
973 			}
974 			continue;
975 rollback_iter:
976 			copied -= try_to_copy;
977 			sk_msg_sg_copy_clear(msg_pl, first);
978 			iov_iter_revert(&msg->msg_iter,
979 					msg_pl->sg.size - orig_size);
980 fallback_to_reg_send:
981 			sk_msg_trim(sk, msg_pl, orig_size);
982 		}
983 
984 		required_size = msg_pl->sg.size + try_to_copy;
985 
986 		ret = tls_clone_plaintext_msg(sk, required_size);
987 		if (ret) {
988 			if (ret != -ENOSPC)
989 				goto send_end;
990 
991 			/* Adjust try_to_copy according to the amount that was
992 			 * actually allocated. The difference is due
993 			 * to max sg elements limit
994 			 */
995 			try_to_copy -= required_size - msg_pl->sg.size;
996 			full_record = true;
997 			sk_msg_trim(sk, msg_en, msg_pl->sg.size +
998 				    tls_ctx->tx.overhead_size);
999 		}
1000 
1001 		if (try_to_copy) {
1002 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1003 						       msg_pl, try_to_copy);
1004 			if (ret < 0)
1005 				goto trim_sgl;
1006 		}
1007 
1008 		/* Open records defined only if successfully copied, otherwise
1009 		 * we would trim the sg but not reset the open record frags.
1010 		 */
1011 		tls_ctx->pending_open_record_frags = true;
1012 		copied += try_to_copy;
1013 		if (full_record || eor) {
1014 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015 						  record_type, &copied,
1016 						  msg->msg_flags);
1017 			if (ret) {
1018 				if (ret == -EINPROGRESS)
1019 					num_async++;
1020 				else if (ret == -ENOMEM)
1021 					goto wait_for_memory;
1022 				else if (ret != -EAGAIN) {
1023 					if (ret == -ENOSPC)
1024 						ret = 0;
1025 					goto send_end;
1026 				}
1027 			}
1028 		}
1029 
1030 		continue;
1031 
1032 wait_for_sndbuf:
1033 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1034 wait_for_memory:
1035 		ret = sk_stream_wait_memory(sk, &timeo);
1036 		if (ret) {
1037 trim_sgl:
1038 			tls_trim_both_msgs(sk, orig_size);
1039 			goto send_end;
1040 		}
1041 
1042 		if (msg_en->sg.size < required_size)
1043 			goto alloc_encrypted;
1044 	}
1045 
1046 	if (!num_async) {
1047 		goto send_end;
1048 	} else if (num_zc) {
1049 		/* Wait for pending encryptions to get completed */
1050 		smp_store_mb(ctx->async_notify, true);
1051 
1052 		if (atomic_read(&ctx->encrypt_pending))
1053 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1054 		else
1055 			reinit_completion(&ctx->async_wait.completion);
1056 
1057 		WRITE_ONCE(ctx->async_notify, false);
1058 
1059 		if (ctx->async_wait.err) {
1060 			ret = ctx->async_wait.err;
1061 			copied = 0;
1062 		}
1063 	}
1064 
1065 	/* Transmit if any encryptions have completed */
1066 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1067 		cancel_delayed_work(&ctx->tx_work.work);
1068 		tls_tx_records(sk, msg->msg_flags);
1069 	}
1070 
1071 send_end:
1072 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1073 
1074 	release_sock(sk);
1075 	return copied ? copied : ret;
1076 }
1077 
1078 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1079 			      int offset, size_t size, int flags)
1080 {
1081 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1082 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1083 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1084 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1085 	struct sk_msg *msg_pl;
1086 	struct tls_rec *rec;
1087 	int num_async = 0;
1088 	size_t copied = 0;
1089 	bool full_record;
1090 	int record_room;
1091 	int ret = 0;
1092 	bool eor;
1093 
1094 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1095 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1096 
1097 	/* Wait till there is any pending write on socket */
1098 	if (unlikely(sk->sk_write_pending)) {
1099 		ret = wait_on_pending_writer(sk, &timeo);
1100 		if (unlikely(ret))
1101 			goto sendpage_end;
1102 	}
1103 
1104 	/* Call the sk_stream functions to manage the sndbuf mem. */
1105 	while (size > 0) {
1106 		size_t copy, required_size;
1107 
1108 		if (sk->sk_err) {
1109 			ret = -sk->sk_err;
1110 			goto sendpage_end;
1111 		}
1112 
1113 		if (ctx->open_rec)
1114 			rec = ctx->open_rec;
1115 		else
1116 			rec = ctx->open_rec = tls_get_rec(sk);
1117 		if (!rec) {
1118 			ret = -ENOMEM;
1119 			goto sendpage_end;
1120 		}
1121 
1122 		msg_pl = &rec->msg_plaintext;
1123 
1124 		full_record = false;
1125 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1126 		copied = 0;
1127 		copy = size;
1128 		if (copy >= record_room) {
1129 			copy = record_room;
1130 			full_record = true;
1131 		}
1132 
1133 		required_size = msg_pl->sg.size + copy +
1134 				tls_ctx->tx.overhead_size;
1135 
1136 		if (!sk_stream_memory_free(sk))
1137 			goto wait_for_sndbuf;
1138 alloc_payload:
1139 		ret = tls_alloc_encrypted_msg(sk, required_size);
1140 		if (ret) {
1141 			if (ret != -ENOSPC)
1142 				goto wait_for_memory;
1143 
1144 			/* Adjust copy according to the amount that was
1145 			 * actually allocated. The difference is due
1146 			 * to max sg elements limit
1147 			 */
1148 			copy -= required_size - msg_pl->sg.size;
1149 			full_record = true;
1150 		}
1151 
1152 		sk_msg_page_add(msg_pl, page, copy, offset);
1153 		sk_mem_charge(sk, copy);
1154 
1155 		offset += copy;
1156 		size -= copy;
1157 		copied += copy;
1158 
1159 		tls_ctx->pending_open_record_frags = true;
1160 		if (full_record || eor || sk_msg_full(msg_pl)) {
1161 			rec->inplace_crypto = 0;
1162 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1163 						  record_type, &copied, flags);
1164 			if (ret) {
1165 				if (ret == -EINPROGRESS)
1166 					num_async++;
1167 				else if (ret == -ENOMEM)
1168 					goto wait_for_memory;
1169 				else if (ret != -EAGAIN) {
1170 					if (ret == -ENOSPC)
1171 						ret = 0;
1172 					goto sendpage_end;
1173 				}
1174 			}
1175 		}
1176 		continue;
1177 wait_for_sndbuf:
1178 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1179 wait_for_memory:
1180 		ret = sk_stream_wait_memory(sk, &timeo);
1181 		if (ret) {
1182 			tls_trim_both_msgs(sk, msg_pl->sg.size);
1183 			goto sendpage_end;
1184 		}
1185 
1186 		goto alloc_payload;
1187 	}
1188 
1189 	if (num_async) {
1190 		/* Transmit if any encryptions have completed */
1191 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1192 			cancel_delayed_work(&ctx->tx_work.work);
1193 			tls_tx_records(sk, flags);
1194 		}
1195 	}
1196 sendpage_end:
1197 	ret = sk_stream_error(sk, flags, ret);
1198 	return copied ? copied : ret;
1199 }
1200 
1201 int tls_sw_sendpage(struct sock *sk, struct page *page,
1202 		    int offset, size_t size, int flags)
1203 {
1204 	int ret;
1205 
1206 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1207 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1208 		return -ENOTSUPP;
1209 
1210 	lock_sock(sk);
1211 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1212 	release_sock(sk);
1213 	return ret;
1214 }
1215 
1216 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1217 				     int flags, long timeo, int *err)
1218 {
1219 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1220 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1221 	struct sk_buff *skb;
1222 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1223 
1224 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1225 		if (sk->sk_err) {
1226 			*err = sock_error(sk);
1227 			return NULL;
1228 		}
1229 
1230 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1231 			return NULL;
1232 
1233 		if (sock_flag(sk, SOCK_DONE))
1234 			return NULL;
1235 
1236 		if ((flags & MSG_DONTWAIT) || !timeo) {
1237 			*err = -EAGAIN;
1238 			return NULL;
1239 		}
1240 
1241 		add_wait_queue(sk_sleep(sk), &wait);
1242 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1243 		sk_wait_event(sk, &timeo,
1244 			      ctx->recv_pkt != skb ||
1245 			      !sk_psock_queue_empty(psock),
1246 			      &wait);
1247 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1248 		remove_wait_queue(sk_sleep(sk), &wait);
1249 
1250 		/* Handle signals */
1251 		if (signal_pending(current)) {
1252 			*err = sock_intr_errno(timeo);
1253 			return NULL;
1254 		}
1255 	}
1256 
1257 	return skb;
1258 }
1259 
1260 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1261 			       int length, int *pages_used,
1262 			       unsigned int *size_used,
1263 			       struct scatterlist *to,
1264 			       int to_max_pages)
1265 {
1266 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1267 	struct page *pages[MAX_SKB_FRAGS];
1268 	unsigned int size = *size_used;
1269 	ssize_t copied, use;
1270 	size_t offset;
1271 
1272 	while (length > 0) {
1273 		i = 0;
1274 		maxpages = to_max_pages - num_elem;
1275 		if (maxpages == 0) {
1276 			rc = -EFAULT;
1277 			goto out;
1278 		}
1279 		copied = iov_iter_get_pages(from, pages,
1280 					    length,
1281 					    maxpages, &offset);
1282 		if (copied <= 0) {
1283 			rc = -EFAULT;
1284 			goto out;
1285 		}
1286 
1287 		iov_iter_advance(from, copied);
1288 
1289 		length -= copied;
1290 		size += copied;
1291 		while (copied) {
1292 			use = min_t(int, copied, PAGE_SIZE - offset);
1293 
1294 			sg_set_page(&to[num_elem],
1295 				    pages[i], use, offset);
1296 			sg_unmark_end(&to[num_elem]);
1297 			/* We do not uncharge memory from this API */
1298 
1299 			offset = 0;
1300 			copied -= use;
1301 
1302 			i++;
1303 			num_elem++;
1304 		}
1305 	}
1306 	/* Mark the end in the last sg entry if newly added */
1307 	if (num_elem > *pages_used)
1308 		sg_mark_end(&to[num_elem - 1]);
1309 out:
1310 	if (rc)
1311 		iov_iter_revert(from, size - *size_used);
1312 	*size_used = size;
1313 	*pages_used = num_elem;
1314 
1315 	return rc;
1316 }
1317 
1318 /* This function decrypts the input skb into either out_iov or in out_sg
1319  * or in skb buffers itself. The input parameter 'zc' indicates if
1320  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1321  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1322  * NULL, then the decryption happens inside skb buffers itself, i.e.
1323  * zero-copy gets disabled and 'zc' is updated.
1324  */
1325 
1326 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1327 			    struct iov_iter *out_iov,
1328 			    struct scatterlist *out_sg,
1329 			    int *chunk, bool *zc, bool async)
1330 {
1331 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1332 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1333 	struct strp_msg *rxm = strp_msg(skb);
1334 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1335 	struct aead_request *aead_req;
1336 	struct sk_buff *unused;
1337 	u8 *aad, *iv, *mem = NULL;
1338 	struct scatterlist *sgin = NULL;
1339 	struct scatterlist *sgout = NULL;
1340 	const int data_len = rxm->full_len - tls_ctx->rx.overhead_size +
1341 		tls_ctx->rx.tail_size;
1342 
1343 	if (*zc && (out_iov || out_sg)) {
1344 		if (out_iov)
1345 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1346 		else
1347 			n_sgout = sg_nents(out_sg);
1348 		n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1349 				 rxm->full_len - tls_ctx->rx.prepend_size);
1350 	} else {
1351 		n_sgout = 0;
1352 		*zc = false;
1353 		n_sgin = skb_cow_data(skb, 0, &unused);
1354 	}
1355 
1356 	if (n_sgin < 1)
1357 		return -EBADMSG;
1358 
1359 	/* Increment to accommodate AAD */
1360 	n_sgin = n_sgin + 1;
1361 
1362 	nsg = n_sgin + n_sgout;
1363 
1364 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1365 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1366 	mem_size = mem_size + tls_ctx->rx.aad_size;
1367 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1368 
1369 	/* Allocate a single block of memory which contains
1370 	 * aead_req || sgin[] || sgout[] || aad || iv.
1371 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1372 	 */
1373 	mem = kmalloc(mem_size, sk->sk_allocation);
1374 	if (!mem)
1375 		return -ENOMEM;
1376 
1377 	/* Segment the allocated memory */
1378 	aead_req = (struct aead_request *)mem;
1379 	sgin = (struct scatterlist *)(mem + aead_size);
1380 	sgout = sgin + n_sgin;
1381 	aad = (u8 *)(sgout + n_sgout);
1382 	iv = aad + tls_ctx->rx.aad_size;
1383 
1384 	/* Prepare IV */
1385 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1386 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1387 			    tls_ctx->rx.iv_size);
1388 	if (err < 0) {
1389 		kfree(mem);
1390 		return err;
1391 	}
1392 	if (tls_ctx->crypto_recv.info.version == TLS_1_3_VERSION)
1393 		memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv));
1394 	else
1395 		memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1396 
1397 	xor_iv_with_seq(tls_ctx->crypto_recv.info.version, iv,
1398 			tls_ctx->rx.rec_seq);
1399 
1400 	/* Prepare AAD */
1401 	tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size +
1402 		     tls_ctx->rx.tail_size,
1403 		     tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1404 		     ctx->control,
1405 		     tls_ctx->crypto_recv.info.version);
1406 
1407 	/* Prepare sgin */
1408 	sg_init_table(sgin, n_sgin);
1409 	sg_set_buf(&sgin[0], aad, tls_ctx->rx.aad_size);
1410 	err = skb_to_sgvec(skb, &sgin[1],
1411 			   rxm->offset + tls_ctx->rx.prepend_size,
1412 			   rxm->full_len - tls_ctx->rx.prepend_size);
1413 	if (err < 0) {
1414 		kfree(mem);
1415 		return err;
1416 	}
1417 
1418 	if (n_sgout) {
1419 		if (out_iov) {
1420 			sg_init_table(sgout, n_sgout);
1421 			sg_set_buf(&sgout[0], aad, tls_ctx->rx.aad_size);
1422 
1423 			*chunk = 0;
1424 			err = tls_setup_from_iter(sk, out_iov, data_len,
1425 						  &pages, chunk, &sgout[1],
1426 						  (n_sgout - 1));
1427 			if (err < 0)
1428 				goto fallback_to_reg_recv;
1429 		} else if (out_sg) {
1430 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1431 		} else {
1432 			goto fallback_to_reg_recv;
1433 		}
1434 	} else {
1435 fallback_to_reg_recv:
1436 		sgout = sgin;
1437 		pages = 0;
1438 		*chunk = data_len;
1439 		*zc = false;
1440 	}
1441 
1442 	/* Prepare and submit AEAD request */
1443 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1444 				data_len, aead_req, async);
1445 	if (err == -EINPROGRESS)
1446 		return err;
1447 
1448 	/* Release the pages in case iov was mapped to pages */
1449 	for (; pages > 0; pages--)
1450 		put_page(sg_page(&sgout[pages]));
1451 
1452 	kfree(mem);
1453 	return err;
1454 }
1455 
1456 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1457 			      struct iov_iter *dest, int *chunk, bool *zc,
1458 			      bool async)
1459 {
1460 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1461 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1462 	int version = tls_ctx->crypto_recv.info.version;
1463 	struct strp_msg *rxm = strp_msg(skb);
1464 	int err = 0;
1465 
1466 #ifdef CONFIG_TLS_DEVICE
1467 	err = tls_device_decrypted(sk, skb);
1468 	if (err < 0)
1469 		return err;
1470 #endif
1471 	if (!ctx->decrypted) {
1472 		err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, async);
1473 		if (err < 0) {
1474 			if (err == -EINPROGRESS)
1475 				tls_advance_record_sn(sk, &tls_ctx->rx,
1476 						      version);
1477 
1478 			return err;
1479 		}
1480 
1481 		rxm->full_len -= padding_length(ctx, tls_ctx, skb);
1482 
1483 		rxm->offset += tls_ctx->rx.prepend_size;
1484 		rxm->full_len -= tls_ctx->rx.overhead_size;
1485 		tls_advance_record_sn(sk, &tls_ctx->rx, version);
1486 		ctx->decrypted = true;
1487 		ctx->saved_data_ready(sk);
1488 	} else {
1489 		*zc = false;
1490 	}
1491 
1492 	return err;
1493 }
1494 
1495 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1496 		struct scatterlist *sgout)
1497 {
1498 	bool zc = true;
1499 	int chunk;
1500 
1501 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1502 }
1503 
1504 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1505 			       unsigned int len)
1506 {
1507 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1508 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1509 
1510 	if (skb) {
1511 		struct strp_msg *rxm = strp_msg(skb);
1512 
1513 		if (len < rxm->full_len) {
1514 			rxm->offset += len;
1515 			rxm->full_len -= len;
1516 			return false;
1517 		}
1518 		kfree_skb(skb);
1519 	}
1520 
1521 	/* Finished with message */
1522 	ctx->recv_pkt = NULL;
1523 	__strp_unpause(&ctx->strp);
1524 
1525 	return true;
1526 }
1527 
1528 /* This function traverses the rx_list in tls receive context to copies the
1529  * decrypted data records into the buffer provided by caller zero copy is not
1530  * true. Further, the records are removed from the rx_list if it is not a peek
1531  * case and the record has been consumed completely.
1532  */
1533 static int process_rx_list(struct tls_sw_context_rx *ctx,
1534 			   struct msghdr *msg,
1535 			   size_t skip,
1536 			   size_t len,
1537 			   bool zc,
1538 			   bool is_peek)
1539 {
1540 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1541 	ssize_t copied = 0;
1542 
1543 	while (skip && skb) {
1544 		struct strp_msg *rxm = strp_msg(skb);
1545 
1546 		if (skip < rxm->full_len)
1547 			break;
1548 
1549 		skip = skip - rxm->full_len;
1550 		skb = skb_peek_next(skb, &ctx->rx_list);
1551 	}
1552 
1553 	while (len && skb) {
1554 		struct sk_buff *next_skb;
1555 		struct strp_msg *rxm = strp_msg(skb);
1556 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1557 
1558 		if (!zc || (rxm->full_len - skip) > len) {
1559 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1560 						    msg, chunk);
1561 			if (err < 0)
1562 				return err;
1563 		}
1564 
1565 		len = len - chunk;
1566 		copied = copied + chunk;
1567 
1568 		/* Consume the data from record if it is non-peek case*/
1569 		if (!is_peek) {
1570 			rxm->offset = rxm->offset + chunk;
1571 			rxm->full_len = rxm->full_len - chunk;
1572 
1573 			/* Return if there is unconsumed data in the record */
1574 			if (rxm->full_len - skip)
1575 				break;
1576 		}
1577 
1578 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1579 		 * So from the 2nd record, 'skip' should be 0.
1580 		 */
1581 		skip = 0;
1582 
1583 		if (msg)
1584 			msg->msg_flags |= MSG_EOR;
1585 
1586 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1587 
1588 		if (!is_peek) {
1589 			skb_unlink(skb, &ctx->rx_list);
1590 			kfree_skb(skb);
1591 		}
1592 
1593 		skb = next_skb;
1594 	}
1595 
1596 	return copied;
1597 }
1598 
1599 int tls_sw_recvmsg(struct sock *sk,
1600 		   struct msghdr *msg,
1601 		   size_t len,
1602 		   int nonblock,
1603 		   int flags,
1604 		   int *addr_len)
1605 {
1606 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1607 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1608 	struct sk_psock *psock;
1609 	unsigned char control = 0;
1610 	ssize_t decrypted = 0;
1611 	struct strp_msg *rxm;
1612 	struct sk_buff *skb;
1613 	ssize_t copied = 0;
1614 	bool cmsg = false;
1615 	int target, err = 0;
1616 	long timeo;
1617 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1618 	bool is_peek = flags & MSG_PEEK;
1619 	int num_async = 0;
1620 
1621 	flags |= nonblock;
1622 
1623 	if (unlikely(flags & MSG_ERRQUEUE))
1624 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1625 
1626 	psock = sk_psock_get(sk);
1627 	lock_sock(sk);
1628 
1629 	/* Process pending decrypted records. It must be non-zero-copy */
1630 	err = process_rx_list(ctx, msg, 0, len, false, is_peek);
1631 	if (err < 0) {
1632 		tls_err_abort(sk, err);
1633 		goto end;
1634 	} else {
1635 		copied = err;
1636 	}
1637 
1638 	len = len - copied;
1639 	if (len) {
1640 		target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1641 		timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1642 	} else {
1643 		goto recv_end;
1644 	}
1645 
1646 	do {
1647 		bool retain_skb = false;
1648 		bool zc = false;
1649 		int to_decrypt;
1650 		int chunk = 0;
1651 		bool async;
1652 
1653 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1654 		if (!skb) {
1655 			if (psock) {
1656 				int ret = __tcp_bpf_recvmsg(sk, psock,
1657 							    msg, len, flags);
1658 
1659 				if (ret > 0) {
1660 					decrypted += ret;
1661 					len -= ret;
1662 					continue;
1663 				}
1664 			}
1665 			goto recv_end;
1666 		}
1667 
1668 		rxm = strp_msg(skb);
1669 
1670 		to_decrypt = rxm->full_len - tls_ctx->rx.overhead_size;
1671 
1672 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1673 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1674 		    tls_ctx->crypto_recv.info.version != TLS_1_3_VERSION)
1675 			zc = true;
1676 
1677 		/* Do not use async mode if record is non-data */
1678 		if (ctx->control == TLS_RECORD_TYPE_DATA)
1679 			async = ctx->async_capable;
1680 		else
1681 			async = false;
1682 
1683 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1684 					 &chunk, &zc, async);
1685 		if (err < 0 && err != -EINPROGRESS) {
1686 			tls_err_abort(sk, EBADMSG);
1687 			goto recv_end;
1688 		}
1689 
1690 		if (err == -EINPROGRESS)
1691 			num_async++;
1692 
1693 		if (!cmsg) {
1694 			int cerr;
1695 
1696 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1697 					sizeof(ctx->control), &ctx->control);
1698 			cmsg = true;
1699 			control = ctx->control;
1700 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
1701 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1702 					err = -EIO;
1703 					goto recv_end;
1704 				}
1705 			}
1706 		} else if (control != ctx->control) {
1707 			goto recv_end;
1708 		}
1709 
1710 		if (async)
1711 			goto pick_next_record;
1712 
1713 		if (!zc) {
1714 			if (rxm->full_len > len) {
1715 				retain_skb = true;
1716 				chunk = len;
1717 			} else {
1718 				chunk = rxm->full_len;
1719 			}
1720 
1721 			err = skb_copy_datagram_msg(skb, rxm->offset,
1722 						    msg, chunk);
1723 			if (err < 0)
1724 				goto recv_end;
1725 
1726 			if (!is_peek) {
1727 				rxm->offset = rxm->offset + chunk;
1728 				rxm->full_len = rxm->full_len - chunk;
1729 			}
1730 		}
1731 
1732 pick_next_record:
1733 		if (chunk > len)
1734 			chunk = len;
1735 
1736 		decrypted += chunk;
1737 		len -= chunk;
1738 
1739 		/* For async or peek case, queue the current skb */
1740 		if (async || is_peek || retain_skb) {
1741 			skb_queue_tail(&ctx->rx_list, skb);
1742 			skb = NULL;
1743 		}
1744 
1745 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1746 			/* Return full control message to
1747 			 * userspace before trying to parse
1748 			 * another message type
1749 			 */
1750 			msg->msg_flags |= MSG_EOR;
1751 			if (ctx->control != TLS_RECORD_TYPE_DATA)
1752 				goto recv_end;
1753 		} else {
1754 			break;
1755 		}
1756 
1757 		/* If we have a new message from strparser, continue now. */
1758 		if (decrypted >= target && !ctx->recv_pkt)
1759 			break;
1760 	} while (len);
1761 
1762 recv_end:
1763 	if (num_async) {
1764 		/* Wait for all previously submitted records to be decrypted */
1765 		smp_store_mb(ctx->async_notify, true);
1766 		if (atomic_read(&ctx->decrypt_pending)) {
1767 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1768 			if (err) {
1769 				/* one of async decrypt failed */
1770 				tls_err_abort(sk, err);
1771 				copied = 0;
1772 				decrypted = 0;
1773 				goto end;
1774 			}
1775 		} else {
1776 			reinit_completion(&ctx->async_wait.completion);
1777 		}
1778 		WRITE_ONCE(ctx->async_notify, false);
1779 
1780 		/* Drain records from the rx_list & copy if required */
1781 		if (is_peek || is_kvec)
1782 			err = process_rx_list(ctx, msg, copied,
1783 					      decrypted, false, is_peek);
1784 		else
1785 			err = process_rx_list(ctx, msg, 0,
1786 					      decrypted, true, is_peek);
1787 		if (err < 0) {
1788 			tls_err_abort(sk, err);
1789 			copied = 0;
1790 			goto end;
1791 		}
1792 
1793 		WARN_ON(decrypted != err);
1794 	}
1795 
1796 	copied += decrypted;
1797 
1798 end:
1799 	release_sock(sk);
1800 	if (psock)
1801 		sk_psock_put(sk, psock);
1802 	return copied ? : err;
1803 }
1804 
1805 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1806 			   struct pipe_inode_info *pipe,
1807 			   size_t len, unsigned int flags)
1808 {
1809 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1810 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1811 	struct strp_msg *rxm = NULL;
1812 	struct sock *sk = sock->sk;
1813 	struct sk_buff *skb;
1814 	ssize_t copied = 0;
1815 	int err = 0;
1816 	long timeo;
1817 	int chunk;
1818 	bool zc = false;
1819 
1820 	lock_sock(sk);
1821 
1822 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1823 
1824 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1825 	if (!skb)
1826 		goto splice_read_end;
1827 
1828 	if (!ctx->decrypted) {
1829 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1830 
1831 		/* splice does not support reading control messages */
1832 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1833 			err = -ENOTSUPP;
1834 			goto splice_read_end;
1835 		}
1836 
1837 		if (err < 0) {
1838 			tls_err_abort(sk, EBADMSG);
1839 			goto splice_read_end;
1840 		}
1841 		ctx->decrypted = true;
1842 	}
1843 	rxm = strp_msg(skb);
1844 
1845 	chunk = min_t(unsigned int, rxm->full_len, len);
1846 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1847 	if (copied < 0)
1848 		goto splice_read_end;
1849 
1850 	if (likely(!(flags & MSG_PEEK)))
1851 		tls_sw_advance_skb(sk, skb, copied);
1852 
1853 splice_read_end:
1854 	release_sock(sk);
1855 	return copied ? : err;
1856 }
1857 
1858 bool tls_sw_stream_read(const struct sock *sk)
1859 {
1860 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1861 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1862 	bool ingress_empty = true;
1863 	struct sk_psock *psock;
1864 
1865 	rcu_read_lock();
1866 	psock = sk_psock(sk);
1867 	if (psock)
1868 		ingress_empty = list_empty(&psock->ingress_msg);
1869 	rcu_read_unlock();
1870 
1871 	return !ingress_empty || ctx->recv_pkt;
1872 }
1873 
1874 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1875 {
1876 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1877 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1878 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1879 	struct strp_msg *rxm = strp_msg(skb);
1880 	size_t cipher_overhead;
1881 	size_t data_len = 0;
1882 	int ret;
1883 
1884 	/* Verify that we have a full TLS header, or wait for more data */
1885 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1886 		return 0;
1887 
1888 	/* Sanity-check size of on-stack buffer. */
1889 	if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1890 		ret = -EINVAL;
1891 		goto read_failure;
1892 	}
1893 
1894 	/* Linearize header to local buffer */
1895 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1896 
1897 	if (ret < 0)
1898 		goto read_failure;
1899 
1900 	ctx->control = header[0];
1901 
1902 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1903 
1904 	cipher_overhead = tls_ctx->rx.tag_size;
1905 	if (tls_ctx->crypto_recv.info.version != TLS_1_3_VERSION)
1906 		cipher_overhead += tls_ctx->rx.iv_size;
1907 
1908 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1909 	    tls_ctx->rx.tail_size) {
1910 		ret = -EMSGSIZE;
1911 		goto read_failure;
1912 	}
1913 	if (data_len < cipher_overhead) {
1914 		ret = -EBADMSG;
1915 		goto read_failure;
1916 	}
1917 
1918 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
1919 	if (header[1] != TLS_1_2_VERSION_MINOR ||
1920 	    header[2] != TLS_1_2_VERSION_MAJOR) {
1921 		ret = -EINVAL;
1922 		goto read_failure;
1923 	}
1924 #ifdef CONFIG_TLS_DEVICE
1925 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1926 			     *(u64*)tls_ctx->rx.rec_seq);
1927 #endif
1928 	return data_len + TLS_HEADER_SIZE;
1929 
1930 read_failure:
1931 	tls_err_abort(strp->sk, ret);
1932 
1933 	return ret;
1934 }
1935 
1936 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1937 {
1938 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1939 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1940 
1941 	ctx->decrypted = false;
1942 
1943 	ctx->recv_pkt = skb;
1944 	strp_pause(strp);
1945 
1946 	ctx->saved_data_ready(strp->sk);
1947 }
1948 
1949 static void tls_data_ready(struct sock *sk)
1950 {
1951 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1952 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1953 	struct sk_psock *psock;
1954 
1955 	strp_data_ready(&ctx->strp);
1956 
1957 	psock = sk_psock_get(sk);
1958 	if (psock && !list_empty(&psock->ingress_msg)) {
1959 		ctx->saved_data_ready(sk);
1960 		sk_psock_put(sk, psock);
1961 	}
1962 }
1963 
1964 void tls_sw_free_resources_tx(struct sock *sk)
1965 {
1966 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1967 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1968 	struct tls_rec *rec, *tmp;
1969 
1970 	/* Wait for any pending async encryptions to complete */
1971 	smp_store_mb(ctx->async_notify, true);
1972 	if (atomic_read(&ctx->encrypt_pending))
1973 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1974 
1975 	release_sock(sk);
1976 	cancel_delayed_work_sync(&ctx->tx_work.work);
1977 	lock_sock(sk);
1978 
1979 	/* Tx whatever records we can transmit and abandon the rest */
1980 	tls_tx_records(sk, -1);
1981 
1982 	/* Free up un-sent records in tx_list. First, free
1983 	 * the partially sent record if any at head of tx_list.
1984 	 */
1985 	if (tls_ctx->partially_sent_record) {
1986 		struct scatterlist *sg = tls_ctx->partially_sent_record;
1987 
1988 		while (1) {
1989 			put_page(sg_page(sg));
1990 			sk_mem_uncharge(sk, sg->length);
1991 
1992 			if (sg_is_last(sg))
1993 				break;
1994 			sg++;
1995 		}
1996 
1997 		tls_ctx->partially_sent_record = NULL;
1998 
1999 		rec = list_first_entry(&ctx->tx_list,
2000 				       struct tls_rec, list);
2001 		list_del(&rec->list);
2002 		sk_msg_free(sk, &rec->msg_plaintext);
2003 		kfree(rec);
2004 	}
2005 
2006 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2007 		list_del(&rec->list);
2008 		sk_msg_free(sk, &rec->msg_encrypted);
2009 		sk_msg_free(sk, &rec->msg_plaintext);
2010 		kfree(rec);
2011 	}
2012 
2013 	crypto_free_aead(ctx->aead_send);
2014 	tls_free_open_rec(sk);
2015 
2016 	kfree(ctx);
2017 }
2018 
2019 void tls_sw_release_resources_rx(struct sock *sk)
2020 {
2021 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2022 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2023 
2024 	if (ctx->aead_recv) {
2025 		kfree_skb(ctx->recv_pkt);
2026 		ctx->recv_pkt = NULL;
2027 		skb_queue_purge(&ctx->rx_list);
2028 		crypto_free_aead(ctx->aead_recv);
2029 		strp_stop(&ctx->strp);
2030 		write_lock_bh(&sk->sk_callback_lock);
2031 		sk->sk_data_ready = ctx->saved_data_ready;
2032 		write_unlock_bh(&sk->sk_callback_lock);
2033 		release_sock(sk);
2034 		strp_done(&ctx->strp);
2035 		lock_sock(sk);
2036 	}
2037 }
2038 
2039 void tls_sw_free_resources_rx(struct sock *sk)
2040 {
2041 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2042 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2043 
2044 	tls_sw_release_resources_rx(sk);
2045 
2046 	kfree(ctx);
2047 }
2048 
2049 /* The work handler to transmitt the encrypted records in tx_list */
2050 static void tx_work_handler(struct work_struct *work)
2051 {
2052 	struct delayed_work *delayed_work = to_delayed_work(work);
2053 	struct tx_work *tx_work = container_of(delayed_work,
2054 					       struct tx_work, work);
2055 	struct sock *sk = tx_work->sk;
2056 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2057 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2058 
2059 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2060 		return;
2061 
2062 	lock_sock(sk);
2063 	tls_tx_records(sk, -1);
2064 	release_sock(sk);
2065 }
2066 
2067 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2068 {
2069 	struct tls_crypto_info *crypto_info;
2070 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2071 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2072 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2073 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2074 	struct cipher_context *cctx;
2075 	struct crypto_aead **aead;
2076 	struct strp_callbacks cb;
2077 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
2078 	struct crypto_tfm *tfm;
2079 	char *iv, *rec_seq, *key, *salt;
2080 	size_t keysize;
2081 	int rc = 0;
2082 
2083 	if (!ctx) {
2084 		rc = -EINVAL;
2085 		goto out;
2086 	}
2087 
2088 	if (tx) {
2089 		if (!ctx->priv_ctx_tx) {
2090 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2091 			if (!sw_ctx_tx) {
2092 				rc = -ENOMEM;
2093 				goto out;
2094 			}
2095 			ctx->priv_ctx_tx = sw_ctx_tx;
2096 		} else {
2097 			sw_ctx_tx =
2098 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2099 		}
2100 	} else {
2101 		if (!ctx->priv_ctx_rx) {
2102 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2103 			if (!sw_ctx_rx) {
2104 				rc = -ENOMEM;
2105 				goto out;
2106 			}
2107 			ctx->priv_ctx_rx = sw_ctx_rx;
2108 		} else {
2109 			sw_ctx_rx =
2110 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2111 		}
2112 	}
2113 
2114 	if (tx) {
2115 		crypto_init_wait(&sw_ctx_tx->async_wait);
2116 		crypto_info = &ctx->crypto_send.info;
2117 		cctx = &ctx->tx;
2118 		aead = &sw_ctx_tx->aead_send;
2119 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2120 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2121 		sw_ctx_tx->tx_work.sk = sk;
2122 	} else {
2123 		crypto_init_wait(&sw_ctx_rx->async_wait);
2124 		crypto_info = &ctx->crypto_recv.info;
2125 		cctx = &ctx->rx;
2126 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2127 		aead = &sw_ctx_rx->aead_recv;
2128 	}
2129 
2130 	switch (crypto_info->cipher_type) {
2131 	case TLS_CIPHER_AES_GCM_128: {
2132 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2133 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2134 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2135 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2136 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2137 		rec_seq =
2138 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2139 		gcm_128_info =
2140 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2141 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2142 		key = gcm_128_info->key;
2143 		salt = gcm_128_info->salt;
2144 		break;
2145 	}
2146 	case TLS_CIPHER_AES_GCM_256: {
2147 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2148 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2149 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2150 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2151 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2152 		rec_seq =
2153 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2154 		gcm_256_info =
2155 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2156 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2157 		key = gcm_256_info->key;
2158 		salt = gcm_256_info->salt;
2159 		break;
2160 	}
2161 	default:
2162 		rc = -EINVAL;
2163 		goto free_priv;
2164 	}
2165 
2166 	/* Sanity-check the IV size for stack allocations. */
2167 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2168 		rc = -EINVAL;
2169 		goto free_priv;
2170 	}
2171 
2172 	if (crypto_info->version == TLS_1_3_VERSION) {
2173 		nonce_size = 0;
2174 		cctx->aad_size = TLS_HEADER_SIZE;
2175 		cctx->tail_size = 1;
2176 	} else {
2177 		cctx->aad_size = TLS_AAD_SPACE_SIZE;
2178 		cctx->tail_size = 0;
2179 	}
2180 
2181 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
2182 	cctx->tag_size = tag_size;
2183 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size +
2184 		cctx->tail_size;
2185 	cctx->iv_size = iv_size;
2186 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2187 			   GFP_KERNEL);
2188 	if (!cctx->iv) {
2189 		rc = -ENOMEM;
2190 		goto free_priv;
2191 	}
2192 	/* Note: 128 & 256 bit salt are the same size */
2193 	memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
2194 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
2195 	cctx->rec_seq_size = rec_seq_size;
2196 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2197 	if (!cctx->rec_seq) {
2198 		rc = -ENOMEM;
2199 		goto free_iv;
2200 	}
2201 
2202 	if (!*aead) {
2203 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2204 		if (IS_ERR(*aead)) {
2205 			rc = PTR_ERR(*aead);
2206 			*aead = NULL;
2207 			goto free_rec_seq;
2208 		}
2209 	}
2210 
2211 	ctx->push_pending_record = tls_sw_push_pending_record;
2212 
2213 	rc = crypto_aead_setkey(*aead, key, keysize);
2214 
2215 	if (rc)
2216 		goto free_aead;
2217 
2218 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
2219 	if (rc)
2220 		goto free_aead;
2221 
2222 	if (sw_ctx_rx) {
2223 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2224 
2225 		if (crypto_info->version == TLS_1_3_VERSION)
2226 			sw_ctx_rx->async_capable = false;
2227 		else
2228 			sw_ctx_rx->async_capable =
2229 				tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2230 
2231 		/* Set up strparser */
2232 		memset(&cb, 0, sizeof(cb));
2233 		cb.rcv_msg = tls_queue;
2234 		cb.parse_msg = tls_read_size;
2235 
2236 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2237 
2238 		write_lock_bh(&sk->sk_callback_lock);
2239 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2240 		sk->sk_data_ready = tls_data_ready;
2241 		write_unlock_bh(&sk->sk_callback_lock);
2242 
2243 		strp_check_rcv(&sw_ctx_rx->strp);
2244 	}
2245 
2246 	goto out;
2247 
2248 free_aead:
2249 	crypto_free_aead(*aead);
2250 	*aead = NULL;
2251 free_rec_seq:
2252 	kfree(cctx->rec_seq);
2253 	cctx->rec_seq = NULL;
2254 free_iv:
2255 	kfree(cctx->iv);
2256 	cctx->iv = NULL;
2257 free_priv:
2258 	if (tx) {
2259 		kfree(ctx->priv_ctx_tx);
2260 		ctx->priv_ctx_tx = NULL;
2261 	} else {
2262 		kfree(ctx->priv_ctx_rx);
2263 		ctx->priv_ctx_rx = NULL;
2264 	}
2265 out:
2266 	return rc;
2267 }
2268