1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/splice.h> 42 #include <crypto/aead.h> 43 44 #include <net/strparser.h> 45 #include <net/tls.h> 46 47 #include "tls.h" 48 49 struct tls_decrypt_arg { 50 struct_group(inargs, 51 bool zc; 52 bool async; 53 u8 tail; 54 ); 55 56 struct sk_buff *skb; 57 }; 58 59 struct tls_decrypt_ctx { 60 u8 iv[MAX_IV_SIZE]; 61 u8 aad[TLS_MAX_AAD_SIZE]; 62 u8 tail; 63 struct scatterlist sg[]; 64 }; 65 66 noinline void tls_err_abort(struct sock *sk, int err) 67 { 68 WARN_ON_ONCE(err >= 0); 69 /* sk->sk_err should contain a positive error code. */ 70 sk->sk_err = -err; 71 sk_error_report(sk); 72 } 73 74 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 75 unsigned int recursion_level) 76 { 77 int start = skb_headlen(skb); 78 int i, chunk = start - offset; 79 struct sk_buff *frag_iter; 80 int elt = 0; 81 82 if (unlikely(recursion_level >= 24)) 83 return -EMSGSIZE; 84 85 if (chunk > 0) { 86 if (chunk > len) 87 chunk = len; 88 elt++; 89 len -= chunk; 90 if (len == 0) 91 return elt; 92 offset += chunk; 93 } 94 95 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 96 int end; 97 98 WARN_ON(start > offset + len); 99 100 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 101 chunk = end - offset; 102 if (chunk > 0) { 103 if (chunk > len) 104 chunk = len; 105 elt++; 106 len -= chunk; 107 if (len == 0) 108 return elt; 109 offset += chunk; 110 } 111 start = end; 112 } 113 114 if (unlikely(skb_has_frag_list(skb))) { 115 skb_walk_frags(skb, frag_iter) { 116 int end, ret; 117 118 WARN_ON(start > offset + len); 119 120 end = start + frag_iter->len; 121 chunk = end - offset; 122 if (chunk > 0) { 123 if (chunk > len) 124 chunk = len; 125 ret = __skb_nsg(frag_iter, offset - start, chunk, 126 recursion_level + 1); 127 if (unlikely(ret < 0)) 128 return ret; 129 elt += ret; 130 len -= chunk; 131 if (len == 0) 132 return elt; 133 offset += chunk; 134 } 135 start = end; 136 } 137 } 138 BUG_ON(len); 139 return elt; 140 } 141 142 /* Return the number of scatterlist elements required to completely map the 143 * skb, or -EMSGSIZE if the recursion depth is exceeded. 144 */ 145 static int skb_nsg(struct sk_buff *skb, int offset, int len) 146 { 147 return __skb_nsg(skb, offset, len, 0); 148 } 149 150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 151 struct tls_decrypt_arg *darg) 152 { 153 struct strp_msg *rxm = strp_msg(skb); 154 struct tls_msg *tlm = tls_msg(skb); 155 int sub = 0; 156 157 /* Determine zero-padding length */ 158 if (prot->version == TLS_1_3_VERSION) { 159 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 160 char content_type = darg->zc ? darg->tail : 0; 161 int err; 162 163 while (content_type == 0) { 164 if (offset < prot->prepend_size) 165 return -EBADMSG; 166 err = skb_copy_bits(skb, rxm->offset + offset, 167 &content_type, 1); 168 if (err) 169 return err; 170 if (content_type) 171 break; 172 sub++; 173 offset--; 174 } 175 tlm->control = content_type; 176 } 177 return sub; 178 } 179 180 static void tls_decrypt_done(struct crypto_async_request *req, int err) 181 { 182 struct aead_request *aead_req = (struct aead_request *)req; 183 struct scatterlist *sgout = aead_req->dst; 184 struct scatterlist *sgin = aead_req->src; 185 struct tls_sw_context_rx *ctx; 186 struct tls_context *tls_ctx; 187 struct scatterlist *sg; 188 unsigned int pages; 189 struct sock *sk; 190 191 sk = (struct sock *)req->data; 192 tls_ctx = tls_get_ctx(sk); 193 ctx = tls_sw_ctx_rx(tls_ctx); 194 195 /* Propagate if there was an err */ 196 if (err) { 197 if (err == -EBADMSG) 198 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 199 ctx->async_wait.err = err; 200 tls_err_abort(sk, err); 201 } 202 203 /* Free the destination pages if skb was not decrypted inplace */ 204 if (sgout != sgin) { 205 /* Skip the first S/G entry as it points to AAD */ 206 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 207 if (!sg) 208 break; 209 put_page(sg_page(sg)); 210 } 211 } 212 213 kfree(aead_req); 214 215 spin_lock_bh(&ctx->decrypt_compl_lock); 216 if (!atomic_dec_return(&ctx->decrypt_pending)) 217 complete(&ctx->async_wait.completion); 218 spin_unlock_bh(&ctx->decrypt_compl_lock); 219 } 220 221 static int tls_do_decryption(struct sock *sk, 222 struct scatterlist *sgin, 223 struct scatterlist *sgout, 224 char *iv_recv, 225 size_t data_len, 226 struct aead_request *aead_req, 227 struct tls_decrypt_arg *darg) 228 { 229 struct tls_context *tls_ctx = tls_get_ctx(sk); 230 struct tls_prot_info *prot = &tls_ctx->prot_info; 231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 232 int ret; 233 234 aead_request_set_tfm(aead_req, ctx->aead_recv); 235 aead_request_set_ad(aead_req, prot->aad_size); 236 aead_request_set_crypt(aead_req, sgin, sgout, 237 data_len + prot->tag_size, 238 (u8 *)iv_recv); 239 240 if (darg->async) { 241 aead_request_set_callback(aead_req, 242 CRYPTO_TFM_REQ_MAY_BACKLOG, 243 tls_decrypt_done, sk); 244 atomic_inc(&ctx->decrypt_pending); 245 } else { 246 aead_request_set_callback(aead_req, 247 CRYPTO_TFM_REQ_MAY_BACKLOG, 248 crypto_req_done, &ctx->async_wait); 249 } 250 251 ret = crypto_aead_decrypt(aead_req); 252 if (ret == -EINPROGRESS) { 253 if (darg->async) 254 return 0; 255 256 ret = crypto_wait_req(ret, &ctx->async_wait); 257 } 258 darg->async = false; 259 260 return ret; 261 } 262 263 static void tls_trim_both_msgs(struct sock *sk, int target_size) 264 { 265 struct tls_context *tls_ctx = tls_get_ctx(sk); 266 struct tls_prot_info *prot = &tls_ctx->prot_info; 267 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 268 struct tls_rec *rec = ctx->open_rec; 269 270 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 271 if (target_size > 0) 272 target_size += prot->overhead_size; 273 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 274 } 275 276 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 277 { 278 struct tls_context *tls_ctx = tls_get_ctx(sk); 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 struct sk_msg *msg_en = &rec->msg_encrypted; 282 283 return sk_msg_alloc(sk, msg_en, len, 0); 284 } 285 286 static int tls_clone_plaintext_msg(struct sock *sk, int required) 287 { 288 struct tls_context *tls_ctx = tls_get_ctx(sk); 289 struct tls_prot_info *prot = &tls_ctx->prot_info; 290 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 291 struct tls_rec *rec = ctx->open_rec; 292 struct sk_msg *msg_pl = &rec->msg_plaintext; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 int skip, len; 295 296 /* We add page references worth len bytes from encrypted sg 297 * at the end of plaintext sg. It is guaranteed that msg_en 298 * has enough required room (ensured by caller). 299 */ 300 len = required - msg_pl->sg.size; 301 302 /* Skip initial bytes in msg_en's data to be able to use 303 * same offset of both plain and encrypted data. 304 */ 305 skip = prot->prepend_size + msg_pl->sg.size; 306 307 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 308 } 309 310 static struct tls_rec *tls_get_rec(struct sock *sk) 311 { 312 struct tls_context *tls_ctx = tls_get_ctx(sk); 313 struct tls_prot_info *prot = &tls_ctx->prot_info; 314 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 315 struct sk_msg *msg_pl, *msg_en; 316 struct tls_rec *rec; 317 int mem_size; 318 319 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 320 321 rec = kzalloc(mem_size, sk->sk_allocation); 322 if (!rec) 323 return NULL; 324 325 msg_pl = &rec->msg_plaintext; 326 msg_en = &rec->msg_encrypted; 327 328 sk_msg_init(msg_pl); 329 sk_msg_init(msg_en); 330 331 sg_init_table(rec->sg_aead_in, 2); 332 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 333 sg_unmark_end(&rec->sg_aead_in[1]); 334 335 sg_init_table(rec->sg_aead_out, 2); 336 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 337 sg_unmark_end(&rec->sg_aead_out[1]); 338 339 return rec; 340 } 341 342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 343 { 344 sk_msg_free(sk, &rec->msg_encrypted); 345 sk_msg_free(sk, &rec->msg_plaintext); 346 kfree(rec); 347 } 348 349 static void tls_free_open_rec(struct sock *sk) 350 { 351 struct tls_context *tls_ctx = tls_get_ctx(sk); 352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 353 struct tls_rec *rec = ctx->open_rec; 354 355 if (rec) { 356 tls_free_rec(sk, rec); 357 ctx->open_rec = NULL; 358 } 359 } 360 361 int tls_tx_records(struct sock *sk, int flags) 362 { 363 struct tls_context *tls_ctx = tls_get_ctx(sk); 364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 365 struct tls_rec *rec, *tmp; 366 struct sk_msg *msg_en; 367 int tx_flags, rc = 0; 368 369 if (tls_is_partially_sent_record(tls_ctx)) { 370 rec = list_first_entry(&ctx->tx_list, 371 struct tls_rec, list); 372 373 if (flags == -1) 374 tx_flags = rec->tx_flags; 375 else 376 tx_flags = flags; 377 378 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 379 if (rc) 380 goto tx_err; 381 382 /* Full record has been transmitted. 383 * Remove the head of tx_list 384 */ 385 list_del(&rec->list); 386 sk_msg_free(sk, &rec->msg_plaintext); 387 kfree(rec); 388 } 389 390 /* Tx all ready records */ 391 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 392 if (READ_ONCE(rec->tx_ready)) { 393 if (flags == -1) 394 tx_flags = rec->tx_flags; 395 else 396 tx_flags = flags; 397 398 msg_en = &rec->msg_encrypted; 399 rc = tls_push_sg(sk, tls_ctx, 400 &msg_en->sg.data[msg_en->sg.curr], 401 0, tx_flags); 402 if (rc) 403 goto tx_err; 404 405 list_del(&rec->list); 406 sk_msg_free(sk, &rec->msg_plaintext); 407 kfree(rec); 408 } else { 409 break; 410 } 411 } 412 413 tx_err: 414 if (rc < 0 && rc != -EAGAIN) 415 tls_err_abort(sk, -EBADMSG); 416 417 return rc; 418 } 419 420 static void tls_encrypt_done(struct crypto_async_request *req, int err) 421 { 422 struct aead_request *aead_req = (struct aead_request *)req; 423 struct sock *sk = req->data; 424 struct tls_context *tls_ctx = tls_get_ctx(sk); 425 struct tls_prot_info *prot = &tls_ctx->prot_info; 426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 427 struct scatterlist *sge; 428 struct sk_msg *msg_en; 429 struct tls_rec *rec; 430 bool ready = false; 431 int pending; 432 433 rec = container_of(aead_req, struct tls_rec, aead_req); 434 msg_en = &rec->msg_encrypted; 435 436 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 437 sge->offset -= prot->prepend_size; 438 sge->length += prot->prepend_size; 439 440 /* Check if error is previously set on socket */ 441 if (err || sk->sk_err) { 442 rec = NULL; 443 444 /* If err is already set on socket, return the same code */ 445 if (sk->sk_err) { 446 ctx->async_wait.err = -sk->sk_err; 447 } else { 448 ctx->async_wait.err = err; 449 tls_err_abort(sk, err); 450 } 451 } 452 453 if (rec) { 454 struct tls_rec *first_rec; 455 456 /* Mark the record as ready for transmission */ 457 smp_store_mb(rec->tx_ready, true); 458 459 /* If received record is at head of tx_list, schedule tx */ 460 first_rec = list_first_entry(&ctx->tx_list, 461 struct tls_rec, list); 462 if (rec == first_rec) 463 ready = true; 464 } 465 466 spin_lock_bh(&ctx->encrypt_compl_lock); 467 pending = atomic_dec_return(&ctx->encrypt_pending); 468 469 if (!pending && ctx->async_notify) 470 complete(&ctx->async_wait.completion); 471 spin_unlock_bh(&ctx->encrypt_compl_lock); 472 473 if (!ready) 474 return; 475 476 /* Schedule the transmission */ 477 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 478 schedule_delayed_work(&ctx->tx_work.work, 1); 479 } 480 481 static int tls_do_encryption(struct sock *sk, 482 struct tls_context *tls_ctx, 483 struct tls_sw_context_tx *ctx, 484 struct aead_request *aead_req, 485 size_t data_len, u32 start) 486 { 487 struct tls_prot_info *prot = &tls_ctx->prot_info; 488 struct tls_rec *rec = ctx->open_rec; 489 struct sk_msg *msg_en = &rec->msg_encrypted; 490 struct scatterlist *sge = sk_msg_elem(msg_en, start); 491 int rc, iv_offset = 0; 492 493 /* For CCM based ciphers, first byte of IV is a constant */ 494 switch (prot->cipher_type) { 495 case TLS_CIPHER_AES_CCM_128: 496 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 497 iv_offset = 1; 498 break; 499 case TLS_CIPHER_SM4_CCM: 500 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 501 iv_offset = 1; 502 break; 503 } 504 505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 506 prot->iv_size + prot->salt_size); 507 508 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 509 tls_ctx->tx.rec_seq); 510 511 sge->offset += prot->prepend_size; 512 sge->length -= prot->prepend_size; 513 514 msg_en->sg.curr = start; 515 516 aead_request_set_tfm(aead_req, ctx->aead_send); 517 aead_request_set_ad(aead_req, prot->aad_size); 518 aead_request_set_crypt(aead_req, rec->sg_aead_in, 519 rec->sg_aead_out, 520 data_len, rec->iv_data); 521 522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 523 tls_encrypt_done, sk); 524 525 /* Add the record in tx_list */ 526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 527 atomic_inc(&ctx->encrypt_pending); 528 529 rc = crypto_aead_encrypt(aead_req); 530 if (!rc || rc != -EINPROGRESS) { 531 atomic_dec(&ctx->encrypt_pending); 532 sge->offset -= prot->prepend_size; 533 sge->length += prot->prepend_size; 534 } 535 536 if (!rc) { 537 WRITE_ONCE(rec->tx_ready, true); 538 } else if (rc != -EINPROGRESS) { 539 list_del(&rec->list); 540 return rc; 541 } 542 543 /* Unhook the record from context if encryption is not failure */ 544 ctx->open_rec = NULL; 545 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 546 return rc; 547 } 548 549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 550 struct tls_rec **to, struct sk_msg *msg_opl, 551 struct sk_msg *msg_oen, u32 split_point, 552 u32 tx_overhead_size, u32 *orig_end) 553 { 554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 555 struct scatterlist *sge, *osge, *nsge; 556 u32 orig_size = msg_opl->sg.size; 557 struct scatterlist tmp = { }; 558 struct sk_msg *msg_npl; 559 struct tls_rec *new; 560 int ret; 561 562 new = tls_get_rec(sk); 563 if (!new) 564 return -ENOMEM; 565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 566 tx_overhead_size, 0); 567 if (ret < 0) { 568 tls_free_rec(sk, new); 569 return ret; 570 } 571 572 *orig_end = msg_opl->sg.end; 573 i = msg_opl->sg.start; 574 sge = sk_msg_elem(msg_opl, i); 575 while (apply && sge->length) { 576 if (sge->length > apply) { 577 u32 len = sge->length - apply; 578 579 get_page(sg_page(sge)); 580 sg_set_page(&tmp, sg_page(sge), len, 581 sge->offset + apply); 582 sge->length = apply; 583 bytes += apply; 584 apply = 0; 585 } else { 586 apply -= sge->length; 587 bytes += sge->length; 588 } 589 590 sk_msg_iter_var_next(i); 591 if (i == msg_opl->sg.end) 592 break; 593 sge = sk_msg_elem(msg_opl, i); 594 } 595 596 msg_opl->sg.end = i; 597 msg_opl->sg.curr = i; 598 msg_opl->sg.copybreak = 0; 599 msg_opl->apply_bytes = 0; 600 msg_opl->sg.size = bytes; 601 602 msg_npl = &new->msg_plaintext; 603 msg_npl->apply_bytes = apply; 604 msg_npl->sg.size = orig_size - bytes; 605 606 j = msg_npl->sg.start; 607 nsge = sk_msg_elem(msg_npl, j); 608 if (tmp.length) { 609 memcpy(nsge, &tmp, sizeof(*nsge)); 610 sk_msg_iter_var_next(j); 611 nsge = sk_msg_elem(msg_npl, j); 612 } 613 614 osge = sk_msg_elem(msg_opl, i); 615 while (osge->length) { 616 memcpy(nsge, osge, sizeof(*nsge)); 617 sg_unmark_end(nsge); 618 sk_msg_iter_var_next(i); 619 sk_msg_iter_var_next(j); 620 if (i == *orig_end) 621 break; 622 osge = sk_msg_elem(msg_opl, i); 623 nsge = sk_msg_elem(msg_npl, j); 624 } 625 626 msg_npl->sg.end = j; 627 msg_npl->sg.curr = j; 628 msg_npl->sg.copybreak = 0; 629 630 *to = new; 631 return 0; 632 } 633 634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 635 struct tls_rec *from, u32 orig_end) 636 { 637 struct sk_msg *msg_npl = &from->msg_plaintext; 638 struct sk_msg *msg_opl = &to->msg_plaintext; 639 struct scatterlist *osge, *nsge; 640 u32 i, j; 641 642 i = msg_opl->sg.end; 643 sk_msg_iter_var_prev(i); 644 j = msg_npl->sg.start; 645 646 osge = sk_msg_elem(msg_opl, i); 647 nsge = sk_msg_elem(msg_npl, j); 648 649 if (sg_page(osge) == sg_page(nsge) && 650 osge->offset + osge->length == nsge->offset) { 651 osge->length += nsge->length; 652 put_page(sg_page(nsge)); 653 } 654 655 msg_opl->sg.end = orig_end; 656 msg_opl->sg.curr = orig_end; 657 msg_opl->sg.copybreak = 0; 658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 659 msg_opl->sg.size += msg_npl->sg.size; 660 661 sk_msg_free(sk, &to->msg_encrypted); 662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 663 664 kfree(from); 665 } 666 667 static int tls_push_record(struct sock *sk, int flags, 668 unsigned char record_type) 669 { 670 struct tls_context *tls_ctx = tls_get_ctx(sk); 671 struct tls_prot_info *prot = &tls_ctx->prot_info; 672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 674 u32 i, split_point, orig_end; 675 struct sk_msg *msg_pl, *msg_en; 676 struct aead_request *req; 677 bool split; 678 int rc; 679 680 if (!rec) 681 return 0; 682 683 msg_pl = &rec->msg_plaintext; 684 msg_en = &rec->msg_encrypted; 685 686 split_point = msg_pl->apply_bytes; 687 split = split_point && split_point < msg_pl->sg.size; 688 if (unlikely((!split && 689 msg_pl->sg.size + 690 prot->overhead_size > msg_en->sg.size) || 691 (split && 692 split_point + 693 prot->overhead_size > msg_en->sg.size))) { 694 split = true; 695 split_point = msg_en->sg.size; 696 } 697 if (split) { 698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 699 split_point, prot->overhead_size, 700 &orig_end); 701 if (rc < 0) 702 return rc; 703 /* This can happen if above tls_split_open_record allocates 704 * a single large encryption buffer instead of two smaller 705 * ones. In this case adjust pointers and continue without 706 * split. 707 */ 708 if (!msg_pl->sg.size) { 709 tls_merge_open_record(sk, rec, tmp, orig_end); 710 msg_pl = &rec->msg_plaintext; 711 msg_en = &rec->msg_encrypted; 712 split = false; 713 } 714 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 715 prot->overhead_size); 716 } 717 718 rec->tx_flags = flags; 719 req = &rec->aead_req; 720 721 i = msg_pl->sg.end; 722 sk_msg_iter_var_prev(i); 723 724 rec->content_type = record_type; 725 if (prot->version == TLS_1_3_VERSION) { 726 /* Add content type to end of message. No padding added */ 727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 728 sg_mark_end(&rec->sg_content_type); 729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 730 &rec->sg_content_type); 731 } else { 732 sg_mark_end(sk_msg_elem(msg_pl, i)); 733 } 734 735 if (msg_pl->sg.end < msg_pl->sg.start) { 736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 737 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 738 msg_pl->sg.data); 739 } 740 741 i = msg_pl->sg.start; 742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 743 744 i = msg_en->sg.end; 745 sk_msg_iter_var_prev(i); 746 sg_mark_end(sk_msg_elem(msg_en, i)); 747 748 i = msg_en->sg.start; 749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 750 751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 752 tls_ctx->tx.rec_seq, record_type, prot); 753 754 tls_fill_prepend(tls_ctx, 755 page_address(sg_page(&msg_en->sg.data[i])) + 756 msg_en->sg.data[i].offset, 757 msg_pl->sg.size + prot->tail_size, 758 record_type); 759 760 tls_ctx->pending_open_record_frags = false; 761 762 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 763 msg_pl->sg.size + prot->tail_size, i); 764 if (rc < 0) { 765 if (rc != -EINPROGRESS) { 766 tls_err_abort(sk, -EBADMSG); 767 if (split) { 768 tls_ctx->pending_open_record_frags = true; 769 tls_merge_open_record(sk, rec, tmp, orig_end); 770 } 771 } 772 ctx->async_capable = 1; 773 return rc; 774 } else if (split) { 775 msg_pl = &tmp->msg_plaintext; 776 msg_en = &tmp->msg_encrypted; 777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 778 tls_ctx->pending_open_record_frags = true; 779 ctx->open_rec = tmp; 780 } 781 782 return tls_tx_records(sk, flags); 783 } 784 785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 786 bool full_record, u8 record_type, 787 ssize_t *copied, int flags) 788 { 789 struct tls_context *tls_ctx = tls_get_ctx(sk); 790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 791 struct sk_msg msg_redir = { }; 792 struct sk_psock *psock; 793 struct sock *sk_redir; 794 struct tls_rec *rec; 795 bool enospc, policy; 796 int err = 0, send; 797 u32 delta = 0; 798 799 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 800 psock = sk_psock_get(sk); 801 if (!psock || !policy) { 802 err = tls_push_record(sk, flags, record_type); 803 if (err && sk->sk_err == EBADMSG) { 804 *copied -= sk_msg_free(sk, msg); 805 tls_free_open_rec(sk); 806 err = -sk->sk_err; 807 } 808 if (psock) 809 sk_psock_put(sk, psock); 810 return err; 811 } 812 more_data: 813 enospc = sk_msg_full(msg); 814 if (psock->eval == __SK_NONE) { 815 delta = msg->sg.size; 816 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 817 delta -= msg->sg.size; 818 } 819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 820 !enospc && !full_record) { 821 err = -ENOSPC; 822 goto out_err; 823 } 824 msg->cork_bytes = 0; 825 send = msg->sg.size; 826 if (msg->apply_bytes && msg->apply_bytes < send) 827 send = msg->apply_bytes; 828 829 switch (psock->eval) { 830 case __SK_PASS: 831 err = tls_push_record(sk, flags, record_type); 832 if (err && sk->sk_err == EBADMSG) { 833 *copied -= sk_msg_free(sk, msg); 834 tls_free_open_rec(sk); 835 err = -sk->sk_err; 836 goto out_err; 837 } 838 break; 839 case __SK_REDIRECT: 840 sk_redir = psock->sk_redir; 841 memcpy(&msg_redir, msg, sizeof(*msg)); 842 if (msg->apply_bytes < send) 843 msg->apply_bytes = 0; 844 else 845 msg->apply_bytes -= send; 846 sk_msg_return_zero(sk, msg, send); 847 msg->sg.size -= send; 848 release_sock(sk); 849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 850 lock_sock(sk); 851 if (err < 0) { 852 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 853 msg->sg.size = 0; 854 } 855 if (msg->sg.size == 0) 856 tls_free_open_rec(sk); 857 break; 858 case __SK_DROP: 859 default: 860 sk_msg_free_partial(sk, msg, send); 861 if (msg->apply_bytes < send) 862 msg->apply_bytes = 0; 863 else 864 msg->apply_bytes -= send; 865 if (msg->sg.size == 0) 866 tls_free_open_rec(sk); 867 *copied -= (send + delta); 868 err = -EACCES; 869 } 870 871 if (likely(!err)) { 872 bool reset_eval = !ctx->open_rec; 873 874 rec = ctx->open_rec; 875 if (rec) { 876 msg = &rec->msg_plaintext; 877 if (!msg->apply_bytes) 878 reset_eval = true; 879 } 880 if (reset_eval) { 881 psock->eval = __SK_NONE; 882 if (psock->sk_redir) { 883 sock_put(psock->sk_redir); 884 psock->sk_redir = NULL; 885 } 886 } 887 if (rec) 888 goto more_data; 889 } 890 out_err: 891 sk_psock_put(sk, psock); 892 return err; 893 } 894 895 static int tls_sw_push_pending_record(struct sock *sk, int flags) 896 { 897 struct tls_context *tls_ctx = tls_get_ctx(sk); 898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 899 struct tls_rec *rec = ctx->open_rec; 900 struct sk_msg *msg_pl; 901 size_t copied; 902 903 if (!rec) 904 return 0; 905 906 msg_pl = &rec->msg_plaintext; 907 copied = msg_pl->sg.size; 908 if (!copied) 909 return 0; 910 911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 912 &copied, flags); 913 } 914 915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 916 { 917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 918 struct tls_context *tls_ctx = tls_get_ctx(sk); 919 struct tls_prot_info *prot = &tls_ctx->prot_info; 920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 921 bool async_capable = ctx->async_capable; 922 unsigned char record_type = TLS_RECORD_TYPE_DATA; 923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 924 bool eor = !(msg->msg_flags & MSG_MORE); 925 size_t try_to_copy; 926 ssize_t copied = 0; 927 struct sk_msg *msg_pl, *msg_en; 928 struct tls_rec *rec; 929 int required_size; 930 int num_async = 0; 931 bool full_record; 932 int record_room; 933 int num_zc = 0; 934 int orig_size; 935 int ret = 0; 936 int pending; 937 938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 939 MSG_CMSG_COMPAT)) 940 return -EOPNOTSUPP; 941 942 mutex_lock(&tls_ctx->tx_lock); 943 lock_sock(sk); 944 945 if (unlikely(msg->msg_controllen)) { 946 ret = tls_process_cmsg(sk, msg, &record_type); 947 if (ret) { 948 if (ret == -EINPROGRESS) 949 num_async++; 950 else if (ret != -EAGAIN) 951 goto send_end; 952 } 953 } 954 955 while (msg_data_left(msg)) { 956 if (sk->sk_err) { 957 ret = -sk->sk_err; 958 goto send_end; 959 } 960 961 if (ctx->open_rec) 962 rec = ctx->open_rec; 963 else 964 rec = ctx->open_rec = tls_get_rec(sk); 965 if (!rec) { 966 ret = -ENOMEM; 967 goto send_end; 968 } 969 970 msg_pl = &rec->msg_plaintext; 971 msg_en = &rec->msg_encrypted; 972 973 orig_size = msg_pl->sg.size; 974 full_record = false; 975 try_to_copy = msg_data_left(msg); 976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 977 if (try_to_copy >= record_room) { 978 try_to_copy = record_room; 979 full_record = true; 980 } 981 982 required_size = msg_pl->sg.size + try_to_copy + 983 prot->overhead_size; 984 985 if (!sk_stream_memory_free(sk)) 986 goto wait_for_sndbuf; 987 988 alloc_encrypted: 989 ret = tls_alloc_encrypted_msg(sk, required_size); 990 if (ret) { 991 if (ret != -ENOSPC) 992 goto wait_for_memory; 993 994 /* Adjust try_to_copy according to the amount that was 995 * actually allocated. The difference is due 996 * to max sg elements limit 997 */ 998 try_to_copy -= required_size - msg_en->sg.size; 999 full_record = true; 1000 } 1001 1002 if (!is_kvec && (full_record || eor) && !async_capable) { 1003 u32 first = msg_pl->sg.end; 1004 1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1006 msg_pl, try_to_copy); 1007 if (ret) 1008 goto fallback_to_reg_send; 1009 1010 num_zc++; 1011 copied += try_to_copy; 1012 1013 sk_msg_sg_copy_set(msg_pl, first); 1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1015 record_type, &copied, 1016 msg->msg_flags); 1017 if (ret) { 1018 if (ret == -EINPROGRESS) 1019 num_async++; 1020 else if (ret == -ENOMEM) 1021 goto wait_for_memory; 1022 else if (ctx->open_rec && ret == -ENOSPC) 1023 goto rollback_iter; 1024 else if (ret != -EAGAIN) 1025 goto send_end; 1026 } 1027 continue; 1028 rollback_iter: 1029 copied -= try_to_copy; 1030 sk_msg_sg_copy_clear(msg_pl, first); 1031 iov_iter_revert(&msg->msg_iter, 1032 msg_pl->sg.size - orig_size); 1033 fallback_to_reg_send: 1034 sk_msg_trim(sk, msg_pl, orig_size); 1035 } 1036 1037 required_size = msg_pl->sg.size + try_to_copy; 1038 1039 ret = tls_clone_plaintext_msg(sk, required_size); 1040 if (ret) { 1041 if (ret != -ENOSPC) 1042 goto send_end; 1043 1044 /* Adjust try_to_copy according to the amount that was 1045 * actually allocated. The difference is due 1046 * to max sg elements limit 1047 */ 1048 try_to_copy -= required_size - msg_pl->sg.size; 1049 full_record = true; 1050 sk_msg_trim(sk, msg_en, 1051 msg_pl->sg.size + prot->overhead_size); 1052 } 1053 1054 if (try_to_copy) { 1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1056 msg_pl, try_to_copy); 1057 if (ret < 0) 1058 goto trim_sgl; 1059 } 1060 1061 /* Open records defined only if successfully copied, otherwise 1062 * we would trim the sg but not reset the open record frags. 1063 */ 1064 tls_ctx->pending_open_record_frags = true; 1065 copied += try_to_copy; 1066 if (full_record || eor) { 1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1068 record_type, &copied, 1069 msg->msg_flags); 1070 if (ret) { 1071 if (ret == -EINPROGRESS) 1072 num_async++; 1073 else if (ret == -ENOMEM) 1074 goto wait_for_memory; 1075 else if (ret != -EAGAIN) { 1076 if (ret == -ENOSPC) 1077 ret = 0; 1078 goto send_end; 1079 } 1080 } 1081 } 1082 1083 continue; 1084 1085 wait_for_sndbuf: 1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1087 wait_for_memory: 1088 ret = sk_stream_wait_memory(sk, &timeo); 1089 if (ret) { 1090 trim_sgl: 1091 if (ctx->open_rec) 1092 tls_trim_both_msgs(sk, orig_size); 1093 goto send_end; 1094 } 1095 1096 if (ctx->open_rec && msg_en->sg.size < required_size) 1097 goto alloc_encrypted; 1098 } 1099 1100 if (!num_async) { 1101 goto send_end; 1102 } else if (num_zc) { 1103 /* Wait for pending encryptions to get completed */ 1104 spin_lock_bh(&ctx->encrypt_compl_lock); 1105 ctx->async_notify = true; 1106 1107 pending = atomic_read(&ctx->encrypt_pending); 1108 spin_unlock_bh(&ctx->encrypt_compl_lock); 1109 if (pending) 1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1111 else 1112 reinit_completion(&ctx->async_wait.completion); 1113 1114 /* There can be no concurrent accesses, since we have no 1115 * pending encrypt operations 1116 */ 1117 WRITE_ONCE(ctx->async_notify, false); 1118 1119 if (ctx->async_wait.err) { 1120 ret = ctx->async_wait.err; 1121 copied = 0; 1122 } 1123 } 1124 1125 /* Transmit if any encryptions have completed */ 1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1127 cancel_delayed_work(&ctx->tx_work.work); 1128 tls_tx_records(sk, msg->msg_flags); 1129 } 1130 1131 send_end: 1132 ret = sk_stream_error(sk, msg->msg_flags, ret); 1133 1134 release_sock(sk); 1135 mutex_unlock(&tls_ctx->tx_lock); 1136 return copied > 0 ? copied : ret; 1137 } 1138 1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1140 int offset, size_t size, int flags) 1141 { 1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1143 struct tls_context *tls_ctx = tls_get_ctx(sk); 1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1145 struct tls_prot_info *prot = &tls_ctx->prot_info; 1146 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1147 struct sk_msg *msg_pl; 1148 struct tls_rec *rec; 1149 int num_async = 0; 1150 ssize_t copied = 0; 1151 bool full_record; 1152 int record_room; 1153 int ret = 0; 1154 bool eor; 1155 1156 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1158 1159 /* Call the sk_stream functions to manage the sndbuf mem. */ 1160 while (size > 0) { 1161 size_t copy, required_size; 1162 1163 if (sk->sk_err) { 1164 ret = -sk->sk_err; 1165 goto sendpage_end; 1166 } 1167 1168 if (ctx->open_rec) 1169 rec = ctx->open_rec; 1170 else 1171 rec = ctx->open_rec = tls_get_rec(sk); 1172 if (!rec) { 1173 ret = -ENOMEM; 1174 goto sendpage_end; 1175 } 1176 1177 msg_pl = &rec->msg_plaintext; 1178 1179 full_record = false; 1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1181 copy = size; 1182 if (copy >= record_room) { 1183 copy = record_room; 1184 full_record = true; 1185 } 1186 1187 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1188 1189 if (!sk_stream_memory_free(sk)) 1190 goto wait_for_sndbuf; 1191 alloc_payload: 1192 ret = tls_alloc_encrypted_msg(sk, required_size); 1193 if (ret) { 1194 if (ret != -ENOSPC) 1195 goto wait_for_memory; 1196 1197 /* Adjust copy according to the amount that was 1198 * actually allocated. The difference is due 1199 * to max sg elements limit 1200 */ 1201 copy -= required_size - msg_pl->sg.size; 1202 full_record = true; 1203 } 1204 1205 sk_msg_page_add(msg_pl, page, copy, offset); 1206 sk_mem_charge(sk, copy); 1207 1208 offset += copy; 1209 size -= copy; 1210 copied += copy; 1211 1212 tls_ctx->pending_open_record_frags = true; 1213 if (full_record || eor || sk_msg_full(msg_pl)) { 1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1215 record_type, &copied, flags); 1216 if (ret) { 1217 if (ret == -EINPROGRESS) 1218 num_async++; 1219 else if (ret == -ENOMEM) 1220 goto wait_for_memory; 1221 else if (ret != -EAGAIN) { 1222 if (ret == -ENOSPC) 1223 ret = 0; 1224 goto sendpage_end; 1225 } 1226 } 1227 } 1228 continue; 1229 wait_for_sndbuf: 1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1231 wait_for_memory: 1232 ret = sk_stream_wait_memory(sk, &timeo); 1233 if (ret) { 1234 if (ctx->open_rec) 1235 tls_trim_both_msgs(sk, msg_pl->sg.size); 1236 goto sendpage_end; 1237 } 1238 1239 if (ctx->open_rec) 1240 goto alloc_payload; 1241 } 1242 1243 if (num_async) { 1244 /* Transmit if any encryptions have completed */ 1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1246 cancel_delayed_work(&ctx->tx_work.work); 1247 tls_tx_records(sk, flags); 1248 } 1249 } 1250 sendpage_end: 1251 ret = sk_stream_error(sk, flags, ret); 1252 return copied > 0 ? copied : ret; 1253 } 1254 1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1256 int offset, size_t size, int flags) 1257 { 1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1260 MSG_NO_SHARED_FRAGS)) 1261 return -EOPNOTSUPP; 1262 1263 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1264 } 1265 1266 int tls_sw_sendpage(struct sock *sk, struct page *page, 1267 int offset, size_t size, int flags) 1268 { 1269 struct tls_context *tls_ctx = tls_get_ctx(sk); 1270 int ret; 1271 1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1274 return -EOPNOTSUPP; 1275 1276 mutex_lock(&tls_ctx->tx_lock); 1277 lock_sock(sk); 1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1279 release_sock(sk); 1280 mutex_unlock(&tls_ctx->tx_lock); 1281 return ret; 1282 } 1283 1284 static int 1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1286 long timeo) 1287 { 1288 struct tls_context *tls_ctx = tls_get_ctx(sk); 1289 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1290 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1291 1292 while (!ctx->recv_pkt) { 1293 if (!sk_psock_queue_empty(psock)) 1294 return 0; 1295 1296 if (sk->sk_err) 1297 return sock_error(sk); 1298 1299 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1300 __strp_unpause(&ctx->strp); 1301 if (ctx->recv_pkt) 1302 break; 1303 } 1304 1305 if (sk->sk_shutdown & RCV_SHUTDOWN) 1306 return 0; 1307 1308 if (sock_flag(sk, SOCK_DONE)) 1309 return 0; 1310 1311 if (nonblock || !timeo) 1312 return -EAGAIN; 1313 1314 add_wait_queue(sk_sleep(sk), &wait); 1315 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1316 sk_wait_event(sk, &timeo, 1317 ctx->recv_pkt || !sk_psock_queue_empty(psock), 1318 &wait); 1319 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1320 remove_wait_queue(sk_sleep(sk), &wait); 1321 1322 /* Handle signals */ 1323 if (signal_pending(current)) 1324 return sock_intr_errno(timeo); 1325 } 1326 1327 return 1; 1328 } 1329 1330 static int tls_setup_from_iter(struct iov_iter *from, 1331 int length, int *pages_used, 1332 struct scatterlist *to, 1333 int to_max_pages) 1334 { 1335 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1336 struct page *pages[MAX_SKB_FRAGS]; 1337 unsigned int size = 0; 1338 ssize_t copied, use; 1339 size_t offset; 1340 1341 while (length > 0) { 1342 i = 0; 1343 maxpages = to_max_pages - num_elem; 1344 if (maxpages == 0) { 1345 rc = -EFAULT; 1346 goto out; 1347 } 1348 copied = iov_iter_get_pages(from, pages, 1349 length, 1350 maxpages, &offset); 1351 if (copied <= 0) { 1352 rc = -EFAULT; 1353 goto out; 1354 } 1355 1356 iov_iter_advance(from, copied); 1357 1358 length -= copied; 1359 size += copied; 1360 while (copied) { 1361 use = min_t(int, copied, PAGE_SIZE - offset); 1362 1363 sg_set_page(&to[num_elem], 1364 pages[i], use, offset); 1365 sg_unmark_end(&to[num_elem]); 1366 /* We do not uncharge memory from this API */ 1367 1368 offset = 0; 1369 copied -= use; 1370 1371 i++; 1372 num_elem++; 1373 } 1374 } 1375 /* Mark the end in the last sg entry if newly added */ 1376 if (num_elem > *pages_used) 1377 sg_mark_end(&to[num_elem - 1]); 1378 out: 1379 if (rc) 1380 iov_iter_revert(from, size); 1381 *pages_used = num_elem; 1382 1383 return rc; 1384 } 1385 1386 static struct sk_buff * 1387 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1388 unsigned int full_len) 1389 { 1390 struct strp_msg *clr_rxm; 1391 struct sk_buff *clr_skb; 1392 int err; 1393 1394 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1395 &err, sk->sk_allocation); 1396 if (!clr_skb) 1397 return NULL; 1398 1399 skb_copy_header(clr_skb, skb); 1400 clr_skb->len = full_len; 1401 clr_skb->data_len = full_len; 1402 1403 clr_rxm = strp_msg(clr_skb); 1404 clr_rxm->offset = 0; 1405 1406 return clr_skb; 1407 } 1408 1409 /* Decrypt handlers 1410 * 1411 * tls_decrypt_sg() and tls_decrypt_device() are decrypt handlers. 1412 * They must transform the darg in/out argument are as follows: 1413 * | Input | Output 1414 * ------------------------------------------------------------------- 1415 * zc | Zero-copy decrypt allowed | Zero-copy performed 1416 * async | Async decrypt allowed | Async crypto used / in progress 1417 * skb | * | Output skb 1418 */ 1419 1420 /* This function decrypts the input skb into either out_iov or in out_sg 1421 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1422 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1423 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1424 * NULL, then the decryption happens inside skb buffers itself, i.e. 1425 * zero-copy gets disabled and 'darg->zc' is updated. 1426 */ 1427 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1428 struct scatterlist *out_sg, 1429 struct tls_decrypt_arg *darg) 1430 { 1431 struct tls_context *tls_ctx = tls_get_ctx(sk); 1432 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1433 struct tls_prot_info *prot = &tls_ctx->prot_info; 1434 int n_sgin, n_sgout, aead_size, err, pages = 0; 1435 struct sk_buff *skb = tls_strp_msg(ctx); 1436 const struct strp_msg *rxm = strp_msg(skb); 1437 const struct tls_msg *tlm = tls_msg(skb); 1438 struct aead_request *aead_req; 1439 struct scatterlist *sgin = NULL; 1440 struct scatterlist *sgout = NULL; 1441 const int data_len = rxm->full_len - prot->overhead_size; 1442 int tail_pages = !!prot->tail_size; 1443 struct tls_decrypt_ctx *dctx; 1444 struct sk_buff *clear_skb; 1445 int iv_offset = 0; 1446 u8 *mem; 1447 1448 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1449 rxm->full_len - prot->prepend_size); 1450 if (n_sgin < 1) 1451 return n_sgin ?: -EBADMSG; 1452 1453 if (darg->zc && (out_iov || out_sg)) { 1454 clear_skb = NULL; 1455 1456 if (out_iov) 1457 n_sgout = 1 + tail_pages + 1458 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1459 else 1460 n_sgout = sg_nents(out_sg); 1461 } else { 1462 darg->zc = false; 1463 1464 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1465 if (!clear_skb) 1466 return -ENOMEM; 1467 1468 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1469 } 1470 1471 /* Increment to accommodate AAD */ 1472 n_sgin = n_sgin + 1; 1473 1474 /* Allocate a single block of memory which contains 1475 * aead_req || tls_decrypt_ctx. 1476 * Both structs are variable length. 1477 */ 1478 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1479 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1480 sk->sk_allocation); 1481 if (!mem) { 1482 err = -ENOMEM; 1483 goto exit_free_skb; 1484 } 1485 1486 /* Segment the allocated memory */ 1487 aead_req = (struct aead_request *)mem; 1488 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1489 sgin = &dctx->sg[0]; 1490 sgout = &dctx->sg[n_sgin]; 1491 1492 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1493 switch (prot->cipher_type) { 1494 case TLS_CIPHER_AES_CCM_128: 1495 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1496 iv_offset = 1; 1497 break; 1498 case TLS_CIPHER_SM4_CCM: 1499 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1500 iv_offset = 1; 1501 break; 1502 } 1503 1504 /* Prepare IV */ 1505 if (prot->version == TLS_1_3_VERSION || 1506 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1507 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1508 prot->iv_size + prot->salt_size); 1509 } else { 1510 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1511 &dctx->iv[iv_offset] + prot->salt_size, 1512 prot->iv_size); 1513 if (err < 0) 1514 goto exit_free; 1515 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1516 } 1517 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1518 1519 /* Prepare AAD */ 1520 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1521 prot->tail_size, 1522 tls_ctx->rx.rec_seq, tlm->control, prot); 1523 1524 /* Prepare sgin */ 1525 sg_init_table(sgin, n_sgin); 1526 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1527 err = skb_to_sgvec(skb, &sgin[1], 1528 rxm->offset + prot->prepend_size, 1529 rxm->full_len - prot->prepend_size); 1530 if (err < 0) 1531 goto exit_free; 1532 1533 if (clear_skb) { 1534 sg_init_table(sgout, n_sgout); 1535 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1536 1537 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1538 data_len + prot->tail_size); 1539 if (err < 0) 1540 goto exit_free; 1541 } else if (out_iov) { 1542 sg_init_table(sgout, n_sgout); 1543 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1544 1545 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1546 (n_sgout - 1 - tail_pages)); 1547 if (err < 0) 1548 goto exit_free_pages; 1549 1550 if (prot->tail_size) { 1551 sg_unmark_end(&sgout[pages]); 1552 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1553 prot->tail_size); 1554 sg_mark_end(&sgout[pages + 1]); 1555 } 1556 } else if (out_sg) { 1557 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1558 } 1559 1560 /* Prepare and submit AEAD request */ 1561 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1562 data_len + prot->tail_size, aead_req, darg); 1563 if (err) 1564 goto exit_free_pages; 1565 1566 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1567 clear_skb = NULL; 1568 1569 if (unlikely(darg->async)) { 1570 err = tls_strp_msg_hold(sk, skb, &ctx->async_hold); 1571 if (err) 1572 __skb_queue_tail(&ctx->async_hold, darg->skb); 1573 return err; 1574 } 1575 1576 if (prot->tail_size) 1577 darg->tail = dctx->tail; 1578 1579 exit_free_pages: 1580 /* Release the pages in case iov was mapped to pages */ 1581 for (; pages > 0; pages--) 1582 put_page(sg_page(&sgout[pages])); 1583 exit_free: 1584 kfree(mem); 1585 exit_free_skb: 1586 consume_skb(clear_skb); 1587 return err; 1588 } 1589 1590 static int 1591 tls_decrypt_device(struct sock *sk, struct tls_context *tls_ctx, 1592 struct tls_decrypt_arg *darg) 1593 { 1594 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1595 int err; 1596 1597 if (tls_ctx->rx_conf != TLS_HW) 1598 return 0; 1599 1600 err = tls_device_decrypted(sk, tls_ctx); 1601 if (err <= 0) 1602 return err; 1603 1604 darg->zc = false; 1605 darg->async = false; 1606 darg->skb = tls_strp_msg(ctx); 1607 ctx->recv_pkt = NULL; 1608 return 1; 1609 } 1610 1611 static int tls_rx_one_record(struct sock *sk, struct iov_iter *dest, 1612 struct tls_decrypt_arg *darg) 1613 { 1614 struct tls_context *tls_ctx = tls_get_ctx(sk); 1615 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1616 struct tls_prot_info *prot = &tls_ctx->prot_info; 1617 struct strp_msg *rxm; 1618 int pad, err; 1619 1620 err = tls_decrypt_device(sk, tls_ctx, darg); 1621 if (err < 0) 1622 return err; 1623 if (err) 1624 goto decrypt_done; 1625 1626 err = tls_decrypt_sg(sk, dest, NULL, darg); 1627 if (err < 0) { 1628 if (err == -EBADMSG) 1629 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1630 return err; 1631 } 1632 if (darg->async) 1633 goto decrypt_done; 1634 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1635 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1636 darg->tail != TLS_RECORD_TYPE_DATA)) { 1637 darg->zc = false; 1638 if (!darg->tail) 1639 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1640 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1641 return tls_rx_one_record(sk, dest, darg); 1642 } 1643 1644 decrypt_done: 1645 if (darg->skb == ctx->recv_pkt) 1646 ctx->recv_pkt = NULL; 1647 1648 pad = tls_padding_length(prot, darg->skb, darg); 1649 if (pad < 0) { 1650 consume_skb(darg->skb); 1651 return pad; 1652 } 1653 1654 rxm = strp_msg(darg->skb); 1655 rxm->full_len -= pad; 1656 rxm->offset += prot->prepend_size; 1657 rxm->full_len -= prot->overhead_size; 1658 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1659 1660 return 0; 1661 } 1662 1663 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1664 { 1665 struct tls_decrypt_arg darg = { .zc = true, }; 1666 1667 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1668 } 1669 1670 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1671 u8 *control) 1672 { 1673 int err; 1674 1675 if (!*control) { 1676 *control = tlm->control; 1677 if (!*control) 1678 return -EBADMSG; 1679 1680 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1681 sizeof(*control), control); 1682 if (*control != TLS_RECORD_TYPE_DATA) { 1683 if (err || msg->msg_flags & MSG_CTRUNC) 1684 return -EIO; 1685 } 1686 } else if (*control != tlm->control) { 1687 return 0; 1688 } 1689 1690 return 1; 1691 } 1692 1693 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1694 { 1695 consume_skb(ctx->recv_pkt); 1696 ctx->recv_pkt = NULL; 1697 __strp_unpause(&ctx->strp); 1698 } 1699 1700 /* This function traverses the rx_list in tls receive context to copies the 1701 * decrypted records into the buffer provided by caller zero copy is not 1702 * true. Further, the records are removed from the rx_list if it is not a peek 1703 * case and the record has been consumed completely. 1704 */ 1705 static int process_rx_list(struct tls_sw_context_rx *ctx, 1706 struct msghdr *msg, 1707 u8 *control, 1708 size_t skip, 1709 size_t len, 1710 bool is_peek) 1711 { 1712 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1713 struct tls_msg *tlm; 1714 ssize_t copied = 0; 1715 int err; 1716 1717 while (skip && skb) { 1718 struct strp_msg *rxm = strp_msg(skb); 1719 tlm = tls_msg(skb); 1720 1721 err = tls_record_content_type(msg, tlm, control); 1722 if (err <= 0) 1723 goto out; 1724 1725 if (skip < rxm->full_len) 1726 break; 1727 1728 skip = skip - rxm->full_len; 1729 skb = skb_peek_next(skb, &ctx->rx_list); 1730 } 1731 1732 while (len && skb) { 1733 struct sk_buff *next_skb; 1734 struct strp_msg *rxm = strp_msg(skb); 1735 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1736 1737 tlm = tls_msg(skb); 1738 1739 err = tls_record_content_type(msg, tlm, control); 1740 if (err <= 0) 1741 goto out; 1742 1743 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1744 msg, chunk); 1745 if (err < 0) 1746 goto out; 1747 1748 len = len - chunk; 1749 copied = copied + chunk; 1750 1751 /* Consume the data from record if it is non-peek case*/ 1752 if (!is_peek) { 1753 rxm->offset = rxm->offset + chunk; 1754 rxm->full_len = rxm->full_len - chunk; 1755 1756 /* Return if there is unconsumed data in the record */ 1757 if (rxm->full_len - skip) 1758 break; 1759 } 1760 1761 /* The remaining skip-bytes must lie in 1st record in rx_list. 1762 * So from the 2nd record, 'skip' should be 0. 1763 */ 1764 skip = 0; 1765 1766 if (msg) 1767 msg->msg_flags |= MSG_EOR; 1768 1769 next_skb = skb_peek_next(skb, &ctx->rx_list); 1770 1771 if (!is_peek) { 1772 __skb_unlink(skb, &ctx->rx_list); 1773 consume_skb(skb); 1774 } 1775 1776 skb = next_skb; 1777 } 1778 err = 0; 1779 1780 out: 1781 return copied ? : err; 1782 } 1783 1784 static void 1785 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1786 size_t len_left, size_t decrypted, ssize_t done, 1787 size_t *flushed_at) 1788 { 1789 size_t max_rec; 1790 1791 if (len_left <= decrypted) 1792 return; 1793 1794 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1795 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1796 return; 1797 1798 *flushed_at = done; 1799 sk_flush_backlog(sk); 1800 } 1801 1802 static long tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1803 bool nonblock) 1804 { 1805 long timeo; 1806 1807 lock_sock(sk); 1808 1809 timeo = sock_rcvtimeo(sk, nonblock); 1810 1811 while (unlikely(ctx->reader_present)) { 1812 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1813 1814 ctx->reader_contended = 1; 1815 1816 add_wait_queue(&ctx->wq, &wait); 1817 sk_wait_event(sk, &timeo, 1818 !READ_ONCE(ctx->reader_present), &wait); 1819 remove_wait_queue(&ctx->wq, &wait); 1820 1821 if (!timeo) 1822 return -EAGAIN; 1823 if (signal_pending(current)) 1824 return sock_intr_errno(timeo); 1825 } 1826 1827 WRITE_ONCE(ctx->reader_present, 1); 1828 1829 return timeo; 1830 } 1831 1832 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1833 { 1834 if (unlikely(ctx->reader_contended)) { 1835 if (wq_has_sleeper(&ctx->wq)) 1836 wake_up(&ctx->wq); 1837 else 1838 ctx->reader_contended = 0; 1839 1840 WARN_ON_ONCE(!ctx->reader_present); 1841 } 1842 1843 WRITE_ONCE(ctx->reader_present, 0); 1844 release_sock(sk); 1845 } 1846 1847 int tls_sw_recvmsg(struct sock *sk, 1848 struct msghdr *msg, 1849 size_t len, 1850 int flags, 1851 int *addr_len) 1852 { 1853 struct tls_context *tls_ctx = tls_get_ctx(sk); 1854 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1855 struct tls_prot_info *prot = &tls_ctx->prot_info; 1856 ssize_t decrypted = 0, async_copy_bytes = 0; 1857 struct sk_psock *psock; 1858 unsigned char control = 0; 1859 size_t flushed_at = 0; 1860 struct strp_msg *rxm; 1861 struct tls_msg *tlm; 1862 struct sk_buff *skb; 1863 ssize_t copied = 0; 1864 bool async = false; 1865 int target, err = 0; 1866 long timeo; 1867 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1868 bool is_peek = flags & MSG_PEEK; 1869 bool bpf_strp_enabled; 1870 bool zc_capable; 1871 1872 if (unlikely(flags & MSG_ERRQUEUE)) 1873 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1874 1875 psock = sk_psock_get(sk); 1876 timeo = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1877 if (timeo < 0) 1878 return timeo; 1879 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1880 1881 /* If crypto failed the connection is broken */ 1882 err = ctx->async_wait.err; 1883 if (err) 1884 goto end; 1885 1886 /* Process pending decrypted records. It must be non-zero-copy */ 1887 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1888 if (err < 0) 1889 goto end; 1890 1891 copied = err; 1892 if (len <= copied) 1893 goto end; 1894 1895 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1896 len = len - copied; 1897 1898 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1899 ctx->zc_capable; 1900 decrypted = 0; 1901 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1902 struct tls_decrypt_arg darg; 1903 int to_decrypt, chunk; 1904 1905 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, timeo); 1906 if (err <= 0) { 1907 if (psock) { 1908 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1909 flags); 1910 if (chunk > 0) { 1911 decrypted += chunk; 1912 len -= chunk; 1913 continue; 1914 } 1915 } 1916 goto recv_end; 1917 } 1918 1919 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1920 1921 rxm = strp_msg(ctx->recv_pkt); 1922 tlm = tls_msg(ctx->recv_pkt); 1923 1924 to_decrypt = rxm->full_len - prot->overhead_size; 1925 1926 if (zc_capable && to_decrypt <= len && 1927 tlm->control == TLS_RECORD_TYPE_DATA) 1928 darg.zc = true; 1929 1930 /* Do not use async mode if record is non-data */ 1931 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1932 darg.async = ctx->async_capable; 1933 else 1934 darg.async = false; 1935 1936 err = tls_rx_one_record(sk, &msg->msg_iter, &darg); 1937 if (err < 0) { 1938 tls_err_abort(sk, -EBADMSG); 1939 goto recv_end; 1940 } 1941 1942 skb = darg.skb; 1943 rxm = strp_msg(skb); 1944 tlm = tls_msg(skb); 1945 1946 async |= darg.async; 1947 1948 /* If the type of records being processed is not known yet, 1949 * set it to record type just dequeued. If it is already known, 1950 * but does not match the record type just dequeued, go to end. 1951 * We always get record type here since for tls1.2, record type 1952 * is known just after record is dequeued from stream parser. 1953 * For tls1.3, we disable async. 1954 */ 1955 err = tls_record_content_type(msg, tlm, &control); 1956 if (err <= 0) { 1957 tls_rx_rec_done(ctx); 1958 put_on_rx_list_err: 1959 __skb_queue_tail(&ctx->rx_list, skb); 1960 goto recv_end; 1961 } 1962 1963 /* periodically flush backlog, and feed strparser */ 1964 tls_read_flush_backlog(sk, prot, len, to_decrypt, 1965 decrypted + copied, &flushed_at); 1966 1967 /* TLS 1.3 may have updated the length by more than overhead */ 1968 chunk = rxm->full_len; 1969 tls_rx_rec_done(ctx); 1970 1971 if (!darg.zc) { 1972 bool partially_consumed = chunk > len; 1973 1974 if (async) { 1975 /* TLS 1.2-only, to_decrypt must be text len */ 1976 chunk = min_t(int, to_decrypt, len); 1977 async_copy_bytes += chunk; 1978 put_on_rx_list: 1979 decrypted += chunk; 1980 len -= chunk; 1981 __skb_queue_tail(&ctx->rx_list, skb); 1982 continue; 1983 } 1984 1985 if (bpf_strp_enabled) { 1986 err = sk_psock_tls_strp_read(psock, skb); 1987 if (err != __SK_PASS) { 1988 rxm->offset = rxm->offset + rxm->full_len; 1989 rxm->full_len = 0; 1990 if (err == __SK_DROP) 1991 consume_skb(skb); 1992 continue; 1993 } 1994 } 1995 1996 if (partially_consumed) 1997 chunk = len; 1998 1999 err = skb_copy_datagram_msg(skb, rxm->offset, 2000 msg, chunk); 2001 if (err < 0) 2002 goto put_on_rx_list_err; 2003 2004 if (is_peek) 2005 goto put_on_rx_list; 2006 2007 if (partially_consumed) { 2008 rxm->offset += chunk; 2009 rxm->full_len -= chunk; 2010 goto put_on_rx_list; 2011 } 2012 } 2013 2014 decrypted += chunk; 2015 len -= chunk; 2016 2017 consume_skb(skb); 2018 2019 /* Return full control message to userspace before trying 2020 * to parse another message type 2021 */ 2022 msg->msg_flags |= MSG_EOR; 2023 if (control != TLS_RECORD_TYPE_DATA) 2024 break; 2025 } 2026 2027 recv_end: 2028 if (async) { 2029 int ret, pending; 2030 2031 /* Wait for all previously submitted records to be decrypted */ 2032 spin_lock_bh(&ctx->decrypt_compl_lock); 2033 reinit_completion(&ctx->async_wait.completion); 2034 pending = atomic_read(&ctx->decrypt_pending); 2035 spin_unlock_bh(&ctx->decrypt_compl_lock); 2036 ret = 0; 2037 if (pending) 2038 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2039 __skb_queue_purge(&ctx->async_hold); 2040 2041 if (ret) { 2042 if (err >= 0 || err == -EINPROGRESS) 2043 err = ret; 2044 decrypted = 0; 2045 goto end; 2046 } 2047 2048 /* Drain records from the rx_list & copy if required */ 2049 if (is_peek || is_kvec) 2050 err = process_rx_list(ctx, msg, &control, copied, 2051 decrypted, is_peek); 2052 else 2053 err = process_rx_list(ctx, msg, &control, 0, 2054 async_copy_bytes, is_peek); 2055 decrypted = max(err, 0); 2056 } 2057 2058 copied += decrypted; 2059 2060 end: 2061 tls_rx_reader_unlock(sk, ctx); 2062 if (psock) 2063 sk_psock_put(sk, psock); 2064 return copied ? : err; 2065 } 2066 2067 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2068 struct pipe_inode_info *pipe, 2069 size_t len, unsigned int flags) 2070 { 2071 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2072 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2073 struct strp_msg *rxm = NULL; 2074 struct sock *sk = sock->sk; 2075 struct tls_msg *tlm; 2076 struct sk_buff *skb; 2077 ssize_t copied = 0; 2078 int err = 0; 2079 long timeo; 2080 int chunk; 2081 2082 timeo = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2083 if (timeo < 0) 2084 return timeo; 2085 2086 if (!skb_queue_empty(&ctx->rx_list)) { 2087 skb = __skb_dequeue(&ctx->rx_list); 2088 } else { 2089 struct tls_decrypt_arg darg; 2090 2091 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2092 timeo); 2093 if (err <= 0) 2094 goto splice_read_end; 2095 2096 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2097 2098 err = tls_rx_one_record(sk, NULL, &darg); 2099 if (err < 0) { 2100 tls_err_abort(sk, -EBADMSG); 2101 goto splice_read_end; 2102 } 2103 2104 tls_rx_rec_done(ctx); 2105 skb = darg.skb; 2106 } 2107 2108 rxm = strp_msg(skb); 2109 tlm = tls_msg(skb); 2110 2111 /* splice does not support reading control messages */ 2112 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2113 err = -EINVAL; 2114 goto splice_requeue; 2115 } 2116 2117 chunk = min_t(unsigned int, rxm->full_len, len); 2118 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2119 if (copied < 0) 2120 goto splice_requeue; 2121 2122 if (chunk < rxm->full_len) { 2123 rxm->offset += len; 2124 rxm->full_len -= len; 2125 goto splice_requeue; 2126 } 2127 2128 consume_skb(skb); 2129 2130 splice_read_end: 2131 tls_rx_reader_unlock(sk, ctx); 2132 return copied ? : err; 2133 2134 splice_requeue: 2135 __skb_queue_head(&ctx->rx_list, skb); 2136 goto splice_read_end; 2137 } 2138 2139 bool tls_sw_sock_is_readable(struct sock *sk) 2140 { 2141 struct tls_context *tls_ctx = tls_get_ctx(sk); 2142 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2143 bool ingress_empty = true; 2144 struct sk_psock *psock; 2145 2146 rcu_read_lock(); 2147 psock = sk_psock(sk); 2148 if (psock) 2149 ingress_empty = list_empty(&psock->ingress_msg); 2150 rcu_read_unlock(); 2151 2152 return !ingress_empty || ctx->recv_pkt || 2153 !skb_queue_empty(&ctx->rx_list); 2154 } 2155 2156 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2157 { 2158 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2159 struct tls_prot_info *prot = &tls_ctx->prot_info; 2160 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2161 struct strp_msg *rxm = strp_msg(skb); 2162 struct tls_msg *tlm = tls_msg(skb); 2163 size_t cipher_overhead; 2164 size_t data_len = 0; 2165 int ret; 2166 2167 /* Verify that we have a full TLS header, or wait for more data */ 2168 if (rxm->offset + prot->prepend_size > skb->len) 2169 return 0; 2170 2171 /* Sanity-check size of on-stack buffer. */ 2172 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2173 ret = -EINVAL; 2174 goto read_failure; 2175 } 2176 2177 /* Linearize header to local buffer */ 2178 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2179 if (ret < 0) 2180 goto read_failure; 2181 2182 tlm->control = header[0]; 2183 2184 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2185 2186 cipher_overhead = prot->tag_size; 2187 if (prot->version != TLS_1_3_VERSION && 2188 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2189 cipher_overhead += prot->iv_size; 2190 2191 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2192 prot->tail_size) { 2193 ret = -EMSGSIZE; 2194 goto read_failure; 2195 } 2196 if (data_len < cipher_overhead) { 2197 ret = -EBADMSG; 2198 goto read_failure; 2199 } 2200 2201 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2202 if (header[1] != TLS_1_2_VERSION_MINOR || 2203 header[2] != TLS_1_2_VERSION_MAJOR) { 2204 ret = -EINVAL; 2205 goto read_failure; 2206 } 2207 2208 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2209 TCP_SKB_CB(skb)->seq + rxm->offset); 2210 return data_len + TLS_HEADER_SIZE; 2211 2212 read_failure: 2213 tls_err_abort(strp->sk, ret); 2214 2215 return ret; 2216 } 2217 2218 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2219 { 2220 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2221 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2222 2223 ctx->recv_pkt = skb; 2224 strp_pause(strp); 2225 2226 ctx->saved_data_ready(strp->sk); 2227 } 2228 2229 static void tls_data_ready(struct sock *sk) 2230 { 2231 struct tls_context *tls_ctx = tls_get_ctx(sk); 2232 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2233 struct sk_psock *psock; 2234 2235 strp_data_ready(&ctx->strp); 2236 2237 psock = sk_psock_get(sk); 2238 if (psock) { 2239 if (!list_empty(&psock->ingress_msg)) 2240 ctx->saved_data_ready(sk); 2241 sk_psock_put(sk, psock); 2242 } 2243 } 2244 2245 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2246 { 2247 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2248 2249 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2250 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2251 cancel_delayed_work_sync(&ctx->tx_work.work); 2252 } 2253 2254 void tls_sw_release_resources_tx(struct sock *sk) 2255 { 2256 struct tls_context *tls_ctx = tls_get_ctx(sk); 2257 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2258 struct tls_rec *rec, *tmp; 2259 int pending; 2260 2261 /* Wait for any pending async encryptions to complete */ 2262 spin_lock_bh(&ctx->encrypt_compl_lock); 2263 ctx->async_notify = true; 2264 pending = atomic_read(&ctx->encrypt_pending); 2265 spin_unlock_bh(&ctx->encrypt_compl_lock); 2266 2267 if (pending) 2268 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2269 2270 tls_tx_records(sk, -1); 2271 2272 /* Free up un-sent records in tx_list. First, free 2273 * the partially sent record if any at head of tx_list. 2274 */ 2275 if (tls_ctx->partially_sent_record) { 2276 tls_free_partial_record(sk, tls_ctx); 2277 rec = list_first_entry(&ctx->tx_list, 2278 struct tls_rec, list); 2279 list_del(&rec->list); 2280 sk_msg_free(sk, &rec->msg_plaintext); 2281 kfree(rec); 2282 } 2283 2284 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2285 list_del(&rec->list); 2286 sk_msg_free(sk, &rec->msg_encrypted); 2287 sk_msg_free(sk, &rec->msg_plaintext); 2288 kfree(rec); 2289 } 2290 2291 crypto_free_aead(ctx->aead_send); 2292 tls_free_open_rec(sk); 2293 } 2294 2295 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2296 { 2297 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2298 2299 kfree(ctx); 2300 } 2301 2302 void tls_sw_release_resources_rx(struct sock *sk) 2303 { 2304 struct tls_context *tls_ctx = tls_get_ctx(sk); 2305 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2306 2307 kfree(tls_ctx->rx.rec_seq); 2308 kfree(tls_ctx->rx.iv); 2309 2310 if (ctx->aead_recv) { 2311 kfree_skb(ctx->recv_pkt); 2312 ctx->recv_pkt = NULL; 2313 __skb_queue_purge(&ctx->rx_list); 2314 crypto_free_aead(ctx->aead_recv); 2315 strp_stop(&ctx->strp); 2316 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2317 * we still want to strp_stop(), but sk->sk_data_ready was 2318 * never swapped. 2319 */ 2320 if (ctx->saved_data_ready) { 2321 write_lock_bh(&sk->sk_callback_lock); 2322 sk->sk_data_ready = ctx->saved_data_ready; 2323 write_unlock_bh(&sk->sk_callback_lock); 2324 } 2325 } 2326 } 2327 2328 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2329 { 2330 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2331 2332 strp_done(&ctx->strp); 2333 } 2334 2335 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2336 { 2337 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2338 2339 kfree(ctx); 2340 } 2341 2342 void tls_sw_free_resources_rx(struct sock *sk) 2343 { 2344 struct tls_context *tls_ctx = tls_get_ctx(sk); 2345 2346 tls_sw_release_resources_rx(sk); 2347 tls_sw_free_ctx_rx(tls_ctx); 2348 } 2349 2350 /* The work handler to transmitt the encrypted records in tx_list */ 2351 static void tx_work_handler(struct work_struct *work) 2352 { 2353 struct delayed_work *delayed_work = to_delayed_work(work); 2354 struct tx_work *tx_work = container_of(delayed_work, 2355 struct tx_work, work); 2356 struct sock *sk = tx_work->sk; 2357 struct tls_context *tls_ctx = tls_get_ctx(sk); 2358 struct tls_sw_context_tx *ctx; 2359 2360 if (unlikely(!tls_ctx)) 2361 return; 2362 2363 ctx = tls_sw_ctx_tx(tls_ctx); 2364 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2365 return; 2366 2367 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2368 return; 2369 mutex_lock(&tls_ctx->tx_lock); 2370 lock_sock(sk); 2371 tls_tx_records(sk, -1); 2372 release_sock(sk); 2373 mutex_unlock(&tls_ctx->tx_lock); 2374 } 2375 2376 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2377 { 2378 struct tls_rec *rec; 2379 2380 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 2381 if (!rec) 2382 return false; 2383 2384 return READ_ONCE(rec->tx_ready); 2385 } 2386 2387 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2388 { 2389 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2390 2391 /* Schedule the transmission if tx list is ready */ 2392 if (tls_is_tx_ready(tx_ctx) && 2393 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2394 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2395 } 2396 2397 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2398 { 2399 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2400 2401 write_lock_bh(&sk->sk_callback_lock); 2402 rx_ctx->saved_data_ready = sk->sk_data_ready; 2403 sk->sk_data_ready = tls_data_ready; 2404 write_unlock_bh(&sk->sk_callback_lock); 2405 2406 strp_check_rcv(&rx_ctx->strp); 2407 } 2408 2409 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2410 { 2411 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2412 2413 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2414 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2415 } 2416 2417 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2418 { 2419 struct tls_context *tls_ctx = tls_get_ctx(sk); 2420 struct tls_prot_info *prot = &tls_ctx->prot_info; 2421 struct tls_crypto_info *crypto_info; 2422 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2423 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2424 struct cipher_context *cctx; 2425 struct crypto_aead **aead; 2426 struct strp_callbacks cb; 2427 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2428 struct crypto_tfm *tfm; 2429 char *iv, *rec_seq, *key, *salt, *cipher_name; 2430 size_t keysize; 2431 int rc = 0; 2432 2433 if (!ctx) { 2434 rc = -EINVAL; 2435 goto out; 2436 } 2437 2438 if (tx) { 2439 if (!ctx->priv_ctx_tx) { 2440 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2441 if (!sw_ctx_tx) { 2442 rc = -ENOMEM; 2443 goto out; 2444 } 2445 ctx->priv_ctx_tx = sw_ctx_tx; 2446 } else { 2447 sw_ctx_tx = 2448 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2449 } 2450 } else { 2451 if (!ctx->priv_ctx_rx) { 2452 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2453 if (!sw_ctx_rx) { 2454 rc = -ENOMEM; 2455 goto out; 2456 } 2457 ctx->priv_ctx_rx = sw_ctx_rx; 2458 } else { 2459 sw_ctx_rx = 2460 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2461 } 2462 } 2463 2464 if (tx) { 2465 crypto_init_wait(&sw_ctx_tx->async_wait); 2466 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2467 crypto_info = &ctx->crypto_send.info; 2468 cctx = &ctx->tx; 2469 aead = &sw_ctx_tx->aead_send; 2470 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2471 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2472 sw_ctx_tx->tx_work.sk = sk; 2473 } else { 2474 crypto_init_wait(&sw_ctx_rx->async_wait); 2475 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2476 init_waitqueue_head(&sw_ctx_rx->wq); 2477 crypto_info = &ctx->crypto_recv.info; 2478 cctx = &ctx->rx; 2479 skb_queue_head_init(&sw_ctx_rx->rx_list); 2480 skb_queue_head_init(&sw_ctx_rx->async_hold); 2481 aead = &sw_ctx_rx->aead_recv; 2482 } 2483 2484 switch (crypto_info->cipher_type) { 2485 case TLS_CIPHER_AES_GCM_128: { 2486 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2487 2488 gcm_128_info = (void *)crypto_info; 2489 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2490 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2491 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2492 iv = gcm_128_info->iv; 2493 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2494 rec_seq = gcm_128_info->rec_seq; 2495 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2496 key = gcm_128_info->key; 2497 salt = gcm_128_info->salt; 2498 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2499 cipher_name = "gcm(aes)"; 2500 break; 2501 } 2502 case TLS_CIPHER_AES_GCM_256: { 2503 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2504 2505 gcm_256_info = (void *)crypto_info; 2506 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2507 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2508 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2509 iv = gcm_256_info->iv; 2510 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2511 rec_seq = gcm_256_info->rec_seq; 2512 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2513 key = gcm_256_info->key; 2514 salt = gcm_256_info->salt; 2515 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2516 cipher_name = "gcm(aes)"; 2517 break; 2518 } 2519 case TLS_CIPHER_AES_CCM_128: { 2520 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2521 2522 ccm_128_info = (void *)crypto_info; 2523 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2524 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2525 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2526 iv = ccm_128_info->iv; 2527 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2528 rec_seq = ccm_128_info->rec_seq; 2529 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2530 key = ccm_128_info->key; 2531 salt = ccm_128_info->salt; 2532 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2533 cipher_name = "ccm(aes)"; 2534 break; 2535 } 2536 case TLS_CIPHER_CHACHA20_POLY1305: { 2537 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2538 2539 chacha20_poly1305_info = (void *)crypto_info; 2540 nonce_size = 0; 2541 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2542 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2543 iv = chacha20_poly1305_info->iv; 2544 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2545 rec_seq = chacha20_poly1305_info->rec_seq; 2546 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2547 key = chacha20_poly1305_info->key; 2548 salt = chacha20_poly1305_info->salt; 2549 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2550 cipher_name = "rfc7539(chacha20,poly1305)"; 2551 break; 2552 } 2553 case TLS_CIPHER_SM4_GCM: { 2554 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2555 2556 sm4_gcm_info = (void *)crypto_info; 2557 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2558 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2559 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2560 iv = sm4_gcm_info->iv; 2561 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2562 rec_seq = sm4_gcm_info->rec_seq; 2563 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2564 key = sm4_gcm_info->key; 2565 salt = sm4_gcm_info->salt; 2566 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2567 cipher_name = "gcm(sm4)"; 2568 break; 2569 } 2570 case TLS_CIPHER_SM4_CCM: { 2571 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2572 2573 sm4_ccm_info = (void *)crypto_info; 2574 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2575 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2576 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2577 iv = sm4_ccm_info->iv; 2578 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2579 rec_seq = sm4_ccm_info->rec_seq; 2580 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2581 key = sm4_ccm_info->key; 2582 salt = sm4_ccm_info->salt; 2583 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2584 cipher_name = "ccm(sm4)"; 2585 break; 2586 } 2587 default: 2588 rc = -EINVAL; 2589 goto free_priv; 2590 } 2591 2592 if (crypto_info->version == TLS_1_3_VERSION) { 2593 nonce_size = 0; 2594 prot->aad_size = TLS_HEADER_SIZE; 2595 prot->tail_size = 1; 2596 } else { 2597 prot->aad_size = TLS_AAD_SPACE_SIZE; 2598 prot->tail_size = 0; 2599 } 2600 2601 /* Sanity-check the sizes for stack allocations. */ 2602 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2603 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2604 prot->aad_size > TLS_MAX_AAD_SIZE) { 2605 rc = -EINVAL; 2606 goto free_priv; 2607 } 2608 2609 prot->version = crypto_info->version; 2610 prot->cipher_type = crypto_info->cipher_type; 2611 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2612 prot->tag_size = tag_size; 2613 prot->overhead_size = prot->prepend_size + 2614 prot->tag_size + prot->tail_size; 2615 prot->iv_size = iv_size; 2616 prot->salt_size = salt_size; 2617 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2618 if (!cctx->iv) { 2619 rc = -ENOMEM; 2620 goto free_priv; 2621 } 2622 /* Note: 128 & 256 bit salt are the same size */ 2623 prot->rec_seq_size = rec_seq_size; 2624 memcpy(cctx->iv, salt, salt_size); 2625 memcpy(cctx->iv + salt_size, iv, iv_size); 2626 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2627 if (!cctx->rec_seq) { 2628 rc = -ENOMEM; 2629 goto free_iv; 2630 } 2631 2632 if (!*aead) { 2633 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2634 if (IS_ERR(*aead)) { 2635 rc = PTR_ERR(*aead); 2636 *aead = NULL; 2637 goto free_rec_seq; 2638 } 2639 } 2640 2641 ctx->push_pending_record = tls_sw_push_pending_record; 2642 2643 rc = crypto_aead_setkey(*aead, key, keysize); 2644 2645 if (rc) 2646 goto free_aead; 2647 2648 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2649 if (rc) 2650 goto free_aead; 2651 2652 if (sw_ctx_rx) { 2653 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2654 2655 tls_update_rx_zc_capable(ctx); 2656 sw_ctx_rx->async_capable = 2657 crypto_info->version != TLS_1_3_VERSION && 2658 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2659 2660 /* Set up strparser */ 2661 memset(&cb, 0, sizeof(cb)); 2662 cb.rcv_msg = tls_queue; 2663 cb.parse_msg = tls_read_size; 2664 2665 strp_init(&sw_ctx_rx->strp, sk, &cb); 2666 } 2667 2668 goto out; 2669 2670 free_aead: 2671 crypto_free_aead(*aead); 2672 *aead = NULL; 2673 free_rec_seq: 2674 kfree(cctx->rec_seq); 2675 cctx->rec_seq = NULL; 2676 free_iv: 2677 kfree(cctx->iv); 2678 cctx->iv = NULL; 2679 free_priv: 2680 if (tx) { 2681 kfree(ctx->priv_ctx_tx); 2682 ctx->priv_ctx_tx = NULL; 2683 } else { 2684 kfree(ctx->priv_ctx_rx); 2685 ctx->priv_ctx_rx = NULL; 2686 } 2687 out: 2688 return rc; 2689 } 2690