xref: /linux/net/tls/tls_sw.c (revision 95298d63c67673c654c08952672d016212b26054)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52 
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55 
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65 
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68 
69                 WARN_ON(start > offset + len);
70 
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84 
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88 
89                         WARN_ON(start > offset + len);
90 
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112 
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120 
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 			  struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 	struct strp_msg *rxm = strp_msg(skb);
125 	int sub = 0;
126 
127 	/* Determine zero-padding length */
128 	if (prot->version == TLS_1_3_VERSION) {
129 		char content_type = 0;
130 		int err;
131 		int back = 17;
132 
133 		while (content_type == 0) {
134 			if (back > rxm->full_len - prot->prepend_size)
135 				return -EBADMSG;
136 			err = skb_copy_bits(skb,
137 					    rxm->offset + rxm->full_len - back,
138 					    &content_type, 1);
139 			if (err)
140 				return err;
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct tls_prot_info *prot;
159 	struct scatterlist *sg;
160 	struct sk_buff *skb;
161 	unsigned int pages;
162 	int pending;
163 
164 	skb = (struct sk_buff *)req->data;
165 	tls_ctx = tls_get_ctx(skb->sk);
166 	ctx = tls_sw_ctx_rx(tls_ctx);
167 	prot = &tls_ctx->prot_info;
168 
169 	/* Propagate if there was an err */
170 	if (err) {
171 		if (err == -EBADMSG)
172 			TLS_INC_STATS(sock_net(skb->sk),
173 				      LINUX_MIB_TLSDECRYPTERROR);
174 		ctx->async_wait.err = err;
175 		tls_err_abort(skb->sk, err);
176 	} else {
177 		struct strp_msg *rxm = strp_msg(skb);
178 		int pad;
179 
180 		pad = padding_length(ctx, prot, skb);
181 		if (pad < 0) {
182 			ctx->async_wait.err = pad;
183 			tls_err_abort(skb->sk, pad);
184 		} else {
185 			rxm->full_len -= pad;
186 			rxm->offset += prot->prepend_size;
187 			rxm->full_len -= prot->overhead_size;
188 		}
189 	}
190 
191 	/* After using skb->sk to propagate sk through crypto async callback
192 	 * we need to NULL it again.
193 	 */
194 	skb->sk = NULL;
195 
196 
197 	/* Free the destination pages if skb was not decrypted inplace */
198 	if (sgout != sgin) {
199 		/* Skip the first S/G entry as it points to AAD */
200 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201 			if (!sg)
202 				break;
203 			put_page(sg_page(sg));
204 		}
205 	}
206 
207 	kfree(aead_req);
208 
209 	spin_lock_bh(&ctx->decrypt_compl_lock);
210 	pending = atomic_dec_return(&ctx->decrypt_pending);
211 
212 	if (!pending && ctx->async_notify)
213 		complete(&ctx->async_wait.completion);
214 	spin_unlock_bh(&ctx->decrypt_compl_lock);
215 }
216 
217 static int tls_do_decryption(struct sock *sk,
218 			     struct sk_buff *skb,
219 			     struct scatterlist *sgin,
220 			     struct scatterlist *sgout,
221 			     char *iv_recv,
222 			     size_t data_len,
223 			     struct aead_request *aead_req,
224 			     bool async)
225 {
226 	struct tls_context *tls_ctx = tls_get_ctx(sk);
227 	struct tls_prot_info *prot = &tls_ctx->prot_info;
228 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
229 	int ret;
230 
231 	aead_request_set_tfm(aead_req, ctx->aead_recv);
232 	aead_request_set_ad(aead_req, prot->aad_size);
233 	aead_request_set_crypt(aead_req, sgin, sgout,
234 			       data_len + prot->tag_size,
235 			       (u8 *)iv_recv);
236 
237 	if (async) {
238 		/* Using skb->sk to push sk through to crypto async callback
239 		 * handler. This allows propagating errors up to the socket
240 		 * if needed. It _must_ be cleared in the async handler
241 		 * before consume_skb is called. We _know_ skb->sk is NULL
242 		 * because it is a clone from strparser.
243 		 */
244 		skb->sk = sk;
245 		aead_request_set_callback(aead_req,
246 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
247 					  tls_decrypt_done, skb);
248 		atomic_inc(&ctx->decrypt_pending);
249 	} else {
250 		aead_request_set_callback(aead_req,
251 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
252 					  crypto_req_done, &ctx->async_wait);
253 	}
254 
255 	ret = crypto_aead_decrypt(aead_req);
256 	if (ret == -EINPROGRESS) {
257 		if (async)
258 			return ret;
259 
260 		ret = crypto_wait_req(ret, &ctx->async_wait);
261 	}
262 
263 	if (async)
264 		atomic_dec(&ctx->decrypt_pending);
265 
266 	return ret;
267 }
268 
269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
270 {
271 	struct tls_context *tls_ctx = tls_get_ctx(sk);
272 	struct tls_prot_info *prot = &tls_ctx->prot_info;
273 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274 	struct tls_rec *rec = ctx->open_rec;
275 
276 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
277 	if (target_size > 0)
278 		target_size += prot->overhead_size;
279 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
280 }
281 
282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
283 {
284 	struct tls_context *tls_ctx = tls_get_ctx(sk);
285 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286 	struct tls_rec *rec = ctx->open_rec;
287 	struct sk_msg *msg_en = &rec->msg_encrypted;
288 
289 	return sk_msg_alloc(sk, msg_en, len, 0);
290 }
291 
292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
293 {
294 	struct tls_context *tls_ctx = tls_get_ctx(sk);
295 	struct tls_prot_info *prot = &tls_ctx->prot_info;
296 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297 	struct tls_rec *rec = ctx->open_rec;
298 	struct sk_msg *msg_pl = &rec->msg_plaintext;
299 	struct sk_msg *msg_en = &rec->msg_encrypted;
300 	int skip, len;
301 
302 	/* We add page references worth len bytes from encrypted sg
303 	 * at the end of plaintext sg. It is guaranteed that msg_en
304 	 * has enough required room (ensured by caller).
305 	 */
306 	len = required - msg_pl->sg.size;
307 
308 	/* Skip initial bytes in msg_en's data to be able to use
309 	 * same offset of both plain and encrypted data.
310 	 */
311 	skip = prot->prepend_size + msg_pl->sg.size;
312 
313 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
314 }
315 
316 static struct tls_rec *tls_get_rec(struct sock *sk)
317 {
318 	struct tls_context *tls_ctx = tls_get_ctx(sk);
319 	struct tls_prot_info *prot = &tls_ctx->prot_info;
320 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321 	struct sk_msg *msg_pl, *msg_en;
322 	struct tls_rec *rec;
323 	int mem_size;
324 
325 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
326 
327 	rec = kzalloc(mem_size, sk->sk_allocation);
328 	if (!rec)
329 		return NULL;
330 
331 	msg_pl = &rec->msg_plaintext;
332 	msg_en = &rec->msg_encrypted;
333 
334 	sk_msg_init(msg_pl);
335 	sk_msg_init(msg_en);
336 
337 	sg_init_table(rec->sg_aead_in, 2);
338 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339 	sg_unmark_end(&rec->sg_aead_in[1]);
340 
341 	sg_init_table(rec->sg_aead_out, 2);
342 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343 	sg_unmark_end(&rec->sg_aead_out[1]);
344 
345 	return rec;
346 }
347 
348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
349 {
350 	sk_msg_free(sk, &rec->msg_encrypted);
351 	sk_msg_free(sk, &rec->msg_plaintext);
352 	kfree(rec);
353 }
354 
355 static void tls_free_open_rec(struct sock *sk)
356 {
357 	struct tls_context *tls_ctx = tls_get_ctx(sk);
358 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 	struct tls_rec *rec = ctx->open_rec;
360 
361 	if (rec) {
362 		tls_free_rec(sk, rec);
363 		ctx->open_rec = NULL;
364 	}
365 }
366 
367 int tls_tx_records(struct sock *sk, int flags)
368 {
369 	struct tls_context *tls_ctx = tls_get_ctx(sk);
370 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371 	struct tls_rec *rec, *tmp;
372 	struct sk_msg *msg_en;
373 	int tx_flags, rc = 0;
374 
375 	if (tls_is_partially_sent_record(tls_ctx)) {
376 		rec = list_first_entry(&ctx->tx_list,
377 				       struct tls_rec, list);
378 
379 		if (flags == -1)
380 			tx_flags = rec->tx_flags;
381 		else
382 			tx_flags = flags;
383 
384 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
385 		if (rc)
386 			goto tx_err;
387 
388 		/* Full record has been transmitted.
389 		 * Remove the head of tx_list
390 		 */
391 		list_del(&rec->list);
392 		sk_msg_free(sk, &rec->msg_plaintext);
393 		kfree(rec);
394 	}
395 
396 	/* Tx all ready records */
397 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398 		if (READ_ONCE(rec->tx_ready)) {
399 			if (flags == -1)
400 				tx_flags = rec->tx_flags;
401 			else
402 				tx_flags = flags;
403 
404 			msg_en = &rec->msg_encrypted;
405 			rc = tls_push_sg(sk, tls_ctx,
406 					 &msg_en->sg.data[msg_en->sg.curr],
407 					 0, tx_flags);
408 			if (rc)
409 				goto tx_err;
410 
411 			list_del(&rec->list);
412 			sk_msg_free(sk, &rec->msg_plaintext);
413 			kfree(rec);
414 		} else {
415 			break;
416 		}
417 	}
418 
419 tx_err:
420 	if (rc < 0 && rc != -EAGAIN)
421 		tls_err_abort(sk, EBADMSG);
422 
423 	return rc;
424 }
425 
426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
427 {
428 	struct aead_request *aead_req = (struct aead_request *)req;
429 	struct sock *sk = req->data;
430 	struct tls_context *tls_ctx = tls_get_ctx(sk);
431 	struct tls_prot_info *prot = &tls_ctx->prot_info;
432 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433 	struct scatterlist *sge;
434 	struct sk_msg *msg_en;
435 	struct tls_rec *rec;
436 	bool ready = false;
437 	int pending;
438 
439 	rec = container_of(aead_req, struct tls_rec, aead_req);
440 	msg_en = &rec->msg_encrypted;
441 
442 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443 	sge->offset -= prot->prepend_size;
444 	sge->length += prot->prepend_size;
445 
446 	/* Check if error is previously set on socket */
447 	if (err || sk->sk_err) {
448 		rec = NULL;
449 
450 		/* If err is already set on socket, return the same code */
451 		if (sk->sk_err) {
452 			ctx->async_wait.err = sk->sk_err;
453 		} else {
454 			ctx->async_wait.err = err;
455 			tls_err_abort(sk, err);
456 		}
457 	}
458 
459 	if (rec) {
460 		struct tls_rec *first_rec;
461 
462 		/* Mark the record as ready for transmission */
463 		smp_store_mb(rec->tx_ready, true);
464 
465 		/* If received record is at head of tx_list, schedule tx */
466 		first_rec = list_first_entry(&ctx->tx_list,
467 					     struct tls_rec, list);
468 		if (rec == first_rec)
469 			ready = true;
470 	}
471 
472 	spin_lock_bh(&ctx->encrypt_compl_lock);
473 	pending = atomic_dec_return(&ctx->encrypt_pending);
474 
475 	if (!pending && ctx->async_notify)
476 		complete(&ctx->async_wait.completion);
477 	spin_unlock_bh(&ctx->encrypt_compl_lock);
478 
479 	if (!ready)
480 		return;
481 
482 	/* Schedule the transmission */
483 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
484 		schedule_delayed_work(&ctx->tx_work.work, 1);
485 }
486 
487 static int tls_do_encryption(struct sock *sk,
488 			     struct tls_context *tls_ctx,
489 			     struct tls_sw_context_tx *ctx,
490 			     struct aead_request *aead_req,
491 			     size_t data_len, u32 start)
492 {
493 	struct tls_prot_info *prot = &tls_ctx->prot_info;
494 	struct tls_rec *rec = ctx->open_rec;
495 	struct sk_msg *msg_en = &rec->msg_encrypted;
496 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
497 	int rc, iv_offset = 0;
498 
499 	/* For CCM based ciphers, first byte of IV is a constant */
500 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
501 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
502 		iv_offset = 1;
503 	}
504 
505 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 	       prot->iv_size + prot->salt_size);
507 
508 	xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
509 
510 	sge->offset += prot->prepend_size;
511 	sge->length -= prot->prepend_size;
512 
513 	msg_en->sg.curr = start;
514 
515 	aead_request_set_tfm(aead_req, ctx->aead_send);
516 	aead_request_set_ad(aead_req, prot->aad_size);
517 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
518 			       rec->sg_aead_out,
519 			       data_len, rec->iv_data);
520 
521 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
522 				  tls_encrypt_done, sk);
523 
524 	/* Add the record in tx_list */
525 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
526 	atomic_inc(&ctx->encrypt_pending);
527 
528 	rc = crypto_aead_encrypt(aead_req);
529 	if (!rc || rc != -EINPROGRESS) {
530 		atomic_dec(&ctx->encrypt_pending);
531 		sge->offset -= prot->prepend_size;
532 		sge->length += prot->prepend_size;
533 	}
534 
535 	if (!rc) {
536 		WRITE_ONCE(rec->tx_ready, true);
537 	} else if (rc != -EINPROGRESS) {
538 		list_del(&rec->list);
539 		return rc;
540 	}
541 
542 	/* Unhook the record from context if encryption is not failure */
543 	ctx->open_rec = NULL;
544 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
545 	return rc;
546 }
547 
548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
549 				 struct tls_rec **to, struct sk_msg *msg_opl,
550 				 struct sk_msg *msg_oen, u32 split_point,
551 				 u32 tx_overhead_size, u32 *orig_end)
552 {
553 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
554 	struct scatterlist *sge, *osge, *nsge;
555 	u32 orig_size = msg_opl->sg.size;
556 	struct scatterlist tmp = { };
557 	struct sk_msg *msg_npl;
558 	struct tls_rec *new;
559 	int ret;
560 
561 	new = tls_get_rec(sk);
562 	if (!new)
563 		return -ENOMEM;
564 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
565 			   tx_overhead_size, 0);
566 	if (ret < 0) {
567 		tls_free_rec(sk, new);
568 		return ret;
569 	}
570 
571 	*orig_end = msg_opl->sg.end;
572 	i = msg_opl->sg.start;
573 	sge = sk_msg_elem(msg_opl, i);
574 	while (apply && sge->length) {
575 		if (sge->length > apply) {
576 			u32 len = sge->length - apply;
577 
578 			get_page(sg_page(sge));
579 			sg_set_page(&tmp, sg_page(sge), len,
580 				    sge->offset + apply);
581 			sge->length = apply;
582 			bytes += apply;
583 			apply = 0;
584 		} else {
585 			apply -= sge->length;
586 			bytes += sge->length;
587 		}
588 
589 		sk_msg_iter_var_next(i);
590 		if (i == msg_opl->sg.end)
591 			break;
592 		sge = sk_msg_elem(msg_opl, i);
593 	}
594 
595 	msg_opl->sg.end = i;
596 	msg_opl->sg.curr = i;
597 	msg_opl->sg.copybreak = 0;
598 	msg_opl->apply_bytes = 0;
599 	msg_opl->sg.size = bytes;
600 
601 	msg_npl = &new->msg_plaintext;
602 	msg_npl->apply_bytes = apply;
603 	msg_npl->sg.size = orig_size - bytes;
604 
605 	j = msg_npl->sg.start;
606 	nsge = sk_msg_elem(msg_npl, j);
607 	if (tmp.length) {
608 		memcpy(nsge, &tmp, sizeof(*nsge));
609 		sk_msg_iter_var_next(j);
610 		nsge = sk_msg_elem(msg_npl, j);
611 	}
612 
613 	osge = sk_msg_elem(msg_opl, i);
614 	while (osge->length) {
615 		memcpy(nsge, osge, sizeof(*nsge));
616 		sg_unmark_end(nsge);
617 		sk_msg_iter_var_next(i);
618 		sk_msg_iter_var_next(j);
619 		if (i == *orig_end)
620 			break;
621 		osge = sk_msg_elem(msg_opl, i);
622 		nsge = sk_msg_elem(msg_npl, j);
623 	}
624 
625 	msg_npl->sg.end = j;
626 	msg_npl->sg.curr = j;
627 	msg_npl->sg.copybreak = 0;
628 
629 	*to = new;
630 	return 0;
631 }
632 
633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
634 				  struct tls_rec *from, u32 orig_end)
635 {
636 	struct sk_msg *msg_npl = &from->msg_plaintext;
637 	struct sk_msg *msg_opl = &to->msg_plaintext;
638 	struct scatterlist *osge, *nsge;
639 	u32 i, j;
640 
641 	i = msg_opl->sg.end;
642 	sk_msg_iter_var_prev(i);
643 	j = msg_npl->sg.start;
644 
645 	osge = sk_msg_elem(msg_opl, i);
646 	nsge = sk_msg_elem(msg_npl, j);
647 
648 	if (sg_page(osge) == sg_page(nsge) &&
649 	    osge->offset + osge->length == nsge->offset) {
650 		osge->length += nsge->length;
651 		put_page(sg_page(nsge));
652 	}
653 
654 	msg_opl->sg.end = orig_end;
655 	msg_opl->sg.curr = orig_end;
656 	msg_opl->sg.copybreak = 0;
657 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
658 	msg_opl->sg.size += msg_npl->sg.size;
659 
660 	sk_msg_free(sk, &to->msg_encrypted);
661 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
662 
663 	kfree(from);
664 }
665 
666 static int tls_push_record(struct sock *sk, int flags,
667 			   unsigned char record_type)
668 {
669 	struct tls_context *tls_ctx = tls_get_ctx(sk);
670 	struct tls_prot_info *prot = &tls_ctx->prot_info;
671 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
672 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
673 	u32 i, split_point, uninitialized_var(orig_end);
674 	struct sk_msg *msg_pl, *msg_en;
675 	struct aead_request *req;
676 	bool split;
677 	int rc;
678 
679 	if (!rec)
680 		return 0;
681 
682 	msg_pl = &rec->msg_plaintext;
683 	msg_en = &rec->msg_encrypted;
684 
685 	split_point = msg_pl->apply_bytes;
686 	split = split_point && split_point < msg_pl->sg.size;
687 	if (unlikely((!split &&
688 		      msg_pl->sg.size +
689 		      prot->overhead_size > msg_en->sg.size) ||
690 		     (split &&
691 		      split_point +
692 		      prot->overhead_size > msg_en->sg.size))) {
693 		split = true;
694 		split_point = msg_en->sg.size;
695 	}
696 	if (split) {
697 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
698 					   split_point, prot->overhead_size,
699 					   &orig_end);
700 		if (rc < 0)
701 			return rc;
702 		/* This can happen if above tls_split_open_record allocates
703 		 * a single large encryption buffer instead of two smaller
704 		 * ones. In this case adjust pointers and continue without
705 		 * split.
706 		 */
707 		if (!msg_pl->sg.size) {
708 			tls_merge_open_record(sk, rec, tmp, orig_end);
709 			msg_pl = &rec->msg_plaintext;
710 			msg_en = &rec->msg_encrypted;
711 			split = false;
712 		}
713 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
714 			    prot->overhead_size);
715 	}
716 
717 	rec->tx_flags = flags;
718 	req = &rec->aead_req;
719 
720 	i = msg_pl->sg.end;
721 	sk_msg_iter_var_prev(i);
722 
723 	rec->content_type = record_type;
724 	if (prot->version == TLS_1_3_VERSION) {
725 		/* Add content type to end of message.  No padding added */
726 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
727 		sg_mark_end(&rec->sg_content_type);
728 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
729 			 &rec->sg_content_type);
730 	} else {
731 		sg_mark_end(sk_msg_elem(msg_pl, i));
732 	}
733 
734 	if (msg_pl->sg.end < msg_pl->sg.start) {
735 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
736 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
737 			 msg_pl->sg.data);
738 	}
739 
740 	i = msg_pl->sg.start;
741 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
742 
743 	i = msg_en->sg.end;
744 	sk_msg_iter_var_prev(i);
745 	sg_mark_end(sk_msg_elem(msg_en, i));
746 
747 	i = msg_en->sg.start;
748 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
749 
750 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
751 		     tls_ctx->tx.rec_seq, prot->rec_seq_size,
752 		     record_type, prot->version);
753 
754 	tls_fill_prepend(tls_ctx,
755 			 page_address(sg_page(&msg_en->sg.data[i])) +
756 			 msg_en->sg.data[i].offset,
757 			 msg_pl->sg.size + prot->tail_size,
758 			 record_type, prot->version);
759 
760 	tls_ctx->pending_open_record_frags = false;
761 
762 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 			       msg_pl->sg.size + prot->tail_size, i);
764 	if (rc < 0) {
765 		if (rc != -EINPROGRESS) {
766 			tls_err_abort(sk, EBADMSG);
767 			if (split) {
768 				tls_ctx->pending_open_record_frags = true;
769 				tls_merge_open_record(sk, rec, tmp, orig_end);
770 			}
771 		}
772 		ctx->async_capable = 1;
773 		return rc;
774 	} else if (split) {
775 		msg_pl = &tmp->msg_plaintext;
776 		msg_en = &tmp->msg_encrypted;
777 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 		tls_ctx->pending_open_record_frags = true;
779 		ctx->open_rec = tmp;
780 	}
781 
782 	return tls_tx_records(sk, flags);
783 }
784 
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 			       bool full_record, u8 record_type,
787 			       ssize_t *copied, int flags)
788 {
789 	struct tls_context *tls_ctx = tls_get_ctx(sk);
790 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 	struct sk_msg msg_redir = { };
792 	struct sk_psock *psock;
793 	struct sock *sk_redir;
794 	struct tls_rec *rec;
795 	bool enospc, policy;
796 	int err = 0, send;
797 	u32 delta = 0;
798 
799 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 	psock = sk_psock_get(sk);
801 	if (!psock || !policy) {
802 		err = tls_push_record(sk, flags, record_type);
803 		if (err && sk->sk_err == EBADMSG) {
804 			*copied -= sk_msg_free(sk, msg);
805 			tls_free_open_rec(sk);
806 			err = -sk->sk_err;
807 		}
808 		if (psock)
809 			sk_psock_put(sk, psock);
810 		return err;
811 	}
812 more_data:
813 	enospc = sk_msg_full(msg);
814 	if (psock->eval == __SK_NONE) {
815 		delta = msg->sg.size;
816 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 		delta -= msg->sg.size;
818 	}
819 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 	    !enospc && !full_record) {
821 		err = -ENOSPC;
822 		goto out_err;
823 	}
824 	msg->cork_bytes = 0;
825 	send = msg->sg.size;
826 	if (msg->apply_bytes && msg->apply_bytes < send)
827 		send = msg->apply_bytes;
828 
829 	switch (psock->eval) {
830 	case __SK_PASS:
831 		err = tls_push_record(sk, flags, record_type);
832 		if (err && sk->sk_err == EBADMSG) {
833 			*copied -= sk_msg_free(sk, msg);
834 			tls_free_open_rec(sk);
835 			err = -sk->sk_err;
836 			goto out_err;
837 		}
838 		break;
839 	case __SK_REDIRECT:
840 		sk_redir = psock->sk_redir;
841 		memcpy(&msg_redir, msg, sizeof(*msg));
842 		if (msg->apply_bytes < send)
843 			msg->apply_bytes = 0;
844 		else
845 			msg->apply_bytes -= send;
846 		sk_msg_return_zero(sk, msg, send);
847 		msg->sg.size -= send;
848 		release_sock(sk);
849 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850 		lock_sock(sk);
851 		if (err < 0) {
852 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
853 			msg->sg.size = 0;
854 		}
855 		if (msg->sg.size == 0)
856 			tls_free_open_rec(sk);
857 		break;
858 	case __SK_DROP:
859 	default:
860 		sk_msg_free_partial(sk, msg, send);
861 		if (msg->apply_bytes < send)
862 			msg->apply_bytes = 0;
863 		else
864 			msg->apply_bytes -= send;
865 		if (msg->sg.size == 0)
866 			tls_free_open_rec(sk);
867 		*copied -= (send + delta);
868 		err = -EACCES;
869 	}
870 
871 	if (likely(!err)) {
872 		bool reset_eval = !ctx->open_rec;
873 
874 		rec = ctx->open_rec;
875 		if (rec) {
876 			msg = &rec->msg_plaintext;
877 			if (!msg->apply_bytes)
878 				reset_eval = true;
879 		}
880 		if (reset_eval) {
881 			psock->eval = __SK_NONE;
882 			if (psock->sk_redir) {
883 				sock_put(psock->sk_redir);
884 				psock->sk_redir = NULL;
885 			}
886 		}
887 		if (rec)
888 			goto more_data;
889 	}
890  out_err:
891 	sk_psock_put(sk, psock);
892 	return err;
893 }
894 
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897 	struct tls_context *tls_ctx = tls_get_ctx(sk);
898 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899 	struct tls_rec *rec = ctx->open_rec;
900 	struct sk_msg *msg_pl;
901 	size_t copied;
902 
903 	if (!rec)
904 		return 0;
905 
906 	msg_pl = &rec->msg_plaintext;
907 	copied = msg_pl->sg.size;
908 	if (!copied)
909 		return 0;
910 
911 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912 				   &copied, flags);
913 }
914 
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918 	struct tls_context *tls_ctx = tls_get_ctx(sk);
919 	struct tls_prot_info *prot = &tls_ctx->prot_info;
920 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921 	bool async_capable = ctx->async_capable;
922 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
923 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924 	bool eor = !(msg->msg_flags & MSG_MORE);
925 	size_t try_to_copy;
926 	ssize_t copied = 0;
927 	struct sk_msg *msg_pl, *msg_en;
928 	struct tls_rec *rec;
929 	int required_size;
930 	int num_async = 0;
931 	bool full_record;
932 	int record_room;
933 	int num_zc = 0;
934 	int orig_size;
935 	int ret = 0;
936 	int pending;
937 
938 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
939 		return -EOPNOTSUPP;
940 
941 	mutex_lock(&tls_ctx->tx_lock);
942 	lock_sock(sk);
943 
944 	if (unlikely(msg->msg_controllen)) {
945 		ret = tls_proccess_cmsg(sk, msg, &record_type);
946 		if (ret) {
947 			if (ret == -EINPROGRESS)
948 				num_async++;
949 			else if (ret != -EAGAIN)
950 				goto send_end;
951 		}
952 	}
953 
954 	while (msg_data_left(msg)) {
955 		if (sk->sk_err) {
956 			ret = -sk->sk_err;
957 			goto send_end;
958 		}
959 
960 		if (ctx->open_rec)
961 			rec = ctx->open_rec;
962 		else
963 			rec = ctx->open_rec = tls_get_rec(sk);
964 		if (!rec) {
965 			ret = -ENOMEM;
966 			goto send_end;
967 		}
968 
969 		msg_pl = &rec->msg_plaintext;
970 		msg_en = &rec->msg_encrypted;
971 
972 		orig_size = msg_pl->sg.size;
973 		full_record = false;
974 		try_to_copy = msg_data_left(msg);
975 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
976 		if (try_to_copy >= record_room) {
977 			try_to_copy = record_room;
978 			full_record = true;
979 		}
980 
981 		required_size = msg_pl->sg.size + try_to_copy +
982 				prot->overhead_size;
983 
984 		if (!sk_stream_memory_free(sk))
985 			goto wait_for_sndbuf;
986 
987 alloc_encrypted:
988 		ret = tls_alloc_encrypted_msg(sk, required_size);
989 		if (ret) {
990 			if (ret != -ENOSPC)
991 				goto wait_for_memory;
992 
993 			/* Adjust try_to_copy according to the amount that was
994 			 * actually allocated. The difference is due
995 			 * to max sg elements limit
996 			 */
997 			try_to_copy -= required_size - msg_en->sg.size;
998 			full_record = true;
999 		}
1000 
1001 		if (!is_kvec && (full_record || eor) && !async_capable) {
1002 			u32 first = msg_pl->sg.end;
1003 
1004 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1005 							msg_pl, try_to_copy);
1006 			if (ret)
1007 				goto fallback_to_reg_send;
1008 
1009 			num_zc++;
1010 			copied += try_to_copy;
1011 
1012 			sk_msg_sg_copy_set(msg_pl, first);
1013 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1014 						  record_type, &copied,
1015 						  msg->msg_flags);
1016 			if (ret) {
1017 				if (ret == -EINPROGRESS)
1018 					num_async++;
1019 				else if (ret == -ENOMEM)
1020 					goto wait_for_memory;
1021 				else if (ctx->open_rec && ret == -ENOSPC)
1022 					goto rollback_iter;
1023 				else if (ret != -EAGAIN)
1024 					goto send_end;
1025 			}
1026 			continue;
1027 rollback_iter:
1028 			copied -= try_to_copy;
1029 			sk_msg_sg_copy_clear(msg_pl, first);
1030 			iov_iter_revert(&msg->msg_iter,
1031 					msg_pl->sg.size - orig_size);
1032 fallback_to_reg_send:
1033 			sk_msg_trim(sk, msg_pl, orig_size);
1034 		}
1035 
1036 		required_size = msg_pl->sg.size + try_to_copy;
1037 
1038 		ret = tls_clone_plaintext_msg(sk, required_size);
1039 		if (ret) {
1040 			if (ret != -ENOSPC)
1041 				goto send_end;
1042 
1043 			/* Adjust try_to_copy according to the amount that was
1044 			 * actually allocated. The difference is due
1045 			 * to max sg elements limit
1046 			 */
1047 			try_to_copy -= required_size - msg_pl->sg.size;
1048 			full_record = true;
1049 			sk_msg_trim(sk, msg_en,
1050 				    msg_pl->sg.size + prot->overhead_size);
1051 		}
1052 
1053 		if (try_to_copy) {
1054 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1055 						       msg_pl, try_to_copy);
1056 			if (ret < 0)
1057 				goto trim_sgl;
1058 		}
1059 
1060 		/* Open records defined only if successfully copied, otherwise
1061 		 * we would trim the sg but not reset the open record frags.
1062 		 */
1063 		tls_ctx->pending_open_record_frags = true;
1064 		copied += try_to_copy;
1065 		if (full_record || eor) {
1066 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1067 						  record_type, &copied,
1068 						  msg->msg_flags);
1069 			if (ret) {
1070 				if (ret == -EINPROGRESS)
1071 					num_async++;
1072 				else if (ret == -ENOMEM)
1073 					goto wait_for_memory;
1074 				else if (ret != -EAGAIN) {
1075 					if (ret == -ENOSPC)
1076 						ret = 0;
1077 					goto send_end;
1078 				}
1079 			}
1080 		}
1081 
1082 		continue;
1083 
1084 wait_for_sndbuf:
1085 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1086 wait_for_memory:
1087 		ret = sk_stream_wait_memory(sk, &timeo);
1088 		if (ret) {
1089 trim_sgl:
1090 			if (ctx->open_rec)
1091 				tls_trim_both_msgs(sk, orig_size);
1092 			goto send_end;
1093 		}
1094 
1095 		if (ctx->open_rec && msg_en->sg.size < required_size)
1096 			goto alloc_encrypted;
1097 	}
1098 
1099 	if (!num_async) {
1100 		goto send_end;
1101 	} else if (num_zc) {
1102 		/* Wait for pending encryptions to get completed */
1103 		spin_lock_bh(&ctx->encrypt_compl_lock);
1104 		ctx->async_notify = true;
1105 
1106 		pending = atomic_read(&ctx->encrypt_pending);
1107 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1108 		if (pending)
1109 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1110 		else
1111 			reinit_completion(&ctx->async_wait.completion);
1112 
1113 		/* There can be no concurrent accesses, since we have no
1114 		 * pending encrypt operations
1115 		 */
1116 		WRITE_ONCE(ctx->async_notify, false);
1117 
1118 		if (ctx->async_wait.err) {
1119 			ret = ctx->async_wait.err;
1120 			copied = 0;
1121 		}
1122 	}
1123 
1124 	/* Transmit if any encryptions have completed */
1125 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1126 		cancel_delayed_work(&ctx->tx_work.work);
1127 		tls_tx_records(sk, msg->msg_flags);
1128 	}
1129 
1130 send_end:
1131 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1132 
1133 	release_sock(sk);
1134 	mutex_unlock(&tls_ctx->tx_lock);
1135 	return copied > 0 ? copied : ret;
1136 }
1137 
1138 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1139 			      int offset, size_t size, int flags)
1140 {
1141 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1142 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1143 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1144 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1145 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1146 	struct sk_msg *msg_pl;
1147 	struct tls_rec *rec;
1148 	int num_async = 0;
1149 	ssize_t copied = 0;
1150 	bool full_record;
1151 	int record_room;
1152 	int ret = 0;
1153 	bool eor;
1154 
1155 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1156 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1157 
1158 	/* Call the sk_stream functions to manage the sndbuf mem. */
1159 	while (size > 0) {
1160 		size_t copy, required_size;
1161 
1162 		if (sk->sk_err) {
1163 			ret = -sk->sk_err;
1164 			goto sendpage_end;
1165 		}
1166 
1167 		if (ctx->open_rec)
1168 			rec = ctx->open_rec;
1169 		else
1170 			rec = ctx->open_rec = tls_get_rec(sk);
1171 		if (!rec) {
1172 			ret = -ENOMEM;
1173 			goto sendpage_end;
1174 		}
1175 
1176 		msg_pl = &rec->msg_plaintext;
1177 
1178 		full_record = false;
1179 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1180 		copy = size;
1181 		if (copy >= record_room) {
1182 			copy = record_room;
1183 			full_record = true;
1184 		}
1185 
1186 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1187 
1188 		if (!sk_stream_memory_free(sk))
1189 			goto wait_for_sndbuf;
1190 alloc_payload:
1191 		ret = tls_alloc_encrypted_msg(sk, required_size);
1192 		if (ret) {
1193 			if (ret != -ENOSPC)
1194 				goto wait_for_memory;
1195 
1196 			/* Adjust copy according to the amount that was
1197 			 * actually allocated. The difference is due
1198 			 * to max sg elements limit
1199 			 */
1200 			copy -= required_size - msg_pl->sg.size;
1201 			full_record = true;
1202 		}
1203 
1204 		sk_msg_page_add(msg_pl, page, copy, offset);
1205 		sk_mem_charge(sk, copy);
1206 
1207 		offset += copy;
1208 		size -= copy;
1209 		copied += copy;
1210 
1211 		tls_ctx->pending_open_record_frags = true;
1212 		if (full_record || eor || sk_msg_full(msg_pl)) {
1213 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1214 						  record_type, &copied, flags);
1215 			if (ret) {
1216 				if (ret == -EINPROGRESS)
1217 					num_async++;
1218 				else if (ret == -ENOMEM)
1219 					goto wait_for_memory;
1220 				else if (ret != -EAGAIN) {
1221 					if (ret == -ENOSPC)
1222 						ret = 0;
1223 					goto sendpage_end;
1224 				}
1225 			}
1226 		}
1227 		continue;
1228 wait_for_sndbuf:
1229 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1230 wait_for_memory:
1231 		ret = sk_stream_wait_memory(sk, &timeo);
1232 		if (ret) {
1233 			if (ctx->open_rec)
1234 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1235 			goto sendpage_end;
1236 		}
1237 
1238 		if (ctx->open_rec)
1239 			goto alloc_payload;
1240 	}
1241 
1242 	if (num_async) {
1243 		/* Transmit if any encryptions have completed */
1244 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1245 			cancel_delayed_work(&ctx->tx_work.work);
1246 			tls_tx_records(sk, flags);
1247 		}
1248 	}
1249 sendpage_end:
1250 	ret = sk_stream_error(sk, flags, ret);
1251 	return copied > 0 ? copied : ret;
1252 }
1253 
1254 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1255 			   int offset, size_t size, int flags)
1256 {
1257 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1258 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1259 		      MSG_NO_SHARED_FRAGS))
1260 		return -EOPNOTSUPP;
1261 
1262 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1263 }
1264 
1265 int tls_sw_sendpage(struct sock *sk, struct page *page,
1266 		    int offset, size_t size, int flags)
1267 {
1268 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1269 	int ret;
1270 
1271 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1272 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1273 		return -EOPNOTSUPP;
1274 
1275 	mutex_lock(&tls_ctx->tx_lock);
1276 	lock_sock(sk);
1277 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1278 	release_sock(sk);
1279 	mutex_unlock(&tls_ctx->tx_lock);
1280 	return ret;
1281 }
1282 
1283 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1284 				     int flags, long timeo, int *err)
1285 {
1286 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1287 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1288 	struct sk_buff *skb;
1289 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1290 
1291 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1292 		if (sk->sk_err) {
1293 			*err = sock_error(sk);
1294 			return NULL;
1295 		}
1296 
1297 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1298 			return NULL;
1299 
1300 		if (sock_flag(sk, SOCK_DONE))
1301 			return NULL;
1302 
1303 		if ((flags & MSG_DONTWAIT) || !timeo) {
1304 			*err = -EAGAIN;
1305 			return NULL;
1306 		}
1307 
1308 		add_wait_queue(sk_sleep(sk), &wait);
1309 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1310 		sk_wait_event(sk, &timeo,
1311 			      ctx->recv_pkt != skb ||
1312 			      !sk_psock_queue_empty(psock),
1313 			      &wait);
1314 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1315 		remove_wait_queue(sk_sleep(sk), &wait);
1316 
1317 		/* Handle signals */
1318 		if (signal_pending(current)) {
1319 			*err = sock_intr_errno(timeo);
1320 			return NULL;
1321 		}
1322 	}
1323 
1324 	return skb;
1325 }
1326 
1327 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1328 			       int length, int *pages_used,
1329 			       unsigned int *size_used,
1330 			       struct scatterlist *to,
1331 			       int to_max_pages)
1332 {
1333 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1334 	struct page *pages[MAX_SKB_FRAGS];
1335 	unsigned int size = *size_used;
1336 	ssize_t copied, use;
1337 	size_t offset;
1338 
1339 	while (length > 0) {
1340 		i = 0;
1341 		maxpages = to_max_pages - num_elem;
1342 		if (maxpages == 0) {
1343 			rc = -EFAULT;
1344 			goto out;
1345 		}
1346 		copied = iov_iter_get_pages(from, pages,
1347 					    length,
1348 					    maxpages, &offset);
1349 		if (copied <= 0) {
1350 			rc = -EFAULT;
1351 			goto out;
1352 		}
1353 
1354 		iov_iter_advance(from, copied);
1355 
1356 		length -= copied;
1357 		size += copied;
1358 		while (copied) {
1359 			use = min_t(int, copied, PAGE_SIZE - offset);
1360 
1361 			sg_set_page(&to[num_elem],
1362 				    pages[i], use, offset);
1363 			sg_unmark_end(&to[num_elem]);
1364 			/* We do not uncharge memory from this API */
1365 
1366 			offset = 0;
1367 			copied -= use;
1368 
1369 			i++;
1370 			num_elem++;
1371 		}
1372 	}
1373 	/* Mark the end in the last sg entry if newly added */
1374 	if (num_elem > *pages_used)
1375 		sg_mark_end(&to[num_elem - 1]);
1376 out:
1377 	if (rc)
1378 		iov_iter_revert(from, size - *size_used);
1379 	*size_used = size;
1380 	*pages_used = num_elem;
1381 
1382 	return rc;
1383 }
1384 
1385 /* This function decrypts the input skb into either out_iov or in out_sg
1386  * or in skb buffers itself. The input parameter 'zc' indicates if
1387  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1388  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1389  * NULL, then the decryption happens inside skb buffers itself, i.e.
1390  * zero-copy gets disabled and 'zc' is updated.
1391  */
1392 
1393 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1394 			    struct iov_iter *out_iov,
1395 			    struct scatterlist *out_sg,
1396 			    int *chunk, bool *zc, bool async)
1397 {
1398 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1399 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1400 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1401 	struct strp_msg *rxm = strp_msg(skb);
1402 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1403 	struct aead_request *aead_req;
1404 	struct sk_buff *unused;
1405 	u8 *aad, *iv, *mem = NULL;
1406 	struct scatterlist *sgin = NULL;
1407 	struct scatterlist *sgout = NULL;
1408 	const int data_len = rxm->full_len - prot->overhead_size +
1409 			     prot->tail_size;
1410 	int iv_offset = 0;
1411 
1412 	if (*zc && (out_iov || out_sg)) {
1413 		if (out_iov)
1414 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1415 		else
1416 			n_sgout = sg_nents(out_sg);
1417 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1418 				 rxm->full_len - prot->prepend_size);
1419 	} else {
1420 		n_sgout = 0;
1421 		*zc = false;
1422 		n_sgin = skb_cow_data(skb, 0, &unused);
1423 	}
1424 
1425 	if (n_sgin < 1)
1426 		return -EBADMSG;
1427 
1428 	/* Increment to accommodate AAD */
1429 	n_sgin = n_sgin + 1;
1430 
1431 	nsg = n_sgin + n_sgout;
1432 
1433 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1434 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1435 	mem_size = mem_size + prot->aad_size;
1436 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1437 
1438 	/* Allocate a single block of memory which contains
1439 	 * aead_req || sgin[] || sgout[] || aad || iv.
1440 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1441 	 */
1442 	mem = kmalloc(mem_size, sk->sk_allocation);
1443 	if (!mem)
1444 		return -ENOMEM;
1445 
1446 	/* Segment the allocated memory */
1447 	aead_req = (struct aead_request *)mem;
1448 	sgin = (struct scatterlist *)(mem + aead_size);
1449 	sgout = sgin + n_sgin;
1450 	aad = (u8 *)(sgout + n_sgout);
1451 	iv = aad + prot->aad_size;
1452 
1453 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1454 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1455 		iv[0] = 2;
1456 		iv_offset = 1;
1457 	}
1458 
1459 	/* Prepare IV */
1460 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1461 			    iv + iv_offset + prot->salt_size,
1462 			    prot->iv_size);
1463 	if (err < 0) {
1464 		kfree(mem);
1465 		return err;
1466 	}
1467 	if (prot->version == TLS_1_3_VERSION)
1468 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1469 		       crypto_aead_ivsize(ctx->aead_recv));
1470 	else
1471 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1472 
1473 	xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1474 
1475 	/* Prepare AAD */
1476 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1477 		     prot->tail_size,
1478 		     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1479 		     ctx->control, prot->version);
1480 
1481 	/* Prepare sgin */
1482 	sg_init_table(sgin, n_sgin);
1483 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1484 	err = skb_to_sgvec(skb, &sgin[1],
1485 			   rxm->offset + prot->prepend_size,
1486 			   rxm->full_len - prot->prepend_size);
1487 	if (err < 0) {
1488 		kfree(mem);
1489 		return err;
1490 	}
1491 
1492 	if (n_sgout) {
1493 		if (out_iov) {
1494 			sg_init_table(sgout, n_sgout);
1495 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1496 
1497 			*chunk = 0;
1498 			err = tls_setup_from_iter(sk, out_iov, data_len,
1499 						  &pages, chunk, &sgout[1],
1500 						  (n_sgout - 1));
1501 			if (err < 0)
1502 				goto fallback_to_reg_recv;
1503 		} else if (out_sg) {
1504 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1505 		} else {
1506 			goto fallback_to_reg_recv;
1507 		}
1508 	} else {
1509 fallback_to_reg_recv:
1510 		sgout = sgin;
1511 		pages = 0;
1512 		*chunk = data_len;
1513 		*zc = false;
1514 	}
1515 
1516 	/* Prepare and submit AEAD request */
1517 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1518 				data_len, aead_req, async);
1519 	if (err == -EINPROGRESS)
1520 		return err;
1521 
1522 	/* Release the pages in case iov was mapped to pages */
1523 	for (; pages > 0; pages--)
1524 		put_page(sg_page(&sgout[pages]));
1525 
1526 	kfree(mem);
1527 	return err;
1528 }
1529 
1530 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1531 			      struct iov_iter *dest, int *chunk, bool *zc,
1532 			      bool async)
1533 {
1534 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1535 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1536 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1537 	struct strp_msg *rxm = strp_msg(skb);
1538 	int pad, err = 0;
1539 
1540 	if (!ctx->decrypted) {
1541 		if (tls_ctx->rx_conf == TLS_HW) {
1542 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1543 			if (err < 0)
1544 				return err;
1545 		}
1546 
1547 		/* Still not decrypted after tls_device */
1548 		if (!ctx->decrypted) {
1549 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1550 					       async);
1551 			if (err < 0) {
1552 				if (err == -EINPROGRESS)
1553 					tls_advance_record_sn(sk, prot,
1554 							      &tls_ctx->rx);
1555 				else if (err == -EBADMSG)
1556 					TLS_INC_STATS(sock_net(sk),
1557 						      LINUX_MIB_TLSDECRYPTERROR);
1558 				return err;
1559 			}
1560 		} else {
1561 			*zc = false;
1562 		}
1563 
1564 		pad = padding_length(ctx, prot, skb);
1565 		if (pad < 0)
1566 			return pad;
1567 
1568 		rxm->full_len -= pad;
1569 		rxm->offset += prot->prepend_size;
1570 		rxm->full_len -= prot->overhead_size;
1571 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1572 		ctx->decrypted = 1;
1573 		ctx->saved_data_ready(sk);
1574 	} else {
1575 		*zc = false;
1576 	}
1577 
1578 	return err;
1579 }
1580 
1581 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1582 		struct scatterlist *sgout)
1583 {
1584 	bool zc = true;
1585 	int chunk;
1586 
1587 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1588 }
1589 
1590 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1591 			       unsigned int len)
1592 {
1593 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1594 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1595 
1596 	if (skb) {
1597 		struct strp_msg *rxm = strp_msg(skb);
1598 
1599 		if (len < rxm->full_len) {
1600 			rxm->offset += len;
1601 			rxm->full_len -= len;
1602 			return false;
1603 		}
1604 		consume_skb(skb);
1605 	}
1606 
1607 	/* Finished with message */
1608 	ctx->recv_pkt = NULL;
1609 	__strp_unpause(&ctx->strp);
1610 
1611 	return true;
1612 }
1613 
1614 /* This function traverses the rx_list in tls receive context to copies the
1615  * decrypted records into the buffer provided by caller zero copy is not
1616  * true. Further, the records are removed from the rx_list if it is not a peek
1617  * case and the record has been consumed completely.
1618  */
1619 static int process_rx_list(struct tls_sw_context_rx *ctx,
1620 			   struct msghdr *msg,
1621 			   u8 *control,
1622 			   bool *cmsg,
1623 			   size_t skip,
1624 			   size_t len,
1625 			   bool zc,
1626 			   bool is_peek)
1627 {
1628 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1629 	u8 ctrl = *control;
1630 	u8 msgc = *cmsg;
1631 	struct tls_msg *tlm;
1632 	ssize_t copied = 0;
1633 
1634 	/* Set the record type in 'control' if caller didn't pass it */
1635 	if (!ctrl && skb) {
1636 		tlm = tls_msg(skb);
1637 		ctrl = tlm->control;
1638 	}
1639 
1640 	while (skip && skb) {
1641 		struct strp_msg *rxm = strp_msg(skb);
1642 		tlm = tls_msg(skb);
1643 
1644 		/* Cannot process a record of different type */
1645 		if (ctrl != tlm->control)
1646 			return 0;
1647 
1648 		if (skip < rxm->full_len)
1649 			break;
1650 
1651 		skip = skip - rxm->full_len;
1652 		skb = skb_peek_next(skb, &ctx->rx_list);
1653 	}
1654 
1655 	while (len && skb) {
1656 		struct sk_buff *next_skb;
1657 		struct strp_msg *rxm = strp_msg(skb);
1658 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1659 
1660 		tlm = tls_msg(skb);
1661 
1662 		/* Cannot process a record of different type */
1663 		if (ctrl != tlm->control)
1664 			return 0;
1665 
1666 		/* Set record type if not already done. For a non-data record,
1667 		 * do not proceed if record type could not be copied.
1668 		 */
1669 		if (!msgc) {
1670 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1671 					    sizeof(ctrl), &ctrl);
1672 			msgc = true;
1673 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1674 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1675 					return -EIO;
1676 
1677 				*cmsg = msgc;
1678 			}
1679 		}
1680 
1681 		if (!zc || (rxm->full_len - skip) > len) {
1682 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1683 						    msg, chunk);
1684 			if (err < 0)
1685 				return err;
1686 		}
1687 
1688 		len = len - chunk;
1689 		copied = copied + chunk;
1690 
1691 		/* Consume the data from record if it is non-peek case*/
1692 		if (!is_peek) {
1693 			rxm->offset = rxm->offset + chunk;
1694 			rxm->full_len = rxm->full_len - chunk;
1695 
1696 			/* Return if there is unconsumed data in the record */
1697 			if (rxm->full_len - skip)
1698 				break;
1699 		}
1700 
1701 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1702 		 * So from the 2nd record, 'skip' should be 0.
1703 		 */
1704 		skip = 0;
1705 
1706 		if (msg)
1707 			msg->msg_flags |= MSG_EOR;
1708 
1709 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1710 
1711 		if (!is_peek) {
1712 			skb_unlink(skb, &ctx->rx_list);
1713 			consume_skb(skb);
1714 		}
1715 
1716 		skb = next_skb;
1717 	}
1718 
1719 	*control = ctrl;
1720 	return copied;
1721 }
1722 
1723 int tls_sw_recvmsg(struct sock *sk,
1724 		   struct msghdr *msg,
1725 		   size_t len,
1726 		   int nonblock,
1727 		   int flags,
1728 		   int *addr_len)
1729 {
1730 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1731 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1732 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1733 	struct sk_psock *psock;
1734 	unsigned char control = 0;
1735 	ssize_t decrypted = 0;
1736 	struct strp_msg *rxm;
1737 	struct tls_msg *tlm;
1738 	struct sk_buff *skb;
1739 	ssize_t copied = 0;
1740 	bool cmsg = false;
1741 	int target, err = 0;
1742 	long timeo;
1743 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1744 	bool is_peek = flags & MSG_PEEK;
1745 	bool bpf_strp_enabled;
1746 	int num_async = 0;
1747 	int pending;
1748 
1749 	flags |= nonblock;
1750 
1751 	if (unlikely(flags & MSG_ERRQUEUE))
1752 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1753 
1754 	psock = sk_psock_get(sk);
1755 	lock_sock(sk);
1756 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1757 
1758 	/* Process pending decrypted records. It must be non-zero-copy */
1759 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1760 			      is_peek);
1761 	if (err < 0) {
1762 		tls_err_abort(sk, err);
1763 		goto end;
1764 	} else {
1765 		copied = err;
1766 	}
1767 
1768 	if (len <= copied)
1769 		goto recv_end;
1770 
1771 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1772 	len = len - copied;
1773 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1774 
1775 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1776 		bool retain_skb = false;
1777 		bool zc = false;
1778 		int to_decrypt;
1779 		int chunk = 0;
1780 		bool async_capable;
1781 		bool async = false;
1782 
1783 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1784 		if (!skb) {
1785 			if (psock) {
1786 				int ret = __tcp_bpf_recvmsg(sk, psock,
1787 							    msg, len, flags);
1788 
1789 				if (ret > 0) {
1790 					decrypted += ret;
1791 					len -= ret;
1792 					continue;
1793 				}
1794 			}
1795 			goto recv_end;
1796 		} else {
1797 			tlm = tls_msg(skb);
1798 			if (prot->version == TLS_1_3_VERSION)
1799 				tlm->control = 0;
1800 			else
1801 				tlm->control = ctx->control;
1802 		}
1803 
1804 		rxm = strp_msg(skb);
1805 
1806 		to_decrypt = rxm->full_len - prot->overhead_size;
1807 
1808 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1809 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1810 		    prot->version != TLS_1_3_VERSION &&
1811 		    !bpf_strp_enabled)
1812 			zc = true;
1813 
1814 		/* Do not use async mode if record is non-data */
1815 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1816 			async_capable = ctx->async_capable;
1817 		else
1818 			async_capable = false;
1819 
1820 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1821 					 &chunk, &zc, async_capable);
1822 		if (err < 0 && err != -EINPROGRESS) {
1823 			tls_err_abort(sk, EBADMSG);
1824 			goto recv_end;
1825 		}
1826 
1827 		if (err == -EINPROGRESS) {
1828 			async = true;
1829 			num_async++;
1830 		} else if (prot->version == TLS_1_3_VERSION) {
1831 			tlm->control = ctx->control;
1832 		}
1833 
1834 		/* If the type of records being processed is not known yet,
1835 		 * set it to record type just dequeued. If it is already known,
1836 		 * but does not match the record type just dequeued, go to end.
1837 		 * We always get record type here since for tls1.2, record type
1838 		 * is known just after record is dequeued from stream parser.
1839 		 * For tls1.3, we disable async.
1840 		 */
1841 
1842 		if (!control)
1843 			control = tlm->control;
1844 		else if (control != tlm->control)
1845 			goto recv_end;
1846 
1847 		if (!cmsg) {
1848 			int cerr;
1849 
1850 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1851 					sizeof(control), &control);
1852 			cmsg = true;
1853 			if (control != TLS_RECORD_TYPE_DATA) {
1854 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1855 					err = -EIO;
1856 					goto recv_end;
1857 				}
1858 			}
1859 		}
1860 
1861 		if (async)
1862 			goto pick_next_record;
1863 
1864 		if (!zc) {
1865 			if (bpf_strp_enabled) {
1866 				err = sk_psock_tls_strp_read(psock, skb);
1867 				if (err != __SK_PASS) {
1868 					rxm->offset = rxm->offset + rxm->full_len;
1869 					rxm->full_len = 0;
1870 					if (err == __SK_DROP)
1871 						consume_skb(skb);
1872 					ctx->recv_pkt = NULL;
1873 					__strp_unpause(&ctx->strp);
1874 					continue;
1875 				}
1876 			}
1877 
1878 			if (rxm->full_len > len) {
1879 				retain_skb = true;
1880 				chunk = len;
1881 			} else {
1882 				chunk = rxm->full_len;
1883 			}
1884 
1885 			err = skb_copy_datagram_msg(skb, rxm->offset,
1886 						    msg, chunk);
1887 			if (err < 0)
1888 				goto recv_end;
1889 
1890 			if (!is_peek) {
1891 				rxm->offset = rxm->offset + chunk;
1892 				rxm->full_len = rxm->full_len - chunk;
1893 			}
1894 		}
1895 
1896 pick_next_record:
1897 		if (chunk > len)
1898 			chunk = len;
1899 
1900 		decrypted += chunk;
1901 		len -= chunk;
1902 
1903 		/* For async or peek case, queue the current skb */
1904 		if (async || is_peek || retain_skb) {
1905 			skb_queue_tail(&ctx->rx_list, skb);
1906 			skb = NULL;
1907 		}
1908 
1909 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1910 			/* Return full control message to
1911 			 * userspace before trying to parse
1912 			 * another message type
1913 			 */
1914 			msg->msg_flags |= MSG_EOR;
1915 			if (ctx->control != TLS_RECORD_TYPE_DATA)
1916 				goto recv_end;
1917 		} else {
1918 			break;
1919 		}
1920 	}
1921 
1922 recv_end:
1923 	if (num_async) {
1924 		/* Wait for all previously submitted records to be decrypted */
1925 		spin_lock_bh(&ctx->decrypt_compl_lock);
1926 		ctx->async_notify = true;
1927 		pending = atomic_read(&ctx->decrypt_pending);
1928 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1929 		if (pending) {
1930 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1931 			if (err) {
1932 				/* one of async decrypt failed */
1933 				tls_err_abort(sk, err);
1934 				copied = 0;
1935 				decrypted = 0;
1936 				goto end;
1937 			}
1938 		} else {
1939 			reinit_completion(&ctx->async_wait.completion);
1940 		}
1941 
1942 		/* There can be no concurrent accesses, since we have no
1943 		 * pending decrypt operations
1944 		 */
1945 		WRITE_ONCE(ctx->async_notify, false);
1946 
1947 		/* Drain records from the rx_list & copy if required */
1948 		if (is_peek || is_kvec)
1949 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1950 					      decrypted, false, is_peek);
1951 		else
1952 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1953 					      decrypted, true, is_peek);
1954 		if (err < 0) {
1955 			tls_err_abort(sk, err);
1956 			copied = 0;
1957 			goto end;
1958 		}
1959 	}
1960 
1961 	copied += decrypted;
1962 
1963 end:
1964 	release_sock(sk);
1965 	if (psock)
1966 		sk_psock_put(sk, psock);
1967 	return copied ? : err;
1968 }
1969 
1970 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1971 			   struct pipe_inode_info *pipe,
1972 			   size_t len, unsigned int flags)
1973 {
1974 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1975 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1976 	struct strp_msg *rxm = NULL;
1977 	struct sock *sk = sock->sk;
1978 	struct sk_buff *skb;
1979 	ssize_t copied = 0;
1980 	int err = 0;
1981 	long timeo;
1982 	int chunk;
1983 	bool zc = false;
1984 
1985 	lock_sock(sk);
1986 
1987 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1988 
1989 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1990 	if (!skb)
1991 		goto splice_read_end;
1992 
1993 	if (!ctx->decrypted) {
1994 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1995 
1996 		/* splice does not support reading control messages */
1997 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1998 			err = -EINVAL;
1999 			goto splice_read_end;
2000 		}
2001 
2002 		if (err < 0) {
2003 			tls_err_abort(sk, EBADMSG);
2004 			goto splice_read_end;
2005 		}
2006 		ctx->decrypted = 1;
2007 	}
2008 	rxm = strp_msg(skb);
2009 
2010 	chunk = min_t(unsigned int, rxm->full_len, len);
2011 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2012 	if (copied < 0)
2013 		goto splice_read_end;
2014 
2015 	if (likely(!(flags & MSG_PEEK)))
2016 		tls_sw_advance_skb(sk, skb, copied);
2017 
2018 splice_read_end:
2019 	release_sock(sk);
2020 	return copied ? : err;
2021 }
2022 
2023 bool tls_sw_stream_read(const struct sock *sk)
2024 {
2025 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2026 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2027 	bool ingress_empty = true;
2028 	struct sk_psock *psock;
2029 
2030 	rcu_read_lock();
2031 	psock = sk_psock(sk);
2032 	if (psock)
2033 		ingress_empty = list_empty(&psock->ingress_msg);
2034 	rcu_read_unlock();
2035 
2036 	return !ingress_empty || ctx->recv_pkt ||
2037 		!skb_queue_empty(&ctx->rx_list);
2038 }
2039 
2040 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2041 {
2042 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2043 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2044 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2045 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2046 	struct strp_msg *rxm = strp_msg(skb);
2047 	size_t cipher_overhead;
2048 	size_t data_len = 0;
2049 	int ret;
2050 
2051 	/* Verify that we have a full TLS header, or wait for more data */
2052 	if (rxm->offset + prot->prepend_size > skb->len)
2053 		return 0;
2054 
2055 	/* Sanity-check size of on-stack buffer. */
2056 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2057 		ret = -EINVAL;
2058 		goto read_failure;
2059 	}
2060 
2061 	/* Linearize header to local buffer */
2062 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2063 
2064 	if (ret < 0)
2065 		goto read_failure;
2066 
2067 	ctx->control = header[0];
2068 
2069 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2070 
2071 	cipher_overhead = prot->tag_size;
2072 	if (prot->version != TLS_1_3_VERSION)
2073 		cipher_overhead += prot->iv_size;
2074 
2075 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2076 	    prot->tail_size) {
2077 		ret = -EMSGSIZE;
2078 		goto read_failure;
2079 	}
2080 	if (data_len < cipher_overhead) {
2081 		ret = -EBADMSG;
2082 		goto read_failure;
2083 	}
2084 
2085 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2086 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2087 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2088 		ret = -EINVAL;
2089 		goto read_failure;
2090 	}
2091 
2092 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2093 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2094 	return data_len + TLS_HEADER_SIZE;
2095 
2096 read_failure:
2097 	tls_err_abort(strp->sk, ret);
2098 
2099 	return ret;
2100 }
2101 
2102 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2103 {
2104 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2105 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2106 
2107 	ctx->decrypted = 0;
2108 
2109 	ctx->recv_pkt = skb;
2110 	strp_pause(strp);
2111 
2112 	ctx->saved_data_ready(strp->sk);
2113 }
2114 
2115 static void tls_data_ready(struct sock *sk)
2116 {
2117 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2118 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2119 	struct sk_psock *psock;
2120 
2121 	strp_data_ready(&ctx->strp);
2122 
2123 	psock = sk_psock_get(sk);
2124 	if (psock) {
2125 		if (!list_empty(&psock->ingress_msg))
2126 			ctx->saved_data_ready(sk);
2127 		sk_psock_put(sk, psock);
2128 	}
2129 }
2130 
2131 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2132 {
2133 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2134 
2135 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2136 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2137 	cancel_delayed_work_sync(&ctx->tx_work.work);
2138 }
2139 
2140 void tls_sw_release_resources_tx(struct sock *sk)
2141 {
2142 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2143 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2144 	struct tls_rec *rec, *tmp;
2145 
2146 	/* Wait for any pending async encryptions to complete */
2147 	smp_store_mb(ctx->async_notify, true);
2148 	if (atomic_read(&ctx->encrypt_pending))
2149 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2150 
2151 	tls_tx_records(sk, -1);
2152 
2153 	/* Free up un-sent records in tx_list. First, free
2154 	 * the partially sent record if any at head of tx_list.
2155 	 */
2156 	if (tls_ctx->partially_sent_record) {
2157 		tls_free_partial_record(sk, tls_ctx);
2158 		rec = list_first_entry(&ctx->tx_list,
2159 				       struct tls_rec, list);
2160 		list_del(&rec->list);
2161 		sk_msg_free(sk, &rec->msg_plaintext);
2162 		kfree(rec);
2163 	}
2164 
2165 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2166 		list_del(&rec->list);
2167 		sk_msg_free(sk, &rec->msg_encrypted);
2168 		sk_msg_free(sk, &rec->msg_plaintext);
2169 		kfree(rec);
2170 	}
2171 
2172 	crypto_free_aead(ctx->aead_send);
2173 	tls_free_open_rec(sk);
2174 }
2175 
2176 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2177 {
2178 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2179 
2180 	kfree(ctx);
2181 }
2182 
2183 void tls_sw_release_resources_rx(struct sock *sk)
2184 {
2185 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2186 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2187 
2188 	kfree(tls_ctx->rx.rec_seq);
2189 	kfree(tls_ctx->rx.iv);
2190 
2191 	if (ctx->aead_recv) {
2192 		kfree_skb(ctx->recv_pkt);
2193 		ctx->recv_pkt = NULL;
2194 		skb_queue_purge(&ctx->rx_list);
2195 		crypto_free_aead(ctx->aead_recv);
2196 		strp_stop(&ctx->strp);
2197 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2198 		 * we still want to strp_stop(), but sk->sk_data_ready was
2199 		 * never swapped.
2200 		 */
2201 		if (ctx->saved_data_ready) {
2202 			write_lock_bh(&sk->sk_callback_lock);
2203 			sk->sk_data_ready = ctx->saved_data_ready;
2204 			write_unlock_bh(&sk->sk_callback_lock);
2205 		}
2206 	}
2207 }
2208 
2209 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2210 {
2211 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2212 
2213 	strp_done(&ctx->strp);
2214 }
2215 
2216 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2217 {
2218 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2219 
2220 	kfree(ctx);
2221 }
2222 
2223 void tls_sw_free_resources_rx(struct sock *sk)
2224 {
2225 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2226 
2227 	tls_sw_release_resources_rx(sk);
2228 	tls_sw_free_ctx_rx(tls_ctx);
2229 }
2230 
2231 /* The work handler to transmitt the encrypted records in tx_list */
2232 static void tx_work_handler(struct work_struct *work)
2233 {
2234 	struct delayed_work *delayed_work = to_delayed_work(work);
2235 	struct tx_work *tx_work = container_of(delayed_work,
2236 					       struct tx_work, work);
2237 	struct sock *sk = tx_work->sk;
2238 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2239 	struct tls_sw_context_tx *ctx;
2240 
2241 	if (unlikely(!tls_ctx))
2242 		return;
2243 
2244 	ctx = tls_sw_ctx_tx(tls_ctx);
2245 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2246 		return;
2247 
2248 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2249 		return;
2250 	mutex_lock(&tls_ctx->tx_lock);
2251 	lock_sock(sk);
2252 	tls_tx_records(sk, -1);
2253 	release_sock(sk);
2254 	mutex_unlock(&tls_ctx->tx_lock);
2255 }
2256 
2257 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2258 {
2259 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2260 
2261 	/* Schedule the transmission if tx list is ready */
2262 	if (is_tx_ready(tx_ctx) &&
2263 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2264 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2265 }
2266 
2267 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2268 {
2269 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2270 
2271 	write_lock_bh(&sk->sk_callback_lock);
2272 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2273 	sk->sk_data_ready = tls_data_ready;
2274 	write_unlock_bh(&sk->sk_callback_lock);
2275 
2276 	strp_check_rcv(&rx_ctx->strp);
2277 }
2278 
2279 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2280 {
2281 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2282 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2283 	struct tls_crypto_info *crypto_info;
2284 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2285 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2286 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2287 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2288 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2289 	struct cipher_context *cctx;
2290 	struct crypto_aead **aead;
2291 	struct strp_callbacks cb;
2292 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2293 	struct crypto_tfm *tfm;
2294 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2295 	size_t keysize;
2296 	int rc = 0;
2297 
2298 	if (!ctx) {
2299 		rc = -EINVAL;
2300 		goto out;
2301 	}
2302 
2303 	if (tx) {
2304 		if (!ctx->priv_ctx_tx) {
2305 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2306 			if (!sw_ctx_tx) {
2307 				rc = -ENOMEM;
2308 				goto out;
2309 			}
2310 			ctx->priv_ctx_tx = sw_ctx_tx;
2311 		} else {
2312 			sw_ctx_tx =
2313 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2314 		}
2315 	} else {
2316 		if (!ctx->priv_ctx_rx) {
2317 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2318 			if (!sw_ctx_rx) {
2319 				rc = -ENOMEM;
2320 				goto out;
2321 			}
2322 			ctx->priv_ctx_rx = sw_ctx_rx;
2323 		} else {
2324 			sw_ctx_rx =
2325 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2326 		}
2327 	}
2328 
2329 	if (tx) {
2330 		crypto_init_wait(&sw_ctx_tx->async_wait);
2331 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2332 		crypto_info = &ctx->crypto_send.info;
2333 		cctx = &ctx->tx;
2334 		aead = &sw_ctx_tx->aead_send;
2335 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2336 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2337 		sw_ctx_tx->tx_work.sk = sk;
2338 	} else {
2339 		crypto_init_wait(&sw_ctx_rx->async_wait);
2340 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2341 		crypto_info = &ctx->crypto_recv.info;
2342 		cctx = &ctx->rx;
2343 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2344 		aead = &sw_ctx_rx->aead_recv;
2345 	}
2346 
2347 	switch (crypto_info->cipher_type) {
2348 	case TLS_CIPHER_AES_GCM_128: {
2349 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2350 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2351 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2352 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2353 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2354 		rec_seq =
2355 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2356 		gcm_128_info =
2357 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2358 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2359 		key = gcm_128_info->key;
2360 		salt = gcm_128_info->salt;
2361 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2362 		cipher_name = "gcm(aes)";
2363 		break;
2364 	}
2365 	case TLS_CIPHER_AES_GCM_256: {
2366 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2367 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2368 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2369 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2370 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2371 		rec_seq =
2372 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2373 		gcm_256_info =
2374 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2375 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2376 		key = gcm_256_info->key;
2377 		salt = gcm_256_info->salt;
2378 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2379 		cipher_name = "gcm(aes)";
2380 		break;
2381 	}
2382 	case TLS_CIPHER_AES_CCM_128: {
2383 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2384 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2385 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2386 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2387 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2388 		rec_seq =
2389 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2390 		ccm_128_info =
2391 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2392 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2393 		key = ccm_128_info->key;
2394 		salt = ccm_128_info->salt;
2395 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2396 		cipher_name = "ccm(aes)";
2397 		break;
2398 	}
2399 	default:
2400 		rc = -EINVAL;
2401 		goto free_priv;
2402 	}
2403 
2404 	/* Sanity-check the sizes for stack allocations. */
2405 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2406 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2407 		rc = -EINVAL;
2408 		goto free_priv;
2409 	}
2410 
2411 	if (crypto_info->version == TLS_1_3_VERSION) {
2412 		nonce_size = 0;
2413 		prot->aad_size = TLS_HEADER_SIZE;
2414 		prot->tail_size = 1;
2415 	} else {
2416 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2417 		prot->tail_size = 0;
2418 	}
2419 
2420 	prot->version = crypto_info->version;
2421 	prot->cipher_type = crypto_info->cipher_type;
2422 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2423 	prot->tag_size = tag_size;
2424 	prot->overhead_size = prot->prepend_size +
2425 			      prot->tag_size + prot->tail_size;
2426 	prot->iv_size = iv_size;
2427 	prot->salt_size = salt_size;
2428 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2429 	if (!cctx->iv) {
2430 		rc = -ENOMEM;
2431 		goto free_priv;
2432 	}
2433 	/* Note: 128 & 256 bit salt are the same size */
2434 	prot->rec_seq_size = rec_seq_size;
2435 	memcpy(cctx->iv, salt, salt_size);
2436 	memcpy(cctx->iv + salt_size, iv, iv_size);
2437 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2438 	if (!cctx->rec_seq) {
2439 		rc = -ENOMEM;
2440 		goto free_iv;
2441 	}
2442 
2443 	if (!*aead) {
2444 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2445 		if (IS_ERR(*aead)) {
2446 			rc = PTR_ERR(*aead);
2447 			*aead = NULL;
2448 			goto free_rec_seq;
2449 		}
2450 	}
2451 
2452 	ctx->push_pending_record = tls_sw_push_pending_record;
2453 
2454 	rc = crypto_aead_setkey(*aead, key, keysize);
2455 
2456 	if (rc)
2457 		goto free_aead;
2458 
2459 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2460 	if (rc)
2461 		goto free_aead;
2462 
2463 	if (sw_ctx_rx) {
2464 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2465 
2466 		if (crypto_info->version == TLS_1_3_VERSION)
2467 			sw_ctx_rx->async_capable = 0;
2468 		else
2469 			sw_ctx_rx->async_capable =
2470 				!!(tfm->__crt_alg->cra_flags &
2471 				   CRYPTO_ALG_ASYNC);
2472 
2473 		/* Set up strparser */
2474 		memset(&cb, 0, sizeof(cb));
2475 		cb.rcv_msg = tls_queue;
2476 		cb.parse_msg = tls_read_size;
2477 
2478 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2479 	}
2480 
2481 	goto out;
2482 
2483 free_aead:
2484 	crypto_free_aead(*aead);
2485 	*aead = NULL;
2486 free_rec_seq:
2487 	kfree(cctx->rec_seq);
2488 	cctx->rec_seq = NULL;
2489 free_iv:
2490 	kfree(cctx->iv);
2491 	cctx->iv = NULL;
2492 free_priv:
2493 	if (tx) {
2494 		kfree(ctx->priv_ctx_tx);
2495 		ctx->priv_ctx_tx = NULL;
2496 	} else {
2497 		kfree(ctx->priv_ctx_rx);
2498 		ctx->priv_ctx_rx = NULL;
2499 	}
2500 out:
2501 	return rc;
2502 }
2503