1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * 8 * This software is available to you under a choice of one of two 9 * licenses. You may choose to be licensed under the terms of the GNU 10 * General Public License (GPL) Version 2, available from the file 11 * COPYING in the main directory of this source tree, or the 12 * OpenIB.org BSD license below: 13 * 14 * Redistribution and use in source and binary forms, with or 15 * without modification, are permitted provided that the following 16 * conditions are met: 17 * 18 * - Redistributions of source code must retain the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer. 21 * 22 * - Redistributions in binary form must reproduce the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer in the documentation and/or other materials 25 * provided with the distribution. 26 * 27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 34 * SOFTWARE. 35 */ 36 37 #include <linux/sched/signal.h> 38 #include <linux/module.h> 39 #include <crypto/aead.h> 40 41 #include <net/strparser.h> 42 #include <net/tls.h> 43 44 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 45 46 static int tls_do_decryption(struct sock *sk, 47 struct scatterlist *sgin, 48 struct scatterlist *sgout, 49 char *iv_recv, 50 size_t data_len, 51 struct aead_request *aead_req) 52 { 53 struct tls_context *tls_ctx = tls_get_ctx(sk); 54 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 55 int ret; 56 57 aead_request_set_tfm(aead_req, ctx->aead_recv); 58 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 59 aead_request_set_crypt(aead_req, sgin, sgout, 60 data_len + tls_ctx->rx.tag_size, 61 (u8 *)iv_recv); 62 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 63 crypto_req_done, &ctx->async_wait); 64 65 ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait); 66 return ret; 67 } 68 69 static void trim_sg(struct sock *sk, struct scatterlist *sg, 70 int *sg_num_elem, unsigned int *sg_size, int target_size) 71 { 72 int i = *sg_num_elem - 1; 73 int trim = *sg_size - target_size; 74 75 if (trim <= 0) { 76 WARN_ON(trim < 0); 77 return; 78 } 79 80 *sg_size = target_size; 81 while (trim >= sg[i].length) { 82 trim -= sg[i].length; 83 sk_mem_uncharge(sk, sg[i].length); 84 put_page(sg_page(&sg[i])); 85 i--; 86 87 if (i < 0) 88 goto out; 89 } 90 91 sg[i].length -= trim; 92 sk_mem_uncharge(sk, trim); 93 94 out: 95 *sg_num_elem = i + 1; 96 } 97 98 static void trim_both_sgl(struct sock *sk, int target_size) 99 { 100 struct tls_context *tls_ctx = tls_get_ctx(sk); 101 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 102 103 trim_sg(sk, ctx->sg_plaintext_data, 104 &ctx->sg_plaintext_num_elem, 105 &ctx->sg_plaintext_size, 106 target_size); 107 108 if (target_size > 0) 109 target_size += tls_ctx->tx.overhead_size; 110 111 trim_sg(sk, ctx->sg_encrypted_data, 112 &ctx->sg_encrypted_num_elem, 113 &ctx->sg_encrypted_size, 114 target_size); 115 } 116 117 static int alloc_encrypted_sg(struct sock *sk, int len) 118 { 119 struct tls_context *tls_ctx = tls_get_ctx(sk); 120 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 121 int rc = 0; 122 123 rc = sk_alloc_sg(sk, len, 124 ctx->sg_encrypted_data, 0, 125 &ctx->sg_encrypted_num_elem, 126 &ctx->sg_encrypted_size, 0); 127 128 if (rc == -ENOSPC) 129 ctx->sg_encrypted_num_elem = ARRAY_SIZE(ctx->sg_encrypted_data); 130 131 return rc; 132 } 133 134 static int alloc_plaintext_sg(struct sock *sk, int len) 135 { 136 struct tls_context *tls_ctx = tls_get_ctx(sk); 137 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 138 int rc = 0; 139 140 rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0, 141 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, 142 tls_ctx->pending_open_record_frags); 143 144 if (rc == -ENOSPC) 145 ctx->sg_plaintext_num_elem = ARRAY_SIZE(ctx->sg_plaintext_data); 146 147 return rc; 148 } 149 150 static void free_sg(struct sock *sk, struct scatterlist *sg, 151 int *sg_num_elem, unsigned int *sg_size) 152 { 153 int i, n = *sg_num_elem; 154 155 for (i = 0; i < n; ++i) { 156 sk_mem_uncharge(sk, sg[i].length); 157 put_page(sg_page(&sg[i])); 158 } 159 *sg_num_elem = 0; 160 *sg_size = 0; 161 } 162 163 static void tls_free_both_sg(struct sock *sk) 164 { 165 struct tls_context *tls_ctx = tls_get_ctx(sk); 166 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 167 168 free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, 169 &ctx->sg_encrypted_size); 170 171 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 172 &ctx->sg_plaintext_size); 173 } 174 175 static int tls_do_encryption(struct tls_context *tls_ctx, 176 struct tls_sw_context_tx *ctx, 177 struct aead_request *aead_req, 178 size_t data_len) 179 { 180 int rc; 181 182 ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size; 183 ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size; 184 185 aead_request_set_tfm(aead_req, ctx->aead_send); 186 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 187 aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out, 188 data_len, tls_ctx->tx.iv); 189 190 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 191 crypto_req_done, &ctx->async_wait); 192 193 rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait); 194 195 ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size; 196 ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size; 197 198 return rc; 199 } 200 201 static int tls_push_record(struct sock *sk, int flags, 202 unsigned char record_type) 203 { 204 struct tls_context *tls_ctx = tls_get_ctx(sk); 205 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 206 struct aead_request *req; 207 int rc; 208 209 req = aead_request_alloc(ctx->aead_send, sk->sk_allocation); 210 if (!req) 211 return -ENOMEM; 212 213 sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1); 214 sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1); 215 216 tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size, 217 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, 218 record_type); 219 220 tls_fill_prepend(tls_ctx, 221 page_address(sg_page(&ctx->sg_encrypted_data[0])) + 222 ctx->sg_encrypted_data[0].offset, 223 ctx->sg_plaintext_size, record_type); 224 225 tls_ctx->pending_open_record_frags = 0; 226 set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags); 227 228 rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size); 229 if (rc < 0) { 230 /* If we are called from write_space and 231 * we fail, we need to set this SOCK_NOSPACE 232 * to trigger another write_space in the future. 233 */ 234 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 235 goto out_req; 236 } 237 238 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 239 &ctx->sg_plaintext_size); 240 241 ctx->sg_encrypted_num_elem = 0; 242 ctx->sg_encrypted_size = 0; 243 244 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */ 245 rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags); 246 if (rc < 0 && rc != -EAGAIN) 247 tls_err_abort(sk, EBADMSG); 248 249 tls_advance_record_sn(sk, &tls_ctx->tx); 250 out_req: 251 aead_request_free(req); 252 return rc; 253 } 254 255 static int tls_sw_push_pending_record(struct sock *sk, int flags) 256 { 257 return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); 258 } 259 260 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 261 int length, int *pages_used, 262 unsigned int *size_used, 263 struct scatterlist *to, int to_max_pages, 264 bool charge) 265 { 266 struct page *pages[MAX_SKB_FRAGS]; 267 268 size_t offset; 269 ssize_t copied, use; 270 int i = 0; 271 unsigned int size = *size_used; 272 int num_elem = *pages_used; 273 int rc = 0; 274 int maxpages; 275 276 while (length > 0) { 277 i = 0; 278 maxpages = to_max_pages - num_elem; 279 if (maxpages == 0) { 280 rc = -EFAULT; 281 goto out; 282 } 283 copied = iov_iter_get_pages(from, pages, 284 length, 285 maxpages, &offset); 286 if (copied <= 0) { 287 rc = -EFAULT; 288 goto out; 289 } 290 291 iov_iter_advance(from, copied); 292 293 length -= copied; 294 size += copied; 295 while (copied) { 296 use = min_t(int, copied, PAGE_SIZE - offset); 297 298 sg_set_page(&to[num_elem], 299 pages[i], use, offset); 300 sg_unmark_end(&to[num_elem]); 301 if (charge) 302 sk_mem_charge(sk, use); 303 304 offset = 0; 305 copied -= use; 306 307 ++i; 308 ++num_elem; 309 } 310 } 311 312 /* Mark the end in the last sg entry if newly added */ 313 if (num_elem > *pages_used) 314 sg_mark_end(&to[num_elem - 1]); 315 out: 316 if (rc) 317 iov_iter_revert(from, size - *size_used); 318 *size_used = size; 319 *pages_used = num_elem; 320 321 return rc; 322 } 323 324 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, 325 int bytes) 326 { 327 struct tls_context *tls_ctx = tls_get_ctx(sk); 328 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 329 struct scatterlist *sg = ctx->sg_plaintext_data; 330 int copy, i, rc = 0; 331 332 for (i = tls_ctx->pending_open_record_frags; 333 i < ctx->sg_plaintext_num_elem; ++i) { 334 copy = sg[i].length; 335 if (copy_from_iter( 336 page_address(sg_page(&sg[i])) + sg[i].offset, 337 copy, from) != copy) { 338 rc = -EFAULT; 339 goto out; 340 } 341 bytes -= copy; 342 343 ++tls_ctx->pending_open_record_frags; 344 345 if (!bytes) 346 break; 347 } 348 349 out: 350 return rc; 351 } 352 353 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 354 { 355 struct tls_context *tls_ctx = tls_get_ctx(sk); 356 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 357 int ret = 0; 358 int required_size; 359 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 360 bool eor = !(msg->msg_flags & MSG_MORE); 361 size_t try_to_copy, copied = 0; 362 unsigned char record_type = TLS_RECORD_TYPE_DATA; 363 int record_room; 364 bool full_record; 365 int orig_size; 366 bool is_kvec = msg->msg_iter.type & ITER_KVEC; 367 368 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 369 return -ENOTSUPP; 370 371 lock_sock(sk); 372 373 if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo)) 374 goto send_end; 375 376 if (unlikely(msg->msg_controllen)) { 377 ret = tls_proccess_cmsg(sk, msg, &record_type); 378 if (ret) 379 goto send_end; 380 } 381 382 while (msg_data_left(msg)) { 383 if (sk->sk_err) { 384 ret = -sk->sk_err; 385 goto send_end; 386 } 387 388 orig_size = ctx->sg_plaintext_size; 389 full_record = false; 390 try_to_copy = msg_data_left(msg); 391 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 392 if (try_to_copy >= record_room) { 393 try_to_copy = record_room; 394 full_record = true; 395 } 396 397 required_size = ctx->sg_plaintext_size + try_to_copy + 398 tls_ctx->tx.overhead_size; 399 400 if (!sk_stream_memory_free(sk)) 401 goto wait_for_sndbuf; 402 alloc_encrypted: 403 ret = alloc_encrypted_sg(sk, required_size); 404 if (ret) { 405 if (ret != -ENOSPC) 406 goto wait_for_memory; 407 408 /* Adjust try_to_copy according to the amount that was 409 * actually allocated. The difference is due 410 * to max sg elements limit 411 */ 412 try_to_copy -= required_size - ctx->sg_encrypted_size; 413 full_record = true; 414 } 415 if (!is_kvec && (full_record || eor)) { 416 ret = zerocopy_from_iter(sk, &msg->msg_iter, 417 try_to_copy, &ctx->sg_plaintext_num_elem, 418 &ctx->sg_plaintext_size, 419 ctx->sg_plaintext_data, 420 ARRAY_SIZE(ctx->sg_plaintext_data), 421 true); 422 if (ret) 423 goto fallback_to_reg_send; 424 425 copied += try_to_copy; 426 ret = tls_push_record(sk, msg->msg_flags, record_type); 427 if (ret) 428 goto send_end; 429 continue; 430 431 fallback_to_reg_send: 432 trim_sg(sk, ctx->sg_plaintext_data, 433 &ctx->sg_plaintext_num_elem, 434 &ctx->sg_plaintext_size, 435 orig_size); 436 } 437 438 required_size = ctx->sg_plaintext_size + try_to_copy; 439 alloc_plaintext: 440 ret = alloc_plaintext_sg(sk, required_size); 441 if (ret) { 442 if (ret != -ENOSPC) 443 goto wait_for_memory; 444 445 /* Adjust try_to_copy according to the amount that was 446 * actually allocated. The difference is due 447 * to max sg elements limit 448 */ 449 try_to_copy -= required_size - ctx->sg_plaintext_size; 450 full_record = true; 451 452 trim_sg(sk, ctx->sg_encrypted_data, 453 &ctx->sg_encrypted_num_elem, 454 &ctx->sg_encrypted_size, 455 ctx->sg_plaintext_size + 456 tls_ctx->tx.overhead_size); 457 } 458 459 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); 460 if (ret) 461 goto trim_sgl; 462 463 copied += try_to_copy; 464 if (full_record || eor) { 465 push_record: 466 ret = tls_push_record(sk, msg->msg_flags, record_type); 467 if (ret) { 468 if (ret == -ENOMEM) 469 goto wait_for_memory; 470 471 goto send_end; 472 } 473 } 474 475 continue; 476 477 wait_for_sndbuf: 478 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 479 wait_for_memory: 480 ret = sk_stream_wait_memory(sk, &timeo); 481 if (ret) { 482 trim_sgl: 483 trim_both_sgl(sk, orig_size); 484 goto send_end; 485 } 486 487 if (tls_is_pending_closed_record(tls_ctx)) 488 goto push_record; 489 490 if (ctx->sg_encrypted_size < required_size) 491 goto alloc_encrypted; 492 493 goto alloc_plaintext; 494 } 495 496 send_end: 497 ret = sk_stream_error(sk, msg->msg_flags, ret); 498 499 release_sock(sk); 500 return copied ? copied : ret; 501 } 502 503 int tls_sw_sendpage(struct sock *sk, struct page *page, 504 int offset, size_t size, int flags) 505 { 506 struct tls_context *tls_ctx = tls_get_ctx(sk); 507 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 508 int ret = 0; 509 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 510 bool eor; 511 size_t orig_size = size; 512 unsigned char record_type = TLS_RECORD_TYPE_DATA; 513 struct scatterlist *sg; 514 bool full_record; 515 int record_room; 516 517 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 518 MSG_SENDPAGE_NOTLAST)) 519 return -ENOTSUPP; 520 521 /* No MSG_EOR from splice, only look at MSG_MORE */ 522 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 523 524 lock_sock(sk); 525 526 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 527 528 if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo)) 529 goto sendpage_end; 530 531 /* Call the sk_stream functions to manage the sndbuf mem. */ 532 while (size > 0) { 533 size_t copy, required_size; 534 535 if (sk->sk_err) { 536 ret = -sk->sk_err; 537 goto sendpage_end; 538 } 539 540 full_record = false; 541 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 542 copy = size; 543 if (copy >= record_room) { 544 copy = record_room; 545 full_record = true; 546 } 547 required_size = ctx->sg_plaintext_size + copy + 548 tls_ctx->tx.overhead_size; 549 550 if (!sk_stream_memory_free(sk)) 551 goto wait_for_sndbuf; 552 alloc_payload: 553 ret = alloc_encrypted_sg(sk, required_size); 554 if (ret) { 555 if (ret != -ENOSPC) 556 goto wait_for_memory; 557 558 /* Adjust copy according to the amount that was 559 * actually allocated. The difference is due 560 * to max sg elements limit 561 */ 562 copy -= required_size - ctx->sg_plaintext_size; 563 full_record = true; 564 } 565 566 get_page(page); 567 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem; 568 sg_set_page(sg, page, copy, offset); 569 sg_unmark_end(sg); 570 571 ctx->sg_plaintext_num_elem++; 572 573 sk_mem_charge(sk, copy); 574 offset += copy; 575 size -= copy; 576 ctx->sg_plaintext_size += copy; 577 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem; 578 579 if (full_record || eor || 580 ctx->sg_plaintext_num_elem == 581 ARRAY_SIZE(ctx->sg_plaintext_data)) { 582 push_record: 583 ret = tls_push_record(sk, flags, record_type); 584 if (ret) { 585 if (ret == -ENOMEM) 586 goto wait_for_memory; 587 588 goto sendpage_end; 589 } 590 } 591 continue; 592 wait_for_sndbuf: 593 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 594 wait_for_memory: 595 ret = sk_stream_wait_memory(sk, &timeo); 596 if (ret) { 597 trim_both_sgl(sk, ctx->sg_plaintext_size); 598 goto sendpage_end; 599 } 600 601 if (tls_is_pending_closed_record(tls_ctx)) 602 goto push_record; 603 604 goto alloc_payload; 605 } 606 607 sendpage_end: 608 if (orig_size > size) 609 ret = orig_size - size; 610 else 611 ret = sk_stream_error(sk, flags, ret); 612 613 release_sock(sk); 614 return ret; 615 } 616 617 static struct sk_buff *tls_wait_data(struct sock *sk, int flags, 618 long timeo, int *err) 619 { 620 struct tls_context *tls_ctx = tls_get_ctx(sk); 621 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 622 struct sk_buff *skb; 623 DEFINE_WAIT_FUNC(wait, woken_wake_function); 624 625 while (!(skb = ctx->recv_pkt)) { 626 if (sk->sk_err) { 627 *err = sock_error(sk); 628 return NULL; 629 } 630 631 if (sk->sk_shutdown & RCV_SHUTDOWN) 632 return NULL; 633 634 if (sock_flag(sk, SOCK_DONE)) 635 return NULL; 636 637 if ((flags & MSG_DONTWAIT) || !timeo) { 638 *err = -EAGAIN; 639 return NULL; 640 } 641 642 add_wait_queue(sk_sleep(sk), &wait); 643 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 644 sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait); 645 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 646 remove_wait_queue(sk_sleep(sk), &wait); 647 648 /* Handle signals */ 649 if (signal_pending(current)) { 650 *err = sock_intr_errno(timeo); 651 return NULL; 652 } 653 } 654 655 return skb; 656 } 657 658 /* This function decrypts the input skb into either out_iov or in out_sg 659 * or in skb buffers itself. The input parameter 'zc' indicates if 660 * zero-copy mode needs to be tried or not. With zero-copy mode, either 661 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 662 * NULL, then the decryption happens inside skb buffers itself, i.e. 663 * zero-copy gets disabled and 'zc' is updated. 664 */ 665 666 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 667 struct iov_iter *out_iov, 668 struct scatterlist *out_sg, 669 int *chunk, bool *zc) 670 { 671 struct tls_context *tls_ctx = tls_get_ctx(sk); 672 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 673 struct strp_msg *rxm = strp_msg(skb); 674 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 675 struct aead_request *aead_req; 676 struct sk_buff *unused; 677 u8 *aad, *iv, *mem = NULL; 678 struct scatterlist *sgin = NULL; 679 struct scatterlist *sgout = NULL; 680 const int data_len = rxm->full_len - tls_ctx->rx.overhead_size; 681 682 if (*zc && (out_iov || out_sg)) { 683 if (out_iov) 684 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 685 else 686 n_sgout = sg_nents(out_sg); 687 } else { 688 n_sgout = 0; 689 *zc = false; 690 } 691 692 n_sgin = skb_cow_data(skb, 0, &unused); 693 if (n_sgin < 1) 694 return -EBADMSG; 695 696 /* Increment to accommodate AAD */ 697 n_sgin = n_sgin + 1; 698 699 nsg = n_sgin + n_sgout; 700 701 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 702 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 703 mem_size = mem_size + TLS_AAD_SPACE_SIZE; 704 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 705 706 /* Allocate a single block of memory which contains 707 * aead_req || sgin[] || sgout[] || aad || iv. 708 * This order achieves correct alignment for aead_req, sgin, sgout. 709 */ 710 mem = kmalloc(mem_size, sk->sk_allocation); 711 if (!mem) 712 return -ENOMEM; 713 714 /* Segment the allocated memory */ 715 aead_req = (struct aead_request *)mem; 716 sgin = (struct scatterlist *)(mem + aead_size); 717 sgout = sgin + n_sgin; 718 aad = (u8 *)(sgout + n_sgout); 719 iv = aad + TLS_AAD_SPACE_SIZE; 720 721 /* Prepare IV */ 722 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 723 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 724 tls_ctx->rx.iv_size); 725 if (err < 0) { 726 kfree(mem); 727 return err; 728 } 729 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 730 731 /* Prepare AAD */ 732 tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size, 733 tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size, 734 ctx->control); 735 736 /* Prepare sgin */ 737 sg_init_table(sgin, n_sgin); 738 sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE); 739 err = skb_to_sgvec(skb, &sgin[1], 740 rxm->offset + tls_ctx->rx.prepend_size, 741 rxm->full_len - tls_ctx->rx.prepend_size); 742 if (err < 0) { 743 kfree(mem); 744 return err; 745 } 746 747 if (n_sgout) { 748 if (out_iov) { 749 sg_init_table(sgout, n_sgout); 750 sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE); 751 752 *chunk = 0; 753 err = zerocopy_from_iter(sk, out_iov, data_len, &pages, 754 chunk, &sgout[1], 755 (n_sgout - 1), false); 756 if (err < 0) 757 goto fallback_to_reg_recv; 758 } else if (out_sg) { 759 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 760 } else { 761 goto fallback_to_reg_recv; 762 } 763 } else { 764 fallback_to_reg_recv: 765 sgout = sgin; 766 pages = 0; 767 *chunk = 0; 768 *zc = false; 769 } 770 771 /* Prepare and submit AEAD request */ 772 err = tls_do_decryption(sk, sgin, sgout, iv, data_len, aead_req); 773 774 /* Release the pages in case iov was mapped to pages */ 775 for (; pages > 0; pages--) 776 put_page(sg_page(&sgout[pages])); 777 778 kfree(mem); 779 return err; 780 } 781 782 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 783 struct iov_iter *dest, int *chunk, bool *zc) 784 { 785 struct tls_context *tls_ctx = tls_get_ctx(sk); 786 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 787 struct strp_msg *rxm = strp_msg(skb); 788 int err = 0; 789 790 #ifdef CONFIG_TLS_DEVICE 791 err = tls_device_decrypted(sk, skb); 792 if (err < 0) 793 return err; 794 #endif 795 if (!ctx->decrypted) { 796 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc); 797 if (err < 0) 798 return err; 799 } else { 800 *zc = false; 801 } 802 803 rxm->offset += tls_ctx->rx.prepend_size; 804 rxm->full_len -= tls_ctx->rx.overhead_size; 805 tls_advance_record_sn(sk, &tls_ctx->rx); 806 ctx->decrypted = true; 807 ctx->saved_data_ready(sk); 808 809 return err; 810 } 811 812 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 813 struct scatterlist *sgout) 814 { 815 bool zc = true; 816 int chunk; 817 818 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc); 819 } 820 821 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 822 unsigned int len) 823 { 824 struct tls_context *tls_ctx = tls_get_ctx(sk); 825 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 826 struct strp_msg *rxm = strp_msg(skb); 827 828 if (len < rxm->full_len) { 829 rxm->offset += len; 830 rxm->full_len -= len; 831 832 return false; 833 } 834 835 /* Finished with message */ 836 ctx->recv_pkt = NULL; 837 kfree_skb(skb); 838 __strp_unpause(&ctx->strp); 839 840 return true; 841 } 842 843 int tls_sw_recvmsg(struct sock *sk, 844 struct msghdr *msg, 845 size_t len, 846 int nonblock, 847 int flags, 848 int *addr_len) 849 { 850 struct tls_context *tls_ctx = tls_get_ctx(sk); 851 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 852 unsigned char control; 853 struct strp_msg *rxm; 854 struct sk_buff *skb; 855 ssize_t copied = 0; 856 bool cmsg = false; 857 int target, err = 0; 858 long timeo; 859 bool is_kvec = msg->msg_iter.type & ITER_KVEC; 860 861 flags |= nonblock; 862 863 if (unlikely(flags & MSG_ERRQUEUE)) 864 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 865 866 lock_sock(sk); 867 868 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 869 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 870 do { 871 bool zc = false; 872 int chunk = 0; 873 874 skb = tls_wait_data(sk, flags, timeo, &err); 875 if (!skb) 876 goto recv_end; 877 878 rxm = strp_msg(skb); 879 if (!cmsg) { 880 int cerr; 881 882 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 883 sizeof(ctx->control), &ctx->control); 884 cmsg = true; 885 control = ctx->control; 886 if (ctx->control != TLS_RECORD_TYPE_DATA) { 887 if (cerr || msg->msg_flags & MSG_CTRUNC) { 888 err = -EIO; 889 goto recv_end; 890 } 891 } 892 } else if (control != ctx->control) { 893 goto recv_end; 894 } 895 896 if (!ctx->decrypted) { 897 int to_copy = rxm->full_len - tls_ctx->rx.overhead_size; 898 899 if (!is_kvec && to_copy <= len && 900 likely(!(flags & MSG_PEEK))) 901 zc = true; 902 903 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 904 &chunk, &zc); 905 if (err < 0) { 906 tls_err_abort(sk, EBADMSG); 907 goto recv_end; 908 } 909 ctx->decrypted = true; 910 } 911 912 if (!zc) { 913 chunk = min_t(unsigned int, rxm->full_len, len); 914 err = skb_copy_datagram_msg(skb, rxm->offset, msg, 915 chunk); 916 if (err < 0) 917 goto recv_end; 918 } 919 920 copied += chunk; 921 len -= chunk; 922 if (likely(!(flags & MSG_PEEK))) { 923 u8 control = ctx->control; 924 925 if (tls_sw_advance_skb(sk, skb, chunk)) { 926 /* Return full control message to 927 * userspace before trying to parse 928 * another message type 929 */ 930 msg->msg_flags |= MSG_EOR; 931 if (control != TLS_RECORD_TYPE_DATA) 932 goto recv_end; 933 } 934 } 935 /* If we have a new message from strparser, continue now. */ 936 if (copied >= target && !ctx->recv_pkt) 937 break; 938 } while (len); 939 940 recv_end: 941 release_sock(sk); 942 return copied ? : err; 943 } 944 945 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 946 struct pipe_inode_info *pipe, 947 size_t len, unsigned int flags) 948 { 949 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 950 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 951 struct strp_msg *rxm = NULL; 952 struct sock *sk = sock->sk; 953 struct sk_buff *skb; 954 ssize_t copied = 0; 955 int err = 0; 956 long timeo; 957 int chunk; 958 bool zc = false; 959 960 lock_sock(sk); 961 962 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 963 964 skb = tls_wait_data(sk, flags, timeo, &err); 965 if (!skb) 966 goto splice_read_end; 967 968 /* splice does not support reading control messages */ 969 if (ctx->control != TLS_RECORD_TYPE_DATA) { 970 err = -ENOTSUPP; 971 goto splice_read_end; 972 } 973 974 if (!ctx->decrypted) { 975 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc); 976 977 if (err < 0) { 978 tls_err_abort(sk, EBADMSG); 979 goto splice_read_end; 980 } 981 ctx->decrypted = true; 982 } 983 rxm = strp_msg(skb); 984 985 chunk = min_t(unsigned int, rxm->full_len, len); 986 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 987 if (copied < 0) 988 goto splice_read_end; 989 990 if (likely(!(flags & MSG_PEEK))) 991 tls_sw_advance_skb(sk, skb, copied); 992 993 splice_read_end: 994 release_sock(sk); 995 return copied ? : err; 996 } 997 998 unsigned int tls_sw_poll(struct file *file, struct socket *sock, 999 struct poll_table_struct *wait) 1000 { 1001 unsigned int ret; 1002 struct sock *sk = sock->sk; 1003 struct tls_context *tls_ctx = tls_get_ctx(sk); 1004 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1005 1006 /* Grab POLLOUT and POLLHUP from the underlying socket */ 1007 ret = ctx->sk_poll(file, sock, wait); 1008 1009 /* Clear POLLIN bits, and set based on recv_pkt */ 1010 ret &= ~(POLLIN | POLLRDNORM); 1011 if (ctx->recv_pkt) 1012 ret |= POLLIN | POLLRDNORM; 1013 1014 return ret; 1015 } 1016 1017 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1018 { 1019 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1020 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1021 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1022 struct strp_msg *rxm = strp_msg(skb); 1023 size_t cipher_overhead; 1024 size_t data_len = 0; 1025 int ret; 1026 1027 /* Verify that we have a full TLS header, or wait for more data */ 1028 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) 1029 return 0; 1030 1031 /* Sanity-check size of on-stack buffer. */ 1032 if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) { 1033 ret = -EINVAL; 1034 goto read_failure; 1035 } 1036 1037 /* Linearize header to local buffer */ 1038 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); 1039 1040 if (ret < 0) 1041 goto read_failure; 1042 1043 ctx->control = header[0]; 1044 1045 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1046 1047 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; 1048 1049 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { 1050 ret = -EMSGSIZE; 1051 goto read_failure; 1052 } 1053 if (data_len < cipher_overhead) { 1054 ret = -EBADMSG; 1055 goto read_failure; 1056 } 1057 1058 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) || 1059 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) { 1060 ret = -EINVAL; 1061 goto read_failure; 1062 } 1063 1064 #ifdef CONFIG_TLS_DEVICE 1065 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 1066 *(u64*)tls_ctx->rx.rec_seq); 1067 #endif 1068 return data_len + TLS_HEADER_SIZE; 1069 1070 read_failure: 1071 tls_err_abort(strp->sk, ret); 1072 1073 return ret; 1074 } 1075 1076 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 1077 { 1078 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1079 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1080 1081 ctx->decrypted = false; 1082 1083 ctx->recv_pkt = skb; 1084 strp_pause(strp); 1085 1086 ctx->saved_data_ready(strp->sk); 1087 } 1088 1089 static void tls_data_ready(struct sock *sk) 1090 { 1091 struct tls_context *tls_ctx = tls_get_ctx(sk); 1092 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1093 1094 strp_data_ready(&ctx->strp); 1095 } 1096 1097 void tls_sw_free_resources_tx(struct sock *sk) 1098 { 1099 struct tls_context *tls_ctx = tls_get_ctx(sk); 1100 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1101 1102 crypto_free_aead(ctx->aead_send); 1103 tls_free_both_sg(sk); 1104 1105 kfree(ctx); 1106 } 1107 1108 void tls_sw_release_resources_rx(struct sock *sk) 1109 { 1110 struct tls_context *tls_ctx = tls_get_ctx(sk); 1111 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1112 1113 if (ctx->aead_recv) { 1114 kfree_skb(ctx->recv_pkt); 1115 ctx->recv_pkt = NULL; 1116 crypto_free_aead(ctx->aead_recv); 1117 strp_stop(&ctx->strp); 1118 write_lock_bh(&sk->sk_callback_lock); 1119 sk->sk_data_ready = ctx->saved_data_ready; 1120 write_unlock_bh(&sk->sk_callback_lock); 1121 release_sock(sk); 1122 strp_done(&ctx->strp); 1123 lock_sock(sk); 1124 } 1125 } 1126 1127 void tls_sw_free_resources_rx(struct sock *sk) 1128 { 1129 struct tls_context *tls_ctx = tls_get_ctx(sk); 1130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1131 1132 tls_sw_release_resources_rx(sk); 1133 1134 kfree(ctx); 1135 } 1136 1137 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 1138 { 1139 char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; 1140 struct tls_crypto_info *crypto_info; 1141 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 1142 struct tls_sw_context_tx *sw_ctx_tx = NULL; 1143 struct tls_sw_context_rx *sw_ctx_rx = NULL; 1144 struct cipher_context *cctx; 1145 struct crypto_aead **aead; 1146 struct strp_callbacks cb; 1147 u16 nonce_size, tag_size, iv_size, rec_seq_size; 1148 char *iv, *rec_seq; 1149 int rc = 0; 1150 1151 if (!ctx) { 1152 rc = -EINVAL; 1153 goto out; 1154 } 1155 1156 if (tx) { 1157 if (!ctx->priv_ctx_tx) { 1158 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 1159 if (!sw_ctx_tx) { 1160 rc = -ENOMEM; 1161 goto out; 1162 } 1163 ctx->priv_ctx_tx = sw_ctx_tx; 1164 } else { 1165 sw_ctx_tx = 1166 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 1167 } 1168 } else { 1169 if (!ctx->priv_ctx_rx) { 1170 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 1171 if (!sw_ctx_rx) { 1172 rc = -ENOMEM; 1173 goto out; 1174 } 1175 ctx->priv_ctx_rx = sw_ctx_rx; 1176 } else { 1177 sw_ctx_rx = 1178 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 1179 } 1180 } 1181 1182 if (tx) { 1183 crypto_init_wait(&sw_ctx_tx->async_wait); 1184 crypto_info = &ctx->crypto_send; 1185 cctx = &ctx->tx; 1186 aead = &sw_ctx_tx->aead_send; 1187 } else { 1188 crypto_init_wait(&sw_ctx_rx->async_wait); 1189 crypto_info = &ctx->crypto_recv; 1190 cctx = &ctx->rx; 1191 aead = &sw_ctx_rx->aead_recv; 1192 } 1193 1194 switch (crypto_info->cipher_type) { 1195 case TLS_CIPHER_AES_GCM_128: { 1196 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1197 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1198 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1199 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1200 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1201 rec_seq = 1202 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1203 gcm_128_info = 1204 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 1205 break; 1206 } 1207 default: 1208 rc = -EINVAL; 1209 goto free_priv; 1210 } 1211 1212 /* Sanity-check the IV size for stack allocations. */ 1213 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 1214 rc = -EINVAL; 1215 goto free_priv; 1216 } 1217 1218 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; 1219 cctx->tag_size = tag_size; 1220 cctx->overhead_size = cctx->prepend_size + cctx->tag_size; 1221 cctx->iv_size = iv_size; 1222 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1223 GFP_KERNEL); 1224 if (!cctx->iv) { 1225 rc = -ENOMEM; 1226 goto free_priv; 1227 } 1228 memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1229 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1230 cctx->rec_seq_size = rec_seq_size; 1231 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1232 if (!cctx->rec_seq) { 1233 rc = -ENOMEM; 1234 goto free_iv; 1235 } 1236 1237 if (sw_ctx_tx) { 1238 sg_init_table(sw_ctx_tx->sg_encrypted_data, 1239 ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data)); 1240 sg_init_table(sw_ctx_tx->sg_plaintext_data, 1241 ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data)); 1242 1243 sg_init_table(sw_ctx_tx->sg_aead_in, 2); 1244 sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space, 1245 sizeof(sw_ctx_tx->aad_space)); 1246 sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]); 1247 sg_chain(sw_ctx_tx->sg_aead_in, 2, 1248 sw_ctx_tx->sg_plaintext_data); 1249 sg_init_table(sw_ctx_tx->sg_aead_out, 2); 1250 sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space, 1251 sizeof(sw_ctx_tx->aad_space)); 1252 sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]); 1253 sg_chain(sw_ctx_tx->sg_aead_out, 2, 1254 sw_ctx_tx->sg_encrypted_data); 1255 } 1256 1257 if (!*aead) { 1258 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 1259 if (IS_ERR(*aead)) { 1260 rc = PTR_ERR(*aead); 1261 *aead = NULL; 1262 goto free_rec_seq; 1263 } 1264 } 1265 1266 ctx->push_pending_record = tls_sw_push_pending_record; 1267 1268 memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1269 1270 rc = crypto_aead_setkey(*aead, keyval, 1271 TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1272 if (rc) 1273 goto free_aead; 1274 1275 rc = crypto_aead_setauthsize(*aead, cctx->tag_size); 1276 if (rc) 1277 goto free_aead; 1278 1279 if (sw_ctx_rx) { 1280 /* Set up strparser */ 1281 memset(&cb, 0, sizeof(cb)); 1282 cb.rcv_msg = tls_queue; 1283 cb.parse_msg = tls_read_size; 1284 1285 strp_init(&sw_ctx_rx->strp, sk, &cb); 1286 1287 write_lock_bh(&sk->sk_callback_lock); 1288 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 1289 sk->sk_data_ready = tls_data_ready; 1290 write_unlock_bh(&sk->sk_callback_lock); 1291 1292 sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll; 1293 1294 strp_check_rcv(&sw_ctx_rx->strp); 1295 } 1296 1297 goto out; 1298 1299 free_aead: 1300 crypto_free_aead(*aead); 1301 *aead = NULL; 1302 free_rec_seq: 1303 kfree(cctx->rec_seq); 1304 cctx->rec_seq = NULL; 1305 free_iv: 1306 kfree(cctx->iv); 1307 cctx->iv = NULL; 1308 free_priv: 1309 if (tx) { 1310 kfree(ctx->priv_ctx_tx); 1311 ctx->priv_ctx_tx = NULL; 1312 } else { 1313 kfree(ctx->priv_ctx_rx); 1314 ctx->priv_ctx_rx = NULL; 1315 } 1316 out: 1317 return rc; 1318 } 1319