1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 pending = atomic_dec_return(&ctx->decrypt_pending); 210 211 if (!pending && READ_ONCE(ctx->async_notify)) 212 complete(&ctx->async_wait.completion); 213 } 214 215 static int tls_do_decryption(struct sock *sk, 216 struct sk_buff *skb, 217 struct scatterlist *sgin, 218 struct scatterlist *sgout, 219 char *iv_recv, 220 size_t data_len, 221 struct aead_request *aead_req, 222 bool async) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 struct tls_prot_info *prot = &tls_ctx->prot_info; 226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 227 int ret; 228 229 aead_request_set_tfm(aead_req, ctx->aead_recv); 230 aead_request_set_ad(aead_req, prot->aad_size); 231 aead_request_set_crypt(aead_req, sgin, sgout, 232 data_len + prot->tag_size, 233 (u8 *)iv_recv); 234 235 if (async) { 236 /* Using skb->sk to push sk through to crypto async callback 237 * handler. This allows propagating errors up to the socket 238 * if needed. It _must_ be cleared in the async handler 239 * before consume_skb is called. We _know_ skb->sk is NULL 240 * because it is a clone from strparser. 241 */ 242 skb->sk = sk; 243 aead_request_set_callback(aead_req, 244 CRYPTO_TFM_REQ_MAY_BACKLOG, 245 tls_decrypt_done, skb); 246 atomic_inc(&ctx->decrypt_pending); 247 } else { 248 aead_request_set_callback(aead_req, 249 CRYPTO_TFM_REQ_MAY_BACKLOG, 250 crypto_req_done, &ctx->async_wait); 251 } 252 253 ret = crypto_aead_decrypt(aead_req); 254 if (ret == -EINPROGRESS) { 255 if (async) 256 return ret; 257 258 ret = crypto_wait_req(ret, &ctx->async_wait); 259 } else if (ret == -EBADMSG) { 260 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 pending = atomic_dec_return(&ctx->encrypt_pending); 473 474 if (!pending && READ_ONCE(ctx->async_notify)) 475 complete(&ctx->async_wait.completion); 476 477 if (!ready) 478 return; 479 480 /* Schedule the transmission */ 481 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 482 schedule_delayed_work(&ctx->tx_work.work, 1); 483 } 484 485 static int tls_do_encryption(struct sock *sk, 486 struct tls_context *tls_ctx, 487 struct tls_sw_context_tx *ctx, 488 struct aead_request *aead_req, 489 size_t data_len, u32 start) 490 { 491 struct tls_prot_info *prot = &tls_ctx->prot_info; 492 struct tls_rec *rec = ctx->open_rec; 493 struct sk_msg *msg_en = &rec->msg_encrypted; 494 struct scatterlist *sge = sk_msg_elem(msg_en, start); 495 int rc, iv_offset = 0; 496 497 /* For CCM based ciphers, first byte of IV is a constant */ 498 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 499 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 500 iv_offset = 1; 501 } 502 503 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 504 prot->iv_size + prot->salt_size); 505 506 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 507 508 sge->offset += prot->prepend_size; 509 sge->length -= prot->prepend_size; 510 511 msg_en->sg.curr = start; 512 513 aead_request_set_tfm(aead_req, ctx->aead_send); 514 aead_request_set_ad(aead_req, prot->aad_size); 515 aead_request_set_crypt(aead_req, rec->sg_aead_in, 516 rec->sg_aead_out, 517 data_len, rec->iv_data); 518 519 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 520 tls_encrypt_done, sk); 521 522 /* Add the record in tx_list */ 523 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 524 atomic_inc(&ctx->encrypt_pending); 525 526 rc = crypto_aead_encrypt(aead_req); 527 if (!rc || rc != -EINPROGRESS) { 528 atomic_dec(&ctx->encrypt_pending); 529 sge->offset -= prot->prepend_size; 530 sge->length += prot->prepend_size; 531 } 532 533 if (!rc) { 534 WRITE_ONCE(rec->tx_ready, true); 535 } else if (rc != -EINPROGRESS) { 536 list_del(&rec->list); 537 return rc; 538 } 539 540 /* Unhook the record from context if encryption is not failure */ 541 ctx->open_rec = NULL; 542 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 543 return rc; 544 } 545 546 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 547 struct tls_rec **to, struct sk_msg *msg_opl, 548 struct sk_msg *msg_oen, u32 split_point, 549 u32 tx_overhead_size, u32 *orig_end) 550 { 551 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 552 struct scatterlist *sge, *osge, *nsge; 553 u32 orig_size = msg_opl->sg.size; 554 struct scatterlist tmp = { }; 555 struct sk_msg *msg_npl; 556 struct tls_rec *new; 557 int ret; 558 559 new = tls_get_rec(sk); 560 if (!new) 561 return -ENOMEM; 562 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 563 tx_overhead_size, 0); 564 if (ret < 0) { 565 tls_free_rec(sk, new); 566 return ret; 567 } 568 569 *orig_end = msg_opl->sg.end; 570 i = msg_opl->sg.start; 571 sge = sk_msg_elem(msg_opl, i); 572 while (apply && sge->length) { 573 if (sge->length > apply) { 574 u32 len = sge->length - apply; 575 576 get_page(sg_page(sge)); 577 sg_set_page(&tmp, sg_page(sge), len, 578 sge->offset + apply); 579 sge->length = apply; 580 bytes += apply; 581 apply = 0; 582 } else { 583 apply -= sge->length; 584 bytes += sge->length; 585 } 586 587 sk_msg_iter_var_next(i); 588 if (i == msg_opl->sg.end) 589 break; 590 sge = sk_msg_elem(msg_opl, i); 591 } 592 593 msg_opl->sg.end = i; 594 msg_opl->sg.curr = i; 595 msg_opl->sg.copybreak = 0; 596 msg_opl->apply_bytes = 0; 597 msg_opl->sg.size = bytes; 598 599 msg_npl = &new->msg_plaintext; 600 msg_npl->apply_bytes = apply; 601 msg_npl->sg.size = orig_size - bytes; 602 603 j = msg_npl->sg.start; 604 nsge = sk_msg_elem(msg_npl, j); 605 if (tmp.length) { 606 memcpy(nsge, &tmp, sizeof(*nsge)); 607 sk_msg_iter_var_next(j); 608 nsge = sk_msg_elem(msg_npl, j); 609 } 610 611 osge = sk_msg_elem(msg_opl, i); 612 while (osge->length) { 613 memcpy(nsge, osge, sizeof(*nsge)); 614 sg_unmark_end(nsge); 615 sk_msg_iter_var_next(i); 616 sk_msg_iter_var_next(j); 617 if (i == *orig_end) 618 break; 619 osge = sk_msg_elem(msg_opl, i); 620 nsge = sk_msg_elem(msg_npl, j); 621 } 622 623 msg_npl->sg.end = j; 624 msg_npl->sg.curr = j; 625 msg_npl->sg.copybreak = 0; 626 627 *to = new; 628 return 0; 629 } 630 631 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 632 struct tls_rec *from, u32 orig_end) 633 { 634 struct sk_msg *msg_npl = &from->msg_plaintext; 635 struct sk_msg *msg_opl = &to->msg_plaintext; 636 struct scatterlist *osge, *nsge; 637 u32 i, j; 638 639 i = msg_opl->sg.end; 640 sk_msg_iter_var_prev(i); 641 j = msg_npl->sg.start; 642 643 osge = sk_msg_elem(msg_opl, i); 644 nsge = sk_msg_elem(msg_npl, j); 645 646 if (sg_page(osge) == sg_page(nsge) && 647 osge->offset + osge->length == nsge->offset) { 648 osge->length += nsge->length; 649 put_page(sg_page(nsge)); 650 } 651 652 msg_opl->sg.end = orig_end; 653 msg_opl->sg.curr = orig_end; 654 msg_opl->sg.copybreak = 0; 655 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 656 msg_opl->sg.size += msg_npl->sg.size; 657 658 sk_msg_free(sk, &to->msg_encrypted); 659 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 660 661 kfree(from); 662 } 663 664 static int tls_push_record(struct sock *sk, int flags, 665 unsigned char record_type) 666 { 667 struct tls_context *tls_ctx = tls_get_ctx(sk); 668 struct tls_prot_info *prot = &tls_ctx->prot_info; 669 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 670 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 671 u32 i, split_point, uninitialized_var(orig_end); 672 struct sk_msg *msg_pl, *msg_en; 673 struct aead_request *req; 674 bool split; 675 int rc; 676 677 if (!rec) 678 return 0; 679 680 msg_pl = &rec->msg_plaintext; 681 msg_en = &rec->msg_encrypted; 682 683 split_point = msg_pl->apply_bytes; 684 split = split_point && split_point < msg_pl->sg.size; 685 if (split) { 686 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 687 split_point, prot->overhead_size, 688 &orig_end); 689 if (rc < 0) 690 return rc; 691 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 692 prot->overhead_size); 693 } 694 695 rec->tx_flags = flags; 696 req = &rec->aead_req; 697 698 i = msg_pl->sg.end; 699 sk_msg_iter_var_prev(i); 700 701 rec->content_type = record_type; 702 if (prot->version == TLS_1_3_VERSION) { 703 /* Add content type to end of message. No padding added */ 704 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 705 sg_mark_end(&rec->sg_content_type); 706 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 707 &rec->sg_content_type); 708 } else { 709 sg_mark_end(sk_msg_elem(msg_pl, i)); 710 } 711 712 i = msg_pl->sg.start; 713 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 714 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 715 716 i = msg_en->sg.end; 717 sk_msg_iter_var_prev(i); 718 sg_mark_end(sk_msg_elem(msg_en, i)); 719 720 i = msg_en->sg.start; 721 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 722 723 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 724 tls_ctx->tx.rec_seq, prot->rec_seq_size, 725 record_type, prot->version); 726 727 tls_fill_prepend(tls_ctx, 728 page_address(sg_page(&msg_en->sg.data[i])) + 729 msg_en->sg.data[i].offset, 730 msg_pl->sg.size + prot->tail_size, 731 record_type, prot->version); 732 733 tls_ctx->pending_open_record_frags = false; 734 735 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 736 msg_pl->sg.size + prot->tail_size, i); 737 if (rc < 0) { 738 if (rc != -EINPROGRESS) { 739 tls_err_abort(sk, EBADMSG); 740 if (split) { 741 tls_ctx->pending_open_record_frags = true; 742 tls_merge_open_record(sk, rec, tmp, orig_end); 743 } 744 } 745 ctx->async_capable = 1; 746 return rc; 747 } else if (split) { 748 msg_pl = &tmp->msg_plaintext; 749 msg_en = &tmp->msg_encrypted; 750 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 751 tls_ctx->pending_open_record_frags = true; 752 ctx->open_rec = tmp; 753 } 754 755 return tls_tx_records(sk, flags); 756 } 757 758 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 759 bool full_record, u8 record_type, 760 size_t *copied, int flags) 761 { 762 struct tls_context *tls_ctx = tls_get_ctx(sk); 763 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 764 struct sk_msg msg_redir = { }; 765 struct sk_psock *psock; 766 struct sock *sk_redir; 767 struct tls_rec *rec; 768 bool enospc, policy; 769 int err = 0, send; 770 u32 delta = 0; 771 772 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 773 psock = sk_psock_get(sk); 774 if (!psock || !policy) 775 return tls_push_record(sk, flags, record_type); 776 more_data: 777 enospc = sk_msg_full(msg); 778 if (psock->eval == __SK_NONE) { 779 delta = msg->sg.size; 780 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 781 if (delta < msg->sg.size) 782 delta -= msg->sg.size; 783 else 784 delta = 0; 785 } 786 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 787 !enospc && !full_record) { 788 err = -ENOSPC; 789 goto out_err; 790 } 791 msg->cork_bytes = 0; 792 send = msg->sg.size; 793 if (msg->apply_bytes && msg->apply_bytes < send) 794 send = msg->apply_bytes; 795 796 switch (psock->eval) { 797 case __SK_PASS: 798 err = tls_push_record(sk, flags, record_type); 799 if (err < 0) { 800 *copied -= sk_msg_free(sk, msg); 801 tls_free_open_rec(sk); 802 goto out_err; 803 } 804 break; 805 case __SK_REDIRECT: 806 sk_redir = psock->sk_redir; 807 memcpy(&msg_redir, msg, sizeof(*msg)); 808 if (msg->apply_bytes < send) 809 msg->apply_bytes = 0; 810 else 811 msg->apply_bytes -= send; 812 sk_msg_return_zero(sk, msg, send); 813 msg->sg.size -= send; 814 release_sock(sk); 815 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 816 lock_sock(sk); 817 if (err < 0) { 818 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 819 msg->sg.size = 0; 820 } 821 if (msg->sg.size == 0) 822 tls_free_open_rec(sk); 823 break; 824 case __SK_DROP: 825 default: 826 sk_msg_free_partial(sk, msg, send); 827 if (msg->apply_bytes < send) 828 msg->apply_bytes = 0; 829 else 830 msg->apply_bytes -= send; 831 if (msg->sg.size == 0) 832 tls_free_open_rec(sk); 833 *copied -= (send + delta); 834 err = -EACCES; 835 } 836 837 if (likely(!err)) { 838 bool reset_eval = !ctx->open_rec; 839 840 rec = ctx->open_rec; 841 if (rec) { 842 msg = &rec->msg_plaintext; 843 if (!msg->apply_bytes) 844 reset_eval = true; 845 } 846 if (reset_eval) { 847 psock->eval = __SK_NONE; 848 if (psock->sk_redir) { 849 sock_put(psock->sk_redir); 850 psock->sk_redir = NULL; 851 } 852 } 853 if (rec) 854 goto more_data; 855 } 856 out_err: 857 sk_psock_put(sk, psock); 858 return err; 859 } 860 861 static int tls_sw_push_pending_record(struct sock *sk, int flags) 862 { 863 struct tls_context *tls_ctx = tls_get_ctx(sk); 864 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 865 struct tls_rec *rec = ctx->open_rec; 866 struct sk_msg *msg_pl; 867 size_t copied; 868 869 if (!rec) 870 return 0; 871 872 msg_pl = &rec->msg_plaintext; 873 copied = msg_pl->sg.size; 874 if (!copied) 875 return 0; 876 877 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 878 &copied, flags); 879 } 880 881 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 882 { 883 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 884 struct tls_context *tls_ctx = tls_get_ctx(sk); 885 struct tls_prot_info *prot = &tls_ctx->prot_info; 886 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 887 bool async_capable = ctx->async_capable; 888 unsigned char record_type = TLS_RECORD_TYPE_DATA; 889 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 890 bool eor = !(msg->msg_flags & MSG_MORE); 891 size_t try_to_copy, copied = 0; 892 struct sk_msg *msg_pl, *msg_en; 893 struct tls_rec *rec; 894 int required_size; 895 int num_async = 0; 896 bool full_record; 897 int record_room; 898 int num_zc = 0; 899 int orig_size; 900 int ret = 0; 901 902 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 903 return -ENOTSUPP; 904 905 mutex_lock(&tls_ctx->tx_lock); 906 lock_sock(sk); 907 908 if (unlikely(msg->msg_controllen)) { 909 ret = tls_proccess_cmsg(sk, msg, &record_type); 910 if (ret) { 911 if (ret == -EINPROGRESS) 912 num_async++; 913 else if (ret != -EAGAIN) 914 goto send_end; 915 } 916 } 917 918 while (msg_data_left(msg)) { 919 if (sk->sk_err) { 920 ret = -sk->sk_err; 921 goto send_end; 922 } 923 924 if (ctx->open_rec) 925 rec = ctx->open_rec; 926 else 927 rec = ctx->open_rec = tls_get_rec(sk); 928 if (!rec) { 929 ret = -ENOMEM; 930 goto send_end; 931 } 932 933 msg_pl = &rec->msg_plaintext; 934 msg_en = &rec->msg_encrypted; 935 936 orig_size = msg_pl->sg.size; 937 full_record = false; 938 try_to_copy = msg_data_left(msg); 939 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 940 if (try_to_copy >= record_room) { 941 try_to_copy = record_room; 942 full_record = true; 943 } 944 945 required_size = msg_pl->sg.size + try_to_copy + 946 prot->overhead_size; 947 948 if (!sk_stream_memory_free(sk)) 949 goto wait_for_sndbuf; 950 951 alloc_encrypted: 952 ret = tls_alloc_encrypted_msg(sk, required_size); 953 if (ret) { 954 if (ret != -ENOSPC) 955 goto wait_for_memory; 956 957 /* Adjust try_to_copy according to the amount that was 958 * actually allocated. The difference is due 959 * to max sg elements limit 960 */ 961 try_to_copy -= required_size - msg_en->sg.size; 962 full_record = true; 963 } 964 965 if (!is_kvec && (full_record || eor) && !async_capable) { 966 u32 first = msg_pl->sg.end; 967 968 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 969 msg_pl, try_to_copy); 970 if (ret) 971 goto fallback_to_reg_send; 972 973 rec->inplace_crypto = 0; 974 975 num_zc++; 976 copied += try_to_copy; 977 978 sk_msg_sg_copy_set(msg_pl, first); 979 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 980 record_type, &copied, 981 msg->msg_flags); 982 if (ret) { 983 if (ret == -EINPROGRESS) 984 num_async++; 985 else if (ret == -ENOMEM) 986 goto wait_for_memory; 987 else if (ret == -ENOSPC) 988 goto rollback_iter; 989 else if (ret != -EAGAIN) 990 goto send_end; 991 } 992 continue; 993 rollback_iter: 994 copied -= try_to_copy; 995 sk_msg_sg_copy_clear(msg_pl, first); 996 iov_iter_revert(&msg->msg_iter, 997 msg_pl->sg.size - orig_size); 998 fallback_to_reg_send: 999 sk_msg_trim(sk, msg_pl, orig_size); 1000 } 1001 1002 required_size = msg_pl->sg.size + try_to_copy; 1003 1004 ret = tls_clone_plaintext_msg(sk, required_size); 1005 if (ret) { 1006 if (ret != -ENOSPC) 1007 goto send_end; 1008 1009 /* Adjust try_to_copy according to the amount that was 1010 * actually allocated. The difference is due 1011 * to max sg elements limit 1012 */ 1013 try_to_copy -= required_size - msg_pl->sg.size; 1014 full_record = true; 1015 sk_msg_trim(sk, msg_en, 1016 msg_pl->sg.size + prot->overhead_size); 1017 } 1018 1019 if (try_to_copy) { 1020 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1021 msg_pl, try_to_copy); 1022 if (ret < 0) 1023 goto trim_sgl; 1024 } 1025 1026 /* Open records defined only if successfully copied, otherwise 1027 * we would trim the sg but not reset the open record frags. 1028 */ 1029 tls_ctx->pending_open_record_frags = true; 1030 copied += try_to_copy; 1031 if (full_record || eor) { 1032 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1033 record_type, &copied, 1034 msg->msg_flags); 1035 if (ret) { 1036 if (ret == -EINPROGRESS) 1037 num_async++; 1038 else if (ret == -ENOMEM) 1039 goto wait_for_memory; 1040 else if (ret != -EAGAIN) { 1041 if (ret == -ENOSPC) 1042 ret = 0; 1043 goto send_end; 1044 } 1045 } 1046 } 1047 1048 continue; 1049 1050 wait_for_sndbuf: 1051 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1052 wait_for_memory: 1053 ret = sk_stream_wait_memory(sk, &timeo); 1054 if (ret) { 1055 trim_sgl: 1056 tls_trim_both_msgs(sk, orig_size); 1057 goto send_end; 1058 } 1059 1060 if (msg_en->sg.size < required_size) 1061 goto alloc_encrypted; 1062 } 1063 1064 if (!num_async) { 1065 goto send_end; 1066 } else if (num_zc) { 1067 /* Wait for pending encryptions to get completed */ 1068 smp_store_mb(ctx->async_notify, true); 1069 1070 if (atomic_read(&ctx->encrypt_pending)) 1071 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1072 else 1073 reinit_completion(&ctx->async_wait.completion); 1074 1075 WRITE_ONCE(ctx->async_notify, false); 1076 1077 if (ctx->async_wait.err) { 1078 ret = ctx->async_wait.err; 1079 copied = 0; 1080 } 1081 } 1082 1083 /* Transmit if any encryptions have completed */ 1084 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1085 cancel_delayed_work(&ctx->tx_work.work); 1086 tls_tx_records(sk, msg->msg_flags); 1087 } 1088 1089 send_end: 1090 ret = sk_stream_error(sk, msg->msg_flags, ret); 1091 1092 release_sock(sk); 1093 mutex_unlock(&tls_ctx->tx_lock); 1094 return copied ? copied : ret; 1095 } 1096 1097 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1098 int offset, size_t size, int flags) 1099 { 1100 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1101 struct tls_context *tls_ctx = tls_get_ctx(sk); 1102 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1103 struct tls_prot_info *prot = &tls_ctx->prot_info; 1104 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1105 struct sk_msg *msg_pl; 1106 struct tls_rec *rec; 1107 int num_async = 0; 1108 size_t copied = 0; 1109 bool full_record; 1110 int record_room; 1111 int ret = 0; 1112 bool eor; 1113 1114 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1115 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1116 1117 /* Call the sk_stream functions to manage the sndbuf mem. */ 1118 while (size > 0) { 1119 size_t copy, required_size; 1120 1121 if (sk->sk_err) { 1122 ret = -sk->sk_err; 1123 goto sendpage_end; 1124 } 1125 1126 if (ctx->open_rec) 1127 rec = ctx->open_rec; 1128 else 1129 rec = ctx->open_rec = tls_get_rec(sk); 1130 if (!rec) { 1131 ret = -ENOMEM; 1132 goto sendpage_end; 1133 } 1134 1135 msg_pl = &rec->msg_plaintext; 1136 1137 full_record = false; 1138 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1139 copy = size; 1140 if (copy >= record_room) { 1141 copy = record_room; 1142 full_record = true; 1143 } 1144 1145 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1146 1147 if (!sk_stream_memory_free(sk)) 1148 goto wait_for_sndbuf; 1149 alloc_payload: 1150 ret = tls_alloc_encrypted_msg(sk, required_size); 1151 if (ret) { 1152 if (ret != -ENOSPC) 1153 goto wait_for_memory; 1154 1155 /* Adjust copy according to the amount that was 1156 * actually allocated. The difference is due 1157 * to max sg elements limit 1158 */ 1159 copy -= required_size - msg_pl->sg.size; 1160 full_record = true; 1161 } 1162 1163 sk_msg_page_add(msg_pl, page, copy, offset); 1164 sk_mem_charge(sk, copy); 1165 1166 offset += copy; 1167 size -= copy; 1168 copied += copy; 1169 1170 tls_ctx->pending_open_record_frags = true; 1171 if (full_record || eor || sk_msg_full(msg_pl)) { 1172 rec->inplace_crypto = 0; 1173 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1174 record_type, &copied, flags); 1175 if (ret) { 1176 if (ret == -EINPROGRESS) 1177 num_async++; 1178 else if (ret == -ENOMEM) 1179 goto wait_for_memory; 1180 else if (ret != -EAGAIN) { 1181 if (ret == -ENOSPC) 1182 ret = 0; 1183 goto sendpage_end; 1184 } 1185 } 1186 } 1187 continue; 1188 wait_for_sndbuf: 1189 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1190 wait_for_memory: 1191 ret = sk_stream_wait_memory(sk, &timeo); 1192 if (ret) { 1193 tls_trim_both_msgs(sk, msg_pl->sg.size); 1194 goto sendpage_end; 1195 } 1196 1197 goto alloc_payload; 1198 } 1199 1200 if (num_async) { 1201 /* Transmit if any encryptions have completed */ 1202 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1203 cancel_delayed_work(&ctx->tx_work.work); 1204 tls_tx_records(sk, flags); 1205 } 1206 } 1207 sendpage_end: 1208 ret = sk_stream_error(sk, flags, ret); 1209 return copied ? copied : ret; 1210 } 1211 1212 int tls_sw_sendpage(struct sock *sk, struct page *page, 1213 int offset, size_t size, int flags) 1214 { 1215 struct tls_context *tls_ctx = tls_get_ctx(sk); 1216 int ret; 1217 1218 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1219 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1220 return -ENOTSUPP; 1221 1222 mutex_lock(&tls_ctx->tx_lock); 1223 lock_sock(sk); 1224 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1225 release_sock(sk); 1226 mutex_unlock(&tls_ctx->tx_lock); 1227 return ret; 1228 } 1229 1230 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1231 int flags, long timeo, int *err) 1232 { 1233 struct tls_context *tls_ctx = tls_get_ctx(sk); 1234 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1235 struct sk_buff *skb; 1236 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1237 1238 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1239 if (sk->sk_err) { 1240 *err = sock_error(sk); 1241 return NULL; 1242 } 1243 1244 if (sk->sk_shutdown & RCV_SHUTDOWN) 1245 return NULL; 1246 1247 if (sock_flag(sk, SOCK_DONE)) 1248 return NULL; 1249 1250 if ((flags & MSG_DONTWAIT) || !timeo) { 1251 *err = -EAGAIN; 1252 return NULL; 1253 } 1254 1255 add_wait_queue(sk_sleep(sk), &wait); 1256 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1257 sk_wait_event(sk, &timeo, 1258 ctx->recv_pkt != skb || 1259 !sk_psock_queue_empty(psock), 1260 &wait); 1261 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1262 remove_wait_queue(sk_sleep(sk), &wait); 1263 1264 /* Handle signals */ 1265 if (signal_pending(current)) { 1266 *err = sock_intr_errno(timeo); 1267 return NULL; 1268 } 1269 } 1270 1271 return skb; 1272 } 1273 1274 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1275 int length, int *pages_used, 1276 unsigned int *size_used, 1277 struct scatterlist *to, 1278 int to_max_pages) 1279 { 1280 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1281 struct page *pages[MAX_SKB_FRAGS]; 1282 unsigned int size = *size_used; 1283 ssize_t copied, use; 1284 size_t offset; 1285 1286 while (length > 0) { 1287 i = 0; 1288 maxpages = to_max_pages - num_elem; 1289 if (maxpages == 0) { 1290 rc = -EFAULT; 1291 goto out; 1292 } 1293 copied = iov_iter_get_pages(from, pages, 1294 length, 1295 maxpages, &offset); 1296 if (copied <= 0) { 1297 rc = -EFAULT; 1298 goto out; 1299 } 1300 1301 iov_iter_advance(from, copied); 1302 1303 length -= copied; 1304 size += copied; 1305 while (copied) { 1306 use = min_t(int, copied, PAGE_SIZE - offset); 1307 1308 sg_set_page(&to[num_elem], 1309 pages[i], use, offset); 1310 sg_unmark_end(&to[num_elem]); 1311 /* We do not uncharge memory from this API */ 1312 1313 offset = 0; 1314 copied -= use; 1315 1316 i++; 1317 num_elem++; 1318 } 1319 } 1320 /* Mark the end in the last sg entry if newly added */ 1321 if (num_elem > *pages_used) 1322 sg_mark_end(&to[num_elem - 1]); 1323 out: 1324 if (rc) 1325 iov_iter_revert(from, size - *size_used); 1326 *size_used = size; 1327 *pages_used = num_elem; 1328 1329 return rc; 1330 } 1331 1332 /* This function decrypts the input skb into either out_iov or in out_sg 1333 * or in skb buffers itself. The input parameter 'zc' indicates if 1334 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1335 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1336 * NULL, then the decryption happens inside skb buffers itself, i.e. 1337 * zero-copy gets disabled and 'zc' is updated. 1338 */ 1339 1340 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1341 struct iov_iter *out_iov, 1342 struct scatterlist *out_sg, 1343 int *chunk, bool *zc, bool async) 1344 { 1345 struct tls_context *tls_ctx = tls_get_ctx(sk); 1346 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1347 struct tls_prot_info *prot = &tls_ctx->prot_info; 1348 struct strp_msg *rxm = strp_msg(skb); 1349 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1350 struct aead_request *aead_req; 1351 struct sk_buff *unused; 1352 u8 *aad, *iv, *mem = NULL; 1353 struct scatterlist *sgin = NULL; 1354 struct scatterlist *sgout = NULL; 1355 const int data_len = rxm->full_len - prot->overhead_size + 1356 prot->tail_size; 1357 int iv_offset = 0; 1358 1359 if (*zc && (out_iov || out_sg)) { 1360 if (out_iov) 1361 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1362 else 1363 n_sgout = sg_nents(out_sg); 1364 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1365 rxm->full_len - prot->prepend_size); 1366 } else { 1367 n_sgout = 0; 1368 *zc = false; 1369 n_sgin = skb_cow_data(skb, 0, &unused); 1370 } 1371 1372 if (n_sgin < 1) 1373 return -EBADMSG; 1374 1375 /* Increment to accommodate AAD */ 1376 n_sgin = n_sgin + 1; 1377 1378 nsg = n_sgin + n_sgout; 1379 1380 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1381 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1382 mem_size = mem_size + prot->aad_size; 1383 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1384 1385 /* Allocate a single block of memory which contains 1386 * aead_req || sgin[] || sgout[] || aad || iv. 1387 * This order achieves correct alignment for aead_req, sgin, sgout. 1388 */ 1389 mem = kmalloc(mem_size, sk->sk_allocation); 1390 if (!mem) 1391 return -ENOMEM; 1392 1393 /* Segment the allocated memory */ 1394 aead_req = (struct aead_request *)mem; 1395 sgin = (struct scatterlist *)(mem + aead_size); 1396 sgout = sgin + n_sgin; 1397 aad = (u8 *)(sgout + n_sgout); 1398 iv = aad + prot->aad_size; 1399 1400 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1401 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1402 iv[0] = 2; 1403 iv_offset = 1; 1404 } 1405 1406 /* Prepare IV */ 1407 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1408 iv + iv_offset + prot->salt_size, 1409 prot->iv_size); 1410 if (err < 0) { 1411 kfree(mem); 1412 return err; 1413 } 1414 if (prot->version == TLS_1_3_VERSION) 1415 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1416 crypto_aead_ivsize(ctx->aead_recv)); 1417 else 1418 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1419 1420 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1421 1422 /* Prepare AAD */ 1423 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1424 prot->tail_size, 1425 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1426 ctx->control, prot->version); 1427 1428 /* Prepare sgin */ 1429 sg_init_table(sgin, n_sgin); 1430 sg_set_buf(&sgin[0], aad, prot->aad_size); 1431 err = skb_to_sgvec(skb, &sgin[1], 1432 rxm->offset + prot->prepend_size, 1433 rxm->full_len - prot->prepend_size); 1434 if (err < 0) { 1435 kfree(mem); 1436 return err; 1437 } 1438 1439 if (n_sgout) { 1440 if (out_iov) { 1441 sg_init_table(sgout, n_sgout); 1442 sg_set_buf(&sgout[0], aad, prot->aad_size); 1443 1444 *chunk = 0; 1445 err = tls_setup_from_iter(sk, out_iov, data_len, 1446 &pages, chunk, &sgout[1], 1447 (n_sgout - 1)); 1448 if (err < 0) 1449 goto fallback_to_reg_recv; 1450 } else if (out_sg) { 1451 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1452 } else { 1453 goto fallback_to_reg_recv; 1454 } 1455 } else { 1456 fallback_to_reg_recv: 1457 sgout = sgin; 1458 pages = 0; 1459 *chunk = data_len; 1460 *zc = false; 1461 } 1462 1463 /* Prepare and submit AEAD request */ 1464 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1465 data_len, aead_req, async); 1466 if (err == -EINPROGRESS) 1467 return err; 1468 1469 /* Release the pages in case iov was mapped to pages */ 1470 for (; pages > 0; pages--) 1471 put_page(sg_page(&sgout[pages])); 1472 1473 kfree(mem); 1474 return err; 1475 } 1476 1477 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1478 struct iov_iter *dest, int *chunk, bool *zc, 1479 bool async) 1480 { 1481 struct tls_context *tls_ctx = tls_get_ctx(sk); 1482 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1483 struct tls_prot_info *prot = &tls_ctx->prot_info; 1484 struct strp_msg *rxm = strp_msg(skb); 1485 int pad, err = 0; 1486 1487 if (!ctx->decrypted) { 1488 if (tls_ctx->rx_conf == TLS_HW) { 1489 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1490 if (err < 0) 1491 return err; 1492 } 1493 1494 /* Still not decrypted after tls_device */ 1495 if (!ctx->decrypted) { 1496 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1497 async); 1498 if (err < 0) { 1499 if (err == -EINPROGRESS) 1500 tls_advance_record_sn(sk, prot, 1501 &tls_ctx->rx); 1502 1503 return err; 1504 } 1505 } else { 1506 *zc = false; 1507 } 1508 1509 pad = padding_length(ctx, prot, skb); 1510 if (pad < 0) 1511 return pad; 1512 1513 rxm->full_len -= pad; 1514 rxm->offset += prot->prepend_size; 1515 rxm->full_len -= prot->overhead_size; 1516 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1517 ctx->decrypted = 1; 1518 ctx->saved_data_ready(sk); 1519 } else { 1520 *zc = false; 1521 } 1522 1523 return err; 1524 } 1525 1526 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1527 struct scatterlist *sgout) 1528 { 1529 bool zc = true; 1530 int chunk; 1531 1532 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1533 } 1534 1535 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1536 unsigned int len) 1537 { 1538 struct tls_context *tls_ctx = tls_get_ctx(sk); 1539 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1540 1541 if (skb) { 1542 struct strp_msg *rxm = strp_msg(skb); 1543 1544 if (len < rxm->full_len) { 1545 rxm->offset += len; 1546 rxm->full_len -= len; 1547 return false; 1548 } 1549 consume_skb(skb); 1550 } 1551 1552 /* Finished with message */ 1553 ctx->recv_pkt = NULL; 1554 __strp_unpause(&ctx->strp); 1555 1556 return true; 1557 } 1558 1559 /* This function traverses the rx_list in tls receive context to copies the 1560 * decrypted records into the buffer provided by caller zero copy is not 1561 * true. Further, the records are removed from the rx_list if it is not a peek 1562 * case and the record has been consumed completely. 1563 */ 1564 static int process_rx_list(struct tls_sw_context_rx *ctx, 1565 struct msghdr *msg, 1566 u8 *control, 1567 bool *cmsg, 1568 size_t skip, 1569 size_t len, 1570 bool zc, 1571 bool is_peek) 1572 { 1573 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1574 u8 ctrl = *control; 1575 u8 msgc = *cmsg; 1576 struct tls_msg *tlm; 1577 ssize_t copied = 0; 1578 1579 /* Set the record type in 'control' if caller didn't pass it */ 1580 if (!ctrl && skb) { 1581 tlm = tls_msg(skb); 1582 ctrl = tlm->control; 1583 } 1584 1585 while (skip && skb) { 1586 struct strp_msg *rxm = strp_msg(skb); 1587 tlm = tls_msg(skb); 1588 1589 /* Cannot process a record of different type */ 1590 if (ctrl != tlm->control) 1591 return 0; 1592 1593 if (skip < rxm->full_len) 1594 break; 1595 1596 skip = skip - rxm->full_len; 1597 skb = skb_peek_next(skb, &ctx->rx_list); 1598 } 1599 1600 while (len && skb) { 1601 struct sk_buff *next_skb; 1602 struct strp_msg *rxm = strp_msg(skb); 1603 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1604 1605 tlm = tls_msg(skb); 1606 1607 /* Cannot process a record of different type */ 1608 if (ctrl != tlm->control) 1609 return 0; 1610 1611 /* Set record type if not already done. For a non-data record, 1612 * do not proceed if record type could not be copied. 1613 */ 1614 if (!msgc) { 1615 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1616 sizeof(ctrl), &ctrl); 1617 msgc = true; 1618 if (ctrl != TLS_RECORD_TYPE_DATA) { 1619 if (cerr || msg->msg_flags & MSG_CTRUNC) 1620 return -EIO; 1621 1622 *cmsg = msgc; 1623 } 1624 } 1625 1626 if (!zc || (rxm->full_len - skip) > len) { 1627 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1628 msg, chunk); 1629 if (err < 0) 1630 return err; 1631 } 1632 1633 len = len - chunk; 1634 copied = copied + chunk; 1635 1636 /* Consume the data from record if it is non-peek case*/ 1637 if (!is_peek) { 1638 rxm->offset = rxm->offset + chunk; 1639 rxm->full_len = rxm->full_len - chunk; 1640 1641 /* Return if there is unconsumed data in the record */ 1642 if (rxm->full_len - skip) 1643 break; 1644 } 1645 1646 /* The remaining skip-bytes must lie in 1st record in rx_list. 1647 * So from the 2nd record, 'skip' should be 0. 1648 */ 1649 skip = 0; 1650 1651 if (msg) 1652 msg->msg_flags |= MSG_EOR; 1653 1654 next_skb = skb_peek_next(skb, &ctx->rx_list); 1655 1656 if (!is_peek) { 1657 skb_unlink(skb, &ctx->rx_list); 1658 consume_skb(skb); 1659 } 1660 1661 skb = next_skb; 1662 } 1663 1664 *control = ctrl; 1665 return copied; 1666 } 1667 1668 int tls_sw_recvmsg(struct sock *sk, 1669 struct msghdr *msg, 1670 size_t len, 1671 int nonblock, 1672 int flags, 1673 int *addr_len) 1674 { 1675 struct tls_context *tls_ctx = tls_get_ctx(sk); 1676 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1677 struct tls_prot_info *prot = &tls_ctx->prot_info; 1678 struct sk_psock *psock; 1679 unsigned char control = 0; 1680 ssize_t decrypted = 0; 1681 struct strp_msg *rxm; 1682 struct tls_msg *tlm; 1683 struct sk_buff *skb; 1684 ssize_t copied = 0; 1685 bool cmsg = false; 1686 int target, err = 0; 1687 long timeo; 1688 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1689 bool is_peek = flags & MSG_PEEK; 1690 int num_async = 0; 1691 1692 flags |= nonblock; 1693 1694 if (unlikely(flags & MSG_ERRQUEUE)) 1695 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1696 1697 psock = sk_psock_get(sk); 1698 lock_sock(sk); 1699 1700 /* Process pending decrypted records. It must be non-zero-copy */ 1701 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1702 is_peek); 1703 if (err < 0) { 1704 tls_err_abort(sk, err); 1705 goto end; 1706 } else { 1707 copied = err; 1708 } 1709 1710 if (len <= copied) 1711 goto recv_end; 1712 1713 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1714 len = len - copied; 1715 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1716 1717 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1718 bool retain_skb = false; 1719 bool zc = false; 1720 int to_decrypt; 1721 int chunk = 0; 1722 bool async_capable; 1723 bool async = false; 1724 1725 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1726 if (!skb) { 1727 if (psock) { 1728 int ret = __tcp_bpf_recvmsg(sk, psock, 1729 msg, len, flags); 1730 1731 if (ret > 0) { 1732 decrypted += ret; 1733 len -= ret; 1734 continue; 1735 } 1736 } 1737 goto recv_end; 1738 } else { 1739 tlm = tls_msg(skb); 1740 if (prot->version == TLS_1_3_VERSION) 1741 tlm->control = 0; 1742 else 1743 tlm->control = ctx->control; 1744 } 1745 1746 rxm = strp_msg(skb); 1747 1748 to_decrypt = rxm->full_len - prot->overhead_size; 1749 1750 if (to_decrypt <= len && !is_kvec && !is_peek && 1751 ctx->control == TLS_RECORD_TYPE_DATA && 1752 prot->version != TLS_1_3_VERSION) 1753 zc = true; 1754 1755 /* Do not use async mode if record is non-data */ 1756 if (ctx->control == TLS_RECORD_TYPE_DATA) 1757 async_capable = ctx->async_capable; 1758 else 1759 async_capable = false; 1760 1761 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1762 &chunk, &zc, async_capable); 1763 if (err < 0 && err != -EINPROGRESS) { 1764 tls_err_abort(sk, EBADMSG); 1765 goto recv_end; 1766 } 1767 1768 if (err == -EINPROGRESS) { 1769 async = true; 1770 num_async++; 1771 } else if (prot->version == TLS_1_3_VERSION) { 1772 tlm->control = ctx->control; 1773 } 1774 1775 /* If the type of records being processed is not known yet, 1776 * set it to record type just dequeued. If it is already known, 1777 * but does not match the record type just dequeued, go to end. 1778 * We always get record type here since for tls1.2, record type 1779 * is known just after record is dequeued from stream parser. 1780 * For tls1.3, we disable async. 1781 */ 1782 1783 if (!control) 1784 control = tlm->control; 1785 else if (control != tlm->control) 1786 goto recv_end; 1787 1788 if (!cmsg) { 1789 int cerr; 1790 1791 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1792 sizeof(control), &control); 1793 cmsg = true; 1794 if (control != TLS_RECORD_TYPE_DATA) { 1795 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1796 err = -EIO; 1797 goto recv_end; 1798 } 1799 } 1800 } 1801 1802 if (async) 1803 goto pick_next_record; 1804 1805 if (!zc) { 1806 if (rxm->full_len > len) { 1807 retain_skb = true; 1808 chunk = len; 1809 } else { 1810 chunk = rxm->full_len; 1811 } 1812 1813 err = skb_copy_datagram_msg(skb, rxm->offset, 1814 msg, chunk); 1815 if (err < 0) 1816 goto recv_end; 1817 1818 if (!is_peek) { 1819 rxm->offset = rxm->offset + chunk; 1820 rxm->full_len = rxm->full_len - chunk; 1821 } 1822 } 1823 1824 pick_next_record: 1825 if (chunk > len) 1826 chunk = len; 1827 1828 decrypted += chunk; 1829 len -= chunk; 1830 1831 /* For async or peek case, queue the current skb */ 1832 if (async || is_peek || retain_skb) { 1833 skb_queue_tail(&ctx->rx_list, skb); 1834 skb = NULL; 1835 } 1836 1837 if (tls_sw_advance_skb(sk, skb, chunk)) { 1838 /* Return full control message to 1839 * userspace before trying to parse 1840 * another message type 1841 */ 1842 msg->msg_flags |= MSG_EOR; 1843 if (ctx->control != TLS_RECORD_TYPE_DATA) 1844 goto recv_end; 1845 } else { 1846 break; 1847 } 1848 } 1849 1850 recv_end: 1851 if (num_async) { 1852 /* Wait for all previously submitted records to be decrypted */ 1853 smp_store_mb(ctx->async_notify, true); 1854 if (atomic_read(&ctx->decrypt_pending)) { 1855 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1856 if (err) { 1857 /* one of async decrypt failed */ 1858 tls_err_abort(sk, err); 1859 copied = 0; 1860 decrypted = 0; 1861 goto end; 1862 } 1863 } else { 1864 reinit_completion(&ctx->async_wait.completion); 1865 } 1866 WRITE_ONCE(ctx->async_notify, false); 1867 1868 /* Drain records from the rx_list & copy if required */ 1869 if (is_peek || is_kvec) 1870 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1871 decrypted, false, is_peek); 1872 else 1873 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1874 decrypted, true, is_peek); 1875 if (err < 0) { 1876 tls_err_abort(sk, err); 1877 copied = 0; 1878 goto end; 1879 } 1880 } 1881 1882 copied += decrypted; 1883 1884 end: 1885 release_sock(sk); 1886 if (psock) 1887 sk_psock_put(sk, psock); 1888 return copied ? : err; 1889 } 1890 1891 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1892 struct pipe_inode_info *pipe, 1893 size_t len, unsigned int flags) 1894 { 1895 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1896 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1897 struct strp_msg *rxm = NULL; 1898 struct sock *sk = sock->sk; 1899 struct sk_buff *skb; 1900 ssize_t copied = 0; 1901 int err = 0; 1902 long timeo; 1903 int chunk; 1904 bool zc = false; 1905 1906 lock_sock(sk); 1907 1908 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1909 1910 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1911 if (!skb) 1912 goto splice_read_end; 1913 1914 if (!ctx->decrypted) { 1915 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1916 1917 /* splice does not support reading control messages */ 1918 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1919 err = -ENOTSUPP; 1920 goto splice_read_end; 1921 } 1922 1923 if (err < 0) { 1924 tls_err_abort(sk, EBADMSG); 1925 goto splice_read_end; 1926 } 1927 ctx->decrypted = 1; 1928 } 1929 rxm = strp_msg(skb); 1930 1931 chunk = min_t(unsigned int, rxm->full_len, len); 1932 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1933 if (copied < 0) 1934 goto splice_read_end; 1935 1936 if (likely(!(flags & MSG_PEEK))) 1937 tls_sw_advance_skb(sk, skb, copied); 1938 1939 splice_read_end: 1940 release_sock(sk); 1941 return copied ? : err; 1942 } 1943 1944 bool tls_sw_stream_read(const struct sock *sk) 1945 { 1946 struct tls_context *tls_ctx = tls_get_ctx(sk); 1947 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1948 bool ingress_empty = true; 1949 struct sk_psock *psock; 1950 1951 rcu_read_lock(); 1952 psock = sk_psock(sk); 1953 if (psock) 1954 ingress_empty = list_empty(&psock->ingress_msg); 1955 rcu_read_unlock(); 1956 1957 return !ingress_empty || ctx->recv_pkt || 1958 !skb_queue_empty(&ctx->rx_list); 1959 } 1960 1961 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1962 { 1963 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1964 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1965 struct tls_prot_info *prot = &tls_ctx->prot_info; 1966 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1967 struct strp_msg *rxm = strp_msg(skb); 1968 size_t cipher_overhead; 1969 size_t data_len = 0; 1970 int ret; 1971 1972 /* Verify that we have a full TLS header, or wait for more data */ 1973 if (rxm->offset + prot->prepend_size > skb->len) 1974 return 0; 1975 1976 /* Sanity-check size of on-stack buffer. */ 1977 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1978 ret = -EINVAL; 1979 goto read_failure; 1980 } 1981 1982 /* Linearize header to local buffer */ 1983 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1984 1985 if (ret < 0) 1986 goto read_failure; 1987 1988 ctx->control = header[0]; 1989 1990 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1991 1992 cipher_overhead = prot->tag_size; 1993 if (prot->version != TLS_1_3_VERSION) 1994 cipher_overhead += prot->iv_size; 1995 1996 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 1997 prot->tail_size) { 1998 ret = -EMSGSIZE; 1999 goto read_failure; 2000 } 2001 if (data_len < cipher_overhead) { 2002 ret = -EBADMSG; 2003 goto read_failure; 2004 } 2005 2006 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2007 if (header[1] != TLS_1_2_VERSION_MINOR || 2008 header[2] != TLS_1_2_VERSION_MAJOR) { 2009 ret = -EINVAL; 2010 goto read_failure; 2011 } 2012 2013 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2014 TCP_SKB_CB(skb)->seq + rxm->offset); 2015 return data_len + TLS_HEADER_SIZE; 2016 2017 read_failure: 2018 tls_err_abort(strp->sk, ret); 2019 2020 return ret; 2021 } 2022 2023 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2024 { 2025 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2026 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2027 2028 ctx->decrypted = 0; 2029 2030 ctx->recv_pkt = skb; 2031 strp_pause(strp); 2032 2033 ctx->saved_data_ready(strp->sk); 2034 } 2035 2036 static void tls_data_ready(struct sock *sk) 2037 { 2038 struct tls_context *tls_ctx = tls_get_ctx(sk); 2039 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2040 struct sk_psock *psock; 2041 2042 strp_data_ready(&ctx->strp); 2043 2044 psock = sk_psock_get(sk); 2045 if (psock && !list_empty(&psock->ingress_msg)) { 2046 ctx->saved_data_ready(sk); 2047 sk_psock_put(sk, psock); 2048 } 2049 } 2050 2051 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2052 { 2053 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2054 2055 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2056 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2057 cancel_delayed_work_sync(&ctx->tx_work.work); 2058 } 2059 2060 void tls_sw_release_resources_tx(struct sock *sk) 2061 { 2062 struct tls_context *tls_ctx = tls_get_ctx(sk); 2063 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2064 struct tls_rec *rec, *tmp; 2065 2066 /* Wait for any pending async encryptions to complete */ 2067 smp_store_mb(ctx->async_notify, true); 2068 if (atomic_read(&ctx->encrypt_pending)) 2069 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2070 2071 tls_tx_records(sk, -1); 2072 2073 /* Free up un-sent records in tx_list. First, free 2074 * the partially sent record if any at head of tx_list. 2075 */ 2076 if (tls_free_partial_record(sk, tls_ctx)) { 2077 rec = list_first_entry(&ctx->tx_list, 2078 struct tls_rec, list); 2079 list_del(&rec->list); 2080 sk_msg_free(sk, &rec->msg_plaintext); 2081 kfree(rec); 2082 } 2083 2084 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2085 list_del(&rec->list); 2086 sk_msg_free(sk, &rec->msg_encrypted); 2087 sk_msg_free(sk, &rec->msg_plaintext); 2088 kfree(rec); 2089 } 2090 2091 crypto_free_aead(ctx->aead_send); 2092 tls_free_open_rec(sk); 2093 } 2094 2095 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2096 { 2097 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2098 2099 kfree(ctx); 2100 } 2101 2102 void tls_sw_release_resources_rx(struct sock *sk) 2103 { 2104 struct tls_context *tls_ctx = tls_get_ctx(sk); 2105 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2106 2107 kfree(tls_ctx->rx.rec_seq); 2108 kfree(tls_ctx->rx.iv); 2109 2110 if (ctx->aead_recv) { 2111 kfree_skb(ctx->recv_pkt); 2112 ctx->recv_pkt = NULL; 2113 skb_queue_purge(&ctx->rx_list); 2114 crypto_free_aead(ctx->aead_recv); 2115 strp_stop(&ctx->strp); 2116 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2117 * we still want to strp_stop(), but sk->sk_data_ready was 2118 * never swapped. 2119 */ 2120 if (ctx->saved_data_ready) { 2121 write_lock_bh(&sk->sk_callback_lock); 2122 sk->sk_data_ready = ctx->saved_data_ready; 2123 write_unlock_bh(&sk->sk_callback_lock); 2124 } 2125 } 2126 } 2127 2128 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2129 { 2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2131 2132 strp_done(&ctx->strp); 2133 } 2134 2135 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2136 { 2137 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2138 2139 kfree(ctx); 2140 } 2141 2142 void tls_sw_free_resources_rx(struct sock *sk) 2143 { 2144 struct tls_context *tls_ctx = tls_get_ctx(sk); 2145 2146 tls_sw_release_resources_rx(sk); 2147 tls_sw_free_ctx_rx(tls_ctx); 2148 } 2149 2150 /* The work handler to transmitt the encrypted records in tx_list */ 2151 static void tx_work_handler(struct work_struct *work) 2152 { 2153 struct delayed_work *delayed_work = to_delayed_work(work); 2154 struct tx_work *tx_work = container_of(delayed_work, 2155 struct tx_work, work); 2156 struct sock *sk = tx_work->sk; 2157 struct tls_context *tls_ctx = tls_get_ctx(sk); 2158 struct tls_sw_context_tx *ctx; 2159 2160 if (unlikely(!tls_ctx)) 2161 return; 2162 2163 ctx = tls_sw_ctx_tx(tls_ctx); 2164 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2165 return; 2166 2167 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2168 return; 2169 mutex_lock(&tls_ctx->tx_lock); 2170 lock_sock(sk); 2171 tls_tx_records(sk, -1); 2172 release_sock(sk); 2173 mutex_unlock(&tls_ctx->tx_lock); 2174 } 2175 2176 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2177 { 2178 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2179 2180 /* Schedule the transmission if tx list is ready */ 2181 if (is_tx_ready(tx_ctx) && 2182 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2183 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2184 } 2185 2186 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2187 { 2188 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2189 2190 write_lock_bh(&sk->sk_callback_lock); 2191 rx_ctx->saved_data_ready = sk->sk_data_ready; 2192 sk->sk_data_ready = tls_data_ready; 2193 write_unlock_bh(&sk->sk_callback_lock); 2194 2195 strp_check_rcv(&rx_ctx->strp); 2196 } 2197 2198 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2199 { 2200 struct tls_context *tls_ctx = tls_get_ctx(sk); 2201 struct tls_prot_info *prot = &tls_ctx->prot_info; 2202 struct tls_crypto_info *crypto_info; 2203 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2204 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2205 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2206 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2207 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2208 struct cipher_context *cctx; 2209 struct crypto_aead **aead; 2210 struct strp_callbacks cb; 2211 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2212 struct crypto_tfm *tfm; 2213 char *iv, *rec_seq, *key, *salt, *cipher_name; 2214 size_t keysize; 2215 int rc = 0; 2216 2217 if (!ctx) { 2218 rc = -EINVAL; 2219 goto out; 2220 } 2221 2222 if (tx) { 2223 if (!ctx->priv_ctx_tx) { 2224 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2225 if (!sw_ctx_tx) { 2226 rc = -ENOMEM; 2227 goto out; 2228 } 2229 ctx->priv_ctx_tx = sw_ctx_tx; 2230 } else { 2231 sw_ctx_tx = 2232 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2233 } 2234 } else { 2235 if (!ctx->priv_ctx_rx) { 2236 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2237 if (!sw_ctx_rx) { 2238 rc = -ENOMEM; 2239 goto out; 2240 } 2241 ctx->priv_ctx_rx = sw_ctx_rx; 2242 } else { 2243 sw_ctx_rx = 2244 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2245 } 2246 } 2247 2248 if (tx) { 2249 crypto_init_wait(&sw_ctx_tx->async_wait); 2250 crypto_info = &ctx->crypto_send.info; 2251 cctx = &ctx->tx; 2252 aead = &sw_ctx_tx->aead_send; 2253 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2254 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2255 sw_ctx_tx->tx_work.sk = sk; 2256 } else { 2257 crypto_init_wait(&sw_ctx_rx->async_wait); 2258 crypto_info = &ctx->crypto_recv.info; 2259 cctx = &ctx->rx; 2260 skb_queue_head_init(&sw_ctx_rx->rx_list); 2261 aead = &sw_ctx_rx->aead_recv; 2262 } 2263 2264 switch (crypto_info->cipher_type) { 2265 case TLS_CIPHER_AES_GCM_128: { 2266 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2267 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2268 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2269 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2270 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2271 rec_seq = 2272 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2273 gcm_128_info = 2274 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2275 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2276 key = gcm_128_info->key; 2277 salt = gcm_128_info->salt; 2278 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2279 cipher_name = "gcm(aes)"; 2280 break; 2281 } 2282 case TLS_CIPHER_AES_GCM_256: { 2283 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2284 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2285 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2286 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2287 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2288 rec_seq = 2289 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2290 gcm_256_info = 2291 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2292 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2293 key = gcm_256_info->key; 2294 salt = gcm_256_info->salt; 2295 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2296 cipher_name = "gcm(aes)"; 2297 break; 2298 } 2299 case TLS_CIPHER_AES_CCM_128: { 2300 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2301 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2302 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2303 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2304 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2305 rec_seq = 2306 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2307 ccm_128_info = 2308 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2309 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2310 key = ccm_128_info->key; 2311 salt = ccm_128_info->salt; 2312 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2313 cipher_name = "ccm(aes)"; 2314 break; 2315 } 2316 default: 2317 rc = -EINVAL; 2318 goto free_priv; 2319 } 2320 2321 /* Sanity-check the sizes for stack allocations. */ 2322 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2323 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2324 rc = -EINVAL; 2325 goto free_priv; 2326 } 2327 2328 if (crypto_info->version == TLS_1_3_VERSION) { 2329 nonce_size = 0; 2330 prot->aad_size = TLS_HEADER_SIZE; 2331 prot->tail_size = 1; 2332 } else { 2333 prot->aad_size = TLS_AAD_SPACE_SIZE; 2334 prot->tail_size = 0; 2335 } 2336 2337 prot->version = crypto_info->version; 2338 prot->cipher_type = crypto_info->cipher_type; 2339 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2340 prot->tag_size = tag_size; 2341 prot->overhead_size = prot->prepend_size + 2342 prot->tag_size + prot->tail_size; 2343 prot->iv_size = iv_size; 2344 prot->salt_size = salt_size; 2345 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2346 if (!cctx->iv) { 2347 rc = -ENOMEM; 2348 goto free_priv; 2349 } 2350 /* Note: 128 & 256 bit salt are the same size */ 2351 prot->rec_seq_size = rec_seq_size; 2352 memcpy(cctx->iv, salt, salt_size); 2353 memcpy(cctx->iv + salt_size, iv, iv_size); 2354 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2355 if (!cctx->rec_seq) { 2356 rc = -ENOMEM; 2357 goto free_iv; 2358 } 2359 2360 if (!*aead) { 2361 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2362 if (IS_ERR(*aead)) { 2363 rc = PTR_ERR(*aead); 2364 *aead = NULL; 2365 goto free_rec_seq; 2366 } 2367 } 2368 2369 ctx->push_pending_record = tls_sw_push_pending_record; 2370 2371 rc = crypto_aead_setkey(*aead, key, keysize); 2372 2373 if (rc) 2374 goto free_aead; 2375 2376 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2377 if (rc) 2378 goto free_aead; 2379 2380 if (sw_ctx_rx) { 2381 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2382 2383 if (crypto_info->version == TLS_1_3_VERSION) 2384 sw_ctx_rx->async_capable = 0; 2385 else 2386 sw_ctx_rx->async_capable = 2387 !!(tfm->__crt_alg->cra_flags & 2388 CRYPTO_ALG_ASYNC); 2389 2390 /* Set up strparser */ 2391 memset(&cb, 0, sizeof(cb)); 2392 cb.rcv_msg = tls_queue; 2393 cb.parse_msg = tls_read_size; 2394 2395 strp_init(&sw_ctx_rx->strp, sk, &cb); 2396 } 2397 2398 goto out; 2399 2400 free_aead: 2401 crypto_free_aead(*aead); 2402 *aead = NULL; 2403 free_rec_seq: 2404 kfree(cctx->rec_seq); 2405 cctx->rec_seq = NULL; 2406 free_iv: 2407 kfree(cctx->iv); 2408 cctx->iv = NULL; 2409 free_priv: 2410 if (tx) { 2411 kfree(ctx->priv_ctx_tx); 2412 ctx->priv_ctx_tx = NULL; 2413 } else { 2414 kfree(ctx->priv_ctx_rx); 2415 ctx->priv_ctx_rx = NULL; 2416 } 2417 out: 2418 return rc; 2419 } 2420