xref: /linux/net/tls/tls_sw.c (revision 39f75da7bcc829ddc4d40bb60d0e95520de7898b)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <linux/splice.h>
41 #include <crypto/aead.h>
42 
43 #include <net/strparser.h>
44 #include <net/tls.h>
45 
46 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
47                      unsigned int recursion_level)
48 {
49         int start = skb_headlen(skb);
50         int i, chunk = start - offset;
51         struct sk_buff *frag_iter;
52         int elt = 0;
53 
54         if (unlikely(recursion_level >= 24))
55                 return -EMSGSIZE;
56 
57         if (chunk > 0) {
58                 if (chunk > len)
59                         chunk = len;
60                 elt++;
61                 len -= chunk;
62                 if (len == 0)
63                         return elt;
64                 offset += chunk;
65         }
66 
67         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
68                 int end;
69 
70                 WARN_ON(start > offset + len);
71 
72                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
73                 chunk = end - offset;
74                 if (chunk > 0) {
75                         if (chunk > len)
76                                 chunk = len;
77                         elt++;
78                         len -= chunk;
79                         if (len == 0)
80                                 return elt;
81                         offset += chunk;
82                 }
83                 start = end;
84         }
85 
86         if (unlikely(skb_has_frag_list(skb))) {
87                 skb_walk_frags(skb, frag_iter) {
88                         int end, ret;
89 
90                         WARN_ON(start > offset + len);
91 
92                         end = start + frag_iter->len;
93                         chunk = end - offset;
94                         if (chunk > 0) {
95                                 if (chunk > len)
96                                         chunk = len;
97                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
98                                                 recursion_level + 1);
99                                 if (unlikely(ret < 0))
100                                         return ret;
101                                 elt += ret;
102                                 len -= chunk;
103                                 if (len == 0)
104                                         return elt;
105                                 offset += chunk;
106                         }
107                         start = end;
108                 }
109         }
110         BUG_ON(len);
111         return elt;
112 }
113 
114 /* Return the number of scatterlist elements required to completely map the
115  * skb, or -EMSGSIZE if the recursion depth is exceeded.
116  */
117 static int skb_nsg(struct sk_buff *skb, int offset, int len)
118 {
119         return __skb_nsg(skb, offset, len, 0);
120 }
121 
122 static int padding_length(struct tls_sw_context_rx *ctx,
123 			  struct tls_prot_info *prot, struct sk_buff *skb)
124 {
125 	struct strp_msg *rxm = strp_msg(skb);
126 	int sub = 0;
127 
128 	/* Determine zero-padding length */
129 	if (prot->version == TLS_1_3_VERSION) {
130 		char content_type = 0;
131 		int err;
132 		int back = 17;
133 
134 		while (content_type == 0) {
135 			if (back > rxm->full_len - prot->prepend_size)
136 				return -EBADMSG;
137 			err = skb_copy_bits(skb,
138 					    rxm->offset + rxm->full_len - back,
139 					    &content_type, 1);
140 			if (err)
141 				return err;
142 			if (content_type)
143 				break;
144 			sub++;
145 			back++;
146 		}
147 		ctx->control = content_type;
148 	}
149 	return sub;
150 }
151 
152 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 {
154 	struct aead_request *aead_req = (struct aead_request *)req;
155 	struct scatterlist *sgout = aead_req->dst;
156 	struct scatterlist *sgin = aead_req->src;
157 	struct tls_sw_context_rx *ctx;
158 	struct tls_context *tls_ctx;
159 	struct tls_prot_info *prot;
160 	struct scatterlist *sg;
161 	struct sk_buff *skb;
162 	unsigned int pages;
163 	int pending;
164 
165 	skb = (struct sk_buff *)req->data;
166 	tls_ctx = tls_get_ctx(skb->sk);
167 	ctx = tls_sw_ctx_rx(tls_ctx);
168 	prot = &tls_ctx->prot_info;
169 
170 	/* Propagate if there was an err */
171 	if (err) {
172 		if (err == -EBADMSG)
173 			TLS_INC_STATS(sock_net(skb->sk),
174 				      LINUX_MIB_TLSDECRYPTERROR);
175 		ctx->async_wait.err = err;
176 		tls_err_abort(skb->sk, err);
177 	} else {
178 		struct strp_msg *rxm = strp_msg(skb);
179 		int pad;
180 
181 		pad = padding_length(ctx, prot, skb);
182 		if (pad < 0) {
183 			ctx->async_wait.err = pad;
184 			tls_err_abort(skb->sk, pad);
185 		} else {
186 			rxm->full_len -= pad;
187 			rxm->offset += prot->prepend_size;
188 			rxm->full_len -= prot->overhead_size;
189 		}
190 	}
191 
192 	/* After using skb->sk to propagate sk through crypto async callback
193 	 * we need to NULL it again.
194 	 */
195 	skb->sk = NULL;
196 
197 
198 	/* Free the destination pages if skb was not decrypted inplace */
199 	if (sgout != sgin) {
200 		/* Skip the first S/G entry as it points to AAD */
201 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
202 			if (!sg)
203 				break;
204 			put_page(sg_page(sg));
205 		}
206 	}
207 
208 	kfree(aead_req);
209 
210 	spin_lock_bh(&ctx->decrypt_compl_lock);
211 	pending = atomic_dec_return(&ctx->decrypt_pending);
212 
213 	if (!pending && ctx->async_notify)
214 		complete(&ctx->async_wait.completion);
215 	spin_unlock_bh(&ctx->decrypt_compl_lock);
216 }
217 
218 static int tls_do_decryption(struct sock *sk,
219 			     struct sk_buff *skb,
220 			     struct scatterlist *sgin,
221 			     struct scatterlist *sgout,
222 			     char *iv_recv,
223 			     size_t data_len,
224 			     struct aead_request *aead_req,
225 			     bool async)
226 {
227 	struct tls_context *tls_ctx = tls_get_ctx(sk);
228 	struct tls_prot_info *prot = &tls_ctx->prot_info;
229 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
230 	int ret;
231 
232 	aead_request_set_tfm(aead_req, ctx->aead_recv);
233 	aead_request_set_ad(aead_req, prot->aad_size);
234 	aead_request_set_crypt(aead_req, sgin, sgout,
235 			       data_len + prot->tag_size,
236 			       (u8 *)iv_recv);
237 
238 	if (async) {
239 		/* Using skb->sk to push sk through to crypto async callback
240 		 * handler. This allows propagating errors up to the socket
241 		 * if needed. It _must_ be cleared in the async handler
242 		 * before consume_skb is called. We _know_ skb->sk is NULL
243 		 * because it is a clone from strparser.
244 		 */
245 		skb->sk = sk;
246 		aead_request_set_callback(aead_req,
247 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
248 					  tls_decrypt_done, skb);
249 		atomic_inc(&ctx->decrypt_pending);
250 	} else {
251 		aead_request_set_callback(aead_req,
252 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
253 					  crypto_req_done, &ctx->async_wait);
254 	}
255 
256 	ret = crypto_aead_decrypt(aead_req);
257 	if (ret == -EINPROGRESS) {
258 		if (async)
259 			return ret;
260 
261 		ret = crypto_wait_req(ret, &ctx->async_wait);
262 	}
263 
264 	if (async)
265 		atomic_dec(&ctx->decrypt_pending);
266 
267 	return ret;
268 }
269 
270 static void tls_trim_both_msgs(struct sock *sk, int target_size)
271 {
272 	struct tls_context *tls_ctx = tls_get_ctx(sk);
273 	struct tls_prot_info *prot = &tls_ctx->prot_info;
274 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
275 	struct tls_rec *rec = ctx->open_rec;
276 
277 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
278 	if (target_size > 0)
279 		target_size += prot->overhead_size;
280 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
281 }
282 
283 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
284 {
285 	struct tls_context *tls_ctx = tls_get_ctx(sk);
286 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
287 	struct tls_rec *rec = ctx->open_rec;
288 	struct sk_msg *msg_en = &rec->msg_encrypted;
289 
290 	return sk_msg_alloc(sk, msg_en, len, 0);
291 }
292 
293 static int tls_clone_plaintext_msg(struct sock *sk, int required)
294 {
295 	struct tls_context *tls_ctx = tls_get_ctx(sk);
296 	struct tls_prot_info *prot = &tls_ctx->prot_info;
297 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
298 	struct tls_rec *rec = ctx->open_rec;
299 	struct sk_msg *msg_pl = &rec->msg_plaintext;
300 	struct sk_msg *msg_en = &rec->msg_encrypted;
301 	int skip, len;
302 
303 	/* We add page references worth len bytes from encrypted sg
304 	 * at the end of plaintext sg. It is guaranteed that msg_en
305 	 * has enough required room (ensured by caller).
306 	 */
307 	len = required - msg_pl->sg.size;
308 
309 	/* Skip initial bytes in msg_en's data to be able to use
310 	 * same offset of both plain and encrypted data.
311 	 */
312 	skip = prot->prepend_size + msg_pl->sg.size;
313 
314 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
315 }
316 
317 static struct tls_rec *tls_get_rec(struct sock *sk)
318 {
319 	struct tls_context *tls_ctx = tls_get_ctx(sk);
320 	struct tls_prot_info *prot = &tls_ctx->prot_info;
321 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
322 	struct sk_msg *msg_pl, *msg_en;
323 	struct tls_rec *rec;
324 	int mem_size;
325 
326 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
327 
328 	rec = kzalloc(mem_size, sk->sk_allocation);
329 	if (!rec)
330 		return NULL;
331 
332 	msg_pl = &rec->msg_plaintext;
333 	msg_en = &rec->msg_encrypted;
334 
335 	sk_msg_init(msg_pl);
336 	sk_msg_init(msg_en);
337 
338 	sg_init_table(rec->sg_aead_in, 2);
339 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
340 	sg_unmark_end(&rec->sg_aead_in[1]);
341 
342 	sg_init_table(rec->sg_aead_out, 2);
343 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
344 	sg_unmark_end(&rec->sg_aead_out[1]);
345 
346 	return rec;
347 }
348 
349 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
350 {
351 	sk_msg_free(sk, &rec->msg_encrypted);
352 	sk_msg_free(sk, &rec->msg_plaintext);
353 	kfree(rec);
354 }
355 
356 static void tls_free_open_rec(struct sock *sk)
357 {
358 	struct tls_context *tls_ctx = tls_get_ctx(sk);
359 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
360 	struct tls_rec *rec = ctx->open_rec;
361 
362 	if (rec) {
363 		tls_free_rec(sk, rec);
364 		ctx->open_rec = NULL;
365 	}
366 }
367 
368 int tls_tx_records(struct sock *sk, int flags)
369 {
370 	struct tls_context *tls_ctx = tls_get_ctx(sk);
371 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
372 	struct tls_rec *rec, *tmp;
373 	struct sk_msg *msg_en;
374 	int tx_flags, rc = 0;
375 
376 	if (tls_is_partially_sent_record(tls_ctx)) {
377 		rec = list_first_entry(&ctx->tx_list,
378 				       struct tls_rec, list);
379 
380 		if (flags == -1)
381 			tx_flags = rec->tx_flags;
382 		else
383 			tx_flags = flags;
384 
385 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
386 		if (rc)
387 			goto tx_err;
388 
389 		/* Full record has been transmitted.
390 		 * Remove the head of tx_list
391 		 */
392 		list_del(&rec->list);
393 		sk_msg_free(sk, &rec->msg_plaintext);
394 		kfree(rec);
395 	}
396 
397 	/* Tx all ready records */
398 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
399 		if (READ_ONCE(rec->tx_ready)) {
400 			if (flags == -1)
401 				tx_flags = rec->tx_flags;
402 			else
403 				tx_flags = flags;
404 
405 			msg_en = &rec->msg_encrypted;
406 			rc = tls_push_sg(sk, tls_ctx,
407 					 &msg_en->sg.data[msg_en->sg.curr],
408 					 0, tx_flags);
409 			if (rc)
410 				goto tx_err;
411 
412 			list_del(&rec->list);
413 			sk_msg_free(sk, &rec->msg_plaintext);
414 			kfree(rec);
415 		} else {
416 			break;
417 		}
418 	}
419 
420 tx_err:
421 	if (rc < 0 && rc != -EAGAIN)
422 		tls_err_abort(sk, EBADMSG);
423 
424 	return rc;
425 }
426 
427 static void tls_encrypt_done(struct crypto_async_request *req, int err)
428 {
429 	struct aead_request *aead_req = (struct aead_request *)req;
430 	struct sock *sk = req->data;
431 	struct tls_context *tls_ctx = tls_get_ctx(sk);
432 	struct tls_prot_info *prot = &tls_ctx->prot_info;
433 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
434 	struct scatterlist *sge;
435 	struct sk_msg *msg_en;
436 	struct tls_rec *rec;
437 	bool ready = false;
438 	int pending;
439 
440 	rec = container_of(aead_req, struct tls_rec, aead_req);
441 	msg_en = &rec->msg_encrypted;
442 
443 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
444 	sge->offset -= prot->prepend_size;
445 	sge->length += prot->prepend_size;
446 
447 	/* Check if error is previously set on socket */
448 	if (err || sk->sk_err) {
449 		rec = NULL;
450 
451 		/* If err is already set on socket, return the same code */
452 		if (sk->sk_err) {
453 			ctx->async_wait.err = sk->sk_err;
454 		} else {
455 			ctx->async_wait.err = err;
456 			tls_err_abort(sk, err);
457 		}
458 	}
459 
460 	if (rec) {
461 		struct tls_rec *first_rec;
462 
463 		/* Mark the record as ready for transmission */
464 		smp_store_mb(rec->tx_ready, true);
465 
466 		/* If received record is at head of tx_list, schedule tx */
467 		first_rec = list_first_entry(&ctx->tx_list,
468 					     struct tls_rec, list);
469 		if (rec == first_rec)
470 			ready = true;
471 	}
472 
473 	spin_lock_bh(&ctx->encrypt_compl_lock);
474 	pending = atomic_dec_return(&ctx->encrypt_pending);
475 
476 	if (!pending && ctx->async_notify)
477 		complete(&ctx->async_wait.completion);
478 	spin_unlock_bh(&ctx->encrypt_compl_lock);
479 
480 	if (!ready)
481 		return;
482 
483 	/* Schedule the transmission */
484 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
485 		schedule_delayed_work(&ctx->tx_work.work, 1);
486 }
487 
488 static int tls_do_encryption(struct sock *sk,
489 			     struct tls_context *tls_ctx,
490 			     struct tls_sw_context_tx *ctx,
491 			     struct aead_request *aead_req,
492 			     size_t data_len, u32 start)
493 {
494 	struct tls_prot_info *prot = &tls_ctx->prot_info;
495 	struct tls_rec *rec = ctx->open_rec;
496 	struct sk_msg *msg_en = &rec->msg_encrypted;
497 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
498 	int rc, iv_offset = 0;
499 
500 	/* For CCM based ciphers, first byte of IV is a constant */
501 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
502 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
503 		iv_offset = 1;
504 	}
505 
506 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
507 	       prot->iv_size + prot->salt_size);
508 
509 	xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
510 
511 	sge->offset += prot->prepend_size;
512 	sge->length -= prot->prepend_size;
513 
514 	msg_en->sg.curr = start;
515 
516 	aead_request_set_tfm(aead_req, ctx->aead_send);
517 	aead_request_set_ad(aead_req, prot->aad_size);
518 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
519 			       rec->sg_aead_out,
520 			       data_len, rec->iv_data);
521 
522 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523 				  tls_encrypt_done, sk);
524 
525 	/* Add the record in tx_list */
526 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527 	atomic_inc(&ctx->encrypt_pending);
528 
529 	rc = crypto_aead_encrypt(aead_req);
530 	if (!rc || rc != -EINPROGRESS) {
531 		atomic_dec(&ctx->encrypt_pending);
532 		sge->offset -= prot->prepend_size;
533 		sge->length += prot->prepend_size;
534 	}
535 
536 	if (!rc) {
537 		WRITE_ONCE(rec->tx_ready, true);
538 	} else if (rc != -EINPROGRESS) {
539 		list_del(&rec->list);
540 		return rc;
541 	}
542 
543 	/* Unhook the record from context if encryption is not failure */
544 	ctx->open_rec = NULL;
545 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546 	return rc;
547 }
548 
549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550 				 struct tls_rec **to, struct sk_msg *msg_opl,
551 				 struct sk_msg *msg_oen, u32 split_point,
552 				 u32 tx_overhead_size, u32 *orig_end)
553 {
554 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555 	struct scatterlist *sge, *osge, *nsge;
556 	u32 orig_size = msg_opl->sg.size;
557 	struct scatterlist tmp = { };
558 	struct sk_msg *msg_npl;
559 	struct tls_rec *new;
560 	int ret;
561 
562 	new = tls_get_rec(sk);
563 	if (!new)
564 		return -ENOMEM;
565 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566 			   tx_overhead_size, 0);
567 	if (ret < 0) {
568 		tls_free_rec(sk, new);
569 		return ret;
570 	}
571 
572 	*orig_end = msg_opl->sg.end;
573 	i = msg_opl->sg.start;
574 	sge = sk_msg_elem(msg_opl, i);
575 	while (apply && sge->length) {
576 		if (sge->length > apply) {
577 			u32 len = sge->length - apply;
578 
579 			get_page(sg_page(sge));
580 			sg_set_page(&tmp, sg_page(sge), len,
581 				    sge->offset + apply);
582 			sge->length = apply;
583 			bytes += apply;
584 			apply = 0;
585 		} else {
586 			apply -= sge->length;
587 			bytes += sge->length;
588 		}
589 
590 		sk_msg_iter_var_next(i);
591 		if (i == msg_opl->sg.end)
592 			break;
593 		sge = sk_msg_elem(msg_opl, i);
594 	}
595 
596 	msg_opl->sg.end = i;
597 	msg_opl->sg.curr = i;
598 	msg_opl->sg.copybreak = 0;
599 	msg_opl->apply_bytes = 0;
600 	msg_opl->sg.size = bytes;
601 
602 	msg_npl = &new->msg_plaintext;
603 	msg_npl->apply_bytes = apply;
604 	msg_npl->sg.size = orig_size - bytes;
605 
606 	j = msg_npl->sg.start;
607 	nsge = sk_msg_elem(msg_npl, j);
608 	if (tmp.length) {
609 		memcpy(nsge, &tmp, sizeof(*nsge));
610 		sk_msg_iter_var_next(j);
611 		nsge = sk_msg_elem(msg_npl, j);
612 	}
613 
614 	osge = sk_msg_elem(msg_opl, i);
615 	while (osge->length) {
616 		memcpy(nsge, osge, sizeof(*nsge));
617 		sg_unmark_end(nsge);
618 		sk_msg_iter_var_next(i);
619 		sk_msg_iter_var_next(j);
620 		if (i == *orig_end)
621 			break;
622 		osge = sk_msg_elem(msg_opl, i);
623 		nsge = sk_msg_elem(msg_npl, j);
624 	}
625 
626 	msg_npl->sg.end = j;
627 	msg_npl->sg.curr = j;
628 	msg_npl->sg.copybreak = 0;
629 
630 	*to = new;
631 	return 0;
632 }
633 
634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635 				  struct tls_rec *from, u32 orig_end)
636 {
637 	struct sk_msg *msg_npl = &from->msg_plaintext;
638 	struct sk_msg *msg_opl = &to->msg_plaintext;
639 	struct scatterlist *osge, *nsge;
640 	u32 i, j;
641 
642 	i = msg_opl->sg.end;
643 	sk_msg_iter_var_prev(i);
644 	j = msg_npl->sg.start;
645 
646 	osge = sk_msg_elem(msg_opl, i);
647 	nsge = sk_msg_elem(msg_npl, j);
648 
649 	if (sg_page(osge) == sg_page(nsge) &&
650 	    osge->offset + osge->length == nsge->offset) {
651 		osge->length += nsge->length;
652 		put_page(sg_page(nsge));
653 	}
654 
655 	msg_opl->sg.end = orig_end;
656 	msg_opl->sg.curr = orig_end;
657 	msg_opl->sg.copybreak = 0;
658 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659 	msg_opl->sg.size += msg_npl->sg.size;
660 
661 	sk_msg_free(sk, &to->msg_encrypted);
662 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663 
664 	kfree(from);
665 }
666 
667 static int tls_push_record(struct sock *sk, int flags,
668 			   unsigned char record_type)
669 {
670 	struct tls_context *tls_ctx = tls_get_ctx(sk);
671 	struct tls_prot_info *prot = &tls_ctx->prot_info;
672 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674 	u32 i, split_point, orig_end;
675 	struct sk_msg *msg_pl, *msg_en;
676 	struct aead_request *req;
677 	bool split;
678 	int rc;
679 
680 	if (!rec)
681 		return 0;
682 
683 	msg_pl = &rec->msg_plaintext;
684 	msg_en = &rec->msg_encrypted;
685 
686 	split_point = msg_pl->apply_bytes;
687 	split = split_point && split_point < msg_pl->sg.size;
688 	if (unlikely((!split &&
689 		      msg_pl->sg.size +
690 		      prot->overhead_size > msg_en->sg.size) ||
691 		     (split &&
692 		      split_point +
693 		      prot->overhead_size > msg_en->sg.size))) {
694 		split = true;
695 		split_point = msg_en->sg.size;
696 	}
697 	if (split) {
698 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699 					   split_point, prot->overhead_size,
700 					   &orig_end);
701 		if (rc < 0)
702 			return rc;
703 		/* This can happen if above tls_split_open_record allocates
704 		 * a single large encryption buffer instead of two smaller
705 		 * ones. In this case adjust pointers and continue without
706 		 * split.
707 		 */
708 		if (!msg_pl->sg.size) {
709 			tls_merge_open_record(sk, rec, tmp, orig_end);
710 			msg_pl = &rec->msg_plaintext;
711 			msg_en = &rec->msg_encrypted;
712 			split = false;
713 		}
714 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715 			    prot->overhead_size);
716 	}
717 
718 	rec->tx_flags = flags;
719 	req = &rec->aead_req;
720 
721 	i = msg_pl->sg.end;
722 	sk_msg_iter_var_prev(i);
723 
724 	rec->content_type = record_type;
725 	if (prot->version == TLS_1_3_VERSION) {
726 		/* Add content type to end of message.  No padding added */
727 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728 		sg_mark_end(&rec->sg_content_type);
729 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730 			 &rec->sg_content_type);
731 	} else {
732 		sg_mark_end(sk_msg_elem(msg_pl, i));
733 	}
734 
735 	if (msg_pl->sg.end < msg_pl->sg.start) {
736 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738 			 msg_pl->sg.data);
739 	}
740 
741 	i = msg_pl->sg.start;
742 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743 
744 	i = msg_en->sg.end;
745 	sk_msg_iter_var_prev(i);
746 	sg_mark_end(sk_msg_elem(msg_en, i));
747 
748 	i = msg_en->sg.start;
749 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750 
751 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752 		     tls_ctx->tx.rec_seq, record_type, prot);
753 
754 	tls_fill_prepend(tls_ctx,
755 			 page_address(sg_page(&msg_en->sg.data[i])) +
756 			 msg_en->sg.data[i].offset,
757 			 msg_pl->sg.size + prot->tail_size,
758 			 record_type);
759 
760 	tls_ctx->pending_open_record_frags = false;
761 
762 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 			       msg_pl->sg.size + prot->tail_size, i);
764 	if (rc < 0) {
765 		if (rc != -EINPROGRESS) {
766 			tls_err_abort(sk, EBADMSG);
767 			if (split) {
768 				tls_ctx->pending_open_record_frags = true;
769 				tls_merge_open_record(sk, rec, tmp, orig_end);
770 			}
771 		}
772 		ctx->async_capable = 1;
773 		return rc;
774 	} else if (split) {
775 		msg_pl = &tmp->msg_plaintext;
776 		msg_en = &tmp->msg_encrypted;
777 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 		tls_ctx->pending_open_record_frags = true;
779 		ctx->open_rec = tmp;
780 	}
781 
782 	return tls_tx_records(sk, flags);
783 }
784 
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 			       bool full_record, u8 record_type,
787 			       ssize_t *copied, int flags)
788 {
789 	struct tls_context *tls_ctx = tls_get_ctx(sk);
790 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 	struct sk_msg msg_redir = { };
792 	struct sk_psock *psock;
793 	struct sock *sk_redir;
794 	struct tls_rec *rec;
795 	bool enospc, policy;
796 	int err = 0, send;
797 	u32 delta = 0;
798 
799 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 	psock = sk_psock_get(sk);
801 	if (!psock || !policy) {
802 		err = tls_push_record(sk, flags, record_type);
803 		if (err && sk->sk_err == EBADMSG) {
804 			*copied -= sk_msg_free(sk, msg);
805 			tls_free_open_rec(sk);
806 			err = -sk->sk_err;
807 		}
808 		if (psock)
809 			sk_psock_put(sk, psock);
810 		return err;
811 	}
812 more_data:
813 	enospc = sk_msg_full(msg);
814 	if (psock->eval == __SK_NONE) {
815 		delta = msg->sg.size;
816 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 		delta -= msg->sg.size;
818 	}
819 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 	    !enospc && !full_record) {
821 		err = -ENOSPC;
822 		goto out_err;
823 	}
824 	msg->cork_bytes = 0;
825 	send = msg->sg.size;
826 	if (msg->apply_bytes && msg->apply_bytes < send)
827 		send = msg->apply_bytes;
828 
829 	switch (psock->eval) {
830 	case __SK_PASS:
831 		err = tls_push_record(sk, flags, record_type);
832 		if (err && sk->sk_err == EBADMSG) {
833 			*copied -= sk_msg_free(sk, msg);
834 			tls_free_open_rec(sk);
835 			err = -sk->sk_err;
836 			goto out_err;
837 		}
838 		break;
839 	case __SK_REDIRECT:
840 		sk_redir = psock->sk_redir;
841 		memcpy(&msg_redir, msg, sizeof(*msg));
842 		if (msg->apply_bytes < send)
843 			msg->apply_bytes = 0;
844 		else
845 			msg->apply_bytes -= send;
846 		sk_msg_return_zero(sk, msg, send);
847 		msg->sg.size -= send;
848 		release_sock(sk);
849 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850 		lock_sock(sk);
851 		if (err < 0) {
852 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
853 			msg->sg.size = 0;
854 		}
855 		if (msg->sg.size == 0)
856 			tls_free_open_rec(sk);
857 		break;
858 	case __SK_DROP:
859 	default:
860 		sk_msg_free_partial(sk, msg, send);
861 		if (msg->apply_bytes < send)
862 			msg->apply_bytes = 0;
863 		else
864 			msg->apply_bytes -= send;
865 		if (msg->sg.size == 0)
866 			tls_free_open_rec(sk);
867 		*copied -= (send + delta);
868 		err = -EACCES;
869 	}
870 
871 	if (likely(!err)) {
872 		bool reset_eval = !ctx->open_rec;
873 
874 		rec = ctx->open_rec;
875 		if (rec) {
876 			msg = &rec->msg_plaintext;
877 			if (!msg->apply_bytes)
878 				reset_eval = true;
879 		}
880 		if (reset_eval) {
881 			psock->eval = __SK_NONE;
882 			if (psock->sk_redir) {
883 				sock_put(psock->sk_redir);
884 				psock->sk_redir = NULL;
885 			}
886 		}
887 		if (rec)
888 			goto more_data;
889 	}
890  out_err:
891 	sk_psock_put(sk, psock);
892 	return err;
893 }
894 
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897 	struct tls_context *tls_ctx = tls_get_ctx(sk);
898 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899 	struct tls_rec *rec = ctx->open_rec;
900 	struct sk_msg *msg_pl;
901 	size_t copied;
902 
903 	if (!rec)
904 		return 0;
905 
906 	msg_pl = &rec->msg_plaintext;
907 	copied = msg_pl->sg.size;
908 	if (!copied)
909 		return 0;
910 
911 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912 				   &copied, flags);
913 }
914 
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918 	struct tls_context *tls_ctx = tls_get_ctx(sk);
919 	struct tls_prot_info *prot = &tls_ctx->prot_info;
920 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921 	bool async_capable = ctx->async_capable;
922 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
923 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924 	bool eor = !(msg->msg_flags & MSG_MORE);
925 	size_t try_to_copy;
926 	ssize_t copied = 0;
927 	struct sk_msg *msg_pl, *msg_en;
928 	struct tls_rec *rec;
929 	int required_size;
930 	int num_async = 0;
931 	bool full_record;
932 	int record_room;
933 	int num_zc = 0;
934 	int orig_size;
935 	int ret = 0;
936 	int pending;
937 
938 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939 			       MSG_CMSG_COMPAT))
940 		return -EOPNOTSUPP;
941 
942 	mutex_lock(&tls_ctx->tx_lock);
943 	lock_sock(sk);
944 
945 	if (unlikely(msg->msg_controllen)) {
946 		ret = tls_proccess_cmsg(sk, msg, &record_type);
947 		if (ret) {
948 			if (ret == -EINPROGRESS)
949 				num_async++;
950 			else if (ret != -EAGAIN)
951 				goto send_end;
952 		}
953 	}
954 
955 	while (msg_data_left(msg)) {
956 		if (sk->sk_err) {
957 			ret = -sk->sk_err;
958 			goto send_end;
959 		}
960 
961 		if (ctx->open_rec)
962 			rec = ctx->open_rec;
963 		else
964 			rec = ctx->open_rec = tls_get_rec(sk);
965 		if (!rec) {
966 			ret = -ENOMEM;
967 			goto send_end;
968 		}
969 
970 		msg_pl = &rec->msg_plaintext;
971 		msg_en = &rec->msg_encrypted;
972 
973 		orig_size = msg_pl->sg.size;
974 		full_record = false;
975 		try_to_copy = msg_data_left(msg);
976 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977 		if (try_to_copy >= record_room) {
978 			try_to_copy = record_room;
979 			full_record = true;
980 		}
981 
982 		required_size = msg_pl->sg.size + try_to_copy +
983 				prot->overhead_size;
984 
985 		if (!sk_stream_memory_free(sk))
986 			goto wait_for_sndbuf;
987 
988 alloc_encrypted:
989 		ret = tls_alloc_encrypted_msg(sk, required_size);
990 		if (ret) {
991 			if (ret != -ENOSPC)
992 				goto wait_for_memory;
993 
994 			/* Adjust try_to_copy according to the amount that was
995 			 * actually allocated. The difference is due
996 			 * to max sg elements limit
997 			 */
998 			try_to_copy -= required_size - msg_en->sg.size;
999 			full_record = true;
1000 		}
1001 
1002 		if (!is_kvec && (full_record || eor) && !async_capable) {
1003 			u32 first = msg_pl->sg.end;
1004 
1005 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006 							msg_pl, try_to_copy);
1007 			if (ret)
1008 				goto fallback_to_reg_send;
1009 
1010 			num_zc++;
1011 			copied += try_to_copy;
1012 
1013 			sk_msg_sg_copy_set(msg_pl, first);
1014 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015 						  record_type, &copied,
1016 						  msg->msg_flags);
1017 			if (ret) {
1018 				if (ret == -EINPROGRESS)
1019 					num_async++;
1020 				else if (ret == -ENOMEM)
1021 					goto wait_for_memory;
1022 				else if (ctx->open_rec && ret == -ENOSPC)
1023 					goto rollback_iter;
1024 				else if (ret != -EAGAIN)
1025 					goto send_end;
1026 			}
1027 			continue;
1028 rollback_iter:
1029 			copied -= try_to_copy;
1030 			sk_msg_sg_copy_clear(msg_pl, first);
1031 			iov_iter_revert(&msg->msg_iter,
1032 					msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034 			sk_msg_trim(sk, msg_pl, orig_size);
1035 		}
1036 
1037 		required_size = msg_pl->sg.size + try_to_copy;
1038 
1039 		ret = tls_clone_plaintext_msg(sk, required_size);
1040 		if (ret) {
1041 			if (ret != -ENOSPC)
1042 				goto send_end;
1043 
1044 			/* Adjust try_to_copy according to the amount that was
1045 			 * actually allocated. The difference is due
1046 			 * to max sg elements limit
1047 			 */
1048 			try_to_copy -= required_size - msg_pl->sg.size;
1049 			full_record = true;
1050 			sk_msg_trim(sk, msg_en,
1051 				    msg_pl->sg.size + prot->overhead_size);
1052 		}
1053 
1054 		if (try_to_copy) {
1055 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056 						       msg_pl, try_to_copy);
1057 			if (ret < 0)
1058 				goto trim_sgl;
1059 		}
1060 
1061 		/* Open records defined only if successfully copied, otherwise
1062 		 * we would trim the sg but not reset the open record frags.
1063 		 */
1064 		tls_ctx->pending_open_record_frags = true;
1065 		copied += try_to_copy;
1066 		if (full_record || eor) {
1067 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068 						  record_type, &copied,
1069 						  msg->msg_flags);
1070 			if (ret) {
1071 				if (ret == -EINPROGRESS)
1072 					num_async++;
1073 				else if (ret == -ENOMEM)
1074 					goto wait_for_memory;
1075 				else if (ret != -EAGAIN) {
1076 					if (ret == -ENOSPC)
1077 						ret = 0;
1078 					goto send_end;
1079 				}
1080 			}
1081 		}
1082 
1083 		continue;
1084 
1085 wait_for_sndbuf:
1086 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088 		ret = sk_stream_wait_memory(sk, &timeo);
1089 		if (ret) {
1090 trim_sgl:
1091 			if (ctx->open_rec)
1092 				tls_trim_both_msgs(sk, orig_size);
1093 			goto send_end;
1094 		}
1095 
1096 		if (ctx->open_rec && msg_en->sg.size < required_size)
1097 			goto alloc_encrypted;
1098 	}
1099 
1100 	if (!num_async) {
1101 		goto send_end;
1102 	} else if (num_zc) {
1103 		/* Wait for pending encryptions to get completed */
1104 		spin_lock_bh(&ctx->encrypt_compl_lock);
1105 		ctx->async_notify = true;
1106 
1107 		pending = atomic_read(&ctx->encrypt_pending);
1108 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1109 		if (pending)
1110 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111 		else
1112 			reinit_completion(&ctx->async_wait.completion);
1113 
1114 		/* There can be no concurrent accesses, since we have no
1115 		 * pending encrypt operations
1116 		 */
1117 		WRITE_ONCE(ctx->async_notify, false);
1118 
1119 		if (ctx->async_wait.err) {
1120 			ret = ctx->async_wait.err;
1121 			copied = 0;
1122 		}
1123 	}
1124 
1125 	/* Transmit if any encryptions have completed */
1126 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127 		cancel_delayed_work(&ctx->tx_work.work);
1128 		tls_tx_records(sk, msg->msg_flags);
1129 	}
1130 
1131 send_end:
1132 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1133 
1134 	release_sock(sk);
1135 	mutex_unlock(&tls_ctx->tx_lock);
1136 	return copied > 0 ? copied : ret;
1137 }
1138 
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140 			      int offset, size_t size, int flags)
1141 {
1142 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1144 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1146 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147 	struct sk_msg *msg_pl;
1148 	struct tls_rec *rec;
1149 	int num_async = 0;
1150 	ssize_t copied = 0;
1151 	bool full_record;
1152 	int record_room;
1153 	int ret = 0;
1154 	bool eor;
1155 
1156 	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158 
1159 	/* Call the sk_stream functions to manage the sndbuf mem. */
1160 	while (size > 0) {
1161 		size_t copy, required_size;
1162 
1163 		if (sk->sk_err) {
1164 			ret = -sk->sk_err;
1165 			goto sendpage_end;
1166 		}
1167 
1168 		if (ctx->open_rec)
1169 			rec = ctx->open_rec;
1170 		else
1171 			rec = ctx->open_rec = tls_get_rec(sk);
1172 		if (!rec) {
1173 			ret = -ENOMEM;
1174 			goto sendpage_end;
1175 		}
1176 
1177 		msg_pl = &rec->msg_plaintext;
1178 
1179 		full_record = false;
1180 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181 		copy = size;
1182 		if (copy >= record_room) {
1183 			copy = record_room;
1184 			full_record = true;
1185 		}
1186 
1187 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188 
1189 		if (!sk_stream_memory_free(sk))
1190 			goto wait_for_sndbuf;
1191 alloc_payload:
1192 		ret = tls_alloc_encrypted_msg(sk, required_size);
1193 		if (ret) {
1194 			if (ret != -ENOSPC)
1195 				goto wait_for_memory;
1196 
1197 			/* Adjust copy according to the amount that was
1198 			 * actually allocated. The difference is due
1199 			 * to max sg elements limit
1200 			 */
1201 			copy -= required_size - msg_pl->sg.size;
1202 			full_record = true;
1203 		}
1204 
1205 		sk_msg_page_add(msg_pl, page, copy, offset);
1206 		sk_mem_charge(sk, copy);
1207 
1208 		offset += copy;
1209 		size -= copy;
1210 		copied += copy;
1211 
1212 		tls_ctx->pending_open_record_frags = true;
1213 		if (full_record || eor || sk_msg_full(msg_pl)) {
1214 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215 						  record_type, &copied, flags);
1216 			if (ret) {
1217 				if (ret == -EINPROGRESS)
1218 					num_async++;
1219 				else if (ret == -ENOMEM)
1220 					goto wait_for_memory;
1221 				else if (ret != -EAGAIN) {
1222 					if (ret == -ENOSPC)
1223 						ret = 0;
1224 					goto sendpage_end;
1225 				}
1226 			}
1227 		}
1228 		continue;
1229 wait_for_sndbuf:
1230 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232 		ret = sk_stream_wait_memory(sk, &timeo);
1233 		if (ret) {
1234 			if (ctx->open_rec)
1235 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1236 			goto sendpage_end;
1237 		}
1238 
1239 		if (ctx->open_rec)
1240 			goto alloc_payload;
1241 	}
1242 
1243 	if (num_async) {
1244 		/* Transmit if any encryptions have completed */
1245 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246 			cancel_delayed_work(&ctx->tx_work.work);
1247 			tls_tx_records(sk, flags);
1248 		}
1249 	}
1250 sendpage_end:
1251 	ret = sk_stream_error(sk, flags, ret);
1252 	return copied > 0 ? copied : ret;
1253 }
1254 
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256 			   int offset, size_t size, int flags)
1257 {
1258 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260 		      MSG_NO_SHARED_FRAGS))
1261 		return -EOPNOTSUPP;
1262 
1263 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265 
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267 		    int offset, size_t size, int flags)
1268 {
1269 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 	int ret;
1271 
1272 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274 		return -EOPNOTSUPP;
1275 
1276 	mutex_lock(&tls_ctx->tx_lock);
1277 	lock_sock(sk);
1278 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279 	release_sock(sk);
1280 	mutex_unlock(&tls_ctx->tx_lock);
1281 	return ret;
1282 }
1283 
1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285 				     bool nonblock, long timeo, int *err)
1286 {
1287 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1288 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289 	struct sk_buff *skb;
1290 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291 
1292 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293 		if (sk->sk_err) {
1294 			*err = sock_error(sk);
1295 			return NULL;
1296 		}
1297 
1298 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1299 			__strp_unpause(&ctx->strp);
1300 			if (ctx->recv_pkt)
1301 				return ctx->recv_pkt;
1302 		}
1303 
1304 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1305 			return NULL;
1306 
1307 		if (sock_flag(sk, SOCK_DONE))
1308 			return NULL;
1309 
1310 		if (nonblock || !timeo) {
1311 			*err = -EAGAIN;
1312 			return NULL;
1313 		}
1314 
1315 		add_wait_queue(sk_sleep(sk), &wait);
1316 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1317 		sk_wait_event(sk, &timeo,
1318 			      ctx->recv_pkt != skb ||
1319 			      !sk_psock_queue_empty(psock),
1320 			      &wait);
1321 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322 		remove_wait_queue(sk_sleep(sk), &wait);
1323 
1324 		/* Handle signals */
1325 		if (signal_pending(current)) {
1326 			*err = sock_intr_errno(timeo);
1327 			return NULL;
1328 		}
1329 	}
1330 
1331 	return skb;
1332 }
1333 
1334 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1335 			       int length, int *pages_used,
1336 			       unsigned int *size_used,
1337 			       struct scatterlist *to,
1338 			       int to_max_pages)
1339 {
1340 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1341 	struct page *pages[MAX_SKB_FRAGS];
1342 	unsigned int size = *size_used;
1343 	ssize_t copied, use;
1344 	size_t offset;
1345 
1346 	while (length > 0) {
1347 		i = 0;
1348 		maxpages = to_max_pages - num_elem;
1349 		if (maxpages == 0) {
1350 			rc = -EFAULT;
1351 			goto out;
1352 		}
1353 		copied = iov_iter_get_pages(from, pages,
1354 					    length,
1355 					    maxpages, &offset);
1356 		if (copied <= 0) {
1357 			rc = -EFAULT;
1358 			goto out;
1359 		}
1360 
1361 		iov_iter_advance(from, copied);
1362 
1363 		length -= copied;
1364 		size += copied;
1365 		while (copied) {
1366 			use = min_t(int, copied, PAGE_SIZE - offset);
1367 
1368 			sg_set_page(&to[num_elem],
1369 				    pages[i], use, offset);
1370 			sg_unmark_end(&to[num_elem]);
1371 			/* We do not uncharge memory from this API */
1372 
1373 			offset = 0;
1374 			copied -= use;
1375 
1376 			i++;
1377 			num_elem++;
1378 		}
1379 	}
1380 	/* Mark the end in the last sg entry if newly added */
1381 	if (num_elem > *pages_used)
1382 		sg_mark_end(&to[num_elem - 1]);
1383 out:
1384 	if (rc)
1385 		iov_iter_revert(from, size - *size_used);
1386 	*size_used = size;
1387 	*pages_used = num_elem;
1388 
1389 	return rc;
1390 }
1391 
1392 /* This function decrypts the input skb into either out_iov or in out_sg
1393  * or in skb buffers itself. The input parameter 'zc' indicates if
1394  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1395  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1396  * NULL, then the decryption happens inside skb buffers itself, i.e.
1397  * zero-copy gets disabled and 'zc' is updated.
1398  */
1399 
1400 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1401 			    struct iov_iter *out_iov,
1402 			    struct scatterlist *out_sg,
1403 			    int *chunk, bool *zc, bool async)
1404 {
1405 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1406 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1407 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1408 	struct strp_msg *rxm = strp_msg(skb);
1409 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1410 	struct aead_request *aead_req;
1411 	struct sk_buff *unused;
1412 	u8 *aad, *iv, *mem = NULL;
1413 	struct scatterlist *sgin = NULL;
1414 	struct scatterlist *sgout = NULL;
1415 	const int data_len = rxm->full_len - prot->overhead_size +
1416 			     prot->tail_size;
1417 	int iv_offset = 0;
1418 
1419 	if (*zc && (out_iov || out_sg)) {
1420 		if (out_iov)
1421 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1422 		else
1423 			n_sgout = sg_nents(out_sg);
1424 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1425 				 rxm->full_len - prot->prepend_size);
1426 	} else {
1427 		n_sgout = 0;
1428 		*zc = false;
1429 		n_sgin = skb_cow_data(skb, 0, &unused);
1430 	}
1431 
1432 	if (n_sgin < 1)
1433 		return -EBADMSG;
1434 
1435 	/* Increment to accommodate AAD */
1436 	n_sgin = n_sgin + 1;
1437 
1438 	nsg = n_sgin + n_sgout;
1439 
1440 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1441 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1442 	mem_size = mem_size + prot->aad_size;
1443 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1444 
1445 	/* Allocate a single block of memory which contains
1446 	 * aead_req || sgin[] || sgout[] || aad || iv.
1447 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1448 	 */
1449 	mem = kmalloc(mem_size, sk->sk_allocation);
1450 	if (!mem)
1451 		return -ENOMEM;
1452 
1453 	/* Segment the allocated memory */
1454 	aead_req = (struct aead_request *)mem;
1455 	sgin = (struct scatterlist *)(mem + aead_size);
1456 	sgout = sgin + n_sgin;
1457 	aad = (u8 *)(sgout + n_sgout);
1458 	iv = aad + prot->aad_size;
1459 
1460 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1461 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1462 		iv[0] = 2;
1463 		iv_offset = 1;
1464 	}
1465 
1466 	/* Prepare IV */
1467 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1468 			    iv + iv_offset + prot->salt_size,
1469 			    prot->iv_size);
1470 	if (err < 0) {
1471 		kfree(mem);
1472 		return err;
1473 	}
1474 	if (prot->version == TLS_1_3_VERSION ||
1475 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1476 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1477 		       crypto_aead_ivsize(ctx->aead_recv));
1478 	else
1479 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1480 
1481 	xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1482 
1483 	/* Prepare AAD */
1484 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1485 		     prot->tail_size,
1486 		     tls_ctx->rx.rec_seq, ctx->control, prot);
1487 
1488 	/* Prepare sgin */
1489 	sg_init_table(sgin, n_sgin);
1490 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1491 	err = skb_to_sgvec(skb, &sgin[1],
1492 			   rxm->offset + prot->prepend_size,
1493 			   rxm->full_len - prot->prepend_size);
1494 	if (err < 0) {
1495 		kfree(mem);
1496 		return err;
1497 	}
1498 
1499 	if (n_sgout) {
1500 		if (out_iov) {
1501 			sg_init_table(sgout, n_sgout);
1502 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1503 
1504 			*chunk = 0;
1505 			err = tls_setup_from_iter(sk, out_iov, data_len,
1506 						  &pages, chunk, &sgout[1],
1507 						  (n_sgout - 1));
1508 			if (err < 0)
1509 				goto fallback_to_reg_recv;
1510 		} else if (out_sg) {
1511 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1512 		} else {
1513 			goto fallback_to_reg_recv;
1514 		}
1515 	} else {
1516 fallback_to_reg_recv:
1517 		sgout = sgin;
1518 		pages = 0;
1519 		*chunk = data_len;
1520 		*zc = false;
1521 	}
1522 
1523 	/* Prepare and submit AEAD request */
1524 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1525 				data_len, aead_req, async);
1526 	if (err == -EINPROGRESS)
1527 		return err;
1528 
1529 	/* Release the pages in case iov was mapped to pages */
1530 	for (; pages > 0; pages--)
1531 		put_page(sg_page(&sgout[pages]));
1532 
1533 	kfree(mem);
1534 	return err;
1535 }
1536 
1537 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1538 			      struct iov_iter *dest, int *chunk, bool *zc,
1539 			      bool async)
1540 {
1541 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1542 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1543 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1544 	struct strp_msg *rxm = strp_msg(skb);
1545 	int pad, err = 0;
1546 
1547 	if (!ctx->decrypted) {
1548 		if (tls_ctx->rx_conf == TLS_HW) {
1549 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1550 			if (err < 0)
1551 				return err;
1552 		}
1553 
1554 		/* Still not decrypted after tls_device */
1555 		if (!ctx->decrypted) {
1556 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1557 					       async);
1558 			if (err < 0) {
1559 				if (err == -EINPROGRESS)
1560 					tls_advance_record_sn(sk, prot,
1561 							      &tls_ctx->rx);
1562 				else if (err == -EBADMSG)
1563 					TLS_INC_STATS(sock_net(sk),
1564 						      LINUX_MIB_TLSDECRYPTERROR);
1565 				return err;
1566 			}
1567 		} else {
1568 			*zc = false;
1569 		}
1570 
1571 		pad = padding_length(ctx, prot, skb);
1572 		if (pad < 0)
1573 			return pad;
1574 
1575 		rxm->full_len -= pad;
1576 		rxm->offset += prot->prepend_size;
1577 		rxm->full_len -= prot->overhead_size;
1578 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1579 		ctx->decrypted = 1;
1580 		ctx->saved_data_ready(sk);
1581 	} else {
1582 		*zc = false;
1583 	}
1584 
1585 	return err;
1586 }
1587 
1588 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1589 		struct scatterlist *sgout)
1590 {
1591 	bool zc = true;
1592 	int chunk;
1593 
1594 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1595 }
1596 
1597 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1598 			       unsigned int len)
1599 {
1600 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1601 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602 
1603 	if (skb) {
1604 		struct strp_msg *rxm = strp_msg(skb);
1605 
1606 		if (len < rxm->full_len) {
1607 			rxm->offset += len;
1608 			rxm->full_len -= len;
1609 			return false;
1610 		}
1611 		consume_skb(skb);
1612 	}
1613 
1614 	/* Finished with message */
1615 	ctx->recv_pkt = NULL;
1616 	__strp_unpause(&ctx->strp);
1617 
1618 	return true;
1619 }
1620 
1621 /* This function traverses the rx_list in tls receive context to copies the
1622  * decrypted records into the buffer provided by caller zero copy is not
1623  * true. Further, the records are removed from the rx_list if it is not a peek
1624  * case and the record has been consumed completely.
1625  */
1626 static int process_rx_list(struct tls_sw_context_rx *ctx,
1627 			   struct msghdr *msg,
1628 			   u8 *control,
1629 			   bool *cmsg,
1630 			   size_t skip,
1631 			   size_t len,
1632 			   bool zc,
1633 			   bool is_peek)
1634 {
1635 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1636 	u8 ctrl = *control;
1637 	u8 msgc = *cmsg;
1638 	struct tls_msg *tlm;
1639 	ssize_t copied = 0;
1640 
1641 	/* Set the record type in 'control' if caller didn't pass it */
1642 	if (!ctrl && skb) {
1643 		tlm = tls_msg(skb);
1644 		ctrl = tlm->control;
1645 	}
1646 
1647 	while (skip && skb) {
1648 		struct strp_msg *rxm = strp_msg(skb);
1649 		tlm = tls_msg(skb);
1650 
1651 		/* Cannot process a record of different type */
1652 		if (ctrl != tlm->control)
1653 			return 0;
1654 
1655 		if (skip < rxm->full_len)
1656 			break;
1657 
1658 		skip = skip - rxm->full_len;
1659 		skb = skb_peek_next(skb, &ctx->rx_list);
1660 	}
1661 
1662 	while (len && skb) {
1663 		struct sk_buff *next_skb;
1664 		struct strp_msg *rxm = strp_msg(skb);
1665 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1666 
1667 		tlm = tls_msg(skb);
1668 
1669 		/* Cannot process a record of different type */
1670 		if (ctrl != tlm->control)
1671 			return 0;
1672 
1673 		/* Set record type if not already done. For a non-data record,
1674 		 * do not proceed if record type could not be copied.
1675 		 */
1676 		if (!msgc) {
1677 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1678 					    sizeof(ctrl), &ctrl);
1679 			msgc = true;
1680 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1681 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1682 					return -EIO;
1683 
1684 				*cmsg = msgc;
1685 			}
1686 		}
1687 
1688 		if (!zc || (rxm->full_len - skip) > len) {
1689 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1690 						    msg, chunk);
1691 			if (err < 0)
1692 				return err;
1693 		}
1694 
1695 		len = len - chunk;
1696 		copied = copied + chunk;
1697 
1698 		/* Consume the data from record if it is non-peek case*/
1699 		if (!is_peek) {
1700 			rxm->offset = rxm->offset + chunk;
1701 			rxm->full_len = rxm->full_len - chunk;
1702 
1703 			/* Return if there is unconsumed data in the record */
1704 			if (rxm->full_len - skip)
1705 				break;
1706 		}
1707 
1708 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1709 		 * So from the 2nd record, 'skip' should be 0.
1710 		 */
1711 		skip = 0;
1712 
1713 		if (msg)
1714 			msg->msg_flags |= MSG_EOR;
1715 
1716 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1717 
1718 		if (!is_peek) {
1719 			skb_unlink(skb, &ctx->rx_list);
1720 			consume_skb(skb);
1721 		}
1722 
1723 		skb = next_skb;
1724 	}
1725 
1726 	*control = ctrl;
1727 	return copied;
1728 }
1729 
1730 int tls_sw_recvmsg(struct sock *sk,
1731 		   struct msghdr *msg,
1732 		   size_t len,
1733 		   int nonblock,
1734 		   int flags,
1735 		   int *addr_len)
1736 {
1737 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1738 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1739 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1740 	struct sk_psock *psock;
1741 	unsigned char control = 0;
1742 	ssize_t decrypted = 0;
1743 	struct strp_msg *rxm;
1744 	struct tls_msg *tlm;
1745 	struct sk_buff *skb;
1746 	ssize_t copied = 0;
1747 	bool cmsg = false;
1748 	int target, err = 0;
1749 	long timeo;
1750 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1751 	bool is_peek = flags & MSG_PEEK;
1752 	bool bpf_strp_enabled;
1753 	int num_async = 0;
1754 	int pending;
1755 
1756 	flags |= nonblock;
1757 
1758 	if (unlikely(flags & MSG_ERRQUEUE))
1759 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1760 
1761 	psock = sk_psock_get(sk);
1762 	lock_sock(sk);
1763 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1764 
1765 	/* Process pending decrypted records. It must be non-zero-copy */
1766 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1767 			      is_peek);
1768 	if (err < 0) {
1769 		tls_err_abort(sk, err);
1770 		goto end;
1771 	} else {
1772 		copied = err;
1773 	}
1774 
1775 	if (len <= copied)
1776 		goto recv_end;
1777 
1778 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1779 	len = len - copied;
1780 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1781 
1782 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1783 		bool retain_skb = false;
1784 		bool zc = false;
1785 		int to_decrypt;
1786 		int chunk = 0;
1787 		bool async_capable;
1788 		bool async = false;
1789 
1790 		skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1791 		if (!skb) {
1792 			if (psock) {
1793 				int ret = sk_msg_recvmsg(sk, psock, msg, len,
1794 							 flags);
1795 
1796 				if (ret > 0) {
1797 					decrypted += ret;
1798 					len -= ret;
1799 					continue;
1800 				}
1801 			}
1802 			goto recv_end;
1803 		} else {
1804 			tlm = tls_msg(skb);
1805 			if (prot->version == TLS_1_3_VERSION)
1806 				tlm->control = 0;
1807 			else
1808 				tlm->control = ctx->control;
1809 		}
1810 
1811 		rxm = strp_msg(skb);
1812 
1813 		to_decrypt = rxm->full_len - prot->overhead_size;
1814 
1815 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1816 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1817 		    prot->version != TLS_1_3_VERSION &&
1818 		    !bpf_strp_enabled)
1819 			zc = true;
1820 
1821 		/* Do not use async mode if record is non-data */
1822 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1823 			async_capable = ctx->async_capable;
1824 		else
1825 			async_capable = false;
1826 
1827 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1828 					 &chunk, &zc, async_capable);
1829 		if (err < 0 && err != -EINPROGRESS) {
1830 			tls_err_abort(sk, EBADMSG);
1831 			goto recv_end;
1832 		}
1833 
1834 		if (err == -EINPROGRESS) {
1835 			async = true;
1836 			num_async++;
1837 		} else if (prot->version == TLS_1_3_VERSION) {
1838 			tlm->control = ctx->control;
1839 		}
1840 
1841 		/* If the type of records being processed is not known yet,
1842 		 * set it to record type just dequeued. If it is already known,
1843 		 * but does not match the record type just dequeued, go to end.
1844 		 * We always get record type here since for tls1.2, record type
1845 		 * is known just after record is dequeued from stream parser.
1846 		 * For tls1.3, we disable async.
1847 		 */
1848 
1849 		if (!control)
1850 			control = tlm->control;
1851 		else if (control != tlm->control)
1852 			goto recv_end;
1853 
1854 		if (!cmsg) {
1855 			int cerr;
1856 
1857 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1858 					sizeof(control), &control);
1859 			cmsg = true;
1860 			if (control != TLS_RECORD_TYPE_DATA) {
1861 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1862 					err = -EIO;
1863 					goto recv_end;
1864 				}
1865 			}
1866 		}
1867 
1868 		if (async)
1869 			goto pick_next_record;
1870 
1871 		if (!zc) {
1872 			if (bpf_strp_enabled) {
1873 				err = sk_psock_tls_strp_read(psock, skb);
1874 				if (err != __SK_PASS) {
1875 					rxm->offset = rxm->offset + rxm->full_len;
1876 					rxm->full_len = 0;
1877 					if (err == __SK_DROP)
1878 						consume_skb(skb);
1879 					ctx->recv_pkt = NULL;
1880 					__strp_unpause(&ctx->strp);
1881 					continue;
1882 				}
1883 			}
1884 
1885 			if (rxm->full_len > len) {
1886 				retain_skb = true;
1887 				chunk = len;
1888 			} else {
1889 				chunk = rxm->full_len;
1890 			}
1891 
1892 			err = skb_copy_datagram_msg(skb, rxm->offset,
1893 						    msg, chunk);
1894 			if (err < 0)
1895 				goto recv_end;
1896 
1897 			if (!is_peek) {
1898 				rxm->offset = rxm->offset + chunk;
1899 				rxm->full_len = rxm->full_len - chunk;
1900 			}
1901 		}
1902 
1903 pick_next_record:
1904 		if (chunk > len)
1905 			chunk = len;
1906 
1907 		decrypted += chunk;
1908 		len -= chunk;
1909 
1910 		/* For async or peek case, queue the current skb */
1911 		if (async || is_peek || retain_skb) {
1912 			skb_queue_tail(&ctx->rx_list, skb);
1913 			skb = NULL;
1914 		}
1915 
1916 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1917 			/* Return full control message to
1918 			 * userspace before trying to parse
1919 			 * another message type
1920 			 */
1921 			msg->msg_flags |= MSG_EOR;
1922 			if (control != TLS_RECORD_TYPE_DATA)
1923 				goto recv_end;
1924 		} else {
1925 			break;
1926 		}
1927 	}
1928 
1929 recv_end:
1930 	if (num_async) {
1931 		/* Wait for all previously submitted records to be decrypted */
1932 		spin_lock_bh(&ctx->decrypt_compl_lock);
1933 		ctx->async_notify = true;
1934 		pending = atomic_read(&ctx->decrypt_pending);
1935 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1936 		if (pending) {
1937 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1938 			if (err) {
1939 				/* one of async decrypt failed */
1940 				tls_err_abort(sk, err);
1941 				copied = 0;
1942 				decrypted = 0;
1943 				goto end;
1944 			}
1945 		} else {
1946 			reinit_completion(&ctx->async_wait.completion);
1947 		}
1948 
1949 		/* There can be no concurrent accesses, since we have no
1950 		 * pending decrypt operations
1951 		 */
1952 		WRITE_ONCE(ctx->async_notify, false);
1953 
1954 		/* Drain records from the rx_list & copy if required */
1955 		if (is_peek || is_kvec)
1956 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1957 					      decrypted, false, is_peek);
1958 		else
1959 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1960 					      decrypted, true, is_peek);
1961 		if (err < 0) {
1962 			tls_err_abort(sk, err);
1963 			copied = 0;
1964 			goto end;
1965 		}
1966 	}
1967 
1968 	copied += decrypted;
1969 
1970 end:
1971 	release_sock(sk);
1972 	if (psock)
1973 		sk_psock_put(sk, psock);
1974 	return copied ? : err;
1975 }
1976 
1977 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1978 			   struct pipe_inode_info *pipe,
1979 			   size_t len, unsigned int flags)
1980 {
1981 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1982 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1983 	struct strp_msg *rxm = NULL;
1984 	struct sock *sk = sock->sk;
1985 	struct sk_buff *skb;
1986 	ssize_t copied = 0;
1987 	int err = 0;
1988 	long timeo;
1989 	int chunk;
1990 	bool zc = false;
1991 
1992 	lock_sock(sk);
1993 
1994 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1995 
1996 	skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
1997 	if (!skb)
1998 		goto splice_read_end;
1999 
2000 	if (!ctx->decrypted) {
2001 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2002 
2003 		/* splice does not support reading control messages */
2004 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
2005 			err = -EINVAL;
2006 			goto splice_read_end;
2007 		}
2008 
2009 		if (err < 0) {
2010 			tls_err_abort(sk, EBADMSG);
2011 			goto splice_read_end;
2012 		}
2013 		ctx->decrypted = 1;
2014 	}
2015 	rxm = strp_msg(skb);
2016 
2017 	chunk = min_t(unsigned int, rxm->full_len, len);
2018 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2019 	if (copied < 0)
2020 		goto splice_read_end;
2021 
2022 	tls_sw_advance_skb(sk, skb, copied);
2023 
2024 splice_read_end:
2025 	release_sock(sk);
2026 	return copied ? : err;
2027 }
2028 
2029 bool tls_sw_stream_read(const struct sock *sk)
2030 {
2031 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2032 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2033 	bool ingress_empty = true;
2034 	struct sk_psock *psock;
2035 
2036 	rcu_read_lock();
2037 	psock = sk_psock(sk);
2038 	if (psock)
2039 		ingress_empty = list_empty(&psock->ingress_msg);
2040 	rcu_read_unlock();
2041 
2042 	return !ingress_empty || ctx->recv_pkt ||
2043 		!skb_queue_empty(&ctx->rx_list);
2044 }
2045 
2046 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2047 {
2048 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2049 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2051 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2052 	struct strp_msg *rxm = strp_msg(skb);
2053 	size_t cipher_overhead;
2054 	size_t data_len = 0;
2055 	int ret;
2056 
2057 	/* Verify that we have a full TLS header, or wait for more data */
2058 	if (rxm->offset + prot->prepend_size > skb->len)
2059 		return 0;
2060 
2061 	/* Sanity-check size of on-stack buffer. */
2062 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2063 		ret = -EINVAL;
2064 		goto read_failure;
2065 	}
2066 
2067 	/* Linearize header to local buffer */
2068 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2069 
2070 	if (ret < 0)
2071 		goto read_failure;
2072 
2073 	ctx->control = header[0];
2074 
2075 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2076 
2077 	cipher_overhead = prot->tag_size;
2078 	if (prot->version != TLS_1_3_VERSION &&
2079 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2080 		cipher_overhead += prot->iv_size;
2081 
2082 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2083 	    prot->tail_size) {
2084 		ret = -EMSGSIZE;
2085 		goto read_failure;
2086 	}
2087 	if (data_len < cipher_overhead) {
2088 		ret = -EBADMSG;
2089 		goto read_failure;
2090 	}
2091 
2092 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2093 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2094 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2095 		ret = -EINVAL;
2096 		goto read_failure;
2097 	}
2098 
2099 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2100 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2101 	return data_len + TLS_HEADER_SIZE;
2102 
2103 read_failure:
2104 	tls_err_abort(strp->sk, ret);
2105 
2106 	return ret;
2107 }
2108 
2109 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2110 {
2111 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2112 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113 
2114 	ctx->decrypted = 0;
2115 
2116 	ctx->recv_pkt = skb;
2117 	strp_pause(strp);
2118 
2119 	ctx->saved_data_ready(strp->sk);
2120 }
2121 
2122 static void tls_data_ready(struct sock *sk)
2123 {
2124 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2125 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126 	struct sk_psock *psock;
2127 
2128 	strp_data_ready(&ctx->strp);
2129 
2130 	psock = sk_psock_get(sk);
2131 	if (psock) {
2132 		if (!list_empty(&psock->ingress_msg))
2133 			ctx->saved_data_ready(sk);
2134 		sk_psock_put(sk, psock);
2135 	}
2136 }
2137 
2138 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2139 {
2140 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141 
2142 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2143 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2144 	cancel_delayed_work_sync(&ctx->tx_work.work);
2145 }
2146 
2147 void tls_sw_release_resources_tx(struct sock *sk)
2148 {
2149 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2150 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151 	struct tls_rec *rec, *tmp;
2152 	int pending;
2153 
2154 	/* Wait for any pending async encryptions to complete */
2155 	spin_lock_bh(&ctx->encrypt_compl_lock);
2156 	ctx->async_notify = true;
2157 	pending = atomic_read(&ctx->encrypt_pending);
2158 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2159 
2160 	if (pending)
2161 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2162 
2163 	tls_tx_records(sk, -1);
2164 
2165 	/* Free up un-sent records in tx_list. First, free
2166 	 * the partially sent record if any at head of tx_list.
2167 	 */
2168 	if (tls_ctx->partially_sent_record) {
2169 		tls_free_partial_record(sk, tls_ctx);
2170 		rec = list_first_entry(&ctx->tx_list,
2171 				       struct tls_rec, list);
2172 		list_del(&rec->list);
2173 		sk_msg_free(sk, &rec->msg_plaintext);
2174 		kfree(rec);
2175 	}
2176 
2177 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2178 		list_del(&rec->list);
2179 		sk_msg_free(sk, &rec->msg_encrypted);
2180 		sk_msg_free(sk, &rec->msg_plaintext);
2181 		kfree(rec);
2182 	}
2183 
2184 	crypto_free_aead(ctx->aead_send);
2185 	tls_free_open_rec(sk);
2186 }
2187 
2188 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2189 {
2190 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2191 
2192 	kfree(ctx);
2193 }
2194 
2195 void tls_sw_release_resources_rx(struct sock *sk)
2196 {
2197 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2198 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2199 
2200 	kfree(tls_ctx->rx.rec_seq);
2201 	kfree(tls_ctx->rx.iv);
2202 
2203 	if (ctx->aead_recv) {
2204 		kfree_skb(ctx->recv_pkt);
2205 		ctx->recv_pkt = NULL;
2206 		skb_queue_purge(&ctx->rx_list);
2207 		crypto_free_aead(ctx->aead_recv);
2208 		strp_stop(&ctx->strp);
2209 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2210 		 * we still want to strp_stop(), but sk->sk_data_ready was
2211 		 * never swapped.
2212 		 */
2213 		if (ctx->saved_data_ready) {
2214 			write_lock_bh(&sk->sk_callback_lock);
2215 			sk->sk_data_ready = ctx->saved_data_ready;
2216 			write_unlock_bh(&sk->sk_callback_lock);
2217 		}
2218 	}
2219 }
2220 
2221 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2222 {
2223 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224 
2225 	strp_done(&ctx->strp);
2226 }
2227 
2228 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2229 {
2230 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231 
2232 	kfree(ctx);
2233 }
2234 
2235 void tls_sw_free_resources_rx(struct sock *sk)
2236 {
2237 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2238 
2239 	tls_sw_release_resources_rx(sk);
2240 	tls_sw_free_ctx_rx(tls_ctx);
2241 }
2242 
2243 /* The work handler to transmitt the encrypted records in tx_list */
2244 static void tx_work_handler(struct work_struct *work)
2245 {
2246 	struct delayed_work *delayed_work = to_delayed_work(work);
2247 	struct tx_work *tx_work = container_of(delayed_work,
2248 					       struct tx_work, work);
2249 	struct sock *sk = tx_work->sk;
2250 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2251 	struct tls_sw_context_tx *ctx;
2252 
2253 	if (unlikely(!tls_ctx))
2254 		return;
2255 
2256 	ctx = tls_sw_ctx_tx(tls_ctx);
2257 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2258 		return;
2259 
2260 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2261 		return;
2262 	mutex_lock(&tls_ctx->tx_lock);
2263 	lock_sock(sk);
2264 	tls_tx_records(sk, -1);
2265 	release_sock(sk);
2266 	mutex_unlock(&tls_ctx->tx_lock);
2267 }
2268 
2269 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2270 {
2271 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2272 
2273 	/* Schedule the transmission if tx list is ready */
2274 	if (is_tx_ready(tx_ctx) &&
2275 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2276 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2277 }
2278 
2279 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2280 {
2281 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2282 
2283 	write_lock_bh(&sk->sk_callback_lock);
2284 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2285 	sk->sk_data_ready = tls_data_ready;
2286 	write_unlock_bh(&sk->sk_callback_lock);
2287 
2288 	strp_check_rcv(&rx_ctx->strp);
2289 }
2290 
2291 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2292 {
2293 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2294 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2295 	struct tls_crypto_info *crypto_info;
2296 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2297 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2298 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2299 	struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2300 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2301 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2302 	struct cipher_context *cctx;
2303 	struct crypto_aead **aead;
2304 	struct strp_callbacks cb;
2305 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2306 	struct crypto_tfm *tfm;
2307 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2308 	size_t keysize;
2309 	int rc = 0;
2310 
2311 	if (!ctx) {
2312 		rc = -EINVAL;
2313 		goto out;
2314 	}
2315 
2316 	if (tx) {
2317 		if (!ctx->priv_ctx_tx) {
2318 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2319 			if (!sw_ctx_tx) {
2320 				rc = -ENOMEM;
2321 				goto out;
2322 			}
2323 			ctx->priv_ctx_tx = sw_ctx_tx;
2324 		} else {
2325 			sw_ctx_tx =
2326 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2327 		}
2328 	} else {
2329 		if (!ctx->priv_ctx_rx) {
2330 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2331 			if (!sw_ctx_rx) {
2332 				rc = -ENOMEM;
2333 				goto out;
2334 			}
2335 			ctx->priv_ctx_rx = sw_ctx_rx;
2336 		} else {
2337 			sw_ctx_rx =
2338 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2339 		}
2340 	}
2341 
2342 	if (tx) {
2343 		crypto_init_wait(&sw_ctx_tx->async_wait);
2344 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2345 		crypto_info = &ctx->crypto_send.info;
2346 		cctx = &ctx->tx;
2347 		aead = &sw_ctx_tx->aead_send;
2348 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2349 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2350 		sw_ctx_tx->tx_work.sk = sk;
2351 	} else {
2352 		crypto_init_wait(&sw_ctx_rx->async_wait);
2353 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2354 		crypto_info = &ctx->crypto_recv.info;
2355 		cctx = &ctx->rx;
2356 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2357 		aead = &sw_ctx_rx->aead_recv;
2358 	}
2359 
2360 	switch (crypto_info->cipher_type) {
2361 	case TLS_CIPHER_AES_GCM_128: {
2362 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2363 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2364 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2365 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2366 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2367 		rec_seq =
2368 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2369 		gcm_128_info =
2370 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2371 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2372 		key = gcm_128_info->key;
2373 		salt = gcm_128_info->salt;
2374 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2375 		cipher_name = "gcm(aes)";
2376 		break;
2377 	}
2378 	case TLS_CIPHER_AES_GCM_256: {
2379 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2380 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2381 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2382 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2383 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2384 		rec_seq =
2385 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2386 		gcm_256_info =
2387 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2388 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2389 		key = gcm_256_info->key;
2390 		salt = gcm_256_info->salt;
2391 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2392 		cipher_name = "gcm(aes)";
2393 		break;
2394 	}
2395 	case TLS_CIPHER_AES_CCM_128: {
2396 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2397 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2398 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2399 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2400 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2401 		rec_seq =
2402 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2403 		ccm_128_info =
2404 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2405 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2406 		key = ccm_128_info->key;
2407 		salt = ccm_128_info->salt;
2408 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2409 		cipher_name = "ccm(aes)";
2410 		break;
2411 	}
2412 	case TLS_CIPHER_CHACHA20_POLY1305: {
2413 		chacha20_poly1305_info = (void *)crypto_info;
2414 		nonce_size = 0;
2415 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2416 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2417 		iv = chacha20_poly1305_info->iv;
2418 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2419 		rec_seq = chacha20_poly1305_info->rec_seq;
2420 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2421 		key = chacha20_poly1305_info->key;
2422 		salt = chacha20_poly1305_info->salt;
2423 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2424 		cipher_name = "rfc7539(chacha20,poly1305)";
2425 		break;
2426 	}
2427 	default:
2428 		rc = -EINVAL;
2429 		goto free_priv;
2430 	}
2431 
2432 	/* Sanity-check the sizes for stack allocations. */
2433 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2434 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2435 		rc = -EINVAL;
2436 		goto free_priv;
2437 	}
2438 
2439 	if (crypto_info->version == TLS_1_3_VERSION) {
2440 		nonce_size = 0;
2441 		prot->aad_size = TLS_HEADER_SIZE;
2442 		prot->tail_size = 1;
2443 	} else {
2444 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2445 		prot->tail_size = 0;
2446 	}
2447 
2448 	prot->version = crypto_info->version;
2449 	prot->cipher_type = crypto_info->cipher_type;
2450 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2451 	prot->tag_size = tag_size;
2452 	prot->overhead_size = prot->prepend_size +
2453 			      prot->tag_size + prot->tail_size;
2454 	prot->iv_size = iv_size;
2455 	prot->salt_size = salt_size;
2456 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2457 	if (!cctx->iv) {
2458 		rc = -ENOMEM;
2459 		goto free_priv;
2460 	}
2461 	/* Note: 128 & 256 bit salt are the same size */
2462 	prot->rec_seq_size = rec_seq_size;
2463 	memcpy(cctx->iv, salt, salt_size);
2464 	memcpy(cctx->iv + salt_size, iv, iv_size);
2465 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2466 	if (!cctx->rec_seq) {
2467 		rc = -ENOMEM;
2468 		goto free_iv;
2469 	}
2470 
2471 	if (!*aead) {
2472 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2473 		if (IS_ERR(*aead)) {
2474 			rc = PTR_ERR(*aead);
2475 			*aead = NULL;
2476 			goto free_rec_seq;
2477 		}
2478 	}
2479 
2480 	ctx->push_pending_record = tls_sw_push_pending_record;
2481 
2482 	rc = crypto_aead_setkey(*aead, key, keysize);
2483 
2484 	if (rc)
2485 		goto free_aead;
2486 
2487 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2488 	if (rc)
2489 		goto free_aead;
2490 
2491 	if (sw_ctx_rx) {
2492 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2493 
2494 		if (crypto_info->version == TLS_1_3_VERSION)
2495 			sw_ctx_rx->async_capable = 0;
2496 		else
2497 			sw_ctx_rx->async_capable =
2498 				!!(tfm->__crt_alg->cra_flags &
2499 				   CRYPTO_ALG_ASYNC);
2500 
2501 		/* Set up strparser */
2502 		memset(&cb, 0, sizeof(cb));
2503 		cb.rcv_msg = tls_queue;
2504 		cb.parse_msg = tls_read_size;
2505 
2506 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2507 	}
2508 
2509 	goto out;
2510 
2511 free_aead:
2512 	crypto_free_aead(*aead);
2513 	*aead = NULL;
2514 free_rec_seq:
2515 	kfree(cctx->rec_seq);
2516 	cctx->rec_seq = NULL;
2517 free_iv:
2518 	kfree(cctx->iv);
2519 	cctx->iv = NULL;
2520 free_priv:
2521 	if (tx) {
2522 		kfree(ctx->priv_ctx_tx);
2523 		ctx->priv_ctx_tx = NULL;
2524 	} else {
2525 		kfree(ctx->priv_ctx_rx);
2526 		ctx->priv_ctx_rx = NULL;
2527 	}
2528 out:
2529 	return rc;
2530 }
2531