1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 pending = atomic_dec_return(&ctx->decrypt_pending); 210 211 if (!pending && READ_ONCE(ctx->async_notify)) 212 complete(&ctx->async_wait.completion); 213 } 214 215 static int tls_do_decryption(struct sock *sk, 216 struct sk_buff *skb, 217 struct scatterlist *sgin, 218 struct scatterlist *sgout, 219 char *iv_recv, 220 size_t data_len, 221 struct aead_request *aead_req, 222 bool async) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 struct tls_prot_info *prot = &tls_ctx->prot_info; 226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 227 int ret; 228 229 aead_request_set_tfm(aead_req, ctx->aead_recv); 230 aead_request_set_ad(aead_req, prot->aad_size); 231 aead_request_set_crypt(aead_req, sgin, sgout, 232 data_len + prot->tag_size, 233 (u8 *)iv_recv); 234 235 if (async) { 236 /* Using skb->sk to push sk through to crypto async callback 237 * handler. This allows propagating errors up to the socket 238 * if needed. It _must_ be cleared in the async handler 239 * before consume_skb is called. We _know_ skb->sk is NULL 240 * because it is a clone from strparser. 241 */ 242 skb->sk = sk; 243 aead_request_set_callback(aead_req, 244 CRYPTO_TFM_REQ_MAY_BACKLOG, 245 tls_decrypt_done, skb); 246 atomic_inc(&ctx->decrypt_pending); 247 } else { 248 aead_request_set_callback(aead_req, 249 CRYPTO_TFM_REQ_MAY_BACKLOG, 250 crypto_req_done, &ctx->async_wait); 251 } 252 253 ret = crypto_aead_decrypt(aead_req); 254 if (ret == -EINPROGRESS) { 255 if (async) 256 return ret; 257 258 ret = crypto_wait_req(ret, &ctx->async_wait); 259 } else if (ret == -EBADMSG) { 260 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 pending = atomic_dec_return(&ctx->encrypt_pending); 473 474 if (!pending && READ_ONCE(ctx->async_notify)) 475 complete(&ctx->async_wait.completion); 476 477 if (!ready) 478 return; 479 480 /* Schedule the transmission */ 481 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 482 schedule_delayed_work(&ctx->tx_work.work, 1); 483 } 484 485 static int tls_do_encryption(struct sock *sk, 486 struct tls_context *tls_ctx, 487 struct tls_sw_context_tx *ctx, 488 struct aead_request *aead_req, 489 size_t data_len, u32 start) 490 { 491 struct tls_prot_info *prot = &tls_ctx->prot_info; 492 struct tls_rec *rec = ctx->open_rec; 493 struct sk_msg *msg_en = &rec->msg_encrypted; 494 struct scatterlist *sge = sk_msg_elem(msg_en, start); 495 int rc, iv_offset = 0; 496 497 /* For CCM based ciphers, first byte of IV is a constant */ 498 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 499 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 500 iv_offset = 1; 501 } 502 503 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 504 prot->iv_size + prot->salt_size); 505 506 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 507 508 sge->offset += prot->prepend_size; 509 sge->length -= prot->prepend_size; 510 511 msg_en->sg.curr = start; 512 513 aead_request_set_tfm(aead_req, ctx->aead_send); 514 aead_request_set_ad(aead_req, prot->aad_size); 515 aead_request_set_crypt(aead_req, rec->sg_aead_in, 516 rec->sg_aead_out, 517 data_len, rec->iv_data); 518 519 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 520 tls_encrypt_done, sk); 521 522 /* Add the record in tx_list */ 523 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 524 atomic_inc(&ctx->encrypt_pending); 525 526 rc = crypto_aead_encrypt(aead_req); 527 if (!rc || rc != -EINPROGRESS) { 528 atomic_dec(&ctx->encrypt_pending); 529 sge->offset -= prot->prepend_size; 530 sge->length += prot->prepend_size; 531 } 532 533 if (!rc) { 534 WRITE_ONCE(rec->tx_ready, true); 535 } else if (rc != -EINPROGRESS) { 536 list_del(&rec->list); 537 return rc; 538 } 539 540 /* Unhook the record from context if encryption is not failure */ 541 ctx->open_rec = NULL; 542 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 543 return rc; 544 } 545 546 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 547 struct tls_rec **to, struct sk_msg *msg_opl, 548 struct sk_msg *msg_oen, u32 split_point, 549 u32 tx_overhead_size, u32 *orig_end) 550 { 551 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 552 struct scatterlist *sge, *osge, *nsge; 553 u32 orig_size = msg_opl->sg.size; 554 struct scatterlist tmp = { }; 555 struct sk_msg *msg_npl; 556 struct tls_rec *new; 557 int ret; 558 559 new = tls_get_rec(sk); 560 if (!new) 561 return -ENOMEM; 562 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 563 tx_overhead_size, 0); 564 if (ret < 0) { 565 tls_free_rec(sk, new); 566 return ret; 567 } 568 569 *orig_end = msg_opl->sg.end; 570 i = msg_opl->sg.start; 571 sge = sk_msg_elem(msg_opl, i); 572 while (apply && sge->length) { 573 if (sge->length > apply) { 574 u32 len = sge->length - apply; 575 576 get_page(sg_page(sge)); 577 sg_set_page(&tmp, sg_page(sge), len, 578 sge->offset + apply); 579 sge->length = apply; 580 bytes += apply; 581 apply = 0; 582 } else { 583 apply -= sge->length; 584 bytes += sge->length; 585 } 586 587 sk_msg_iter_var_next(i); 588 if (i == msg_opl->sg.end) 589 break; 590 sge = sk_msg_elem(msg_opl, i); 591 } 592 593 msg_opl->sg.end = i; 594 msg_opl->sg.curr = i; 595 msg_opl->sg.copybreak = 0; 596 msg_opl->apply_bytes = 0; 597 msg_opl->sg.size = bytes; 598 599 msg_npl = &new->msg_plaintext; 600 msg_npl->apply_bytes = apply; 601 msg_npl->sg.size = orig_size - bytes; 602 603 j = msg_npl->sg.start; 604 nsge = sk_msg_elem(msg_npl, j); 605 if (tmp.length) { 606 memcpy(nsge, &tmp, sizeof(*nsge)); 607 sk_msg_iter_var_next(j); 608 nsge = sk_msg_elem(msg_npl, j); 609 } 610 611 osge = sk_msg_elem(msg_opl, i); 612 while (osge->length) { 613 memcpy(nsge, osge, sizeof(*nsge)); 614 sg_unmark_end(nsge); 615 sk_msg_iter_var_next(i); 616 sk_msg_iter_var_next(j); 617 if (i == *orig_end) 618 break; 619 osge = sk_msg_elem(msg_opl, i); 620 nsge = sk_msg_elem(msg_npl, j); 621 } 622 623 msg_npl->sg.end = j; 624 msg_npl->sg.curr = j; 625 msg_npl->sg.copybreak = 0; 626 627 *to = new; 628 return 0; 629 } 630 631 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 632 struct tls_rec *from, u32 orig_end) 633 { 634 struct sk_msg *msg_npl = &from->msg_plaintext; 635 struct sk_msg *msg_opl = &to->msg_plaintext; 636 struct scatterlist *osge, *nsge; 637 u32 i, j; 638 639 i = msg_opl->sg.end; 640 sk_msg_iter_var_prev(i); 641 j = msg_npl->sg.start; 642 643 osge = sk_msg_elem(msg_opl, i); 644 nsge = sk_msg_elem(msg_npl, j); 645 646 if (sg_page(osge) == sg_page(nsge) && 647 osge->offset + osge->length == nsge->offset) { 648 osge->length += nsge->length; 649 put_page(sg_page(nsge)); 650 } 651 652 msg_opl->sg.end = orig_end; 653 msg_opl->sg.curr = orig_end; 654 msg_opl->sg.copybreak = 0; 655 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 656 msg_opl->sg.size += msg_npl->sg.size; 657 658 sk_msg_free(sk, &to->msg_encrypted); 659 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 660 661 kfree(from); 662 } 663 664 static int tls_push_record(struct sock *sk, int flags, 665 unsigned char record_type) 666 { 667 struct tls_context *tls_ctx = tls_get_ctx(sk); 668 struct tls_prot_info *prot = &tls_ctx->prot_info; 669 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 670 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 671 u32 i, split_point, uninitialized_var(orig_end); 672 struct sk_msg *msg_pl, *msg_en; 673 struct aead_request *req; 674 bool split; 675 int rc; 676 677 if (!rec) 678 return 0; 679 680 msg_pl = &rec->msg_plaintext; 681 msg_en = &rec->msg_encrypted; 682 683 split_point = msg_pl->apply_bytes; 684 split = split_point && split_point < msg_pl->sg.size; 685 if (split) { 686 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 687 split_point, prot->overhead_size, 688 &orig_end); 689 if (rc < 0) 690 return rc; 691 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 692 prot->overhead_size); 693 } 694 695 rec->tx_flags = flags; 696 req = &rec->aead_req; 697 698 i = msg_pl->sg.end; 699 sk_msg_iter_var_prev(i); 700 701 rec->content_type = record_type; 702 if (prot->version == TLS_1_3_VERSION) { 703 /* Add content type to end of message. No padding added */ 704 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 705 sg_mark_end(&rec->sg_content_type); 706 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 707 &rec->sg_content_type); 708 } else { 709 sg_mark_end(sk_msg_elem(msg_pl, i)); 710 } 711 712 i = msg_pl->sg.start; 713 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 714 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 715 716 i = msg_en->sg.end; 717 sk_msg_iter_var_prev(i); 718 sg_mark_end(sk_msg_elem(msg_en, i)); 719 720 i = msg_en->sg.start; 721 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 722 723 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 724 tls_ctx->tx.rec_seq, prot->rec_seq_size, 725 record_type, prot->version); 726 727 tls_fill_prepend(tls_ctx, 728 page_address(sg_page(&msg_en->sg.data[i])) + 729 msg_en->sg.data[i].offset, 730 msg_pl->sg.size + prot->tail_size, 731 record_type, prot->version); 732 733 tls_ctx->pending_open_record_frags = false; 734 735 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 736 msg_pl->sg.size + prot->tail_size, i); 737 if (rc < 0) { 738 if (rc != -EINPROGRESS) { 739 tls_err_abort(sk, EBADMSG); 740 if (split) { 741 tls_ctx->pending_open_record_frags = true; 742 tls_merge_open_record(sk, rec, tmp, orig_end); 743 } 744 } 745 ctx->async_capable = 1; 746 return rc; 747 } else if (split) { 748 msg_pl = &tmp->msg_plaintext; 749 msg_en = &tmp->msg_encrypted; 750 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 751 tls_ctx->pending_open_record_frags = true; 752 ctx->open_rec = tmp; 753 } 754 755 return tls_tx_records(sk, flags); 756 } 757 758 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 759 bool full_record, u8 record_type, 760 size_t *copied, int flags) 761 { 762 struct tls_context *tls_ctx = tls_get_ctx(sk); 763 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 764 struct sk_msg msg_redir = { }; 765 struct sk_psock *psock; 766 struct sock *sk_redir; 767 struct tls_rec *rec; 768 bool enospc, policy; 769 int err = 0, send; 770 u32 delta = 0; 771 772 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 773 psock = sk_psock_get(sk); 774 if (!psock || !policy) 775 return tls_push_record(sk, flags, record_type); 776 more_data: 777 enospc = sk_msg_full(msg); 778 if (psock->eval == __SK_NONE) { 779 delta = msg->sg.size; 780 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 781 if (delta < msg->sg.size) 782 delta -= msg->sg.size; 783 else 784 delta = 0; 785 } 786 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 787 !enospc && !full_record) { 788 err = -ENOSPC; 789 goto out_err; 790 } 791 msg->cork_bytes = 0; 792 send = msg->sg.size; 793 if (msg->apply_bytes && msg->apply_bytes < send) 794 send = msg->apply_bytes; 795 796 switch (psock->eval) { 797 case __SK_PASS: 798 err = tls_push_record(sk, flags, record_type); 799 if (err < 0) { 800 *copied -= sk_msg_free(sk, msg); 801 tls_free_open_rec(sk); 802 goto out_err; 803 } 804 break; 805 case __SK_REDIRECT: 806 sk_redir = psock->sk_redir; 807 memcpy(&msg_redir, msg, sizeof(*msg)); 808 if (msg->apply_bytes < send) 809 msg->apply_bytes = 0; 810 else 811 msg->apply_bytes -= send; 812 sk_msg_return_zero(sk, msg, send); 813 msg->sg.size -= send; 814 release_sock(sk); 815 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 816 lock_sock(sk); 817 if (err < 0) { 818 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 819 msg->sg.size = 0; 820 } 821 if (msg->sg.size == 0) 822 tls_free_open_rec(sk); 823 break; 824 case __SK_DROP: 825 default: 826 sk_msg_free_partial(sk, msg, send); 827 if (msg->apply_bytes < send) 828 msg->apply_bytes = 0; 829 else 830 msg->apply_bytes -= send; 831 if (msg->sg.size == 0) 832 tls_free_open_rec(sk); 833 *copied -= (send + delta); 834 err = -EACCES; 835 } 836 837 if (likely(!err)) { 838 bool reset_eval = !ctx->open_rec; 839 840 rec = ctx->open_rec; 841 if (rec) { 842 msg = &rec->msg_plaintext; 843 if (!msg->apply_bytes) 844 reset_eval = true; 845 } 846 if (reset_eval) { 847 psock->eval = __SK_NONE; 848 if (psock->sk_redir) { 849 sock_put(psock->sk_redir); 850 psock->sk_redir = NULL; 851 } 852 } 853 if (rec) 854 goto more_data; 855 } 856 out_err: 857 sk_psock_put(sk, psock); 858 return err; 859 } 860 861 static int tls_sw_push_pending_record(struct sock *sk, int flags) 862 { 863 struct tls_context *tls_ctx = tls_get_ctx(sk); 864 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 865 struct tls_rec *rec = ctx->open_rec; 866 struct sk_msg *msg_pl; 867 size_t copied; 868 869 if (!rec) 870 return 0; 871 872 msg_pl = &rec->msg_plaintext; 873 copied = msg_pl->sg.size; 874 if (!copied) 875 return 0; 876 877 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 878 &copied, flags); 879 } 880 881 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 882 { 883 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 884 struct tls_context *tls_ctx = tls_get_ctx(sk); 885 struct tls_prot_info *prot = &tls_ctx->prot_info; 886 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 887 bool async_capable = ctx->async_capable; 888 unsigned char record_type = TLS_RECORD_TYPE_DATA; 889 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 890 bool eor = !(msg->msg_flags & MSG_MORE); 891 size_t try_to_copy, copied = 0; 892 struct sk_msg *msg_pl, *msg_en; 893 struct tls_rec *rec; 894 int required_size; 895 int num_async = 0; 896 bool full_record; 897 int record_room; 898 int num_zc = 0; 899 int orig_size; 900 int ret = 0; 901 902 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 903 return -ENOTSUPP; 904 905 mutex_lock(&tls_ctx->tx_lock); 906 lock_sock(sk); 907 908 if (unlikely(msg->msg_controllen)) { 909 ret = tls_proccess_cmsg(sk, msg, &record_type); 910 if (ret) { 911 if (ret == -EINPROGRESS) 912 num_async++; 913 else if (ret != -EAGAIN) 914 goto send_end; 915 } 916 } 917 918 while (msg_data_left(msg)) { 919 if (sk->sk_err) { 920 ret = -sk->sk_err; 921 goto send_end; 922 } 923 924 if (ctx->open_rec) 925 rec = ctx->open_rec; 926 else 927 rec = ctx->open_rec = tls_get_rec(sk); 928 if (!rec) { 929 ret = -ENOMEM; 930 goto send_end; 931 } 932 933 msg_pl = &rec->msg_plaintext; 934 msg_en = &rec->msg_encrypted; 935 936 orig_size = msg_pl->sg.size; 937 full_record = false; 938 try_to_copy = msg_data_left(msg); 939 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 940 if (try_to_copy >= record_room) { 941 try_to_copy = record_room; 942 full_record = true; 943 } 944 945 required_size = msg_pl->sg.size + try_to_copy + 946 prot->overhead_size; 947 948 if (!sk_stream_memory_free(sk)) 949 goto wait_for_sndbuf; 950 951 alloc_encrypted: 952 ret = tls_alloc_encrypted_msg(sk, required_size); 953 if (ret) { 954 if (ret != -ENOSPC) 955 goto wait_for_memory; 956 957 /* Adjust try_to_copy according to the amount that was 958 * actually allocated. The difference is due 959 * to max sg elements limit 960 */ 961 try_to_copy -= required_size - msg_en->sg.size; 962 full_record = true; 963 } 964 965 if (!is_kvec && (full_record || eor) && !async_capable) { 966 u32 first = msg_pl->sg.end; 967 968 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 969 msg_pl, try_to_copy); 970 if (ret) 971 goto fallback_to_reg_send; 972 973 rec->inplace_crypto = 0; 974 975 num_zc++; 976 copied += try_to_copy; 977 978 sk_msg_sg_copy_set(msg_pl, first); 979 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 980 record_type, &copied, 981 msg->msg_flags); 982 if (ret) { 983 if (ret == -EINPROGRESS) 984 num_async++; 985 else if (ret == -ENOMEM) 986 goto wait_for_memory; 987 else if (ret == -ENOSPC) 988 goto rollback_iter; 989 else if (ret != -EAGAIN) 990 goto send_end; 991 } 992 continue; 993 rollback_iter: 994 copied -= try_to_copy; 995 sk_msg_sg_copy_clear(msg_pl, first); 996 iov_iter_revert(&msg->msg_iter, 997 msg_pl->sg.size - orig_size); 998 fallback_to_reg_send: 999 sk_msg_trim(sk, msg_pl, orig_size); 1000 } 1001 1002 required_size = msg_pl->sg.size + try_to_copy; 1003 1004 ret = tls_clone_plaintext_msg(sk, required_size); 1005 if (ret) { 1006 if (ret != -ENOSPC) 1007 goto send_end; 1008 1009 /* Adjust try_to_copy according to the amount that was 1010 * actually allocated. The difference is due 1011 * to max sg elements limit 1012 */ 1013 try_to_copy -= required_size - msg_pl->sg.size; 1014 full_record = true; 1015 sk_msg_trim(sk, msg_en, 1016 msg_pl->sg.size + prot->overhead_size); 1017 } 1018 1019 if (try_to_copy) { 1020 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1021 msg_pl, try_to_copy); 1022 if (ret < 0) 1023 goto trim_sgl; 1024 } 1025 1026 /* Open records defined only if successfully copied, otherwise 1027 * we would trim the sg but not reset the open record frags. 1028 */ 1029 tls_ctx->pending_open_record_frags = true; 1030 copied += try_to_copy; 1031 if (full_record || eor) { 1032 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1033 record_type, &copied, 1034 msg->msg_flags); 1035 if (ret) { 1036 if (ret == -EINPROGRESS) 1037 num_async++; 1038 else if (ret == -ENOMEM) 1039 goto wait_for_memory; 1040 else if (ret != -EAGAIN) { 1041 if (ret == -ENOSPC) 1042 ret = 0; 1043 goto send_end; 1044 } 1045 } 1046 } 1047 1048 continue; 1049 1050 wait_for_sndbuf: 1051 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1052 wait_for_memory: 1053 ret = sk_stream_wait_memory(sk, &timeo); 1054 if (ret) { 1055 trim_sgl: 1056 tls_trim_both_msgs(sk, orig_size); 1057 goto send_end; 1058 } 1059 1060 if (msg_en->sg.size < required_size) 1061 goto alloc_encrypted; 1062 } 1063 1064 if (!num_async) { 1065 goto send_end; 1066 } else if (num_zc) { 1067 /* Wait for pending encryptions to get completed */ 1068 smp_store_mb(ctx->async_notify, true); 1069 1070 if (atomic_read(&ctx->encrypt_pending)) 1071 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1072 else 1073 reinit_completion(&ctx->async_wait.completion); 1074 1075 WRITE_ONCE(ctx->async_notify, false); 1076 1077 if (ctx->async_wait.err) { 1078 ret = ctx->async_wait.err; 1079 copied = 0; 1080 } 1081 } 1082 1083 /* Transmit if any encryptions have completed */ 1084 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1085 cancel_delayed_work(&ctx->tx_work.work); 1086 tls_tx_records(sk, msg->msg_flags); 1087 } 1088 1089 send_end: 1090 ret = sk_stream_error(sk, msg->msg_flags, ret); 1091 1092 release_sock(sk); 1093 mutex_unlock(&tls_ctx->tx_lock); 1094 return copied ? copied : ret; 1095 } 1096 1097 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1098 int offset, size_t size, int flags) 1099 { 1100 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1101 struct tls_context *tls_ctx = tls_get_ctx(sk); 1102 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1103 struct tls_prot_info *prot = &tls_ctx->prot_info; 1104 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1105 struct sk_msg *msg_pl; 1106 struct tls_rec *rec; 1107 int num_async = 0; 1108 size_t copied = 0; 1109 bool full_record; 1110 int record_room; 1111 int ret = 0; 1112 bool eor; 1113 1114 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1115 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1116 1117 /* Call the sk_stream functions to manage the sndbuf mem. */ 1118 while (size > 0) { 1119 size_t copy, required_size; 1120 1121 if (sk->sk_err) { 1122 ret = -sk->sk_err; 1123 goto sendpage_end; 1124 } 1125 1126 if (ctx->open_rec) 1127 rec = ctx->open_rec; 1128 else 1129 rec = ctx->open_rec = tls_get_rec(sk); 1130 if (!rec) { 1131 ret = -ENOMEM; 1132 goto sendpage_end; 1133 } 1134 1135 msg_pl = &rec->msg_plaintext; 1136 1137 full_record = false; 1138 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1139 copy = size; 1140 if (copy >= record_room) { 1141 copy = record_room; 1142 full_record = true; 1143 } 1144 1145 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1146 1147 if (!sk_stream_memory_free(sk)) 1148 goto wait_for_sndbuf; 1149 alloc_payload: 1150 ret = tls_alloc_encrypted_msg(sk, required_size); 1151 if (ret) { 1152 if (ret != -ENOSPC) 1153 goto wait_for_memory; 1154 1155 /* Adjust copy according to the amount that was 1156 * actually allocated. The difference is due 1157 * to max sg elements limit 1158 */ 1159 copy -= required_size - msg_pl->sg.size; 1160 full_record = true; 1161 } 1162 1163 sk_msg_page_add(msg_pl, page, copy, offset); 1164 sk_mem_charge(sk, copy); 1165 1166 offset += copy; 1167 size -= copy; 1168 copied += copy; 1169 1170 tls_ctx->pending_open_record_frags = true; 1171 if (full_record || eor || sk_msg_full(msg_pl)) { 1172 rec->inplace_crypto = 0; 1173 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1174 record_type, &copied, flags); 1175 if (ret) { 1176 if (ret == -EINPROGRESS) 1177 num_async++; 1178 else if (ret == -ENOMEM) 1179 goto wait_for_memory; 1180 else if (ret != -EAGAIN) { 1181 if (ret == -ENOSPC) 1182 ret = 0; 1183 goto sendpage_end; 1184 } 1185 } 1186 } 1187 continue; 1188 wait_for_sndbuf: 1189 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1190 wait_for_memory: 1191 ret = sk_stream_wait_memory(sk, &timeo); 1192 if (ret) { 1193 tls_trim_both_msgs(sk, msg_pl->sg.size); 1194 goto sendpage_end; 1195 } 1196 1197 goto alloc_payload; 1198 } 1199 1200 if (num_async) { 1201 /* Transmit if any encryptions have completed */ 1202 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1203 cancel_delayed_work(&ctx->tx_work.work); 1204 tls_tx_records(sk, flags); 1205 } 1206 } 1207 sendpage_end: 1208 ret = sk_stream_error(sk, flags, ret); 1209 return copied ? copied : ret; 1210 } 1211 1212 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1213 int offset, size_t size, int flags) 1214 { 1215 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1216 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1217 MSG_NO_SHARED_FRAGS)) 1218 return -ENOTSUPP; 1219 1220 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1221 } 1222 1223 int tls_sw_sendpage(struct sock *sk, struct page *page, 1224 int offset, size_t size, int flags) 1225 { 1226 struct tls_context *tls_ctx = tls_get_ctx(sk); 1227 int ret; 1228 1229 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1230 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1231 return -ENOTSUPP; 1232 1233 mutex_lock(&tls_ctx->tx_lock); 1234 lock_sock(sk); 1235 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1236 release_sock(sk); 1237 mutex_unlock(&tls_ctx->tx_lock); 1238 return ret; 1239 } 1240 1241 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1242 int flags, long timeo, int *err) 1243 { 1244 struct tls_context *tls_ctx = tls_get_ctx(sk); 1245 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1246 struct sk_buff *skb; 1247 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1248 1249 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1250 if (sk->sk_err) { 1251 *err = sock_error(sk); 1252 return NULL; 1253 } 1254 1255 if (sk->sk_shutdown & RCV_SHUTDOWN) 1256 return NULL; 1257 1258 if (sock_flag(sk, SOCK_DONE)) 1259 return NULL; 1260 1261 if ((flags & MSG_DONTWAIT) || !timeo) { 1262 *err = -EAGAIN; 1263 return NULL; 1264 } 1265 1266 add_wait_queue(sk_sleep(sk), &wait); 1267 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1268 sk_wait_event(sk, &timeo, 1269 ctx->recv_pkt != skb || 1270 !sk_psock_queue_empty(psock), 1271 &wait); 1272 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1273 remove_wait_queue(sk_sleep(sk), &wait); 1274 1275 /* Handle signals */ 1276 if (signal_pending(current)) { 1277 *err = sock_intr_errno(timeo); 1278 return NULL; 1279 } 1280 } 1281 1282 return skb; 1283 } 1284 1285 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1286 int length, int *pages_used, 1287 unsigned int *size_used, 1288 struct scatterlist *to, 1289 int to_max_pages) 1290 { 1291 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1292 struct page *pages[MAX_SKB_FRAGS]; 1293 unsigned int size = *size_used; 1294 ssize_t copied, use; 1295 size_t offset; 1296 1297 while (length > 0) { 1298 i = 0; 1299 maxpages = to_max_pages - num_elem; 1300 if (maxpages == 0) { 1301 rc = -EFAULT; 1302 goto out; 1303 } 1304 copied = iov_iter_get_pages(from, pages, 1305 length, 1306 maxpages, &offset); 1307 if (copied <= 0) { 1308 rc = -EFAULT; 1309 goto out; 1310 } 1311 1312 iov_iter_advance(from, copied); 1313 1314 length -= copied; 1315 size += copied; 1316 while (copied) { 1317 use = min_t(int, copied, PAGE_SIZE - offset); 1318 1319 sg_set_page(&to[num_elem], 1320 pages[i], use, offset); 1321 sg_unmark_end(&to[num_elem]); 1322 /* We do not uncharge memory from this API */ 1323 1324 offset = 0; 1325 copied -= use; 1326 1327 i++; 1328 num_elem++; 1329 } 1330 } 1331 /* Mark the end in the last sg entry if newly added */ 1332 if (num_elem > *pages_used) 1333 sg_mark_end(&to[num_elem - 1]); 1334 out: 1335 if (rc) 1336 iov_iter_revert(from, size - *size_used); 1337 *size_used = size; 1338 *pages_used = num_elem; 1339 1340 return rc; 1341 } 1342 1343 /* This function decrypts the input skb into either out_iov or in out_sg 1344 * or in skb buffers itself. The input parameter 'zc' indicates if 1345 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1346 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1347 * NULL, then the decryption happens inside skb buffers itself, i.e. 1348 * zero-copy gets disabled and 'zc' is updated. 1349 */ 1350 1351 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1352 struct iov_iter *out_iov, 1353 struct scatterlist *out_sg, 1354 int *chunk, bool *zc, bool async) 1355 { 1356 struct tls_context *tls_ctx = tls_get_ctx(sk); 1357 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1358 struct tls_prot_info *prot = &tls_ctx->prot_info; 1359 struct strp_msg *rxm = strp_msg(skb); 1360 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1361 struct aead_request *aead_req; 1362 struct sk_buff *unused; 1363 u8 *aad, *iv, *mem = NULL; 1364 struct scatterlist *sgin = NULL; 1365 struct scatterlist *sgout = NULL; 1366 const int data_len = rxm->full_len - prot->overhead_size + 1367 prot->tail_size; 1368 int iv_offset = 0; 1369 1370 if (*zc && (out_iov || out_sg)) { 1371 if (out_iov) 1372 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1373 else 1374 n_sgout = sg_nents(out_sg); 1375 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1376 rxm->full_len - prot->prepend_size); 1377 } else { 1378 n_sgout = 0; 1379 *zc = false; 1380 n_sgin = skb_cow_data(skb, 0, &unused); 1381 } 1382 1383 if (n_sgin < 1) 1384 return -EBADMSG; 1385 1386 /* Increment to accommodate AAD */ 1387 n_sgin = n_sgin + 1; 1388 1389 nsg = n_sgin + n_sgout; 1390 1391 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1392 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1393 mem_size = mem_size + prot->aad_size; 1394 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1395 1396 /* Allocate a single block of memory which contains 1397 * aead_req || sgin[] || sgout[] || aad || iv. 1398 * This order achieves correct alignment for aead_req, sgin, sgout. 1399 */ 1400 mem = kmalloc(mem_size, sk->sk_allocation); 1401 if (!mem) 1402 return -ENOMEM; 1403 1404 /* Segment the allocated memory */ 1405 aead_req = (struct aead_request *)mem; 1406 sgin = (struct scatterlist *)(mem + aead_size); 1407 sgout = sgin + n_sgin; 1408 aad = (u8 *)(sgout + n_sgout); 1409 iv = aad + prot->aad_size; 1410 1411 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1412 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1413 iv[0] = 2; 1414 iv_offset = 1; 1415 } 1416 1417 /* Prepare IV */ 1418 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1419 iv + iv_offset + prot->salt_size, 1420 prot->iv_size); 1421 if (err < 0) { 1422 kfree(mem); 1423 return err; 1424 } 1425 if (prot->version == TLS_1_3_VERSION) 1426 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1427 crypto_aead_ivsize(ctx->aead_recv)); 1428 else 1429 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1430 1431 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1432 1433 /* Prepare AAD */ 1434 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1435 prot->tail_size, 1436 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1437 ctx->control, prot->version); 1438 1439 /* Prepare sgin */ 1440 sg_init_table(sgin, n_sgin); 1441 sg_set_buf(&sgin[0], aad, prot->aad_size); 1442 err = skb_to_sgvec(skb, &sgin[1], 1443 rxm->offset + prot->prepend_size, 1444 rxm->full_len - prot->prepend_size); 1445 if (err < 0) { 1446 kfree(mem); 1447 return err; 1448 } 1449 1450 if (n_sgout) { 1451 if (out_iov) { 1452 sg_init_table(sgout, n_sgout); 1453 sg_set_buf(&sgout[0], aad, prot->aad_size); 1454 1455 *chunk = 0; 1456 err = tls_setup_from_iter(sk, out_iov, data_len, 1457 &pages, chunk, &sgout[1], 1458 (n_sgout - 1)); 1459 if (err < 0) 1460 goto fallback_to_reg_recv; 1461 } else if (out_sg) { 1462 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1463 } else { 1464 goto fallback_to_reg_recv; 1465 } 1466 } else { 1467 fallback_to_reg_recv: 1468 sgout = sgin; 1469 pages = 0; 1470 *chunk = data_len; 1471 *zc = false; 1472 } 1473 1474 /* Prepare and submit AEAD request */ 1475 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1476 data_len, aead_req, async); 1477 if (err == -EINPROGRESS) 1478 return err; 1479 1480 /* Release the pages in case iov was mapped to pages */ 1481 for (; pages > 0; pages--) 1482 put_page(sg_page(&sgout[pages])); 1483 1484 kfree(mem); 1485 return err; 1486 } 1487 1488 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1489 struct iov_iter *dest, int *chunk, bool *zc, 1490 bool async) 1491 { 1492 struct tls_context *tls_ctx = tls_get_ctx(sk); 1493 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1494 struct tls_prot_info *prot = &tls_ctx->prot_info; 1495 struct strp_msg *rxm = strp_msg(skb); 1496 int pad, err = 0; 1497 1498 if (!ctx->decrypted) { 1499 if (tls_ctx->rx_conf == TLS_HW) { 1500 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1501 if (err < 0) 1502 return err; 1503 } 1504 1505 /* Still not decrypted after tls_device */ 1506 if (!ctx->decrypted) { 1507 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1508 async); 1509 if (err < 0) { 1510 if (err == -EINPROGRESS) 1511 tls_advance_record_sn(sk, prot, 1512 &tls_ctx->rx); 1513 1514 return err; 1515 } 1516 } else { 1517 *zc = false; 1518 } 1519 1520 pad = padding_length(ctx, prot, skb); 1521 if (pad < 0) 1522 return pad; 1523 1524 rxm->full_len -= pad; 1525 rxm->offset += prot->prepend_size; 1526 rxm->full_len -= prot->overhead_size; 1527 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1528 ctx->decrypted = 1; 1529 ctx->saved_data_ready(sk); 1530 } else { 1531 *zc = false; 1532 } 1533 1534 return err; 1535 } 1536 1537 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1538 struct scatterlist *sgout) 1539 { 1540 bool zc = true; 1541 int chunk; 1542 1543 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1544 } 1545 1546 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1547 unsigned int len) 1548 { 1549 struct tls_context *tls_ctx = tls_get_ctx(sk); 1550 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1551 1552 if (skb) { 1553 struct strp_msg *rxm = strp_msg(skb); 1554 1555 if (len < rxm->full_len) { 1556 rxm->offset += len; 1557 rxm->full_len -= len; 1558 return false; 1559 } 1560 consume_skb(skb); 1561 } 1562 1563 /* Finished with message */ 1564 ctx->recv_pkt = NULL; 1565 __strp_unpause(&ctx->strp); 1566 1567 return true; 1568 } 1569 1570 /* This function traverses the rx_list in tls receive context to copies the 1571 * decrypted records into the buffer provided by caller zero copy is not 1572 * true. Further, the records are removed from the rx_list if it is not a peek 1573 * case and the record has been consumed completely. 1574 */ 1575 static int process_rx_list(struct tls_sw_context_rx *ctx, 1576 struct msghdr *msg, 1577 u8 *control, 1578 bool *cmsg, 1579 size_t skip, 1580 size_t len, 1581 bool zc, 1582 bool is_peek) 1583 { 1584 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1585 u8 ctrl = *control; 1586 u8 msgc = *cmsg; 1587 struct tls_msg *tlm; 1588 ssize_t copied = 0; 1589 1590 /* Set the record type in 'control' if caller didn't pass it */ 1591 if (!ctrl && skb) { 1592 tlm = tls_msg(skb); 1593 ctrl = tlm->control; 1594 } 1595 1596 while (skip && skb) { 1597 struct strp_msg *rxm = strp_msg(skb); 1598 tlm = tls_msg(skb); 1599 1600 /* Cannot process a record of different type */ 1601 if (ctrl != tlm->control) 1602 return 0; 1603 1604 if (skip < rxm->full_len) 1605 break; 1606 1607 skip = skip - rxm->full_len; 1608 skb = skb_peek_next(skb, &ctx->rx_list); 1609 } 1610 1611 while (len && skb) { 1612 struct sk_buff *next_skb; 1613 struct strp_msg *rxm = strp_msg(skb); 1614 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1615 1616 tlm = tls_msg(skb); 1617 1618 /* Cannot process a record of different type */ 1619 if (ctrl != tlm->control) 1620 return 0; 1621 1622 /* Set record type if not already done. For a non-data record, 1623 * do not proceed if record type could not be copied. 1624 */ 1625 if (!msgc) { 1626 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1627 sizeof(ctrl), &ctrl); 1628 msgc = true; 1629 if (ctrl != TLS_RECORD_TYPE_DATA) { 1630 if (cerr || msg->msg_flags & MSG_CTRUNC) 1631 return -EIO; 1632 1633 *cmsg = msgc; 1634 } 1635 } 1636 1637 if (!zc || (rxm->full_len - skip) > len) { 1638 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1639 msg, chunk); 1640 if (err < 0) 1641 return err; 1642 } 1643 1644 len = len - chunk; 1645 copied = copied + chunk; 1646 1647 /* Consume the data from record if it is non-peek case*/ 1648 if (!is_peek) { 1649 rxm->offset = rxm->offset + chunk; 1650 rxm->full_len = rxm->full_len - chunk; 1651 1652 /* Return if there is unconsumed data in the record */ 1653 if (rxm->full_len - skip) 1654 break; 1655 } 1656 1657 /* The remaining skip-bytes must lie in 1st record in rx_list. 1658 * So from the 2nd record, 'skip' should be 0. 1659 */ 1660 skip = 0; 1661 1662 if (msg) 1663 msg->msg_flags |= MSG_EOR; 1664 1665 next_skb = skb_peek_next(skb, &ctx->rx_list); 1666 1667 if (!is_peek) { 1668 skb_unlink(skb, &ctx->rx_list); 1669 consume_skb(skb); 1670 } 1671 1672 skb = next_skb; 1673 } 1674 1675 *control = ctrl; 1676 return copied; 1677 } 1678 1679 int tls_sw_recvmsg(struct sock *sk, 1680 struct msghdr *msg, 1681 size_t len, 1682 int nonblock, 1683 int flags, 1684 int *addr_len) 1685 { 1686 struct tls_context *tls_ctx = tls_get_ctx(sk); 1687 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1688 struct tls_prot_info *prot = &tls_ctx->prot_info; 1689 struct sk_psock *psock; 1690 unsigned char control = 0; 1691 ssize_t decrypted = 0; 1692 struct strp_msg *rxm; 1693 struct tls_msg *tlm; 1694 struct sk_buff *skb; 1695 ssize_t copied = 0; 1696 bool cmsg = false; 1697 int target, err = 0; 1698 long timeo; 1699 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1700 bool is_peek = flags & MSG_PEEK; 1701 int num_async = 0; 1702 1703 flags |= nonblock; 1704 1705 if (unlikely(flags & MSG_ERRQUEUE)) 1706 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1707 1708 psock = sk_psock_get(sk); 1709 lock_sock(sk); 1710 1711 /* Process pending decrypted records. It must be non-zero-copy */ 1712 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1713 is_peek); 1714 if (err < 0) { 1715 tls_err_abort(sk, err); 1716 goto end; 1717 } else { 1718 copied = err; 1719 } 1720 1721 if (len <= copied) 1722 goto recv_end; 1723 1724 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1725 len = len - copied; 1726 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1727 1728 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1729 bool retain_skb = false; 1730 bool zc = false; 1731 int to_decrypt; 1732 int chunk = 0; 1733 bool async_capable; 1734 bool async = false; 1735 1736 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1737 if (!skb) { 1738 if (psock) { 1739 int ret = __tcp_bpf_recvmsg(sk, psock, 1740 msg, len, flags); 1741 1742 if (ret > 0) { 1743 decrypted += ret; 1744 len -= ret; 1745 continue; 1746 } 1747 } 1748 goto recv_end; 1749 } else { 1750 tlm = tls_msg(skb); 1751 if (prot->version == TLS_1_3_VERSION) 1752 tlm->control = 0; 1753 else 1754 tlm->control = ctx->control; 1755 } 1756 1757 rxm = strp_msg(skb); 1758 1759 to_decrypt = rxm->full_len - prot->overhead_size; 1760 1761 if (to_decrypt <= len && !is_kvec && !is_peek && 1762 ctx->control == TLS_RECORD_TYPE_DATA && 1763 prot->version != TLS_1_3_VERSION) 1764 zc = true; 1765 1766 /* Do not use async mode if record is non-data */ 1767 if (ctx->control == TLS_RECORD_TYPE_DATA) 1768 async_capable = ctx->async_capable; 1769 else 1770 async_capable = false; 1771 1772 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1773 &chunk, &zc, async_capable); 1774 if (err < 0 && err != -EINPROGRESS) { 1775 tls_err_abort(sk, EBADMSG); 1776 goto recv_end; 1777 } 1778 1779 if (err == -EINPROGRESS) { 1780 async = true; 1781 num_async++; 1782 } else if (prot->version == TLS_1_3_VERSION) { 1783 tlm->control = ctx->control; 1784 } 1785 1786 /* If the type of records being processed is not known yet, 1787 * set it to record type just dequeued. If it is already known, 1788 * but does not match the record type just dequeued, go to end. 1789 * We always get record type here since for tls1.2, record type 1790 * is known just after record is dequeued from stream parser. 1791 * For tls1.3, we disable async. 1792 */ 1793 1794 if (!control) 1795 control = tlm->control; 1796 else if (control != tlm->control) 1797 goto recv_end; 1798 1799 if (!cmsg) { 1800 int cerr; 1801 1802 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1803 sizeof(control), &control); 1804 cmsg = true; 1805 if (control != TLS_RECORD_TYPE_DATA) { 1806 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1807 err = -EIO; 1808 goto recv_end; 1809 } 1810 } 1811 } 1812 1813 if (async) 1814 goto pick_next_record; 1815 1816 if (!zc) { 1817 if (rxm->full_len > len) { 1818 retain_skb = true; 1819 chunk = len; 1820 } else { 1821 chunk = rxm->full_len; 1822 } 1823 1824 err = skb_copy_datagram_msg(skb, rxm->offset, 1825 msg, chunk); 1826 if (err < 0) 1827 goto recv_end; 1828 1829 if (!is_peek) { 1830 rxm->offset = rxm->offset + chunk; 1831 rxm->full_len = rxm->full_len - chunk; 1832 } 1833 } 1834 1835 pick_next_record: 1836 if (chunk > len) 1837 chunk = len; 1838 1839 decrypted += chunk; 1840 len -= chunk; 1841 1842 /* For async or peek case, queue the current skb */ 1843 if (async || is_peek || retain_skb) { 1844 skb_queue_tail(&ctx->rx_list, skb); 1845 skb = NULL; 1846 } 1847 1848 if (tls_sw_advance_skb(sk, skb, chunk)) { 1849 /* Return full control message to 1850 * userspace before trying to parse 1851 * another message type 1852 */ 1853 msg->msg_flags |= MSG_EOR; 1854 if (ctx->control != TLS_RECORD_TYPE_DATA) 1855 goto recv_end; 1856 } else { 1857 break; 1858 } 1859 } 1860 1861 recv_end: 1862 if (num_async) { 1863 /* Wait for all previously submitted records to be decrypted */ 1864 smp_store_mb(ctx->async_notify, true); 1865 if (atomic_read(&ctx->decrypt_pending)) { 1866 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1867 if (err) { 1868 /* one of async decrypt failed */ 1869 tls_err_abort(sk, err); 1870 copied = 0; 1871 decrypted = 0; 1872 goto end; 1873 } 1874 } else { 1875 reinit_completion(&ctx->async_wait.completion); 1876 } 1877 WRITE_ONCE(ctx->async_notify, false); 1878 1879 /* Drain records from the rx_list & copy if required */ 1880 if (is_peek || is_kvec) 1881 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1882 decrypted, false, is_peek); 1883 else 1884 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1885 decrypted, true, is_peek); 1886 if (err < 0) { 1887 tls_err_abort(sk, err); 1888 copied = 0; 1889 goto end; 1890 } 1891 } 1892 1893 copied += decrypted; 1894 1895 end: 1896 release_sock(sk); 1897 if (psock) 1898 sk_psock_put(sk, psock); 1899 return copied ? : err; 1900 } 1901 1902 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1903 struct pipe_inode_info *pipe, 1904 size_t len, unsigned int flags) 1905 { 1906 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1907 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1908 struct strp_msg *rxm = NULL; 1909 struct sock *sk = sock->sk; 1910 struct sk_buff *skb; 1911 ssize_t copied = 0; 1912 int err = 0; 1913 long timeo; 1914 int chunk; 1915 bool zc = false; 1916 1917 lock_sock(sk); 1918 1919 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1920 1921 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1922 if (!skb) 1923 goto splice_read_end; 1924 1925 if (!ctx->decrypted) { 1926 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1927 1928 /* splice does not support reading control messages */ 1929 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1930 err = -ENOTSUPP; 1931 goto splice_read_end; 1932 } 1933 1934 if (err < 0) { 1935 tls_err_abort(sk, EBADMSG); 1936 goto splice_read_end; 1937 } 1938 ctx->decrypted = 1; 1939 } 1940 rxm = strp_msg(skb); 1941 1942 chunk = min_t(unsigned int, rxm->full_len, len); 1943 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1944 if (copied < 0) 1945 goto splice_read_end; 1946 1947 if (likely(!(flags & MSG_PEEK))) 1948 tls_sw_advance_skb(sk, skb, copied); 1949 1950 splice_read_end: 1951 release_sock(sk); 1952 return copied ? : err; 1953 } 1954 1955 bool tls_sw_stream_read(const struct sock *sk) 1956 { 1957 struct tls_context *tls_ctx = tls_get_ctx(sk); 1958 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1959 bool ingress_empty = true; 1960 struct sk_psock *psock; 1961 1962 rcu_read_lock(); 1963 psock = sk_psock(sk); 1964 if (psock) 1965 ingress_empty = list_empty(&psock->ingress_msg); 1966 rcu_read_unlock(); 1967 1968 return !ingress_empty || ctx->recv_pkt || 1969 !skb_queue_empty(&ctx->rx_list); 1970 } 1971 1972 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1973 { 1974 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1975 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1976 struct tls_prot_info *prot = &tls_ctx->prot_info; 1977 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1978 struct strp_msg *rxm = strp_msg(skb); 1979 size_t cipher_overhead; 1980 size_t data_len = 0; 1981 int ret; 1982 1983 /* Verify that we have a full TLS header, or wait for more data */ 1984 if (rxm->offset + prot->prepend_size > skb->len) 1985 return 0; 1986 1987 /* Sanity-check size of on-stack buffer. */ 1988 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1989 ret = -EINVAL; 1990 goto read_failure; 1991 } 1992 1993 /* Linearize header to local buffer */ 1994 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1995 1996 if (ret < 0) 1997 goto read_failure; 1998 1999 ctx->control = header[0]; 2000 2001 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2002 2003 cipher_overhead = prot->tag_size; 2004 if (prot->version != TLS_1_3_VERSION) 2005 cipher_overhead += prot->iv_size; 2006 2007 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2008 prot->tail_size) { 2009 ret = -EMSGSIZE; 2010 goto read_failure; 2011 } 2012 if (data_len < cipher_overhead) { 2013 ret = -EBADMSG; 2014 goto read_failure; 2015 } 2016 2017 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2018 if (header[1] != TLS_1_2_VERSION_MINOR || 2019 header[2] != TLS_1_2_VERSION_MAJOR) { 2020 ret = -EINVAL; 2021 goto read_failure; 2022 } 2023 2024 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2025 TCP_SKB_CB(skb)->seq + rxm->offset); 2026 return data_len + TLS_HEADER_SIZE; 2027 2028 read_failure: 2029 tls_err_abort(strp->sk, ret); 2030 2031 return ret; 2032 } 2033 2034 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2035 { 2036 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2037 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2038 2039 ctx->decrypted = 0; 2040 2041 ctx->recv_pkt = skb; 2042 strp_pause(strp); 2043 2044 ctx->saved_data_ready(strp->sk); 2045 } 2046 2047 static void tls_data_ready(struct sock *sk) 2048 { 2049 struct tls_context *tls_ctx = tls_get_ctx(sk); 2050 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2051 struct sk_psock *psock; 2052 2053 strp_data_ready(&ctx->strp); 2054 2055 psock = sk_psock_get(sk); 2056 if (psock && !list_empty(&psock->ingress_msg)) { 2057 ctx->saved_data_ready(sk); 2058 sk_psock_put(sk, psock); 2059 } 2060 } 2061 2062 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2063 { 2064 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2065 2066 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2067 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2068 cancel_delayed_work_sync(&ctx->tx_work.work); 2069 } 2070 2071 void tls_sw_release_resources_tx(struct sock *sk) 2072 { 2073 struct tls_context *tls_ctx = tls_get_ctx(sk); 2074 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2075 struct tls_rec *rec, *tmp; 2076 2077 /* Wait for any pending async encryptions to complete */ 2078 smp_store_mb(ctx->async_notify, true); 2079 if (atomic_read(&ctx->encrypt_pending)) 2080 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2081 2082 tls_tx_records(sk, -1); 2083 2084 /* Free up un-sent records in tx_list. First, free 2085 * the partially sent record if any at head of tx_list. 2086 */ 2087 if (tls_free_partial_record(sk, tls_ctx)) { 2088 rec = list_first_entry(&ctx->tx_list, 2089 struct tls_rec, list); 2090 list_del(&rec->list); 2091 sk_msg_free(sk, &rec->msg_plaintext); 2092 kfree(rec); 2093 } 2094 2095 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2096 list_del(&rec->list); 2097 sk_msg_free(sk, &rec->msg_encrypted); 2098 sk_msg_free(sk, &rec->msg_plaintext); 2099 kfree(rec); 2100 } 2101 2102 crypto_free_aead(ctx->aead_send); 2103 tls_free_open_rec(sk); 2104 } 2105 2106 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2107 { 2108 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2109 2110 kfree(ctx); 2111 } 2112 2113 void tls_sw_release_resources_rx(struct sock *sk) 2114 { 2115 struct tls_context *tls_ctx = tls_get_ctx(sk); 2116 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2117 2118 kfree(tls_ctx->rx.rec_seq); 2119 kfree(tls_ctx->rx.iv); 2120 2121 if (ctx->aead_recv) { 2122 kfree_skb(ctx->recv_pkt); 2123 ctx->recv_pkt = NULL; 2124 skb_queue_purge(&ctx->rx_list); 2125 crypto_free_aead(ctx->aead_recv); 2126 strp_stop(&ctx->strp); 2127 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2128 * we still want to strp_stop(), but sk->sk_data_ready was 2129 * never swapped. 2130 */ 2131 if (ctx->saved_data_ready) { 2132 write_lock_bh(&sk->sk_callback_lock); 2133 sk->sk_data_ready = ctx->saved_data_ready; 2134 write_unlock_bh(&sk->sk_callback_lock); 2135 } 2136 } 2137 } 2138 2139 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2140 { 2141 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2142 2143 strp_done(&ctx->strp); 2144 } 2145 2146 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2147 { 2148 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2149 2150 kfree(ctx); 2151 } 2152 2153 void tls_sw_free_resources_rx(struct sock *sk) 2154 { 2155 struct tls_context *tls_ctx = tls_get_ctx(sk); 2156 2157 tls_sw_release_resources_rx(sk); 2158 tls_sw_free_ctx_rx(tls_ctx); 2159 } 2160 2161 /* The work handler to transmitt the encrypted records in tx_list */ 2162 static void tx_work_handler(struct work_struct *work) 2163 { 2164 struct delayed_work *delayed_work = to_delayed_work(work); 2165 struct tx_work *tx_work = container_of(delayed_work, 2166 struct tx_work, work); 2167 struct sock *sk = tx_work->sk; 2168 struct tls_context *tls_ctx = tls_get_ctx(sk); 2169 struct tls_sw_context_tx *ctx; 2170 2171 if (unlikely(!tls_ctx)) 2172 return; 2173 2174 ctx = tls_sw_ctx_tx(tls_ctx); 2175 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2176 return; 2177 2178 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2179 return; 2180 mutex_lock(&tls_ctx->tx_lock); 2181 lock_sock(sk); 2182 tls_tx_records(sk, -1); 2183 release_sock(sk); 2184 mutex_unlock(&tls_ctx->tx_lock); 2185 } 2186 2187 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2188 { 2189 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2190 2191 /* Schedule the transmission if tx list is ready */ 2192 if (is_tx_ready(tx_ctx) && 2193 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2194 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2195 } 2196 2197 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2198 { 2199 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2200 2201 write_lock_bh(&sk->sk_callback_lock); 2202 rx_ctx->saved_data_ready = sk->sk_data_ready; 2203 sk->sk_data_ready = tls_data_ready; 2204 write_unlock_bh(&sk->sk_callback_lock); 2205 2206 strp_check_rcv(&rx_ctx->strp); 2207 } 2208 2209 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2210 { 2211 struct tls_context *tls_ctx = tls_get_ctx(sk); 2212 struct tls_prot_info *prot = &tls_ctx->prot_info; 2213 struct tls_crypto_info *crypto_info; 2214 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2215 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2216 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2217 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2218 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2219 struct cipher_context *cctx; 2220 struct crypto_aead **aead; 2221 struct strp_callbacks cb; 2222 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2223 struct crypto_tfm *tfm; 2224 char *iv, *rec_seq, *key, *salt, *cipher_name; 2225 size_t keysize; 2226 int rc = 0; 2227 2228 if (!ctx) { 2229 rc = -EINVAL; 2230 goto out; 2231 } 2232 2233 if (tx) { 2234 if (!ctx->priv_ctx_tx) { 2235 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2236 if (!sw_ctx_tx) { 2237 rc = -ENOMEM; 2238 goto out; 2239 } 2240 ctx->priv_ctx_tx = sw_ctx_tx; 2241 } else { 2242 sw_ctx_tx = 2243 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2244 } 2245 } else { 2246 if (!ctx->priv_ctx_rx) { 2247 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2248 if (!sw_ctx_rx) { 2249 rc = -ENOMEM; 2250 goto out; 2251 } 2252 ctx->priv_ctx_rx = sw_ctx_rx; 2253 } else { 2254 sw_ctx_rx = 2255 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2256 } 2257 } 2258 2259 if (tx) { 2260 crypto_init_wait(&sw_ctx_tx->async_wait); 2261 crypto_info = &ctx->crypto_send.info; 2262 cctx = &ctx->tx; 2263 aead = &sw_ctx_tx->aead_send; 2264 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2265 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2266 sw_ctx_tx->tx_work.sk = sk; 2267 } else { 2268 crypto_init_wait(&sw_ctx_rx->async_wait); 2269 crypto_info = &ctx->crypto_recv.info; 2270 cctx = &ctx->rx; 2271 skb_queue_head_init(&sw_ctx_rx->rx_list); 2272 aead = &sw_ctx_rx->aead_recv; 2273 } 2274 2275 switch (crypto_info->cipher_type) { 2276 case TLS_CIPHER_AES_GCM_128: { 2277 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2278 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2279 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2280 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2281 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2282 rec_seq = 2283 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2284 gcm_128_info = 2285 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2286 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2287 key = gcm_128_info->key; 2288 salt = gcm_128_info->salt; 2289 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2290 cipher_name = "gcm(aes)"; 2291 break; 2292 } 2293 case TLS_CIPHER_AES_GCM_256: { 2294 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2295 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2296 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2297 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2298 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2299 rec_seq = 2300 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2301 gcm_256_info = 2302 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2303 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2304 key = gcm_256_info->key; 2305 salt = gcm_256_info->salt; 2306 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2307 cipher_name = "gcm(aes)"; 2308 break; 2309 } 2310 case TLS_CIPHER_AES_CCM_128: { 2311 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2312 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2313 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2314 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2315 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2316 rec_seq = 2317 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2318 ccm_128_info = 2319 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2320 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2321 key = ccm_128_info->key; 2322 salt = ccm_128_info->salt; 2323 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2324 cipher_name = "ccm(aes)"; 2325 break; 2326 } 2327 default: 2328 rc = -EINVAL; 2329 goto free_priv; 2330 } 2331 2332 /* Sanity-check the sizes for stack allocations. */ 2333 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2334 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2335 rc = -EINVAL; 2336 goto free_priv; 2337 } 2338 2339 if (crypto_info->version == TLS_1_3_VERSION) { 2340 nonce_size = 0; 2341 prot->aad_size = TLS_HEADER_SIZE; 2342 prot->tail_size = 1; 2343 } else { 2344 prot->aad_size = TLS_AAD_SPACE_SIZE; 2345 prot->tail_size = 0; 2346 } 2347 2348 prot->version = crypto_info->version; 2349 prot->cipher_type = crypto_info->cipher_type; 2350 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2351 prot->tag_size = tag_size; 2352 prot->overhead_size = prot->prepend_size + 2353 prot->tag_size + prot->tail_size; 2354 prot->iv_size = iv_size; 2355 prot->salt_size = salt_size; 2356 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2357 if (!cctx->iv) { 2358 rc = -ENOMEM; 2359 goto free_priv; 2360 } 2361 /* Note: 128 & 256 bit salt are the same size */ 2362 prot->rec_seq_size = rec_seq_size; 2363 memcpy(cctx->iv, salt, salt_size); 2364 memcpy(cctx->iv + salt_size, iv, iv_size); 2365 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2366 if (!cctx->rec_seq) { 2367 rc = -ENOMEM; 2368 goto free_iv; 2369 } 2370 2371 if (!*aead) { 2372 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2373 if (IS_ERR(*aead)) { 2374 rc = PTR_ERR(*aead); 2375 *aead = NULL; 2376 goto free_rec_seq; 2377 } 2378 } 2379 2380 ctx->push_pending_record = tls_sw_push_pending_record; 2381 2382 rc = crypto_aead_setkey(*aead, key, keysize); 2383 2384 if (rc) 2385 goto free_aead; 2386 2387 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2388 if (rc) 2389 goto free_aead; 2390 2391 if (sw_ctx_rx) { 2392 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2393 2394 if (crypto_info->version == TLS_1_3_VERSION) 2395 sw_ctx_rx->async_capable = 0; 2396 else 2397 sw_ctx_rx->async_capable = 2398 !!(tfm->__crt_alg->cra_flags & 2399 CRYPTO_ALG_ASYNC); 2400 2401 /* Set up strparser */ 2402 memset(&cb, 0, sizeof(cb)); 2403 cb.rcv_msg = tls_queue; 2404 cb.parse_msg = tls_read_size; 2405 2406 strp_init(&sw_ctx_rx->strp, sk, &cb); 2407 } 2408 2409 goto out; 2410 2411 free_aead: 2412 crypto_free_aead(*aead); 2413 *aead = NULL; 2414 free_rec_seq: 2415 kfree(cctx->rec_seq); 2416 cctx->rec_seq = NULL; 2417 free_iv: 2418 kfree(cctx->iv); 2419 cctx->iv = NULL; 2420 free_priv: 2421 if (tx) { 2422 kfree(ctx->priv_ctx_tx); 2423 ctx->priv_ctx_tx = NULL; 2424 } else { 2425 kfree(ctx->priv_ctx_rx); 2426 ctx->priv_ctx_rx = NULL; 2427 } 2428 out: 2429 return rc; 2430 } 2431