1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 pending = atomic_dec_return(&ctx->decrypt_pending); 210 211 if (!pending && READ_ONCE(ctx->async_notify)) 212 complete(&ctx->async_wait.completion); 213 } 214 215 static int tls_do_decryption(struct sock *sk, 216 struct sk_buff *skb, 217 struct scatterlist *sgin, 218 struct scatterlist *sgout, 219 char *iv_recv, 220 size_t data_len, 221 struct aead_request *aead_req, 222 bool async) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 struct tls_prot_info *prot = &tls_ctx->prot_info; 226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 227 int ret; 228 229 aead_request_set_tfm(aead_req, ctx->aead_recv); 230 aead_request_set_ad(aead_req, prot->aad_size); 231 aead_request_set_crypt(aead_req, sgin, sgout, 232 data_len + prot->tag_size, 233 (u8 *)iv_recv); 234 235 if (async) { 236 /* Using skb->sk to push sk through to crypto async callback 237 * handler. This allows propagating errors up to the socket 238 * if needed. It _must_ be cleared in the async handler 239 * before consume_skb is called. We _know_ skb->sk is NULL 240 * because it is a clone from strparser. 241 */ 242 skb->sk = sk; 243 aead_request_set_callback(aead_req, 244 CRYPTO_TFM_REQ_MAY_BACKLOG, 245 tls_decrypt_done, skb); 246 atomic_inc(&ctx->decrypt_pending); 247 } else { 248 aead_request_set_callback(aead_req, 249 CRYPTO_TFM_REQ_MAY_BACKLOG, 250 crypto_req_done, &ctx->async_wait); 251 } 252 253 ret = crypto_aead_decrypt(aead_req); 254 if (ret == -EINPROGRESS) { 255 if (async) 256 return ret; 257 258 ret = crypto_wait_req(ret, &ctx->async_wait); 259 } else if (ret == -EBADMSG) { 260 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 pending = atomic_dec_return(&ctx->encrypt_pending); 473 474 if (!pending && READ_ONCE(ctx->async_notify)) 475 complete(&ctx->async_wait.completion); 476 477 if (!ready) 478 return; 479 480 /* Schedule the transmission */ 481 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 482 schedule_delayed_work(&ctx->tx_work.work, 1); 483 } 484 485 static int tls_do_encryption(struct sock *sk, 486 struct tls_context *tls_ctx, 487 struct tls_sw_context_tx *ctx, 488 struct aead_request *aead_req, 489 size_t data_len, u32 start) 490 { 491 struct tls_prot_info *prot = &tls_ctx->prot_info; 492 struct tls_rec *rec = ctx->open_rec; 493 struct sk_msg *msg_en = &rec->msg_encrypted; 494 struct scatterlist *sge = sk_msg_elem(msg_en, start); 495 int rc, iv_offset = 0; 496 497 /* For CCM based ciphers, first byte of IV is a constant */ 498 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 499 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 500 iv_offset = 1; 501 } 502 503 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 504 prot->iv_size + prot->salt_size); 505 506 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 507 508 sge->offset += prot->prepend_size; 509 sge->length -= prot->prepend_size; 510 511 msg_en->sg.curr = start; 512 513 aead_request_set_tfm(aead_req, ctx->aead_send); 514 aead_request_set_ad(aead_req, prot->aad_size); 515 aead_request_set_crypt(aead_req, rec->sg_aead_in, 516 rec->sg_aead_out, 517 data_len, rec->iv_data); 518 519 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 520 tls_encrypt_done, sk); 521 522 /* Add the record in tx_list */ 523 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 524 atomic_inc(&ctx->encrypt_pending); 525 526 rc = crypto_aead_encrypt(aead_req); 527 if (!rc || rc != -EINPROGRESS) { 528 atomic_dec(&ctx->encrypt_pending); 529 sge->offset -= prot->prepend_size; 530 sge->length += prot->prepend_size; 531 } 532 533 if (!rc) { 534 WRITE_ONCE(rec->tx_ready, true); 535 } else if (rc != -EINPROGRESS) { 536 list_del(&rec->list); 537 return rc; 538 } 539 540 /* Unhook the record from context if encryption is not failure */ 541 ctx->open_rec = NULL; 542 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 543 return rc; 544 } 545 546 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 547 struct tls_rec **to, struct sk_msg *msg_opl, 548 struct sk_msg *msg_oen, u32 split_point, 549 u32 tx_overhead_size, u32 *orig_end) 550 { 551 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 552 struct scatterlist *sge, *osge, *nsge; 553 u32 orig_size = msg_opl->sg.size; 554 struct scatterlist tmp = { }; 555 struct sk_msg *msg_npl; 556 struct tls_rec *new; 557 int ret; 558 559 new = tls_get_rec(sk); 560 if (!new) 561 return -ENOMEM; 562 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 563 tx_overhead_size, 0); 564 if (ret < 0) { 565 tls_free_rec(sk, new); 566 return ret; 567 } 568 569 *orig_end = msg_opl->sg.end; 570 i = msg_opl->sg.start; 571 sge = sk_msg_elem(msg_opl, i); 572 while (apply && sge->length) { 573 if (sge->length > apply) { 574 u32 len = sge->length - apply; 575 576 get_page(sg_page(sge)); 577 sg_set_page(&tmp, sg_page(sge), len, 578 sge->offset + apply); 579 sge->length = apply; 580 bytes += apply; 581 apply = 0; 582 } else { 583 apply -= sge->length; 584 bytes += sge->length; 585 } 586 587 sk_msg_iter_var_next(i); 588 if (i == msg_opl->sg.end) 589 break; 590 sge = sk_msg_elem(msg_opl, i); 591 } 592 593 msg_opl->sg.end = i; 594 msg_opl->sg.curr = i; 595 msg_opl->sg.copybreak = 0; 596 msg_opl->apply_bytes = 0; 597 msg_opl->sg.size = bytes; 598 599 msg_npl = &new->msg_plaintext; 600 msg_npl->apply_bytes = apply; 601 msg_npl->sg.size = orig_size - bytes; 602 603 j = msg_npl->sg.start; 604 nsge = sk_msg_elem(msg_npl, j); 605 if (tmp.length) { 606 memcpy(nsge, &tmp, sizeof(*nsge)); 607 sk_msg_iter_var_next(j); 608 nsge = sk_msg_elem(msg_npl, j); 609 } 610 611 osge = sk_msg_elem(msg_opl, i); 612 while (osge->length) { 613 memcpy(nsge, osge, sizeof(*nsge)); 614 sg_unmark_end(nsge); 615 sk_msg_iter_var_next(i); 616 sk_msg_iter_var_next(j); 617 if (i == *orig_end) 618 break; 619 osge = sk_msg_elem(msg_opl, i); 620 nsge = sk_msg_elem(msg_npl, j); 621 } 622 623 msg_npl->sg.end = j; 624 msg_npl->sg.curr = j; 625 msg_npl->sg.copybreak = 0; 626 627 *to = new; 628 return 0; 629 } 630 631 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 632 struct tls_rec *from, u32 orig_end) 633 { 634 struct sk_msg *msg_npl = &from->msg_plaintext; 635 struct sk_msg *msg_opl = &to->msg_plaintext; 636 struct scatterlist *osge, *nsge; 637 u32 i, j; 638 639 i = msg_opl->sg.end; 640 sk_msg_iter_var_prev(i); 641 j = msg_npl->sg.start; 642 643 osge = sk_msg_elem(msg_opl, i); 644 nsge = sk_msg_elem(msg_npl, j); 645 646 if (sg_page(osge) == sg_page(nsge) && 647 osge->offset + osge->length == nsge->offset) { 648 osge->length += nsge->length; 649 put_page(sg_page(nsge)); 650 } 651 652 msg_opl->sg.end = orig_end; 653 msg_opl->sg.curr = orig_end; 654 msg_opl->sg.copybreak = 0; 655 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 656 msg_opl->sg.size += msg_npl->sg.size; 657 658 sk_msg_free(sk, &to->msg_encrypted); 659 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 660 661 kfree(from); 662 } 663 664 static int tls_push_record(struct sock *sk, int flags, 665 unsigned char record_type) 666 { 667 struct tls_context *tls_ctx = tls_get_ctx(sk); 668 struct tls_prot_info *prot = &tls_ctx->prot_info; 669 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 670 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 671 u32 i, split_point, uninitialized_var(orig_end); 672 struct sk_msg *msg_pl, *msg_en; 673 struct aead_request *req; 674 bool split; 675 int rc; 676 677 if (!rec) 678 return 0; 679 680 msg_pl = &rec->msg_plaintext; 681 msg_en = &rec->msg_encrypted; 682 683 split_point = msg_pl->apply_bytes; 684 split = split_point && split_point < msg_pl->sg.size; 685 if (split) { 686 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 687 split_point, prot->overhead_size, 688 &orig_end); 689 if (rc < 0) 690 return rc; 691 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 692 prot->overhead_size); 693 } 694 695 rec->tx_flags = flags; 696 req = &rec->aead_req; 697 698 i = msg_pl->sg.end; 699 sk_msg_iter_var_prev(i); 700 701 rec->content_type = record_type; 702 if (prot->version == TLS_1_3_VERSION) { 703 /* Add content type to end of message. No padding added */ 704 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 705 sg_mark_end(&rec->sg_content_type); 706 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 707 &rec->sg_content_type); 708 } else { 709 sg_mark_end(sk_msg_elem(msg_pl, i)); 710 } 711 712 i = msg_pl->sg.start; 713 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 714 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 715 716 i = msg_en->sg.end; 717 sk_msg_iter_var_prev(i); 718 sg_mark_end(sk_msg_elem(msg_en, i)); 719 720 i = msg_en->sg.start; 721 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 722 723 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 724 tls_ctx->tx.rec_seq, prot->rec_seq_size, 725 record_type, prot->version); 726 727 tls_fill_prepend(tls_ctx, 728 page_address(sg_page(&msg_en->sg.data[i])) + 729 msg_en->sg.data[i].offset, 730 msg_pl->sg.size + prot->tail_size, 731 record_type, prot->version); 732 733 tls_ctx->pending_open_record_frags = false; 734 735 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 736 msg_pl->sg.size + prot->tail_size, i); 737 if (rc < 0) { 738 if (rc != -EINPROGRESS) { 739 tls_err_abort(sk, EBADMSG); 740 if (split) { 741 tls_ctx->pending_open_record_frags = true; 742 tls_merge_open_record(sk, rec, tmp, orig_end); 743 } 744 } 745 ctx->async_capable = 1; 746 return rc; 747 } else if (split) { 748 msg_pl = &tmp->msg_plaintext; 749 msg_en = &tmp->msg_encrypted; 750 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 751 tls_ctx->pending_open_record_frags = true; 752 ctx->open_rec = tmp; 753 } 754 755 return tls_tx_records(sk, flags); 756 } 757 758 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 759 bool full_record, u8 record_type, 760 size_t *copied, int flags) 761 { 762 struct tls_context *tls_ctx = tls_get_ctx(sk); 763 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 764 struct sk_msg msg_redir = { }; 765 struct sk_psock *psock; 766 struct sock *sk_redir; 767 struct tls_rec *rec; 768 bool enospc, policy; 769 int err = 0, send; 770 u32 delta = 0; 771 772 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 773 psock = sk_psock_get(sk); 774 if (!psock || !policy) 775 return tls_push_record(sk, flags, record_type); 776 more_data: 777 enospc = sk_msg_full(msg); 778 if (psock->eval == __SK_NONE) { 779 delta = msg->sg.size; 780 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 781 if (delta < msg->sg.size) 782 delta -= msg->sg.size; 783 else 784 delta = 0; 785 } 786 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 787 !enospc && !full_record) { 788 err = -ENOSPC; 789 goto out_err; 790 } 791 msg->cork_bytes = 0; 792 send = msg->sg.size; 793 if (msg->apply_bytes && msg->apply_bytes < send) 794 send = msg->apply_bytes; 795 796 switch (psock->eval) { 797 case __SK_PASS: 798 err = tls_push_record(sk, flags, record_type); 799 if (err < 0) { 800 *copied -= sk_msg_free(sk, msg); 801 tls_free_open_rec(sk); 802 goto out_err; 803 } 804 break; 805 case __SK_REDIRECT: 806 sk_redir = psock->sk_redir; 807 memcpy(&msg_redir, msg, sizeof(*msg)); 808 if (msg->apply_bytes < send) 809 msg->apply_bytes = 0; 810 else 811 msg->apply_bytes -= send; 812 sk_msg_return_zero(sk, msg, send); 813 msg->sg.size -= send; 814 release_sock(sk); 815 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 816 lock_sock(sk); 817 if (err < 0) { 818 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 819 msg->sg.size = 0; 820 } 821 if (msg->sg.size == 0) 822 tls_free_open_rec(sk); 823 break; 824 case __SK_DROP: 825 default: 826 sk_msg_free_partial(sk, msg, send); 827 if (msg->apply_bytes < send) 828 msg->apply_bytes = 0; 829 else 830 msg->apply_bytes -= send; 831 if (msg->sg.size == 0) 832 tls_free_open_rec(sk); 833 *copied -= (send + delta); 834 err = -EACCES; 835 } 836 837 if (likely(!err)) { 838 bool reset_eval = !ctx->open_rec; 839 840 rec = ctx->open_rec; 841 if (rec) { 842 msg = &rec->msg_plaintext; 843 if (!msg->apply_bytes) 844 reset_eval = true; 845 } 846 if (reset_eval) { 847 psock->eval = __SK_NONE; 848 if (psock->sk_redir) { 849 sock_put(psock->sk_redir); 850 psock->sk_redir = NULL; 851 } 852 } 853 if (rec) 854 goto more_data; 855 } 856 out_err: 857 sk_psock_put(sk, psock); 858 return err; 859 } 860 861 static int tls_sw_push_pending_record(struct sock *sk, int flags) 862 { 863 struct tls_context *tls_ctx = tls_get_ctx(sk); 864 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 865 struct tls_rec *rec = ctx->open_rec; 866 struct sk_msg *msg_pl; 867 size_t copied; 868 869 if (!rec) 870 return 0; 871 872 msg_pl = &rec->msg_plaintext; 873 copied = msg_pl->sg.size; 874 if (!copied) 875 return 0; 876 877 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 878 &copied, flags); 879 } 880 881 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 882 { 883 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 884 struct tls_context *tls_ctx = tls_get_ctx(sk); 885 struct tls_prot_info *prot = &tls_ctx->prot_info; 886 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 887 bool async_capable = ctx->async_capable; 888 unsigned char record_type = TLS_RECORD_TYPE_DATA; 889 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 890 bool eor = !(msg->msg_flags & MSG_MORE); 891 size_t try_to_copy, copied = 0; 892 struct sk_msg *msg_pl, *msg_en; 893 struct tls_rec *rec; 894 int required_size; 895 int num_async = 0; 896 bool full_record; 897 int record_room; 898 int num_zc = 0; 899 int orig_size; 900 int ret = 0; 901 902 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 903 return -ENOTSUPP; 904 905 lock_sock(sk); 906 907 /* Wait till there is any pending write on socket */ 908 if (unlikely(sk->sk_write_pending)) { 909 ret = wait_on_pending_writer(sk, &timeo); 910 if (unlikely(ret)) 911 goto send_end; 912 } 913 914 if (unlikely(msg->msg_controllen)) { 915 ret = tls_proccess_cmsg(sk, msg, &record_type); 916 if (ret) { 917 if (ret == -EINPROGRESS) 918 num_async++; 919 else if (ret != -EAGAIN) 920 goto send_end; 921 } 922 } 923 924 while (msg_data_left(msg)) { 925 if (sk->sk_err) { 926 ret = -sk->sk_err; 927 goto send_end; 928 } 929 930 if (ctx->open_rec) 931 rec = ctx->open_rec; 932 else 933 rec = ctx->open_rec = tls_get_rec(sk); 934 if (!rec) { 935 ret = -ENOMEM; 936 goto send_end; 937 } 938 939 msg_pl = &rec->msg_plaintext; 940 msg_en = &rec->msg_encrypted; 941 942 orig_size = msg_pl->sg.size; 943 full_record = false; 944 try_to_copy = msg_data_left(msg); 945 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 946 if (try_to_copy >= record_room) { 947 try_to_copy = record_room; 948 full_record = true; 949 } 950 951 required_size = msg_pl->sg.size + try_to_copy + 952 prot->overhead_size; 953 954 if (!sk_stream_memory_free(sk)) 955 goto wait_for_sndbuf; 956 957 alloc_encrypted: 958 ret = tls_alloc_encrypted_msg(sk, required_size); 959 if (ret) { 960 if (ret != -ENOSPC) 961 goto wait_for_memory; 962 963 /* Adjust try_to_copy according to the amount that was 964 * actually allocated. The difference is due 965 * to max sg elements limit 966 */ 967 try_to_copy -= required_size - msg_en->sg.size; 968 full_record = true; 969 } 970 971 if (!is_kvec && (full_record || eor) && !async_capable) { 972 u32 first = msg_pl->sg.end; 973 974 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 975 msg_pl, try_to_copy); 976 if (ret) 977 goto fallback_to_reg_send; 978 979 rec->inplace_crypto = 0; 980 981 num_zc++; 982 copied += try_to_copy; 983 984 sk_msg_sg_copy_set(msg_pl, first); 985 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 986 record_type, &copied, 987 msg->msg_flags); 988 if (ret) { 989 if (ret == -EINPROGRESS) 990 num_async++; 991 else if (ret == -ENOMEM) 992 goto wait_for_memory; 993 else if (ret == -ENOSPC) 994 goto rollback_iter; 995 else if (ret != -EAGAIN) 996 goto send_end; 997 } 998 continue; 999 rollback_iter: 1000 copied -= try_to_copy; 1001 sk_msg_sg_copy_clear(msg_pl, first); 1002 iov_iter_revert(&msg->msg_iter, 1003 msg_pl->sg.size - orig_size); 1004 fallback_to_reg_send: 1005 sk_msg_trim(sk, msg_pl, orig_size); 1006 } 1007 1008 required_size = msg_pl->sg.size + try_to_copy; 1009 1010 ret = tls_clone_plaintext_msg(sk, required_size); 1011 if (ret) { 1012 if (ret != -ENOSPC) 1013 goto send_end; 1014 1015 /* Adjust try_to_copy according to the amount that was 1016 * actually allocated. The difference is due 1017 * to max sg elements limit 1018 */ 1019 try_to_copy -= required_size - msg_pl->sg.size; 1020 full_record = true; 1021 sk_msg_trim(sk, msg_en, 1022 msg_pl->sg.size + prot->overhead_size); 1023 } 1024 1025 if (try_to_copy) { 1026 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1027 msg_pl, try_to_copy); 1028 if (ret < 0) 1029 goto trim_sgl; 1030 } 1031 1032 /* Open records defined only if successfully copied, otherwise 1033 * we would trim the sg but not reset the open record frags. 1034 */ 1035 tls_ctx->pending_open_record_frags = true; 1036 copied += try_to_copy; 1037 if (full_record || eor) { 1038 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1039 record_type, &copied, 1040 msg->msg_flags); 1041 if (ret) { 1042 if (ret == -EINPROGRESS) 1043 num_async++; 1044 else if (ret == -ENOMEM) 1045 goto wait_for_memory; 1046 else if (ret != -EAGAIN) { 1047 if (ret == -ENOSPC) 1048 ret = 0; 1049 goto send_end; 1050 } 1051 } 1052 } 1053 1054 continue; 1055 1056 wait_for_sndbuf: 1057 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1058 wait_for_memory: 1059 ret = sk_stream_wait_memory(sk, &timeo); 1060 if (ret) { 1061 trim_sgl: 1062 tls_trim_both_msgs(sk, orig_size); 1063 goto send_end; 1064 } 1065 1066 if (msg_en->sg.size < required_size) 1067 goto alloc_encrypted; 1068 } 1069 1070 if (!num_async) { 1071 goto send_end; 1072 } else if (num_zc) { 1073 /* Wait for pending encryptions to get completed */ 1074 smp_store_mb(ctx->async_notify, true); 1075 1076 if (atomic_read(&ctx->encrypt_pending)) 1077 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1078 else 1079 reinit_completion(&ctx->async_wait.completion); 1080 1081 WRITE_ONCE(ctx->async_notify, false); 1082 1083 if (ctx->async_wait.err) { 1084 ret = ctx->async_wait.err; 1085 copied = 0; 1086 } 1087 } 1088 1089 /* Transmit if any encryptions have completed */ 1090 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1091 cancel_delayed_work(&ctx->tx_work.work); 1092 tls_tx_records(sk, msg->msg_flags); 1093 } 1094 1095 send_end: 1096 ret = sk_stream_error(sk, msg->msg_flags, ret); 1097 1098 release_sock(sk); 1099 return copied ? copied : ret; 1100 } 1101 1102 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1103 int offset, size_t size, int flags) 1104 { 1105 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1106 struct tls_context *tls_ctx = tls_get_ctx(sk); 1107 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1108 struct tls_prot_info *prot = &tls_ctx->prot_info; 1109 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1110 struct sk_msg *msg_pl; 1111 struct tls_rec *rec; 1112 int num_async = 0; 1113 size_t copied = 0; 1114 bool full_record; 1115 int record_room; 1116 int ret = 0; 1117 bool eor; 1118 1119 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1120 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1121 1122 /* Wait till there is any pending write on socket */ 1123 if (unlikely(sk->sk_write_pending)) { 1124 ret = wait_on_pending_writer(sk, &timeo); 1125 if (unlikely(ret)) 1126 goto sendpage_end; 1127 } 1128 1129 /* Call the sk_stream functions to manage the sndbuf mem. */ 1130 while (size > 0) { 1131 size_t copy, required_size; 1132 1133 if (sk->sk_err) { 1134 ret = -sk->sk_err; 1135 goto sendpage_end; 1136 } 1137 1138 if (ctx->open_rec) 1139 rec = ctx->open_rec; 1140 else 1141 rec = ctx->open_rec = tls_get_rec(sk); 1142 if (!rec) { 1143 ret = -ENOMEM; 1144 goto sendpage_end; 1145 } 1146 1147 msg_pl = &rec->msg_plaintext; 1148 1149 full_record = false; 1150 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1151 copy = size; 1152 if (copy >= record_room) { 1153 copy = record_room; 1154 full_record = true; 1155 } 1156 1157 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1158 1159 if (!sk_stream_memory_free(sk)) 1160 goto wait_for_sndbuf; 1161 alloc_payload: 1162 ret = tls_alloc_encrypted_msg(sk, required_size); 1163 if (ret) { 1164 if (ret != -ENOSPC) 1165 goto wait_for_memory; 1166 1167 /* Adjust copy according to the amount that was 1168 * actually allocated. The difference is due 1169 * to max sg elements limit 1170 */ 1171 copy -= required_size - msg_pl->sg.size; 1172 full_record = true; 1173 } 1174 1175 sk_msg_page_add(msg_pl, page, copy, offset); 1176 sk_mem_charge(sk, copy); 1177 1178 offset += copy; 1179 size -= copy; 1180 copied += copy; 1181 1182 tls_ctx->pending_open_record_frags = true; 1183 if (full_record || eor || sk_msg_full(msg_pl)) { 1184 rec->inplace_crypto = 0; 1185 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1186 record_type, &copied, flags); 1187 if (ret) { 1188 if (ret == -EINPROGRESS) 1189 num_async++; 1190 else if (ret == -ENOMEM) 1191 goto wait_for_memory; 1192 else if (ret != -EAGAIN) { 1193 if (ret == -ENOSPC) 1194 ret = 0; 1195 goto sendpage_end; 1196 } 1197 } 1198 } 1199 continue; 1200 wait_for_sndbuf: 1201 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1202 wait_for_memory: 1203 ret = sk_stream_wait_memory(sk, &timeo); 1204 if (ret) { 1205 tls_trim_both_msgs(sk, msg_pl->sg.size); 1206 goto sendpage_end; 1207 } 1208 1209 goto alloc_payload; 1210 } 1211 1212 if (num_async) { 1213 /* Transmit if any encryptions have completed */ 1214 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1215 cancel_delayed_work(&ctx->tx_work.work); 1216 tls_tx_records(sk, flags); 1217 } 1218 } 1219 sendpage_end: 1220 ret = sk_stream_error(sk, flags, ret); 1221 return copied ? copied : ret; 1222 } 1223 1224 int tls_sw_sendpage(struct sock *sk, struct page *page, 1225 int offset, size_t size, int flags) 1226 { 1227 int ret; 1228 1229 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1230 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1231 return -ENOTSUPP; 1232 1233 lock_sock(sk); 1234 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1235 release_sock(sk); 1236 return ret; 1237 } 1238 1239 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1240 int flags, long timeo, int *err) 1241 { 1242 struct tls_context *tls_ctx = tls_get_ctx(sk); 1243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1244 struct sk_buff *skb; 1245 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1246 1247 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1248 if (sk->sk_err) { 1249 *err = sock_error(sk); 1250 return NULL; 1251 } 1252 1253 if (sk->sk_shutdown & RCV_SHUTDOWN) 1254 return NULL; 1255 1256 if (sock_flag(sk, SOCK_DONE)) 1257 return NULL; 1258 1259 if ((flags & MSG_DONTWAIT) || !timeo) { 1260 *err = -EAGAIN; 1261 return NULL; 1262 } 1263 1264 add_wait_queue(sk_sleep(sk), &wait); 1265 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1266 sk_wait_event(sk, &timeo, 1267 ctx->recv_pkt != skb || 1268 !sk_psock_queue_empty(psock), 1269 &wait); 1270 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1271 remove_wait_queue(sk_sleep(sk), &wait); 1272 1273 /* Handle signals */ 1274 if (signal_pending(current)) { 1275 *err = sock_intr_errno(timeo); 1276 return NULL; 1277 } 1278 } 1279 1280 return skb; 1281 } 1282 1283 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1284 int length, int *pages_used, 1285 unsigned int *size_used, 1286 struct scatterlist *to, 1287 int to_max_pages) 1288 { 1289 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1290 struct page *pages[MAX_SKB_FRAGS]; 1291 unsigned int size = *size_used; 1292 ssize_t copied, use; 1293 size_t offset; 1294 1295 while (length > 0) { 1296 i = 0; 1297 maxpages = to_max_pages - num_elem; 1298 if (maxpages == 0) { 1299 rc = -EFAULT; 1300 goto out; 1301 } 1302 copied = iov_iter_get_pages(from, pages, 1303 length, 1304 maxpages, &offset); 1305 if (copied <= 0) { 1306 rc = -EFAULT; 1307 goto out; 1308 } 1309 1310 iov_iter_advance(from, copied); 1311 1312 length -= copied; 1313 size += copied; 1314 while (copied) { 1315 use = min_t(int, copied, PAGE_SIZE - offset); 1316 1317 sg_set_page(&to[num_elem], 1318 pages[i], use, offset); 1319 sg_unmark_end(&to[num_elem]); 1320 /* We do not uncharge memory from this API */ 1321 1322 offset = 0; 1323 copied -= use; 1324 1325 i++; 1326 num_elem++; 1327 } 1328 } 1329 /* Mark the end in the last sg entry if newly added */ 1330 if (num_elem > *pages_used) 1331 sg_mark_end(&to[num_elem - 1]); 1332 out: 1333 if (rc) 1334 iov_iter_revert(from, size - *size_used); 1335 *size_used = size; 1336 *pages_used = num_elem; 1337 1338 return rc; 1339 } 1340 1341 /* This function decrypts the input skb into either out_iov or in out_sg 1342 * or in skb buffers itself. The input parameter 'zc' indicates if 1343 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1344 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1345 * NULL, then the decryption happens inside skb buffers itself, i.e. 1346 * zero-copy gets disabled and 'zc' is updated. 1347 */ 1348 1349 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1350 struct iov_iter *out_iov, 1351 struct scatterlist *out_sg, 1352 int *chunk, bool *zc, bool async) 1353 { 1354 struct tls_context *tls_ctx = tls_get_ctx(sk); 1355 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1356 struct tls_prot_info *prot = &tls_ctx->prot_info; 1357 struct strp_msg *rxm = strp_msg(skb); 1358 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1359 struct aead_request *aead_req; 1360 struct sk_buff *unused; 1361 u8 *aad, *iv, *mem = NULL; 1362 struct scatterlist *sgin = NULL; 1363 struct scatterlist *sgout = NULL; 1364 const int data_len = rxm->full_len - prot->overhead_size + 1365 prot->tail_size; 1366 int iv_offset = 0; 1367 1368 if (*zc && (out_iov || out_sg)) { 1369 if (out_iov) 1370 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1371 else 1372 n_sgout = sg_nents(out_sg); 1373 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1374 rxm->full_len - prot->prepend_size); 1375 } else { 1376 n_sgout = 0; 1377 *zc = false; 1378 n_sgin = skb_cow_data(skb, 0, &unused); 1379 } 1380 1381 if (n_sgin < 1) 1382 return -EBADMSG; 1383 1384 /* Increment to accommodate AAD */ 1385 n_sgin = n_sgin + 1; 1386 1387 nsg = n_sgin + n_sgout; 1388 1389 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1390 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1391 mem_size = mem_size + prot->aad_size; 1392 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1393 1394 /* Allocate a single block of memory which contains 1395 * aead_req || sgin[] || sgout[] || aad || iv. 1396 * This order achieves correct alignment for aead_req, sgin, sgout. 1397 */ 1398 mem = kmalloc(mem_size, sk->sk_allocation); 1399 if (!mem) 1400 return -ENOMEM; 1401 1402 /* Segment the allocated memory */ 1403 aead_req = (struct aead_request *)mem; 1404 sgin = (struct scatterlist *)(mem + aead_size); 1405 sgout = sgin + n_sgin; 1406 aad = (u8 *)(sgout + n_sgout); 1407 iv = aad + prot->aad_size; 1408 1409 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1410 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1411 iv[0] = 2; 1412 iv_offset = 1; 1413 } 1414 1415 /* Prepare IV */ 1416 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1417 iv + iv_offset + prot->salt_size, 1418 prot->iv_size); 1419 if (err < 0) { 1420 kfree(mem); 1421 return err; 1422 } 1423 if (prot->version == TLS_1_3_VERSION) 1424 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1425 crypto_aead_ivsize(ctx->aead_recv)); 1426 else 1427 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1428 1429 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1430 1431 /* Prepare AAD */ 1432 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1433 prot->tail_size, 1434 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1435 ctx->control, prot->version); 1436 1437 /* Prepare sgin */ 1438 sg_init_table(sgin, n_sgin); 1439 sg_set_buf(&sgin[0], aad, prot->aad_size); 1440 err = skb_to_sgvec(skb, &sgin[1], 1441 rxm->offset + prot->prepend_size, 1442 rxm->full_len - prot->prepend_size); 1443 if (err < 0) { 1444 kfree(mem); 1445 return err; 1446 } 1447 1448 if (n_sgout) { 1449 if (out_iov) { 1450 sg_init_table(sgout, n_sgout); 1451 sg_set_buf(&sgout[0], aad, prot->aad_size); 1452 1453 *chunk = 0; 1454 err = tls_setup_from_iter(sk, out_iov, data_len, 1455 &pages, chunk, &sgout[1], 1456 (n_sgout - 1)); 1457 if (err < 0) 1458 goto fallback_to_reg_recv; 1459 } else if (out_sg) { 1460 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1461 } else { 1462 goto fallback_to_reg_recv; 1463 } 1464 } else { 1465 fallback_to_reg_recv: 1466 sgout = sgin; 1467 pages = 0; 1468 *chunk = data_len; 1469 *zc = false; 1470 } 1471 1472 /* Prepare and submit AEAD request */ 1473 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1474 data_len, aead_req, async); 1475 if (err == -EINPROGRESS) 1476 return err; 1477 1478 /* Release the pages in case iov was mapped to pages */ 1479 for (; pages > 0; pages--) 1480 put_page(sg_page(&sgout[pages])); 1481 1482 kfree(mem); 1483 return err; 1484 } 1485 1486 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1487 struct iov_iter *dest, int *chunk, bool *zc, 1488 bool async) 1489 { 1490 struct tls_context *tls_ctx = tls_get_ctx(sk); 1491 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1492 struct tls_prot_info *prot = &tls_ctx->prot_info; 1493 struct strp_msg *rxm = strp_msg(skb); 1494 int pad, err = 0; 1495 1496 if (!ctx->decrypted) { 1497 if (tls_ctx->rx_conf == TLS_HW) { 1498 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1499 if (err < 0) 1500 return err; 1501 } 1502 1503 /* Still not decrypted after tls_device */ 1504 if (!ctx->decrypted) { 1505 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1506 async); 1507 if (err < 0) { 1508 if (err == -EINPROGRESS) 1509 tls_advance_record_sn(sk, prot, 1510 &tls_ctx->rx); 1511 1512 return err; 1513 } 1514 } else { 1515 *zc = false; 1516 } 1517 1518 pad = padding_length(ctx, prot, skb); 1519 if (pad < 0) 1520 return pad; 1521 1522 rxm->full_len -= pad; 1523 rxm->offset += prot->prepend_size; 1524 rxm->full_len -= prot->overhead_size; 1525 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1526 ctx->decrypted = 1; 1527 ctx->saved_data_ready(sk); 1528 } else { 1529 *zc = false; 1530 } 1531 1532 return err; 1533 } 1534 1535 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1536 struct scatterlist *sgout) 1537 { 1538 bool zc = true; 1539 int chunk; 1540 1541 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1542 } 1543 1544 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1545 unsigned int len) 1546 { 1547 struct tls_context *tls_ctx = tls_get_ctx(sk); 1548 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1549 1550 if (skb) { 1551 struct strp_msg *rxm = strp_msg(skb); 1552 1553 if (len < rxm->full_len) { 1554 rxm->offset += len; 1555 rxm->full_len -= len; 1556 return false; 1557 } 1558 consume_skb(skb); 1559 } 1560 1561 /* Finished with message */ 1562 ctx->recv_pkt = NULL; 1563 __strp_unpause(&ctx->strp); 1564 1565 return true; 1566 } 1567 1568 /* This function traverses the rx_list in tls receive context to copies the 1569 * decrypted records into the buffer provided by caller zero copy is not 1570 * true. Further, the records are removed from the rx_list if it is not a peek 1571 * case and the record has been consumed completely. 1572 */ 1573 static int process_rx_list(struct tls_sw_context_rx *ctx, 1574 struct msghdr *msg, 1575 u8 *control, 1576 bool *cmsg, 1577 size_t skip, 1578 size_t len, 1579 bool zc, 1580 bool is_peek) 1581 { 1582 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1583 u8 ctrl = *control; 1584 u8 msgc = *cmsg; 1585 struct tls_msg *tlm; 1586 ssize_t copied = 0; 1587 1588 /* Set the record type in 'control' if caller didn't pass it */ 1589 if (!ctrl && skb) { 1590 tlm = tls_msg(skb); 1591 ctrl = tlm->control; 1592 } 1593 1594 while (skip && skb) { 1595 struct strp_msg *rxm = strp_msg(skb); 1596 tlm = tls_msg(skb); 1597 1598 /* Cannot process a record of different type */ 1599 if (ctrl != tlm->control) 1600 return 0; 1601 1602 if (skip < rxm->full_len) 1603 break; 1604 1605 skip = skip - rxm->full_len; 1606 skb = skb_peek_next(skb, &ctx->rx_list); 1607 } 1608 1609 while (len && skb) { 1610 struct sk_buff *next_skb; 1611 struct strp_msg *rxm = strp_msg(skb); 1612 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1613 1614 tlm = tls_msg(skb); 1615 1616 /* Cannot process a record of different type */ 1617 if (ctrl != tlm->control) 1618 return 0; 1619 1620 /* Set record type if not already done. For a non-data record, 1621 * do not proceed if record type could not be copied. 1622 */ 1623 if (!msgc) { 1624 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1625 sizeof(ctrl), &ctrl); 1626 msgc = true; 1627 if (ctrl != TLS_RECORD_TYPE_DATA) { 1628 if (cerr || msg->msg_flags & MSG_CTRUNC) 1629 return -EIO; 1630 1631 *cmsg = msgc; 1632 } 1633 } 1634 1635 if (!zc || (rxm->full_len - skip) > len) { 1636 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1637 msg, chunk); 1638 if (err < 0) 1639 return err; 1640 } 1641 1642 len = len - chunk; 1643 copied = copied + chunk; 1644 1645 /* Consume the data from record if it is non-peek case*/ 1646 if (!is_peek) { 1647 rxm->offset = rxm->offset + chunk; 1648 rxm->full_len = rxm->full_len - chunk; 1649 1650 /* Return if there is unconsumed data in the record */ 1651 if (rxm->full_len - skip) 1652 break; 1653 } 1654 1655 /* The remaining skip-bytes must lie in 1st record in rx_list. 1656 * So from the 2nd record, 'skip' should be 0. 1657 */ 1658 skip = 0; 1659 1660 if (msg) 1661 msg->msg_flags |= MSG_EOR; 1662 1663 next_skb = skb_peek_next(skb, &ctx->rx_list); 1664 1665 if (!is_peek) { 1666 skb_unlink(skb, &ctx->rx_list); 1667 consume_skb(skb); 1668 } 1669 1670 skb = next_skb; 1671 } 1672 1673 *control = ctrl; 1674 return copied; 1675 } 1676 1677 int tls_sw_recvmsg(struct sock *sk, 1678 struct msghdr *msg, 1679 size_t len, 1680 int nonblock, 1681 int flags, 1682 int *addr_len) 1683 { 1684 struct tls_context *tls_ctx = tls_get_ctx(sk); 1685 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1686 struct tls_prot_info *prot = &tls_ctx->prot_info; 1687 struct sk_psock *psock; 1688 unsigned char control = 0; 1689 ssize_t decrypted = 0; 1690 struct strp_msg *rxm; 1691 struct tls_msg *tlm; 1692 struct sk_buff *skb; 1693 ssize_t copied = 0; 1694 bool cmsg = false; 1695 int target, err = 0; 1696 long timeo; 1697 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1698 bool is_peek = flags & MSG_PEEK; 1699 int num_async = 0; 1700 1701 flags |= nonblock; 1702 1703 if (unlikely(flags & MSG_ERRQUEUE)) 1704 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1705 1706 psock = sk_psock_get(sk); 1707 lock_sock(sk); 1708 1709 /* Process pending decrypted records. It must be non-zero-copy */ 1710 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1711 is_peek); 1712 if (err < 0) { 1713 tls_err_abort(sk, err); 1714 goto end; 1715 } else { 1716 copied = err; 1717 } 1718 1719 if (len <= copied) 1720 goto recv_end; 1721 1722 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1723 len = len - copied; 1724 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1725 1726 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1727 bool retain_skb = false; 1728 bool zc = false; 1729 int to_decrypt; 1730 int chunk = 0; 1731 bool async_capable; 1732 bool async = false; 1733 1734 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1735 if (!skb) { 1736 if (psock) { 1737 int ret = __tcp_bpf_recvmsg(sk, psock, 1738 msg, len, flags); 1739 1740 if (ret > 0) { 1741 decrypted += ret; 1742 len -= ret; 1743 continue; 1744 } 1745 } 1746 goto recv_end; 1747 } else { 1748 tlm = tls_msg(skb); 1749 if (prot->version == TLS_1_3_VERSION) 1750 tlm->control = 0; 1751 else 1752 tlm->control = ctx->control; 1753 } 1754 1755 rxm = strp_msg(skb); 1756 1757 to_decrypt = rxm->full_len - prot->overhead_size; 1758 1759 if (to_decrypt <= len && !is_kvec && !is_peek && 1760 ctx->control == TLS_RECORD_TYPE_DATA && 1761 prot->version != TLS_1_3_VERSION) 1762 zc = true; 1763 1764 /* Do not use async mode if record is non-data */ 1765 if (ctx->control == TLS_RECORD_TYPE_DATA) 1766 async_capable = ctx->async_capable; 1767 else 1768 async_capable = false; 1769 1770 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1771 &chunk, &zc, async_capable); 1772 if (err < 0 && err != -EINPROGRESS) { 1773 tls_err_abort(sk, EBADMSG); 1774 goto recv_end; 1775 } 1776 1777 if (err == -EINPROGRESS) { 1778 async = true; 1779 num_async++; 1780 } else if (prot->version == TLS_1_3_VERSION) { 1781 tlm->control = ctx->control; 1782 } 1783 1784 /* If the type of records being processed is not known yet, 1785 * set it to record type just dequeued. If it is already known, 1786 * but does not match the record type just dequeued, go to end. 1787 * We always get record type here since for tls1.2, record type 1788 * is known just after record is dequeued from stream parser. 1789 * For tls1.3, we disable async. 1790 */ 1791 1792 if (!control) 1793 control = tlm->control; 1794 else if (control != tlm->control) 1795 goto recv_end; 1796 1797 if (!cmsg) { 1798 int cerr; 1799 1800 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1801 sizeof(control), &control); 1802 cmsg = true; 1803 if (control != TLS_RECORD_TYPE_DATA) { 1804 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1805 err = -EIO; 1806 goto recv_end; 1807 } 1808 } 1809 } 1810 1811 if (async) 1812 goto pick_next_record; 1813 1814 if (!zc) { 1815 if (rxm->full_len > len) { 1816 retain_skb = true; 1817 chunk = len; 1818 } else { 1819 chunk = rxm->full_len; 1820 } 1821 1822 err = skb_copy_datagram_msg(skb, rxm->offset, 1823 msg, chunk); 1824 if (err < 0) 1825 goto recv_end; 1826 1827 if (!is_peek) { 1828 rxm->offset = rxm->offset + chunk; 1829 rxm->full_len = rxm->full_len - chunk; 1830 } 1831 } 1832 1833 pick_next_record: 1834 if (chunk > len) 1835 chunk = len; 1836 1837 decrypted += chunk; 1838 len -= chunk; 1839 1840 /* For async or peek case, queue the current skb */ 1841 if (async || is_peek || retain_skb) { 1842 skb_queue_tail(&ctx->rx_list, skb); 1843 skb = NULL; 1844 } 1845 1846 if (tls_sw_advance_skb(sk, skb, chunk)) { 1847 /* Return full control message to 1848 * userspace before trying to parse 1849 * another message type 1850 */ 1851 msg->msg_flags |= MSG_EOR; 1852 if (ctx->control != TLS_RECORD_TYPE_DATA) 1853 goto recv_end; 1854 } else { 1855 break; 1856 } 1857 } 1858 1859 recv_end: 1860 if (num_async) { 1861 /* Wait for all previously submitted records to be decrypted */ 1862 smp_store_mb(ctx->async_notify, true); 1863 if (atomic_read(&ctx->decrypt_pending)) { 1864 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1865 if (err) { 1866 /* one of async decrypt failed */ 1867 tls_err_abort(sk, err); 1868 copied = 0; 1869 decrypted = 0; 1870 goto end; 1871 } 1872 } else { 1873 reinit_completion(&ctx->async_wait.completion); 1874 } 1875 WRITE_ONCE(ctx->async_notify, false); 1876 1877 /* Drain records from the rx_list & copy if required */ 1878 if (is_peek || is_kvec) 1879 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1880 decrypted, false, is_peek); 1881 else 1882 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1883 decrypted, true, is_peek); 1884 if (err < 0) { 1885 tls_err_abort(sk, err); 1886 copied = 0; 1887 goto end; 1888 } 1889 } 1890 1891 copied += decrypted; 1892 1893 end: 1894 release_sock(sk); 1895 if (psock) 1896 sk_psock_put(sk, psock); 1897 return copied ? : err; 1898 } 1899 1900 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1901 struct pipe_inode_info *pipe, 1902 size_t len, unsigned int flags) 1903 { 1904 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1905 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1906 struct strp_msg *rxm = NULL; 1907 struct sock *sk = sock->sk; 1908 struct sk_buff *skb; 1909 ssize_t copied = 0; 1910 int err = 0; 1911 long timeo; 1912 int chunk; 1913 bool zc = false; 1914 1915 lock_sock(sk); 1916 1917 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1918 1919 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1920 if (!skb) 1921 goto splice_read_end; 1922 1923 if (!ctx->decrypted) { 1924 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1925 1926 /* splice does not support reading control messages */ 1927 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1928 err = -ENOTSUPP; 1929 goto splice_read_end; 1930 } 1931 1932 if (err < 0) { 1933 tls_err_abort(sk, EBADMSG); 1934 goto splice_read_end; 1935 } 1936 ctx->decrypted = 1; 1937 } 1938 rxm = strp_msg(skb); 1939 1940 chunk = min_t(unsigned int, rxm->full_len, len); 1941 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1942 if (copied < 0) 1943 goto splice_read_end; 1944 1945 if (likely(!(flags & MSG_PEEK))) 1946 tls_sw_advance_skb(sk, skb, copied); 1947 1948 splice_read_end: 1949 release_sock(sk); 1950 return copied ? : err; 1951 } 1952 1953 bool tls_sw_stream_read(const struct sock *sk) 1954 { 1955 struct tls_context *tls_ctx = tls_get_ctx(sk); 1956 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1957 bool ingress_empty = true; 1958 struct sk_psock *psock; 1959 1960 rcu_read_lock(); 1961 psock = sk_psock(sk); 1962 if (psock) 1963 ingress_empty = list_empty(&psock->ingress_msg); 1964 rcu_read_unlock(); 1965 1966 return !ingress_empty || ctx->recv_pkt || 1967 !skb_queue_empty(&ctx->rx_list); 1968 } 1969 1970 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1971 { 1972 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1973 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1974 struct tls_prot_info *prot = &tls_ctx->prot_info; 1975 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1976 struct strp_msg *rxm = strp_msg(skb); 1977 size_t cipher_overhead; 1978 size_t data_len = 0; 1979 int ret; 1980 1981 /* Verify that we have a full TLS header, or wait for more data */ 1982 if (rxm->offset + prot->prepend_size > skb->len) 1983 return 0; 1984 1985 /* Sanity-check size of on-stack buffer. */ 1986 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1987 ret = -EINVAL; 1988 goto read_failure; 1989 } 1990 1991 /* Linearize header to local buffer */ 1992 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1993 1994 if (ret < 0) 1995 goto read_failure; 1996 1997 ctx->control = header[0]; 1998 1999 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2000 2001 cipher_overhead = prot->tag_size; 2002 if (prot->version != TLS_1_3_VERSION) 2003 cipher_overhead += prot->iv_size; 2004 2005 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2006 prot->tail_size) { 2007 ret = -EMSGSIZE; 2008 goto read_failure; 2009 } 2010 if (data_len < cipher_overhead) { 2011 ret = -EBADMSG; 2012 goto read_failure; 2013 } 2014 2015 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2016 if (header[1] != TLS_1_2_VERSION_MINOR || 2017 header[2] != TLS_1_2_VERSION_MAJOR) { 2018 ret = -EINVAL; 2019 goto read_failure; 2020 } 2021 2022 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2023 TCP_SKB_CB(skb)->seq + rxm->offset); 2024 return data_len + TLS_HEADER_SIZE; 2025 2026 read_failure: 2027 tls_err_abort(strp->sk, ret); 2028 2029 return ret; 2030 } 2031 2032 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2033 { 2034 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2035 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2036 2037 ctx->decrypted = 0; 2038 2039 ctx->recv_pkt = skb; 2040 strp_pause(strp); 2041 2042 ctx->saved_data_ready(strp->sk); 2043 } 2044 2045 static void tls_data_ready(struct sock *sk) 2046 { 2047 struct tls_context *tls_ctx = tls_get_ctx(sk); 2048 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2049 struct sk_psock *psock; 2050 2051 strp_data_ready(&ctx->strp); 2052 2053 psock = sk_psock_get(sk); 2054 if (psock && !list_empty(&psock->ingress_msg)) { 2055 ctx->saved_data_ready(sk); 2056 sk_psock_put(sk, psock); 2057 } 2058 } 2059 2060 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2061 { 2062 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2063 2064 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2065 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2066 cancel_delayed_work_sync(&ctx->tx_work.work); 2067 } 2068 2069 void tls_sw_release_resources_tx(struct sock *sk) 2070 { 2071 struct tls_context *tls_ctx = tls_get_ctx(sk); 2072 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2073 struct tls_rec *rec, *tmp; 2074 2075 /* Wait for any pending async encryptions to complete */ 2076 smp_store_mb(ctx->async_notify, true); 2077 if (atomic_read(&ctx->encrypt_pending)) 2078 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2079 2080 tls_tx_records(sk, -1); 2081 2082 /* Free up un-sent records in tx_list. First, free 2083 * the partially sent record if any at head of tx_list. 2084 */ 2085 if (tls_free_partial_record(sk, tls_ctx)) { 2086 rec = list_first_entry(&ctx->tx_list, 2087 struct tls_rec, list); 2088 list_del(&rec->list); 2089 sk_msg_free(sk, &rec->msg_plaintext); 2090 kfree(rec); 2091 } 2092 2093 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2094 list_del(&rec->list); 2095 sk_msg_free(sk, &rec->msg_encrypted); 2096 sk_msg_free(sk, &rec->msg_plaintext); 2097 kfree(rec); 2098 } 2099 2100 crypto_free_aead(ctx->aead_send); 2101 tls_free_open_rec(sk); 2102 } 2103 2104 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2105 { 2106 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2107 2108 kfree(ctx); 2109 } 2110 2111 void tls_sw_release_resources_rx(struct sock *sk) 2112 { 2113 struct tls_context *tls_ctx = tls_get_ctx(sk); 2114 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2115 2116 kfree(tls_ctx->rx.rec_seq); 2117 kfree(tls_ctx->rx.iv); 2118 2119 if (ctx->aead_recv) { 2120 kfree_skb(ctx->recv_pkt); 2121 ctx->recv_pkt = NULL; 2122 skb_queue_purge(&ctx->rx_list); 2123 crypto_free_aead(ctx->aead_recv); 2124 strp_stop(&ctx->strp); 2125 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2126 * we still want to strp_stop(), but sk->sk_data_ready was 2127 * never swapped. 2128 */ 2129 if (ctx->saved_data_ready) { 2130 write_lock_bh(&sk->sk_callback_lock); 2131 sk->sk_data_ready = ctx->saved_data_ready; 2132 write_unlock_bh(&sk->sk_callback_lock); 2133 } 2134 } 2135 } 2136 2137 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2138 { 2139 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2140 2141 strp_done(&ctx->strp); 2142 } 2143 2144 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2145 { 2146 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2147 2148 kfree(ctx); 2149 } 2150 2151 void tls_sw_free_resources_rx(struct sock *sk) 2152 { 2153 struct tls_context *tls_ctx = tls_get_ctx(sk); 2154 2155 tls_sw_release_resources_rx(sk); 2156 tls_sw_free_ctx_rx(tls_ctx); 2157 } 2158 2159 /* The work handler to transmitt the encrypted records in tx_list */ 2160 static void tx_work_handler(struct work_struct *work) 2161 { 2162 struct delayed_work *delayed_work = to_delayed_work(work); 2163 struct tx_work *tx_work = container_of(delayed_work, 2164 struct tx_work, work); 2165 struct sock *sk = tx_work->sk; 2166 struct tls_context *tls_ctx = tls_get_ctx(sk); 2167 struct tls_sw_context_tx *ctx; 2168 2169 if (unlikely(!tls_ctx)) 2170 return; 2171 2172 ctx = tls_sw_ctx_tx(tls_ctx); 2173 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2174 return; 2175 2176 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2177 return; 2178 lock_sock(sk); 2179 tls_tx_records(sk, -1); 2180 release_sock(sk); 2181 } 2182 2183 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2184 { 2185 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2186 2187 /* Schedule the transmission if tx list is ready */ 2188 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) { 2189 /* Schedule the transmission */ 2190 if (!test_and_set_bit(BIT_TX_SCHEDULED, 2191 &tx_ctx->tx_bitmask)) 2192 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2193 } 2194 } 2195 2196 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2197 { 2198 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2199 2200 write_lock_bh(&sk->sk_callback_lock); 2201 rx_ctx->saved_data_ready = sk->sk_data_ready; 2202 sk->sk_data_ready = tls_data_ready; 2203 write_unlock_bh(&sk->sk_callback_lock); 2204 2205 strp_check_rcv(&rx_ctx->strp); 2206 } 2207 2208 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2209 { 2210 struct tls_context *tls_ctx = tls_get_ctx(sk); 2211 struct tls_prot_info *prot = &tls_ctx->prot_info; 2212 struct tls_crypto_info *crypto_info; 2213 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2214 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2215 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2216 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2217 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2218 struct cipher_context *cctx; 2219 struct crypto_aead **aead; 2220 struct strp_callbacks cb; 2221 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2222 struct crypto_tfm *tfm; 2223 char *iv, *rec_seq, *key, *salt, *cipher_name; 2224 size_t keysize; 2225 int rc = 0; 2226 2227 if (!ctx) { 2228 rc = -EINVAL; 2229 goto out; 2230 } 2231 2232 if (tx) { 2233 if (!ctx->priv_ctx_tx) { 2234 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2235 if (!sw_ctx_tx) { 2236 rc = -ENOMEM; 2237 goto out; 2238 } 2239 ctx->priv_ctx_tx = sw_ctx_tx; 2240 } else { 2241 sw_ctx_tx = 2242 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2243 } 2244 } else { 2245 if (!ctx->priv_ctx_rx) { 2246 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2247 if (!sw_ctx_rx) { 2248 rc = -ENOMEM; 2249 goto out; 2250 } 2251 ctx->priv_ctx_rx = sw_ctx_rx; 2252 } else { 2253 sw_ctx_rx = 2254 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2255 } 2256 } 2257 2258 if (tx) { 2259 crypto_init_wait(&sw_ctx_tx->async_wait); 2260 crypto_info = &ctx->crypto_send.info; 2261 cctx = &ctx->tx; 2262 aead = &sw_ctx_tx->aead_send; 2263 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2264 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2265 sw_ctx_tx->tx_work.sk = sk; 2266 } else { 2267 crypto_init_wait(&sw_ctx_rx->async_wait); 2268 crypto_info = &ctx->crypto_recv.info; 2269 cctx = &ctx->rx; 2270 skb_queue_head_init(&sw_ctx_rx->rx_list); 2271 aead = &sw_ctx_rx->aead_recv; 2272 } 2273 2274 switch (crypto_info->cipher_type) { 2275 case TLS_CIPHER_AES_GCM_128: { 2276 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2277 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2278 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2279 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2280 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2281 rec_seq = 2282 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2283 gcm_128_info = 2284 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2285 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2286 key = gcm_128_info->key; 2287 salt = gcm_128_info->salt; 2288 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2289 cipher_name = "gcm(aes)"; 2290 break; 2291 } 2292 case TLS_CIPHER_AES_GCM_256: { 2293 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2294 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2295 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2296 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2297 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2298 rec_seq = 2299 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2300 gcm_256_info = 2301 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2302 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2303 key = gcm_256_info->key; 2304 salt = gcm_256_info->salt; 2305 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2306 cipher_name = "gcm(aes)"; 2307 break; 2308 } 2309 case TLS_CIPHER_AES_CCM_128: { 2310 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2311 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2312 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2313 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2314 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2315 rec_seq = 2316 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2317 ccm_128_info = 2318 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2319 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2320 key = ccm_128_info->key; 2321 salt = ccm_128_info->salt; 2322 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2323 cipher_name = "ccm(aes)"; 2324 break; 2325 } 2326 default: 2327 rc = -EINVAL; 2328 goto free_priv; 2329 } 2330 2331 /* Sanity-check the sizes for stack allocations. */ 2332 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2333 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2334 rc = -EINVAL; 2335 goto free_priv; 2336 } 2337 2338 if (crypto_info->version == TLS_1_3_VERSION) { 2339 nonce_size = 0; 2340 prot->aad_size = TLS_HEADER_SIZE; 2341 prot->tail_size = 1; 2342 } else { 2343 prot->aad_size = TLS_AAD_SPACE_SIZE; 2344 prot->tail_size = 0; 2345 } 2346 2347 prot->version = crypto_info->version; 2348 prot->cipher_type = crypto_info->cipher_type; 2349 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2350 prot->tag_size = tag_size; 2351 prot->overhead_size = prot->prepend_size + 2352 prot->tag_size + prot->tail_size; 2353 prot->iv_size = iv_size; 2354 prot->salt_size = salt_size; 2355 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2356 if (!cctx->iv) { 2357 rc = -ENOMEM; 2358 goto free_priv; 2359 } 2360 /* Note: 128 & 256 bit salt are the same size */ 2361 prot->rec_seq_size = rec_seq_size; 2362 memcpy(cctx->iv, salt, salt_size); 2363 memcpy(cctx->iv + salt_size, iv, iv_size); 2364 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2365 if (!cctx->rec_seq) { 2366 rc = -ENOMEM; 2367 goto free_iv; 2368 } 2369 2370 if (!*aead) { 2371 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2372 if (IS_ERR(*aead)) { 2373 rc = PTR_ERR(*aead); 2374 *aead = NULL; 2375 goto free_rec_seq; 2376 } 2377 } 2378 2379 ctx->push_pending_record = tls_sw_push_pending_record; 2380 2381 rc = crypto_aead_setkey(*aead, key, keysize); 2382 2383 if (rc) 2384 goto free_aead; 2385 2386 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2387 if (rc) 2388 goto free_aead; 2389 2390 if (sw_ctx_rx) { 2391 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2392 2393 if (crypto_info->version == TLS_1_3_VERSION) 2394 sw_ctx_rx->async_capable = 0; 2395 else 2396 sw_ctx_rx->async_capable = 2397 !!(tfm->__crt_alg->cra_flags & 2398 CRYPTO_ALG_ASYNC); 2399 2400 /* Set up strparser */ 2401 memset(&cb, 0, sizeof(cb)); 2402 cb.rcv_msg = tls_queue; 2403 cb.parse_msg = tls_read_size; 2404 2405 strp_init(&sw_ctx_rx->strp, sk, &cb); 2406 } 2407 2408 goto out; 2409 2410 free_aead: 2411 crypto_free_aead(*aead); 2412 *aead = NULL; 2413 free_rec_seq: 2414 kfree(cctx->rec_seq); 2415 cctx->rec_seq = NULL; 2416 free_iv: 2417 kfree(cctx->iv); 2418 cctx->iv = NULL; 2419 free_priv: 2420 if (tx) { 2421 kfree(ctx->priv_ctx_tx); 2422 ctx->priv_ctx_tx = NULL; 2423 } else { 2424 kfree(ctx->priv_ctx_rx); 2425 ctx->priv_ctx_rx = NULL; 2426 } 2427 out: 2428 return rc; 2429 } 2430