1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 u8 tail; 56 ); 57 58 struct sk_buff *skb; 59 }; 60 61 struct tls_decrypt_ctx { 62 struct sock *sk; 63 u8 iv[TLS_MAX_IV_SIZE]; 64 u8 aad[TLS_MAX_AAD_SIZE]; 65 u8 tail; 66 struct scatterlist sg[]; 67 }; 68 69 noinline void tls_err_abort(struct sock *sk, int err) 70 { 71 WARN_ON_ONCE(err >= 0); 72 /* sk->sk_err should contain a positive error code. */ 73 WRITE_ONCE(sk->sk_err, -err); 74 /* Paired with smp_rmb() in tcp_poll() */ 75 smp_wmb(); 76 sk_error_report(sk); 77 } 78 79 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 80 unsigned int recursion_level) 81 { 82 int start = skb_headlen(skb); 83 int i, chunk = start - offset; 84 struct sk_buff *frag_iter; 85 int elt = 0; 86 87 if (unlikely(recursion_level >= 24)) 88 return -EMSGSIZE; 89 90 if (chunk > 0) { 91 if (chunk > len) 92 chunk = len; 93 elt++; 94 len -= chunk; 95 if (len == 0) 96 return elt; 97 offset += chunk; 98 } 99 100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 101 int end; 102 103 WARN_ON(start > offset + len); 104 105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 106 chunk = end - offset; 107 if (chunk > 0) { 108 if (chunk > len) 109 chunk = len; 110 elt++; 111 len -= chunk; 112 if (len == 0) 113 return elt; 114 offset += chunk; 115 } 116 start = end; 117 } 118 119 if (unlikely(skb_has_frag_list(skb))) { 120 skb_walk_frags(skb, frag_iter) { 121 int end, ret; 122 123 WARN_ON(start > offset + len); 124 125 end = start + frag_iter->len; 126 chunk = end - offset; 127 if (chunk > 0) { 128 if (chunk > len) 129 chunk = len; 130 ret = __skb_nsg(frag_iter, offset - start, chunk, 131 recursion_level + 1); 132 if (unlikely(ret < 0)) 133 return ret; 134 elt += ret; 135 len -= chunk; 136 if (len == 0) 137 return elt; 138 offset += chunk; 139 } 140 start = end; 141 } 142 } 143 BUG_ON(len); 144 return elt; 145 } 146 147 /* Return the number of scatterlist elements required to completely map the 148 * skb, or -EMSGSIZE if the recursion depth is exceeded. 149 */ 150 static int skb_nsg(struct sk_buff *skb, int offset, int len) 151 { 152 return __skb_nsg(skb, offset, len, 0); 153 } 154 155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 156 struct tls_decrypt_arg *darg) 157 { 158 struct strp_msg *rxm = strp_msg(skb); 159 struct tls_msg *tlm = tls_msg(skb); 160 int sub = 0; 161 162 /* Determine zero-padding length */ 163 if (prot->version == TLS_1_3_VERSION) { 164 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 165 char content_type = darg->zc ? darg->tail : 0; 166 int err; 167 168 while (content_type == 0) { 169 if (offset < prot->prepend_size) 170 return -EBADMSG; 171 err = skb_copy_bits(skb, rxm->offset + offset, 172 &content_type, 1); 173 if (err) 174 return err; 175 if (content_type) 176 break; 177 sub++; 178 offset--; 179 } 180 tlm->control = content_type; 181 } 182 return sub; 183 } 184 185 static void tls_decrypt_done(void *data, int err) 186 { 187 struct aead_request *aead_req = data; 188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 189 struct scatterlist *sgout = aead_req->dst; 190 struct scatterlist *sgin = aead_req->src; 191 struct tls_sw_context_rx *ctx; 192 struct tls_decrypt_ctx *dctx; 193 struct tls_context *tls_ctx; 194 struct scatterlist *sg; 195 unsigned int pages; 196 struct sock *sk; 197 int aead_size; 198 199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 200 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 201 dctx = (void *)((u8 *)aead_req + aead_size); 202 203 sk = dctx->sk; 204 tls_ctx = tls_get_ctx(sk); 205 ctx = tls_sw_ctx_rx(tls_ctx); 206 207 /* Propagate if there was an err */ 208 if (err) { 209 if (err == -EBADMSG) 210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 211 ctx->async_wait.err = err; 212 tls_err_abort(sk, err); 213 } 214 215 /* Free the destination pages if skb was not decrypted inplace */ 216 if (sgout != sgin) { 217 /* Skip the first S/G entry as it points to AAD */ 218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 219 if (!sg) 220 break; 221 put_page(sg_page(sg)); 222 } 223 } 224 225 kfree(aead_req); 226 227 spin_lock_bh(&ctx->decrypt_compl_lock); 228 if (!atomic_dec_return(&ctx->decrypt_pending)) 229 complete(&ctx->async_wait.completion); 230 spin_unlock_bh(&ctx->decrypt_compl_lock); 231 } 232 233 static int tls_do_decryption(struct sock *sk, 234 struct scatterlist *sgin, 235 struct scatterlist *sgout, 236 char *iv_recv, 237 size_t data_len, 238 struct aead_request *aead_req, 239 struct tls_decrypt_arg *darg) 240 { 241 struct tls_context *tls_ctx = tls_get_ctx(sk); 242 struct tls_prot_info *prot = &tls_ctx->prot_info; 243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 244 int ret; 245 246 aead_request_set_tfm(aead_req, ctx->aead_recv); 247 aead_request_set_ad(aead_req, prot->aad_size); 248 aead_request_set_crypt(aead_req, sgin, sgout, 249 data_len + prot->tag_size, 250 (u8 *)iv_recv); 251 252 if (darg->async) { 253 aead_request_set_callback(aead_req, 254 CRYPTO_TFM_REQ_MAY_BACKLOG, 255 tls_decrypt_done, aead_req); 256 atomic_inc(&ctx->decrypt_pending); 257 } else { 258 aead_request_set_callback(aead_req, 259 CRYPTO_TFM_REQ_MAY_BACKLOG, 260 crypto_req_done, &ctx->async_wait); 261 } 262 263 ret = crypto_aead_decrypt(aead_req); 264 if (ret == -EINPROGRESS) { 265 if (darg->async) 266 return 0; 267 268 ret = crypto_wait_req(ret, &ctx->async_wait); 269 } 270 darg->async = false; 271 272 return ret; 273 } 274 275 static void tls_trim_both_msgs(struct sock *sk, int target_size) 276 { 277 struct tls_context *tls_ctx = tls_get_ctx(sk); 278 struct tls_prot_info *prot = &tls_ctx->prot_info; 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 282 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 283 if (target_size > 0) 284 target_size += prot->overhead_size; 285 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 286 } 287 288 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 289 { 290 struct tls_context *tls_ctx = tls_get_ctx(sk); 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 292 struct tls_rec *rec = ctx->open_rec; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 295 return sk_msg_alloc(sk, msg_en, len, 0); 296 } 297 298 static int tls_clone_plaintext_msg(struct sock *sk, int required) 299 { 300 struct tls_context *tls_ctx = tls_get_ctx(sk); 301 struct tls_prot_info *prot = &tls_ctx->prot_info; 302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 303 struct tls_rec *rec = ctx->open_rec; 304 struct sk_msg *msg_pl = &rec->msg_plaintext; 305 struct sk_msg *msg_en = &rec->msg_encrypted; 306 int skip, len; 307 308 /* We add page references worth len bytes from encrypted sg 309 * at the end of plaintext sg. It is guaranteed that msg_en 310 * has enough required room (ensured by caller). 311 */ 312 len = required - msg_pl->sg.size; 313 314 /* Skip initial bytes in msg_en's data to be able to use 315 * same offset of both plain and encrypted data. 316 */ 317 skip = prot->prepend_size + msg_pl->sg.size; 318 319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 320 } 321 322 static struct tls_rec *tls_get_rec(struct sock *sk) 323 { 324 struct tls_context *tls_ctx = tls_get_ctx(sk); 325 struct tls_prot_info *prot = &tls_ctx->prot_info; 326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 327 struct sk_msg *msg_pl, *msg_en; 328 struct tls_rec *rec; 329 int mem_size; 330 331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 332 333 rec = kzalloc(mem_size, sk->sk_allocation); 334 if (!rec) 335 return NULL; 336 337 msg_pl = &rec->msg_plaintext; 338 msg_en = &rec->msg_encrypted; 339 340 sk_msg_init(msg_pl); 341 sk_msg_init(msg_en); 342 343 sg_init_table(rec->sg_aead_in, 2); 344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 345 sg_unmark_end(&rec->sg_aead_in[1]); 346 347 sg_init_table(rec->sg_aead_out, 2); 348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 349 sg_unmark_end(&rec->sg_aead_out[1]); 350 351 rec->sk = sk; 352 353 return rec; 354 } 355 356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 357 { 358 sk_msg_free(sk, &rec->msg_encrypted); 359 sk_msg_free(sk, &rec->msg_plaintext); 360 kfree(rec); 361 } 362 363 static void tls_free_open_rec(struct sock *sk) 364 { 365 struct tls_context *tls_ctx = tls_get_ctx(sk); 366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 367 struct tls_rec *rec = ctx->open_rec; 368 369 if (rec) { 370 tls_free_rec(sk, rec); 371 ctx->open_rec = NULL; 372 } 373 } 374 375 int tls_tx_records(struct sock *sk, int flags) 376 { 377 struct tls_context *tls_ctx = tls_get_ctx(sk); 378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 379 struct tls_rec *rec, *tmp; 380 struct sk_msg *msg_en; 381 int tx_flags, rc = 0; 382 383 if (tls_is_partially_sent_record(tls_ctx)) { 384 rec = list_first_entry(&ctx->tx_list, 385 struct tls_rec, list); 386 387 if (flags == -1) 388 tx_flags = rec->tx_flags; 389 else 390 tx_flags = flags; 391 392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 393 if (rc) 394 goto tx_err; 395 396 /* Full record has been transmitted. 397 * Remove the head of tx_list 398 */ 399 list_del(&rec->list); 400 sk_msg_free(sk, &rec->msg_plaintext); 401 kfree(rec); 402 } 403 404 /* Tx all ready records */ 405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 406 if (READ_ONCE(rec->tx_ready)) { 407 if (flags == -1) 408 tx_flags = rec->tx_flags; 409 else 410 tx_flags = flags; 411 412 msg_en = &rec->msg_encrypted; 413 rc = tls_push_sg(sk, tls_ctx, 414 &msg_en->sg.data[msg_en->sg.curr], 415 0, tx_flags); 416 if (rc) 417 goto tx_err; 418 419 list_del(&rec->list); 420 sk_msg_free(sk, &rec->msg_plaintext); 421 kfree(rec); 422 } else { 423 break; 424 } 425 } 426 427 tx_err: 428 if (rc < 0 && rc != -EAGAIN) 429 tls_err_abort(sk, -EBADMSG); 430 431 return rc; 432 } 433 434 static void tls_encrypt_done(void *data, int err) 435 { 436 struct tls_sw_context_tx *ctx; 437 struct tls_context *tls_ctx; 438 struct tls_prot_info *prot; 439 struct tls_rec *rec = data; 440 struct scatterlist *sge; 441 struct sk_msg *msg_en; 442 bool ready = false; 443 struct sock *sk; 444 int pending; 445 446 msg_en = &rec->msg_encrypted; 447 448 sk = rec->sk; 449 tls_ctx = tls_get_ctx(sk); 450 prot = &tls_ctx->prot_info; 451 ctx = tls_sw_ctx_tx(tls_ctx); 452 453 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 454 sge->offset -= prot->prepend_size; 455 sge->length += prot->prepend_size; 456 457 /* Check if error is previously set on socket */ 458 if (err || sk->sk_err) { 459 rec = NULL; 460 461 /* If err is already set on socket, return the same code */ 462 if (sk->sk_err) { 463 ctx->async_wait.err = -sk->sk_err; 464 } else { 465 ctx->async_wait.err = err; 466 tls_err_abort(sk, err); 467 } 468 } 469 470 if (rec) { 471 struct tls_rec *first_rec; 472 473 /* Mark the record as ready for transmission */ 474 smp_store_mb(rec->tx_ready, true); 475 476 /* If received record is at head of tx_list, schedule tx */ 477 first_rec = list_first_entry(&ctx->tx_list, 478 struct tls_rec, list); 479 if (rec == first_rec) 480 ready = true; 481 } 482 483 spin_lock_bh(&ctx->encrypt_compl_lock); 484 pending = atomic_dec_return(&ctx->encrypt_pending); 485 486 if (!pending && ctx->async_notify) 487 complete(&ctx->async_wait.completion); 488 spin_unlock_bh(&ctx->encrypt_compl_lock); 489 490 if (!ready) 491 return; 492 493 /* Schedule the transmission */ 494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 495 schedule_delayed_work(&ctx->tx_work.work, 1); 496 } 497 498 static int tls_do_encryption(struct sock *sk, 499 struct tls_context *tls_ctx, 500 struct tls_sw_context_tx *ctx, 501 struct aead_request *aead_req, 502 size_t data_len, u32 start) 503 { 504 struct tls_prot_info *prot = &tls_ctx->prot_info; 505 struct tls_rec *rec = ctx->open_rec; 506 struct sk_msg *msg_en = &rec->msg_encrypted; 507 struct scatterlist *sge = sk_msg_elem(msg_en, start); 508 int rc, iv_offset = 0; 509 510 /* For CCM based ciphers, first byte of IV is a constant */ 511 switch (prot->cipher_type) { 512 case TLS_CIPHER_AES_CCM_128: 513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 514 iv_offset = 1; 515 break; 516 case TLS_CIPHER_SM4_CCM: 517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 518 iv_offset = 1; 519 break; 520 } 521 522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 523 prot->iv_size + prot->salt_size); 524 525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 526 tls_ctx->tx.rec_seq); 527 528 sge->offset += prot->prepend_size; 529 sge->length -= prot->prepend_size; 530 531 msg_en->sg.curr = start; 532 533 aead_request_set_tfm(aead_req, ctx->aead_send); 534 aead_request_set_ad(aead_req, prot->aad_size); 535 aead_request_set_crypt(aead_req, rec->sg_aead_in, 536 rec->sg_aead_out, 537 data_len, rec->iv_data); 538 539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 540 tls_encrypt_done, rec); 541 542 /* Add the record in tx_list */ 543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 544 atomic_inc(&ctx->encrypt_pending); 545 546 rc = crypto_aead_encrypt(aead_req); 547 if (!rc || rc != -EINPROGRESS) { 548 atomic_dec(&ctx->encrypt_pending); 549 sge->offset -= prot->prepend_size; 550 sge->length += prot->prepend_size; 551 } 552 553 if (!rc) { 554 WRITE_ONCE(rec->tx_ready, true); 555 } else if (rc != -EINPROGRESS) { 556 list_del(&rec->list); 557 return rc; 558 } 559 560 /* Unhook the record from context if encryption is not failure */ 561 ctx->open_rec = NULL; 562 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 563 return rc; 564 } 565 566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 567 struct tls_rec **to, struct sk_msg *msg_opl, 568 struct sk_msg *msg_oen, u32 split_point, 569 u32 tx_overhead_size, u32 *orig_end) 570 { 571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 572 struct scatterlist *sge, *osge, *nsge; 573 u32 orig_size = msg_opl->sg.size; 574 struct scatterlist tmp = { }; 575 struct sk_msg *msg_npl; 576 struct tls_rec *new; 577 int ret; 578 579 new = tls_get_rec(sk); 580 if (!new) 581 return -ENOMEM; 582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 583 tx_overhead_size, 0); 584 if (ret < 0) { 585 tls_free_rec(sk, new); 586 return ret; 587 } 588 589 *orig_end = msg_opl->sg.end; 590 i = msg_opl->sg.start; 591 sge = sk_msg_elem(msg_opl, i); 592 while (apply && sge->length) { 593 if (sge->length > apply) { 594 u32 len = sge->length - apply; 595 596 get_page(sg_page(sge)); 597 sg_set_page(&tmp, sg_page(sge), len, 598 sge->offset + apply); 599 sge->length = apply; 600 bytes += apply; 601 apply = 0; 602 } else { 603 apply -= sge->length; 604 bytes += sge->length; 605 } 606 607 sk_msg_iter_var_next(i); 608 if (i == msg_opl->sg.end) 609 break; 610 sge = sk_msg_elem(msg_opl, i); 611 } 612 613 msg_opl->sg.end = i; 614 msg_opl->sg.curr = i; 615 msg_opl->sg.copybreak = 0; 616 msg_opl->apply_bytes = 0; 617 msg_opl->sg.size = bytes; 618 619 msg_npl = &new->msg_plaintext; 620 msg_npl->apply_bytes = apply; 621 msg_npl->sg.size = orig_size - bytes; 622 623 j = msg_npl->sg.start; 624 nsge = sk_msg_elem(msg_npl, j); 625 if (tmp.length) { 626 memcpy(nsge, &tmp, sizeof(*nsge)); 627 sk_msg_iter_var_next(j); 628 nsge = sk_msg_elem(msg_npl, j); 629 } 630 631 osge = sk_msg_elem(msg_opl, i); 632 while (osge->length) { 633 memcpy(nsge, osge, sizeof(*nsge)); 634 sg_unmark_end(nsge); 635 sk_msg_iter_var_next(i); 636 sk_msg_iter_var_next(j); 637 if (i == *orig_end) 638 break; 639 osge = sk_msg_elem(msg_opl, i); 640 nsge = sk_msg_elem(msg_npl, j); 641 } 642 643 msg_npl->sg.end = j; 644 msg_npl->sg.curr = j; 645 msg_npl->sg.copybreak = 0; 646 647 *to = new; 648 return 0; 649 } 650 651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 652 struct tls_rec *from, u32 orig_end) 653 { 654 struct sk_msg *msg_npl = &from->msg_plaintext; 655 struct sk_msg *msg_opl = &to->msg_plaintext; 656 struct scatterlist *osge, *nsge; 657 u32 i, j; 658 659 i = msg_opl->sg.end; 660 sk_msg_iter_var_prev(i); 661 j = msg_npl->sg.start; 662 663 osge = sk_msg_elem(msg_opl, i); 664 nsge = sk_msg_elem(msg_npl, j); 665 666 if (sg_page(osge) == sg_page(nsge) && 667 osge->offset + osge->length == nsge->offset) { 668 osge->length += nsge->length; 669 put_page(sg_page(nsge)); 670 } 671 672 msg_opl->sg.end = orig_end; 673 msg_opl->sg.curr = orig_end; 674 msg_opl->sg.copybreak = 0; 675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 676 msg_opl->sg.size += msg_npl->sg.size; 677 678 sk_msg_free(sk, &to->msg_encrypted); 679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 680 681 kfree(from); 682 } 683 684 static int tls_push_record(struct sock *sk, int flags, 685 unsigned char record_type) 686 { 687 struct tls_context *tls_ctx = tls_get_ctx(sk); 688 struct tls_prot_info *prot = &tls_ctx->prot_info; 689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 691 u32 i, split_point, orig_end; 692 struct sk_msg *msg_pl, *msg_en; 693 struct aead_request *req; 694 bool split; 695 int rc; 696 697 if (!rec) 698 return 0; 699 700 msg_pl = &rec->msg_plaintext; 701 msg_en = &rec->msg_encrypted; 702 703 split_point = msg_pl->apply_bytes; 704 split = split_point && split_point < msg_pl->sg.size; 705 if (unlikely((!split && 706 msg_pl->sg.size + 707 prot->overhead_size > msg_en->sg.size) || 708 (split && 709 split_point + 710 prot->overhead_size > msg_en->sg.size))) { 711 split = true; 712 split_point = msg_en->sg.size; 713 } 714 if (split) { 715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 716 split_point, prot->overhead_size, 717 &orig_end); 718 if (rc < 0) 719 return rc; 720 /* This can happen if above tls_split_open_record allocates 721 * a single large encryption buffer instead of two smaller 722 * ones. In this case adjust pointers and continue without 723 * split. 724 */ 725 if (!msg_pl->sg.size) { 726 tls_merge_open_record(sk, rec, tmp, orig_end); 727 msg_pl = &rec->msg_plaintext; 728 msg_en = &rec->msg_encrypted; 729 split = false; 730 } 731 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 732 prot->overhead_size); 733 } 734 735 rec->tx_flags = flags; 736 req = &rec->aead_req; 737 738 i = msg_pl->sg.end; 739 sk_msg_iter_var_prev(i); 740 741 rec->content_type = record_type; 742 if (prot->version == TLS_1_3_VERSION) { 743 /* Add content type to end of message. No padding added */ 744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 745 sg_mark_end(&rec->sg_content_type); 746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 747 &rec->sg_content_type); 748 } else { 749 sg_mark_end(sk_msg_elem(msg_pl, i)); 750 } 751 752 if (msg_pl->sg.end < msg_pl->sg.start) { 753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 754 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 755 msg_pl->sg.data); 756 } 757 758 i = msg_pl->sg.start; 759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 760 761 i = msg_en->sg.end; 762 sk_msg_iter_var_prev(i); 763 sg_mark_end(sk_msg_elem(msg_en, i)); 764 765 i = msg_en->sg.start; 766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 767 768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 769 tls_ctx->tx.rec_seq, record_type, prot); 770 771 tls_fill_prepend(tls_ctx, 772 page_address(sg_page(&msg_en->sg.data[i])) + 773 msg_en->sg.data[i].offset, 774 msg_pl->sg.size + prot->tail_size, 775 record_type); 776 777 tls_ctx->pending_open_record_frags = false; 778 779 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 780 msg_pl->sg.size + prot->tail_size, i); 781 if (rc < 0) { 782 if (rc != -EINPROGRESS) { 783 tls_err_abort(sk, -EBADMSG); 784 if (split) { 785 tls_ctx->pending_open_record_frags = true; 786 tls_merge_open_record(sk, rec, tmp, orig_end); 787 } 788 } 789 ctx->async_capable = 1; 790 return rc; 791 } else if (split) { 792 msg_pl = &tmp->msg_plaintext; 793 msg_en = &tmp->msg_encrypted; 794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 795 tls_ctx->pending_open_record_frags = true; 796 ctx->open_rec = tmp; 797 } 798 799 return tls_tx_records(sk, flags); 800 } 801 802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 803 bool full_record, u8 record_type, 804 ssize_t *copied, int flags) 805 { 806 struct tls_context *tls_ctx = tls_get_ctx(sk); 807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 808 struct sk_msg msg_redir = { }; 809 struct sk_psock *psock; 810 struct sock *sk_redir; 811 struct tls_rec *rec; 812 bool enospc, policy, redir_ingress; 813 int err = 0, send; 814 u32 delta = 0; 815 816 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 817 psock = sk_psock_get(sk); 818 if (!psock || !policy) { 819 err = tls_push_record(sk, flags, record_type); 820 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 821 *copied -= sk_msg_free(sk, msg); 822 tls_free_open_rec(sk); 823 err = -sk->sk_err; 824 } 825 if (psock) 826 sk_psock_put(sk, psock); 827 return err; 828 } 829 more_data: 830 enospc = sk_msg_full(msg); 831 if (psock->eval == __SK_NONE) { 832 delta = msg->sg.size; 833 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 834 delta -= msg->sg.size; 835 } 836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 837 !enospc && !full_record) { 838 err = -ENOSPC; 839 goto out_err; 840 } 841 msg->cork_bytes = 0; 842 send = msg->sg.size; 843 if (msg->apply_bytes && msg->apply_bytes < send) 844 send = msg->apply_bytes; 845 846 switch (psock->eval) { 847 case __SK_PASS: 848 err = tls_push_record(sk, flags, record_type); 849 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 850 *copied -= sk_msg_free(sk, msg); 851 tls_free_open_rec(sk); 852 err = -sk->sk_err; 853 goto out_err; 854 } 855 break; 856 case __SK_REDIRECT: 857 redir_ingress = psock->redir_ingress; 858 sk_redir = psock->sk_redir; 859 memcpy(&msg_redir, msg, sizeof(*msg)); 860 if (msg->apply_bytes < send) 861 msg->apply_bytes = 0; 862 else 863 msg->apply_bytes -= send; 864 sk_msg_return_zero(sk, msg, send); 865 msg->sg.size -= send; 866 release_sock(sk); 867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 868 &msg_redir, send, flags); 869 lock_sock(sk); 870 if (err < 0) { 871 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 872 msg->sg.size = 0; 873 } 874 if (msg->sg.size == 0) 875 tls_free_open_rec(sk); 876 break; 877 case __SK_DROP: 878 default: 879 sk_msg_free_partial(sk, msg, send); 880 if (msg->apply_bytes < send) 881 msg->apply_bytes = 0; 882 else 883 msg->apply_bytes -= send; 884 if (msg->sg.size == 0) 885 tls_free_open_rec(sk); 886 *copied -= (send + delta); 887 err = -EACCES; 888 } 889 890 if (likely(!err)) { 891 bool reset_eval = !ctx->open_rec; 892 893 rec = ctx->open_rec; 894 if (rec) { 895 msg = &rec->msg_plaintext; 896 if (!msg->apply_bytes) 897 reset_eval = true; 898 } 899 if (reset_eval) { 900 psock->eval = __SK_NONE; 901 if (psock->sk_redir) { 902 sock_put(psock->sk_redir); 903 psock->sk_redir = NULL; 904 } 905 } 906 if (rec) 907 goto more_data; 908 } 909 out_err: 910 sk_psock_put(sk, psock); 911 return err; 912 } 913 914 static int tls_sw_push_pending_record(struct sock *sk, int flags) 915 { 916 struct tls_context *tls_ctx = tls_get_ctx(sk); 917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 918 struct tls_rec *rec = ctx->open_rec; 919 struct sk_msg *msg_pl; 920 size_t copied; 921 922 if (!rec) 923 return 0; 924 925 msg_pl = &rec->msg_plaintext; 926 copied = msg_pl->sg.size; 927 if (!copied) 928 return 0; 929 930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 931 &copied, flags); 932 } 933 934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 935 struct sk_msg *msg_pl, size_t try_to_copy, 936 ssize_t *copied) 937 { 938 struct page *page = NULL, **pages = &page; 939 940 do { 941 ssize_t part; 942 size_t off; 943 944 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 945 try_to_copy, 1, 0, &off); 946 if (part <= 0) 947 return part ?: -EIO; 948 949 if (WARN_ON_ONCE(!sendpage_ok(page))) { 950 iov_iter_revert(&msg->msg_iter, part); 951 return -EIO; 952 } 953 954 sk_msg_page_add(msg_pl, page, part, off); 955 msg_pl->sg.copybreak = 0; 956 msg_pl->sg.curr = msg_pl->sg.end; 957 sk_mem_charge(sk, part); 958 *copied += part; 959 try_to_copy -= part; 960 } while (try_to_copy && !sk_msg_full(msg_pl)); 961 962 return 0; 963 } 964 965 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 966 size_t size) 967 { 968 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 969 struct tls_context *tls_ctx = tls_get_ctx(sk); 970 struct tls_prot_info *prot = &tls_ctx->prot_info; 971 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 972 bool async_capable = ctx->async_capable; 973 unsigned char record_type = TLS_RECORD_TYPE_DATA; 974 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 975 bool eor = !(msg->msg_flags & MSG_MORE); 976 size_t try_to_copy; 977 ssize_t copied = 0; 978 struct sk_msg *msg_pl, *msg_en; 979 struct tls_rec *rec; 980 int required_size; 981 int num_async = 0; 982 bool full_record; 983 int record_room; 984 int num_zc = 0; 985 int orig_size; 986 int ret = 0; 987 int pending; 988 989 if (!eor && (msg->msg_flags & MSG_EOR)) 990 return -EINVAL; 991 992 if (unlikely(msg->msg_controllen)) { 993 ret = tls_process_cmsg(sk, msg, &record_type); 994 if (ret) { 995 if (ret == -EINPROGRESS) 996 num_async++; 997 else if (ret != -EAGAIN) 998 goto send_end; 999 } 1000 } 1001 1002 while (msg_data_left(msg)) { 1003 if (sk->sk_err) { 1004 ret = -sk->sk_err; 1005 goto send_end; 1006 } 1007 1008 if (ctx->open_rec) 1009 rec = ctx->open_rec; 1010 else 1011 rec = ctx->open_rec = tls_get_rec(sk); 1012 if (!rec) { 1013 ret = -ENOMEM; 1014 goto send_end; 1015 } 1016 1017 msg_pl = &rec->msg_plaintext; 1018 msg_en = &rec->msg_encrypted; 1019 1020 orig_size = msg_pl->sg.size; 1021 full_record = false; 1022 try_to_copy = msg_data_left(msg); 1023 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1024 if (try_to_copy >= record_room) { 1025 try_to_copy = record_room; 1026 full_record = true; 1027 } 1028 1029 required_size = msg_pl->sg.size + try_to_copy + 1030 prot->overhead_size; 1031 1032 if (!sk_stream_memory_free(sk)) 1033 goto wait_for_sndbuf; 1034 1035 alloc_encrypted: 1036 ret = tls_alloc_encrypted_msg(sk, required_size); 1037 if (ret) { 1038 if (ret != -ENOSPC) 1039 goto wait_for_memory; 1040 1041 /* Adjust try_to_copy according to the amount that was 1042 * actually allocated. The difference is due 1043 * to max sg elements limit 1044 */ 1045 try_to_copy -= required_size - msg_en->sg.size; 1046 full_record = true; 1047 } 1048 1049 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1050 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1051 try_to_copy, &copied); 1052 if (ret < 0) 1053 goto send_end; 1054 tls_ctx->pending_open_record_frags = true; 1055 1056 if (sk_msg_full(msg_pl)) 1057 full_record = true; 1058 1059 if (full_record || eor) 1060 goto copied; 1061 continue; 1062 } 1063 1064 if (!is_kvec && (full_record || eor) && !async_capable) { 1065 u32 first = msg_pl->sg.end; 1066 1067 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1068 msg_pl, try_to_copy); 1069 if (ret) 1070 goto fallback_to_reg_send; 1071 1072 num_zc++; 1073 copied += try_to_copy; 1074 1075 sk_msg_sg_copy_set(msg_pl, first); 1076 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1077 record_type, &copied, 1078 msg->msg_flags); 1079 if (ret) { 1080 if (ret == -EINPROGRESS) 1081 num_async++; 1082 else if (ret == -ENOMEM) 1083 goto wait_for_memory; 1084 else if (ctx->open_rec && ret == -ENOSPC) 1085 goto rollback_iter; 1086 else if (ret != -EAGAIN) 1087 goto send_end; 1088 } 1089 continue; 1090 rollback_iter: 1091 copied -= try_to_copy; 1092 sk_msg_sg_copy_clear(msg_pl, first); 1093 iov_iter_revert(&msg->msg_iter, 1094 msg_pl->sg.size - orig_size); 1095 fallback_to_reg_send: 1096 sk_msg_trim(sk, msg_pl, orig_size); 1097 } 1098 1099 required_size = msg_pl->sg.size + try_to_copy; 1100 1101 ret = tls_clone_plaintext_msg(sk, required_size); 1102 if (ret) { 1103 if (ret != -ENOSPC) 1104 goto send_end; 1105 1106 /* Adjust try_to_copy according to the amount that was 1107 * actually allocated. The difference is due 1108 * to max sg elements limit 1109 */ 1110 try_to_copy -= required_size - msg_pl->sg.size; 1111 full_record = true; 1112 sk_msg_trim(sk, msg_en, 1113 msg_pl->sg.size + prot->overhead_size); 1114 } 1115 1116 if (try_to_copy) { 1117 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1118 msg_pl, try_to_copy); 1119 if (ret < 0) 1120 goto trim_sgl; 1121 } 1122 1123 /* Open records defined only if successfully copied, otherwise 1124 * we would trim the sg but not reset the open record frags. 1125 */ 1126 tls_ctx->pending_open_record_frags = true; 1127 copied += try_to_copy; 1128 copied: 1129 if (full_record || eor) { 1130 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1131 record_type, &copied, 1132 msg->msg_flags); 1133 if (ret) { 1134 if (ret == -EINPROGRESS) 1135 num_async++; 1136 else if (ret == -ENOMEM) 1137 goto wait_for_memory; 1138 else if (ret != -EAGAIN) { 1139 if (ret == -ENOSPC) 1140 ret = 0; 1141 goto send_end; 1142 } 1143 } 1144 } 1145 1146 continue; 1147 1148 wait_for_sndbuf: 1149 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1150 wait_for_memory: 1151 ret = sk_stream_wait_memory(sk, &timeo); 1152 if (ret) { 1153 trim_sgl: 1154 if (ctx->open_rec) 1155 tls_trim_both_msgs(sk, orig_size); 1156 goto send_end; 1157 } 1158 1159 if (ctx->open_rec && msg_en->sg.size < required_size) 1160 goto alloc_encrypted; 1161 } 1162 1163 if (!num_async) { 1164 goto send_end; 1165 } else if (num_zc) { 1166 /* Wait for pending encryptions to get completed */ 1167 spin_lock_bh(&ctx->encrypt_compl_lock); 1168 ctx->async_notify = true; 1169 1170 pending = atomic_read(&ctx->encrypt_pending); 1171 spin_unlock_bh(&ctx->encrypt_compl_lock); 1172 if (pending) 1173 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1174 else 1175 reinit_completion(&ctx->async_wait.completion); 1176 1177 /* There can be no concurrent accesses, since we have no 1178 * pending encrypt operations 1179 */ 1180 WRITE_ONCE(ctx->async_notify, false); 1181 1182 if (ctx->async_wait.err) { 1183 ret = ctx->async_wait.err; 1184 copied = 0; 1185 } 1186 } 1187 1188 /* Transmit if any encryptions have completed */ 1189 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1190 cancel_delayed_work(&ctx->tx_work.work); 1191 tls_tx_records(sk, msg->msg_flags); 1192 } 1193 1194 send_end: 1195 ret = sk_stream_error(sk, msg->msg_flags, ret); 1196 return copied > 0 ? copied : ret; 1197 } 1198 1199 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1200 { 1201 struct tls_context *tls_ctx = tls_get_ctx(sk); 1202 int ret; 1203 1204 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1205 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1206 MSG_SENDPAGE_NOPOLICY)) 1207 return -EOPNOTSUPP; 1208 1209 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1210 if (ret) 1211 return ret; 1212 lock_sock(sk); 1213 ret = tls_sw_sendmsg_locked(sk, msg, size); 1214 release_sock(sk); 1215 mutex_unlock(&tls_ctx->tx_lock); 1216 return ret; 1217 } 1218 1219 /* 1220 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1221 */ 1222 void tls_sw_splice_eof(struct socket *sock) 1223 { 1224 struct sock *sk = sock->sk; 1225 struct tls_context *tls_ctx = tls_get_ctx(sk); 1226 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1227 struct tls_rec *rec; 1228 struct sk_msg *msg_pl; 1229 ssize_t copied = 0; 1230 bool retrying = false; 1231 int ret = 0; 1232 int pending; 1233 1234 if (!ctx->open_rec) 1235 return; 1236 1237 mutex_lock(&tls_ctx->tx_lock); 1238 lock_sock(sk); 1239 1240 retry: 1241 /* same checks as in tls_sw_push_pending_record() */ 1242 rec = ctx->open_rec; 1243 if (!rec) 1244 goto unlock; 1245 1246 msg_pl = &rec->msg_plaintext; 1247 if (msg_pl->sg.size == 0) 1248 goto unlock; 1249 1250 /* Check the BPF advisor and perform transmission. */ 1251 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1252 &copied, 0); 1253 switch (ret) { 1254 case 0: 1255 case -EAGAIN: 1256 if (retrying) 1257 goto unlock; 1258 retrying = true; 1259 goto retry; 1260 case -EINPROGRESS: 1261 break; 1262 default: 1263 goto unlock; 1264 } 1265 1266 /* Wait for pending encryptions to get completed */ 1267 spin_lock_bh(&ctx->encrypt_compl_lock); 1268 ctx->async_notify = true; 1269 1270 pending = atomic_read(&ctx->encrypt_pending); 1271 spin_unlock_bh(&ctx->encrypt_compl_lock); 1272 if (pending) 1273 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1274 else 1275 reinit_completion(&ctx->async_wait.completion); 1276 1277 /* There can be no concurrent accesses, since we have no pending 1278 * encrypt operations 1279 */ 1280 WRITE_ONCE(ctx->async_notify, false); 1281 1282 if (ctx->async_wait.err) 1283 goto unlock; 1284 1285 /* Transmit if any encryptions have completed */ 1286 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1287 cancel_delayed_work(&ctx->tx_work.work); 1288 tls_tx_records(sk, 0); 1289 } 1290 1291 unlock: 1292 release_sock(sk); 1293 mutex_unlock(&tls_ctx->tx_lock); 1294 } 1295 1296 static int 1297 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1298 bool released) 1299 { 1300 struct tls_context *tls_ctx = tls_get_ctx(sk); 1301 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1302 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1303 int ret = 0; 1304 long timeo; 1305 1306 timeo = sock_rcvtimeo(sk, nonblock); 1307 1308 while (!tls_strp_msg_ready(ctx)) { 1309 if (!sk_psock_queue_empty(psock)) 1310 return 0; 1311 1312 if (sk->sk_err) 1313 return sock_error(sk); 1314 1315 if (ret < 0) 1316 return ret; 1317 1318 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1319 tls_strp_check_rcv(&ctx->strp); 1320 if (tls_strp_msg_ready(ctx)) 1321 break; 1322 } 1323 1324 if (sk->sk_shutdown & RCV_SHUTDOWN) 1325 return 0; 1326 1327 if (sock_flag(sk, SOCK_DONE)) 1328 return 0; 1329 1330 if (!timeo) 1331 return -EAGAIN; 1332 1333 released = true; 1334 add_wait_queue(sk_sleep(sk), &wait); 1335 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1336 ret = sk_wait_event(sk, &timeo, 1337 tls_strp_msg_ready(ctx) || 1338 !sk_psock_queue_empty(psock), 1339 &wait); 1340 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1341 remove_wait_queue(sk_sleep(sk), &wait); 1342 1343 /* Handle signals */ 1344 if (signal_pending(current)) 1345 return sock_intr_errno(timeo); 1346 } 1347 1348 tls_strp_msg_load(&ctx->strp, released); 1349 1350 return 1; 1351 } 1352 1353 static int tls_setup_from_iter(struct iov_iter *from, 1354 int length, int *pages_used, 1355 struct scatterlist *to, 1356 int to_max_pages) 1357 { 1358 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1359 struct page *pages[MAX_SKB_FRAGS]; 1360 unsigned int size = 0; 1361 ssize_t copied, use; 1362 size_t offset; 1363 1364 while (length > 0) { 1365 i = 0; 1366 maxpages = to_max_pages - num_elem; 1367 if (maxpages == 0) { 1368 rc = -EFAULT; 1369 goto out; 1370 } 1371 copied = iov_iter_get_pages2(from, pages, 1372 length, 1373 maxpages, &offset); 1374 if (copied <= 0) { 1375 rc = -EFAULT; 1376 goto out; 1377 } 1378 1379 length -= copied; 1380 size += copied; 1381 while (copied) { 1382 use = min_t(int, copied, PAGE_SIZE - offset); 1383 1384 sg_set_page(&to[num_elem], 1385 pages[i], use, offset); 1386 sg_unmark_end(&to[num_elem]); 1387 /* We do not uncharge memory from this API */ 1388 1389 offset = 0; 1390 copied -= use; 1391 1392 i++; 1393 num_elem++; 1394 } 1395 } 1396 /* Mark the end in the last sg entry if newly added */ 1397 if (num_elem > *pages_used) 1398 sg_mark_end(&to[num_elem - 1]); 1399 out: 1400 if (rc) 1401 iov_iter_revert(from, size); 1402 *pages_used = num_elem; 1403 1404 return rc; 1405 } 1406 1407 static struct sk_buff * 1408 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1409 unsigned int full_len) 1410 { 1411 struct strp_msg *clr_rxm; 1412 struct sk_buff *clr_skb; 1413 int err; 1414 1415 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1416 &err, sk->sk_allocation); 1417 if (!clr_skb) 1418 return NULL; 1419 1420 skb_copy_header(clr_skb, skb); 1421 clr_skb->len = full_len; 1422 clr_skb->data_len = full_len; 1423 1424 clr_rxm = strp_msg(clr_skb); 1425 clr_rxm->offset = 0; 1426 1427 return clr_skb; 1428 } 1429 1430 /* Decrypt handlers 1431 * 1432 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1433 * They must transform the darg in/out argument are as follows: 1434 * | Input | Output 1435 * ------------------------------------------------------------------- 1436 * zc | Zero-copy decrypt allowed | Zero-copy performed 1437 * async | Async decrypt allowed | Async crypto used / in progress 1438 * skb | * | Output skb 1439 * 1440 * If ZC decryption was performed darg.skb will point to the input skb. 1441 */ 1442 1443 /* This function decrypts the input skb into either out_iov or in out_sg 1444 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1445 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1446 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1447 * NULL, then the decryption happens inside skb buffers itself, i.e. 1448 * zero-copy gets disabled and 'darg->zc' is updated. 1449 */ 1450 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1451 struct scatterlist *out_sg, 1452 struct tls_decrypt_arg *darg) 1453 { 1454 struct tls_context *tls_ctx = tls_get_ctx(sk); 1455 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1456 struct tls_prot_info *prot = &tls_ctx->prot_info; 1457 int n_sgin, n_sgout, aead_size, err, pages = 0; 1458 struct sk_buff *skb = tls_strp_msg(ctx); 1459 const struct strp_msg *rxm = strp_msg(skb); 1460 const struct tls_msg *tlm = tls_msg(skb); 1461 struct aead_request *aead_req; 1462 struct scatterlist *sgin = NULL; 1463 struct scatterlist *sgout = NULL; 1464 const int data_len = rxm->full_len - prot->overhead_size; 1465 int tail_pages = !!prot->tail_size; 1466 struct tls_decrypt_ctx *dctx; 1467 struct sk_buff *clear_skb; 1468 int iv_offset = 0; 1469 u8 *mem; 1470 1471 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1472 rxm->full_len - prot->prepend_size); 1473 if (n_sgin < 1) 1474 return n_sgin ?: -EBADMSG; 1475 1476 if (darg->zc && (out_iov || out_sg)) { 1477 clear_skb = NULL; 1478 1479 if (out_iov) 1480 n_sgout = 1 + tail_pages + 1481 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1482 else 1483 n_sgout = sg_nents(out_sg); 1484 } else { 1485 darg->zc = false; 1486 1487 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1488 if (!clear_skb) 1489 return -ENOMEM; 1490 1491 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1492 } 1493 1494 /* Increment to accommodate AAD */ 1495 n_sgin = n_sgin + 1; 1496 1497 /* Allocate a single block of memory which contains 1498 * aead_req || tls_decrypt_ctx. 1499 * Both structs are variable length. 1500 */ 1501 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1502 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1503 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1504 sk->sk_allocation); 1505 if (!mem) { 1506 err = -ENOMEM; 1507 goto exit_free_skb; 1508 } 1509 1510 /* Segment the allocated memory */ 1511 aead_req = (struct aead_request *)mem; 1512 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1513 dctx->sk = sk; 1514 sgin = &dctx->sg[0]; 1515 sgout = &dctx->sg[n_sgin]; 1516 1517 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1518 switch (prot->cipher_type) { 1519 case TLS_CIPHER_AES_CCM_128: 1520 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1521 iv_offset = 1; 1522 break; 1523 case TLS_CIPHER_SM4_CCM: 1524 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1525 iv_offset = 1; 1526 break; 1527 } 1528 1529 /* Prepare IV */ 1530 if (prot->version == TLS_1_3_VERSION || 1531 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1532 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1533 prot->iv_size + prot->salt_size); 1534 } else { 1535 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1536 &dctx->iv[iv_offset] + prot->salt_size, 1537 prot->iv_size); 1538 if (err < 0) 1539 goto exit_free; 1540 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1541 } 1542 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1543 1544 /* Prepare AAD */ 1545 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1546 prot->tail_size, 1547 tls_ctx->rx.rec_seq, tlm->control, prot); 1548 1549 /* Prepare sgin */ 1550 sg_init_table(sgin, n_sgin); 1551 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1552 err = skb_to_sgvec(skb, &sgin[1], 1553 rxm->offset + prot->prepend_size, 1554 rxm->full_len - prot->prepend_size); 1555 if (err < 0) 1556 goto exit_free; 1557 1558 if (clear_skb) { 1559 sg_init_table(sgout, n_sgout); 1560 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1561 1562 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1563 data_len + prot->tail_size); 1564 if (err < 0) 1565 goto exit_free; 1566 } else if (out_iov) { 1567 sg_init_table(sgout, n_sgout); 1568 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1569 1570 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1571 (n_sgout - 1 - tail_pages)); 1572 if (err < 0) 1573 goto exit_free_pages; 1574 1575 if (prot->tail_size) { 1576 sg_unmark_end(&sgout[pages]); 1577 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1578 prot->tail_size); 1579 sg_mark_end(&sgout[pages + 1]); 1580 } 1581 } else if (out_sg) { 1582 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1583 } 1584 1585 /* Prepare and submit AEAD request */ 1586 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1587 data_len + prot->tail_size, aead_req, darg); 1588 if (err) 1589 goto exit_free_pages; 1590 1591 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1592 clear_skb = NULL; 1593 1594 if (unlikely(darg->async)) { 1595 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1596 if (err) 1597 __skb_queue_tail(&ctx->async_hold, darg->skb); 1598 return err; 1599 } 1600 1601 if (prot->tail_size) 1602 darg->tail = dctx->tail; 1603 1604 exit_free_pages: 1605 /* Release the pages in case iov was mapped to pages */ 1606 for (; pages > 0; pages--) 1607 put_page(sg_page(&sgout[pages])); 1608 exit_free: 1609 kfree(mem); 1610 exit_free_skb: 1611 consume_skb(clear_skb); 1612 return err; 1613 } 1614 1615 static int 1616 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1617 struct msghdr *msg, struct tls_decrypt_arg *darg) 1618 { 1619 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1620 struct tls_prot_info *prot = &tls_ctx->prot_info; 1621 struct strp_msg *rxm; 1622 int pad, err; 1623 1624 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1625 if (err < 0) { 1626 if (err == -EBADMSG) 1627 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1628 return err; 1629 } 1630 /* keep going even for ->async, the code below is TLS 1.3 */ 1631 1632 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1633 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1634 darg->tail != TLS_RECORD_TYPE_DATA)) { 1635 darg->zc = false; 1636 if (!darg->tail) 1637 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1638 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1639 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1640 } 1641 1642 pad = tls_padding_length(prot, darg->skb, darg); 1643 if (pad < 0) { 1644 if (darg->skb != tls_strp_msg(ctx)) 1645 consume_skb(darg->skb); 1646 return pad; 1647 } 1648 1649 rxm = strp_msg(darg->skb); 1650 rxm->full_len -= pad; 1651 1652 return 0; 1653 } 1654 1655 static int 1656 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1657 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1658 { 1659 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1660 struct tls_prot_info *prot = &tls_ctx->prot_info; 1661 struct strp_msg *rxm; 1662 int pad, err; 1663 1664 if (tls_ctx->rx_conf != TLS_HW) 1665 return 0; 1666 1667 err = tls_device_decrypted(sk, tls_ctx); 1668 if (err <= 0) 1669 return err; 1670 1671 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1672 if (pad < 0) 1673 return pad; 1674 1675 darg->async = false; 1676 darg->skb = tls_strp_msg(ctx); 1677 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1678 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1679 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1680 1681 rxm = strp_msg(darg->skb); 1682 rxm->full_len -= pad; 1683 1684 if (!darg->zc) { 1685 /* Non-ZC case needs a real skb */ 1686 darg->skb = tls_strp_msg_detach(ctx); 1687 if (!darg->skb) 1688 return -ENOMEM; 1689 } else { 1690 unsigned int off, len; 1691 1692 /* In ZC case nobody cares about the output skb. 1693 * Just copy the data here. Note the skb is not fully trimmed. 1694 */ 1695 off = rxm->offset + prot->prepend_size; 1696 len = rxm->full_len - prot->overhead_size; 1697 1698 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1699 if (err) 1700 return err; 1701 } 1702 return 1; 1703 } 1704 1705 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1706 struct tls_decrypt_arg *darg) 1707 { 1708 struct tls_context *tls_ctx = tls_get_ctx(sk); 1709 struct tls_prot_info *prot = &tls_ctx->prot_info; 1710 struct strp_msg *rxm; 1711 int err; 1712 1713 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1714 if (!err) 1715 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1716 if (err < 0) 1717 return err; 1718 1719 rxm = strp_msg(darg->skb); 1720 rxm->offset += prot->prepend_size; 1721 rxm->full_len -= prot->overhead_size; 1722 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1723 1724 return 0; 1725 } 1726 1727 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1728 { 1729 struct tls_decrypt_arg darg = { .zc = true, }; 1730 1731 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1732 } 1733 1734 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1735 u8 *control) 1736 { 1737 int err; 1738 1739 if (!*control) { 1740 *control = tlm->control; 1741 if (!*control) 1742 return -EBADMSG; 1743 1744 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1745 sizeof(*control), control); 1746 if (*control != TLS_RECORD_TYPE_DATA) { 1747 if (err || msg->msg_flags & MSG_CTRUNC) 1748 return -EIO; 1749 } 1750 } else if (*control != tlm->control) { 1751 return 0; 1752 } 1753 1754 return 1; 1755 } 1756 1757 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1758 { 1759 tls_strp_msg_done(&ctx->strp); 1760 } 1761 1762 /* This function traverses the rx_list in tls receive context to copies the 1763 * decrypted records into the buffer provided by caller zero copy is not 1764 * true. Further, the records are removed from the rx_list if it is not a peek 1765 * case and the record has been consumed completely. 1766 */ 1767 static int process_rx_list(struct tls_sw_context_rx *ctx, 1768 struct msghdr *msg, 1769 u8 *control, 1770 size_t skip, 1771 size_t len, 1772 bool is_peek) 1773 { 1774 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1775 struct tls_msg *tlm; 1776 ssize_t copied = 0; 1777 int err; 1778 1779 while (skip && skb) { 1780 struct strp_msg *rxm = strp_msg(skb); 1781 tlm = tls_msg(skb); 1782 1783 err = tls_record_content_type(msg, tlm, control); 1784 if (err <= 0) 1785 goto out; 1786 1787 if (skip < rxm->full_len) 1788 break; 1789 1790 skip = skip - rxm->full_len; 1791 skb = skb_peek_next(skb, &ctx->rx_list); 1792 } 1793 1794 while (len && skb) { 1795 struct sk_buff *next_skb; 1796 struct strp_msg *rxm = strp_msg(skb); 1797 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1798 1799 tlm = tls_msg(skb); 1800 1801 err = tls_record_content_type(msg, tlm, control); 1802 if (err <= 0) 1803 goto out; 1804 1805 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1806 msg, chunk); 1807 if (err < 0) 1808 goto out; 1809 1810 len = len - chunk; 1811 copied = copied + chunk; 1812 1813 /* Consume the data from record if it is non-peek case*/ 1814 if (!is_peek) { 1815 rxm->offset = rxm->offset + chunk; 1816 rxm->full_len = rxm->full_len - chunk; 1817 1818 /* Return if there is unconsumed data in the record */ 1819 if (rxm->full_len - skip) 1820 break; 1821 } 1822 1823 /* The remaining skip-bytes must lie in 1st record in rx_list. 1824 * So from the 2nd record, 'skip' should be 0. 1825 */ 1826 skip = 0; 1827 1828 if (msg) 1829 msg->msg_flags |= MSG_EOR; 1830 1831 next_skb = skb_peek_next(skb, &ctx->rx_list); 1832 1833 if (!is_peek) { 1834 __skb_unlink(skb, &ctx->rx_list); 1835 consume_skb(skb); 1836 } 1837 1838 skb = next_skb; 1839 } 1840 err = 0; 1841 1842 out: 1843 return copied ? : err; 1844 } 1845 1846 static bool 1847 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1848 size_t len_left, size_t decrypted, ssize_t done, 1849 size_t *flushed_at) 1850 { 1851 size_t max_rec; 1852 1853 if (len_left <= decrypted) 1854 return false; 1855 1856 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1857 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1858 return false; 1859 1860 *flushed_at = done; 1861 return sk_flush_backlog(sk); 1862 } 1863 1864 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1865 bool nonblock) 1866 { 1867 long timeo; 1868 int ret; 1869 1870 timeo = sock_rcvtimeo(sk, nonblock); 1871 1872 while (unlikely(ctx->reader_present)) { 1873 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1874 1875 ctx->reader_contended = 1; 1876 1877 add_wait_queue(&ctx->wq, &wait); 1878 ret = sk_wait_event(sk, &timeo, 1879 !READ_ONCE(ctx->reader_present), &wait); 1880 remove_wait_queue(&ctx->wq, &wait); 1881 1882 if (timeo <= 0) 1883 return -EAGAIN; 1884 if (signal_pending(current)) 1885 return sock_intr_errno(timeo); 1886 if (ret < 0) 1887 return ret; 1888 } 1889 1890 WRITE_ONCE(ctx->reader_present, 1); 1891 1892 return 0; 1893 } 1894 1895 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1896 bool nonblock) 1897 { 1898 int err; 1899 1900 lock_sock(sk); 1901 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1902 if (err) 1903 release_sock(sk); 1904 return err; 1905 } 1906 1907 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1908 { 1909 if (unlikely(ctx->reader_contended)) { 1910 if (wq_has_sleeper(&ctx->wq)) 1911 wake_up(&ctx->wq); 1912 else 1913 ctx->reader_contended = 0; 1914 1915 WARN_ON_ONCE(!ctx->reader_present); 1916 } 1917 1918 WRITE_ONCE(ctx->reader_present, 0); 1919 } 1920 1921 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1922 { 1923 tls_rx_reader_release(sk, ctx); 1924 release_sock(sk); 1925 } 1926 1927 int tls_sw_recvmsg(struct sock *sk, 1928 struct msghdr *msg, 1929 size_t len, 1930 int flags, 1931 int *addr_len) 1932 { 1933 struct tls_context *tls_ctx = tls_get_ctx(sk); 1934 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1935 struct tls_prot_info *prot = &tls_ctx->prot_info; 1936 ssize_t decrypted = 0, async_copy_bytes = 0; 1937 struct sk_psock *psock; 1938 unsigned char control = 0; 1939 size_t flushed_at = 0; 1940 struct strp_msg *rxm; 1941 struct tls_msg *tlm; 1942 ssize_t copied = 0; 1943 bool async = false; 1944 int target, err; 1945 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1946 bool is_peek = flags & MSG_PEEK; 1947 bool released = true; 1948 bool bpf_strp_enabled; 1949 bool zc_capable; 1950 1951 if (unlikely(flags & MSG_ERRQUEUE)) 1952 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1953 1954 psock = sk_psock_get(sk); 1955 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1956 if (err < 0) 1957 return err; 1958 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1959 1960 /* If crypto failed the connection is broken */ 1961 err = ctx->async_wait.err; 1962 if (err) 1963 goto end; 1964 1965 /* Process pending decrypted records. It must be non-zero-copy */ 1966 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1967 if (err < 0) 1968 goto end; 1969 1970 copied = err; 1971 if (len <= copied) 1972 goto end; 1973 1974 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1975 len = len - copied; 1976 1977 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1978 ctx->zc_capable; 1979 decrypted = 0; 1980 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1981 struct tls_decrypt_arg darg; 1982 int to_decrypt, chunk; 1983 1984 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1985 released); 1986 if (err <= 0) { 1987 if (psock) { 1988 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1989 flags); 1990 if (chunk > 0) { 1991 decrypted += chunk; 1992 len -= chunk; 1993 continue; 1994 } 1995 } 1996 goto recv_end; 1997 } 1998 1999 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2000 2001 rxm = strp_msg(tls_strp_msg(ctx)); 2002 tlm = tls_msg(tls_strp_msg(ctx)); 2003 2004 to_decrypt = rxm->full_len - prot->overhead_size; 2005 2006 if (zc_capable && to_decrypt <= len && 2007 tlm->control == TLS_RECORD_TYPE_DATA) 2008 darg.zc = true; 2009 2010 /* Do not use async mode if record is non-data */ 2011 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2012 darg.async = ctx->async_capable; 2013 else 2014 darg.async = false; 2015 2016 err = tls_rx_one_record(sk, msg, &darg); 2017 if (err < 0) { 2018 tls_err_abort(sk, -EBADMSG); 2019 goto recv_end; 2020 } 2021 2022 async |= darg.async; 2023 2024 /* If the type of records being processed is not known yet, 2025 * set it to record type just dequeued. If it is already known, 2026 * but does not match the record type just dequeued, go to end. 2027 * We always get record type here since for tls1.2, record type 2028 * is known just after record is dequeued from stream parser. 2029 * For tls1.3, we disable async. 2030 */ 2031 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2032 if (err <= 0) { 2033 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2034 tls_rx_rec_done(ctx); 2035 put_on_rx_list_err: 2036 __skb_queue_tail(&ctx->rx_list, darg.skb); 2037 goto recv_end; 2038 } 2039 2040 /* periodically flush backlog, and feed strparser */ 2041 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2042 decrypted + copied, 2043 &flushed_at); 2044 2045 /* TLS 1.3 may have updated the length by more than overhead */ 2046 rxm = strp_msg(darg.skb); 2047 chunk = rxm->full_len; 2048 tls_rx_rec_done(ctx); 2049 2050 if (!darg.zc) { 2051 bool partially_consumed = chunk > len; 2052 struct sk_buff *skb = darg.skb; 2053 2054 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2055 2056 if (async) { 2057 /* TLS 1.2-only, to_decrypt must be text len */ 2058 chunk = min_t(int, to_decrypt, len); 2059 async_copy_bytes += chunk; 2060 put_on_rx_list: 2061 decrypted += chunk; 2062 len -= chunk; 2063 __skb_queue_tail(&ctx->rx_list, skb); 2064 continue; 2065 } 2066 2067 if (bpf_strp_enabled) { 2068 released = true; 2069 err = sk_psock_tls_strp_read(psock, skb); 2070 if (err != __SK_PASS) { 2071 rxm->offset = rxm->offset + rxm->full_len; 2072 rxm->full_len = 0; 2073 if (err == __SK_DROP) 2074 consume_skb(skb); 2075 continue; 2076 } 2077 } 2078 2079 if (partially_consumed) 2080 chunk = len; 2081 2082 err = skb_copy_datagram_msg(skb, rxm->offset, 2083 msg, chunk); 2084 if (err < 0) 2085 goto put_on_rx_list_err; 2086 2087 if (is_peek) 2088 goto put_on_rx_list; 2089 2090 if (partially_consumed) { 2091 rxm->offset += chunk; 2092 rxm->full_len -= chunk; 2093 goto put_on_rx_list; 2094 } 2095 2096 consume_skb(skb); 2097 } 2098 2099 decrypted += chunk; 2100 len -= chunk; 2101 2102 /* Return full control message to userspace before trying 2103 * to parse another message type 2104 */ 2105 msg->msg_flags |= MSG_EOR; 2106 if (control != TLS_RECORD_TYPE_DATA) 2107 break; 2108 } 2109 2110 recv_end: 2111 if (async) { 2112 int ret, pending; 2113 2114 /* Wait for all previously submitted records to be decrypted */ 2115 spin_lock_bh(&ctx->decrypt_compl_lock); 2116 reinit_completion(&ctx->async_wait.completion); 2117 pending = atomic_read(&ctx->decrypt_pending); 2118 spin_unlock_bh(&ctx->decrypt_compl_lock); 2119 ret = 0; 2120 if (pending) 2121 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2122 __skb_queue_purge(&ctx->async_hold); 2123 2124 if (ret) { 2125 if (err >= 0 || err == -EINPROGRESS) 2126 err = ret; 2127 decrypted = 0; 2128 goto end; 2129 } 2130 2131 /* Drain records from the rx_list & copy if required */ 2132 if (is_peek || is_kvec) 2133 err = process_rx_list(ctx, msg, &control, copied, 2134 decrypted, is_peek); 2135 else 2136 err = process_rx_list(ctx, msg, &control, 0, 2137 async_copy_bytes, is_peek); 2138 decrypted += max(err, 0); 2139 } 2140 2141 copied += decrypted; 2142 2143 end: 2144 tls_rx_reader_unlock(sk, ctx); 2145 if (psock) 2146 sk_psock_put(sk, psock); 2147 return copied ? : err; 2148 } 2149 2150 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2151 struct pipe_inode_info *pipe, 2152 size_t len, unsigned int flags) 2153 { 2154 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2155 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2156 struct strp_msg *rxm = NULL; 2157 struct sock *sk = sock->sk; 2158 struct tls_msg *tlm; 2159 struct sk_buff *skb; 2160 ssize_t copied = 0; 2161 int chunk; 2162 int err; 2163 2164 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2165 if (err < 0) 2166 return err; 2167 2168 if (!skb_queue_empty(&ctx->rx_list)) { 2169 skb = __skb_dequeue(&ctx->rx_list); 2170 } else { 2171 struct tls_decrypt_arg darg; 2172 2173 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2174 true); 2175 if (err <= 0) 2176 goto splice_read_end; 2177 2178 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2179 2180 err = tls_rx_one_record(sk, NULL, &darg); 2181 if (err < 0) { 2182 tls_err_abort(sk, -EBADMSG); 2183 goto splice_read_end; 2184 } 2185 2186 tls_rx_rec_done(ctx); 2187 skb = darg.skb; 2188 } 2189 2190 rxm = strp_msg(skb); 2191 tlm = tls_msg(skb); 2192 2193 /* splice does not support reading control messages */ 2194 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2195 err = -EINVAL; 2196 goto splice_requeue; 2197 } 2198 2199 chunk = min_t(unsigned int, rxm->full_len, len); 2200 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2201 if (copied < 0) 2202 goto splice_requeue; 2203 2204 if (chunk < rxm->full_len) { 2205 rxm->offset += len; 2206 rxm->full_len -= len; 2207 goto splice_requeue; 2208 } 2209 2210 consume_skb(skb); 2211 2212 splice_read_end: 2213 tls_rx_reader_unlock(sk, ctx); 2214 return copied ? : err; 2215 2216 splice_requeue: 2217 __skb_queue_head(&ctx->rx_list, skb); 2218 goto splice_read_end; 2219 } 2220 2221 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2222 sk_read_actor_t read_actor) 2223 { 2224 struct tls_context *tls_ctx = tls_get_ctx(sk); 2225 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2226 struct tls_prot_info *prot = &tls_ctx->prot_info; 2227 struct strp_msg *rxm = NULL; 2228 struct sk_buff *skb = NULL; 2229 struct sk_psock *psock; 2230 size_t flushed_at = 0; 2231 bool released = true; 2232 struct tls_msg *tlm; 2233 ssize_t copied = 0; 2234 ssize_t decrypted; 2235 int err, used; 2236 2237 psock = sk_psock_get(sk); 2238 if (psock) { 2239 sk_psock_put(sk, psock); 2240 return -EINVAL; 2241 } 2242 err = tls_rx_reader_acquire(sk, ctx, true); 2243 if (err < 0) 2244 return err; 2245 2246 /* If crypto failed the connection is broken */ 2247 err = ctx->async_wait.err; 2248 if (err) 2249 goto read_sock_end; 2250 2251 decrypted = 0; 2252 do { 2253 if (!skb_queue_empty(&ctx->rx_list)) { 2254 skb = __skb_dequeue(&ctx->rx_list); 2255 rxm = strp_msg(skb); 2256 tlm = tls_msg(skb); 2257 } else { 2258 struct tls_decrypt_arg darg; 2259 2260 err = tls_rx_rec_wait(sk, NULL, true, released); 2261 if (err <= 0) 2262 goto read_sock_end; 2263 2264 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2265 2266 err = tls_rx_one_record(sk, NULL, &darg); 2267 if (err < 0) { 2268 tls_err_abort(sk, -EBADMSG); 2269 goto read_sock_end; 2270 } 2271 2272 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2273 0, decrypted, 2274 &flushed_at); 2275 skb = darg.skb; 2276 rxm = strp_msg(skb); 2277 tlm = tls_msg(skb); 2278 decrypted += rxm->full_len; 2279 2280 tls_rx_rec_done(ctx); 2281 } 2282 2283 /* read_sock does not support reading control messages */ 2284 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2285 err = -EINVAL; 2286 goto read_sock_requeue; 2287 } 2288 2289 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2290 if (used <= 0) { 2291 if (!copied) 2292 err = used; 2293 goto read_sock_requeue; 2294 } 2295 copied += used; 2296 if (used < rxm->full_len) { 2297 rxm->offset += used; 2298 rxm->full_len -= used; 2299 if (!desc->count) 2300 goto read_sock_requeue; 2301 } else { 2302 consume_skb(skb); 2303 if (!desc->count) 2304 skb = NULL; 2305 } 2306 } while (skb); 2307 2308 read_sock_end: 2309 tls_rx_reader_release(sk, ctx); 2310 return copied ? : err; 2311 2312 read_sock_requeue: 2313 __skb_queue_head(&ctx->rx_list, skb); 2314 goto read_sock_end; 2315 } 2316 2317 bool tls_sw_sock_is_readable(struct sock *sk) 2318 { 2319 struct tls_context *tls_ctx = tls_get_ctx(sk); 2320 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2321 bool ingress_empty = true; 2322 struct sk_psock *psock; 2323 2324 rcu_read_lock(); 2325 psock = sk_psock(sk); 2326 if (psock) 2327 ingress_empty = list_empty(&psock->ingress_msg); 2328 rcu_read_unlock(); 2329 2330 return !ingress_empty || tls_strp_msg_ready(ctx) || 2331 !skb_queue_empty(&ctx->rx_list); 2332 } 2333 2334 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2335 { 2336 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2337 struct tls_prot_info *prot = &tls_ctx->prot_info; 2338 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2339 size_t cipher_overhead; 2340 size_t data_len = 0; 2341 int ret; 2342 2343 /* Verify that we have a full TLS header, or wait for more data */ 2344 if (strp->stm.offset + prot->prepend_size > skb->len) 2345 return 0; 2346 2347 /* Sanity-check size of on-stack buffer. */ 2348 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2349 ret = -EINVAL; 2350 goto read_failure; 2351 } 2352 2353 /* Linearize header to local buffer */ 2354 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2355 if (ret < 0) 2356 goto read_failure; 2357 2358 strp->mark = header[0]; 2359 2360 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2361 2362 cipher_overhead = prot->tag_size; 2363 if (prot->version != TLS_1_3_VERSION && 2364 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2365 cipher_overhead += prot->iv_size; 2366 2367 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2368 prot->tail_size) { 2369 ret = -EMSGSIZE; 2370 goto read_failure; 2371 } 2372 if (data_len < cipher_overhead) { 2373 ret = -EBADMSG; 2374 goto read_failure; 2375 } 2376 2377 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2378 if (header[1] != TLS_1_2_VERSION_MINOR || 2379 header[2] != TLS_1_2_VERSION_MAJOR) { 2380 ret = -EINVAL; 2381 goto read_failure; 2382 } 2383 2384 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2385 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2386 return data_len + TLS_HEADER_SIZE; 2387 2388 read_failure: 2389 tls_err_abort(strp->sk, ret); 2390 2391 return ret; 2392 } 2393 2394 void tls_rx_msg_ready(struct tls_strparser *strp) 2395 { 2396 struct tls_sw_context_rx *ctx; 2397 2398 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2399 ctx->saved_data_ready(strp->sk); 2400 } 2401 2402 static void tls_data_ready(struct sock *sk) 2403 { 2404 struct tls_context *tls_ctx = tls_get_ctx(sk); 2405 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2406 struct sk_psock *psock; 2407 gfp_t alloc_save; 2408 2409 trace_sk_data_ready(sk); 2410 2411 alloc_save = sk->sk_allocation; 2412 sk->sk_allocation = GFP_ATOMIC; 2413 tls_strp_data_ready(&ctx->strp); 2414 sk->sk_allocation = alloc_save; 2415 2416 psock = sk_psock_get(sk); 2417 if (psock) { 2418 if (!list_empty(&psock->ingress_msg)) 2419 ctx->saved_data_ready(sk); 2420 sk_psock_put(sk, psock); 2421 } 2422 } 2423 2424 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2425 { 2426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2427 2428 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2429 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2430 cancel_delayed_work_sync(&ctx->tx_work.work); 2431 } 2432 2433 void tls_sw_release_resources_tx(struct sock *sk) 2434 { 2435 struct tls_context *tls_ctx = tls_get_ctx(sk); 2436 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2437 struct tls_rec *rec, *tmp; 2438 int pending; 2439 2440 /* Wait for any pending async encryptions to complete */ 2441 spin_lock_bh(&ctx->encrypt_compl_lock); 2442 ctx->async_notify = true; 2443 pending = atomic_read(&ctx->encrypt_pending); 2444 spin_unlock_bh(&ctx->encrypt_compl_lock); 2445 2446 if (pending) 2447 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2448 2449 tls_tx_records(sk, -1); 2450 2451 /* Free up un-sent records in tx_list. First, free 2452 * the partially sent record if any at head of tx_list. 2453 */ 2454 if (tls_ctx->partially_sent_record) { 2455 tls_free_partial_record(sk, tls_ctx); 2456 rec = list_first_entry(&ctx->tx_list, 2457 struct tls_rec, list); 2458 list_del(&rec->list); 2459 sk_msg_free(sk, &rec->msg_plaintext); 2460 kfree(rec); 2461 } 2462 2463 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2464 list_del(&rec->list); 2465 sk_msg_free(sk, &rec->msg_encrypted); 2466 sk_msg_free(sk, &rec->msg_plaintext); 2467 kfree(rec); 2468 } 2469 2470 crypto_free_aead(ctx->aead_send); 2471 tls_free_open_rec(sk); 2472 } 2473 2474 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2475 { 2476 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2477 2478 kfree(ctx); 2479 } 2480 2481 void tls_sw_release_resources_rx(struct sock *sk) 2482 { 2483 struct tls_context *tls_ctx = tls_get_ctx(sk); 2484 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2485 2486 if (ctx->aead_recv) { 2487 __skb_queue_purge(&ctx->rx_list); 2488 crypto_free_aead(ctx->aead_recv); 2489 tls_strp_stop(&ctx->strp); 2490 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2491 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2492 * never swapped. 2493 */ 2494 if (ctx->saved_data_ready) { 2495 write_lock_bh(&sk->sk_callback_lock); 2496 sk->sk_data_ready = ctx->saved_data_ready; 2497 write_unlock_bh(&sk->sk_callback_lock); 2498 } 2499 } 2500 } 2501 2502 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2503 { 2504 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2505 2506 tls_strp_done(&ctx->strp); 2507 } 2508 2509 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2510 { 2511 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2512 2513 kfree(ctx); 2514 } 2515 2516 void tls_sw_free_resources_rx(struct sock *sk) 2517 { 2518 struct tls_context *tls_ctx = tls_get_ctx(sk); 2519 2520 tls_sw_release_resources_rx(sk); 2521 tls_sw_free_ctx_rx(tls_ctx); 2522 } 2523 2524 /* The work handler to transmitt the encrypted records in tx_list */ 2525 static void tx_work_handler(struct work_struct *work) 2526 { 2527 struct delayed_work *delayed_work = to_delayed_work(work); 2528 struct tx_work *tx_work = container_of(delayed_work, 2529 struct tx_work, work); 2530 struct sock *sk = tx_work->sk; 2531 struct tls_context *tls_ctx = tls_get_ctx(sk); 2532 struct tls_sw_context_tx *ctx; 2533 2534 if (unlikely(!tls_ctx)) 2535 return; 2536 2537 ctx = tls_sw_ctx_tx(tls_ctx); 2538 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2539 return; 2540 2541 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2542 return; 2543 2544 if (mutex_trylock(&tls_ctx->tx_lock)) { 2545 lock_sock(sk); 2546 tls_tx_records(sk, -1); 2547 release_sock(sk); 2548 mutex_unlock(&tls_ctx->tx_lock); 2549 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2550 /* Someone is holding the tx_lock, they will likely run Tx 2551 * and cancel the work on their way out of the lock section. 2552 * Schedule a long delay just in case. 2553 */ 2554 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2555 } 2556 } 2557 2558 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2559 { 2560 struct tls_rec *rec; 2561 2562 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2563 if (!rec) 2564 return false; 2565 2566 return READ_ONCE(rec->tx_ready); 2567 } 2568 2569 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2570 { 2571 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2572 2573 /* Schedule the transmission if tx list is ready */ 2574 if (tls_is_tx_ready(tx_ctx) && 2575 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2576 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2577 } 2578 2579 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2580 { 2581 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2582 2583 write_lock_bh(&sk->sk_callback_lock); 2584 rx_ctx->saved_data_ready = sk->sk_data_ready; 2585 sk->sk_data_ready = tls_data_ready; 2586 write_unlock_bh(&sk->sk_callback_lock); 2587 } 2588 2589 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2590 { 2591 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2592 2593 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2594 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2595 } 2596 2597 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2598 { 2599 struct tls_sw_context_tx *sw_ctx_tx; 2600 2601 if (!ctx->priv_ctx_tx) { 2602 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2603 if (!sw_ctx_tx) 2604 return NULL; 2605 } else { 2606 sw_ctx_tx = ctx->priv_ctx_tx; 2607 } 2608 2609 crypto_init_wait(&sw_ctx_tx->async_wait); 2610 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2611 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2612 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2613 sw_ctx_tx->tx_work.sk = sk; 2614 2615 return sw_ctx_tx; 2616 } 2617 2618 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2619 { 2620 struct tls_sw_context_rx *sw_ctx_rx; 2621 2622 if (!ctx->priv_ctx_rx) { 2623 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2624 if (!sw_ctx_rx) 2625 return NULL; 2626 } else { 2627 sw_ctx_rx = ctx->priv_ctx_rx; 2628 } 2629 2630 crypto_init_wait(&sw_ctx_rx->async_wait); 2631 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2632 init_waitqueue_head(&sw_ctx_rx->wq); 2633 skb_queue_head_init(&sw_ctx_rx->rx_list); 2634 skb_queue_head_init(&sw_ctx_rx->async_hold); 2635 2636 return sw_ctx_rx; 2637 } 2638 2639 int init_prot_info(struct tls_prot_info *prot, 2640 const struct tls_crypto_info *crypto_info, 2641 const struct tls_cipher_desc *cipher_desc) 2642 { 2643 u16 nonce_size = cipher_desc->nonce; 2644 2645 if (crypto_info->version == TLS_1_3_VERSION) { 2646 nonce_size = 0; 2647 prot->aad_size = TLS_HEADER_SIZE; 2648 prot->tail_size = 1; 2649 } else { 2650 prot->aad_size = TLS_AAD_SPACE_SIZE; 2651 prot->tail_size = 0; 2652 } 2653 2654 /* Sanity-check the sizes for stack allocations. */ 2655 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2656 return -EINVAL; 2657 2658 prot->version = crypto_info->version; 2659 prot->cipher_type = crypto_info->cipher_type; 2660 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2661 prot->tag_size = cipher_desc->tag; 2662 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2663 prot->iv_size = cipher_desc->iv; 2664 prot->salt_size = cipher_desc->salt; 2665 prot->rec_seq_size = cipher_desc->rec_seq; 2666 2667 return 0; 2668 } 2669 2670 int tls_set_sw_offload(struct sock *sk, int tx) 2671 { 2672 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2673 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2674 const struct tls_cipher_desc *cipher_desc; 2675 struct tls_crypto_info *crypto_info; 2676 char *iv, *rec_seq, *key, *salt; 2677 struct cipher_context *cctx; 2678 struct tls_prot_info *prot; 2679 struct crypto_aead **aead; 2680 struct tls_context *ctx; 2681 struct crypto_tfm *tfm; 2682 int rc = 0; 2683 2684 ctx = tls_get_ctx(sk); 2685 prot = &ctx->prot_info; 2686 2687 if (tx) { 2688 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2689 if (!ctx->priv_ctx_tx) 2690 return -ENOMEM; 2691 2692 sw_ctx_tx = ctx->priv_ctx_tx; 2693 crypto_info = &ctx->crypto_send.info; 2694 cctx = &ctx->tx; 2695 aead = &sw_ctx_tx->aead_send; 2696 } else { 2697 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2698 if (!ctx->priv_ctx_rx) 2699 return -ENOMEM; 2700 2701 sw_ctx_rx = ctx->priv_ctx_rx; 2702 crypto_info = &ctx->crypto_recv.info; 2703 cctx = &ctx->rx; 2704 aead = &sw_ctx_rx->aead_recv; 2705 } 2706 2707 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 2708 if (!cipher_desc) { 2709 rc = -EINVAL; 2710 goto free_priv; 2711 } 2712 2713 rc = init_prot_info(prot, crypto_info, cipher_desc); 2714 if (rc) 2715 goto free_priv; 2716 2717 iv = crypto_info_iv(crypto_info, cipher_desc); 2718 key = crypto_info_key(crypto_info, cipher_desc); 2719 salt = crypto_info_salt(crypto_info, cipher_desc); 2720 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); 2721 2722 memcpy(cctx->iv, salt, cipher_desc->salt); 2723 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2724 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2725 2726 if (!*aead) { 2727 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2728 if (IS_ERR(*aead)) { 2729 rc = PTR_ERR(*aead); 2730 *aead = NULL; 2731 goto free_priv; 2732 } 2733 } 2734 2735 ctx->push_pending_record = tls_sw_push_pending_record; 2736 2737 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2738 if (rc) 2739 goto free_aead; 2740 2741 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2742 if (rc) 2743 goto free_aead; 2744 2745 if (sw_ctx_rx) { 2746 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2747 2748 tls_update_rx_zc_capable(ctx); 2749 sw_ctx_rx->async_capable = 2750 crypto_info->version != TLS_1_3_VERSION && 2751 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2752 2753 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2754 if (rc) 2755 goto free_aead; 2756 } 2757 2758 goto out; 2759 2760 free_aead: 2761 crypto_free_aead(*aead); 2762 *aead = NULL; 2763 free_priv: 2764 if (tx) { 2765 kfree(ctx->priv_ctx_tx); 2766 ctx->priv_ctx_tx = NULL; 2767 } else { 2768 kfree(ctx->priv_ctx_rx); 2769 ctx->priv_ctx_rx = NULL; 2770 } 2771 out: 2772 return rc; 2773 } 2774