1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 bool async_done; 56 u8 tail; 57 ); 58 59 struct sk_buff *skb; 60 }; 61 62 struct tls_decrypt_ctx { 63 struct sock *sk; 64 u8 iv[TLS_MAX_IV_SIZE]; 65 u8 aad[TLS_MAX_AAD_SIZE]; 66 u8 tail; 67 bool free_sgout; 68 struct scatterlist sg[]; 69 }; 70 71 noinline void tls_err_abort(struct sock *sk, int err) 72 { 73 WARN_ON_ONCE(err >= 0); 74 /* sk->sk_err should contain a positive error code. */ 75 WRITE_ONCE(sk->sk_err, -err); 76 /* Paired with smp_rmb() in tcp_poll() */ 77 smp_wmb(); 78 sk_error_report(sk); 79 } 80 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 82 unsigned int recursion_level) 83 { 84 int start = skb_headlen(skb); 85 int i, chunk = start - offset; 86 struct sk_buff *frag_iter; 87 int elt = 0; 88 89 if (unlikely(recursion_level >= 24)) 90 return -EMSGSIZE; 91 92 if (chunk > 0) { 93 if (chunk > len) 94 chunk = len; 95 elt++; 96 len -= chunk; 97 if (len == 0) 98 return elt; 99 offset += chunk; 100 } 101 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 103 int end; 104 105 WARN_ON(start > offset + len); 106 107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 108 chunk = end - offset; 109 if (chunk > 0) { 110 if (chunk > len) 111 chunk = len; 112 elt++; 113 len -= chunk; 114 if (len == 0) 115 return elt; 116 offset += chunk; 117 } 118 start = end; 119 } 120 121 if (unlikely(skb_has_frag_list(skb))) { 122 skb_walk_frags(skb, frag_iter) { 123 int end, ret; 124 125 WARN_ON(start > offset + len); 126 127 end = start + frag_iter->len; 128 chunk = end - offset; 129 if (chunk > 0) { 130 if (chunk > len) 131 chunk = len; 132 ret = __skb_nsg(frag_iter, offset - start, chunk, 133 recursion_level + 1); 134 if (unlikely(ret < 0)) 135 return ret; 136 elt += ret; 137 len -= chunk; 138 if (len == 0) 139 return elt; 140 offset += chunk; 141 } 142 start = end; 143 } 144 } 145 BUG_ON(len); 146 return elt; 147 } 148 149 /* Return the number of scatterlist elements required to completely map the 150 * skb, or -EMSGSIZE if the recursion depth is exceeded. 151 */ 152 static int skb_nsg(struct sk_buff *skb, int offset, int len) 153 { 154 return __skb_nsg(skb, offset, len, 0); 155 } 156 157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 158 struct tls_decrypt_arg *darg) 159 { 160 struct strp_msg *rxm = strp_msg(skb); 161 struct tls_msg *tlm = tls_msg(skb); 162 int sub = 0; 163 164 /* Determine zero-padding length */ 165 if (prot->version == TLS_1_3_VERSION) { 166 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 167 char content_type = darg->zc ? darg->tail : 0; 168 int err; 169 170 while (content_type == 0) { 171 if (offset < prot->prepend_size) 172 return -EBADMSG; 173 err = skb_copy_bits(skb, rxm->offset + offset, 174 &content_type, 1); 175 if (err) 176 return err; 177 if (content_type) 178 break; 179 sub++; 180 offset--; 181 } 182 tlm->control = content_type; 183 } 184 return sub; 185 } 186 187 static void tls_decrypt_done(void *data, int err) 188 { 189 struct aead_request *aead_req = data; 190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 191 struct scatterlist *sgout = aead_req->dst; 192 struct tls_sw_context_rx *ctx; 193 struct tls_decrypt_ctx *dctx; 194 struct tls_context *tls_ctx; 195 struct scatterlist *sg; 196 unsigned int pages; 197 struct sock *sk; 198 int aead_size; 199 200 /* If requests get too backlogged crypto API returns -EBUSY and calls 201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) 202 * to make waiting for backlog to flush with crypto_wait_req() easier. 203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one 204 * -EINPROGRESS -> 0. 205 * We have a single struct crypto_async_request per direction, this 206 * scheme doesn't help us, so just ignore the first ->complete(). 207 */ 208 if (err == -EINPROGRESS) 209 return; 210 211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 212 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 213 dctx = (void *)((u8 *)aead_req + aead_size); 214 215 sk = dctx->sk; 216 tls_ctx = tls_get_ctx(sk); 217 ctx = tls_sw_ctx_rx(tls_ctx); 218 219 /* Propagate if there was an err */ 220 if (err) { 221 if (err == -EBADMSG) 222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 223 ctx->async_wait.err = err; 224 tls_err_abort(sk, err); 225 } 226 227 /* Free the destination pages if skb was not decrypted inplace */ 228 if (dctx->free_sgout) { 229 /* Skip the first S/G entry as it points to AAD */ 230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 231 if (!sg) 232 break; 233 put_page(sg_page(sg)); 234 } 235 } 236 237 kfree(aead_req); 238 239 if (atomic_dec_and_test(&ctx->decrypt_pending)) 240 complete(&ctx->async_wait.completion); 241 } 242 243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) 244 { 245 if (!atomic_dec_and_test(&ctx->decrypt_pending)) 246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 247 atomic_inc(&ctx->decrypt_pending); 248 249 return ctx->async_wait.err; 250 } 251 252 static int tls_do_decryption(struct sock *sk, 253 struct scatterlist *sgin, 254 struct scatterlist *sgout, 255 char *iv_recv, 256 size_t data_len, 257 struct aead_request *aead_req, 258 struct tls_decrypt_arg *darg) 259 { 260 struct tls_context *tls_ctx = tls_get_ctx(sk); 261 struct tls_prot_info *prot = &tls_ctx->prot_info; 262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 263 int ret; 264 265 aead_request_set_tfm(aead_req, ctx->aead_recv); 266 aead_request_set_ad(aead_req, prot->aad_size); 267 aead_request_set_crypt(aead_req, sgin, sgout, 268 data_len + prot->tag_size, 269 (u8 *)iv_recv); 270 271 if (darg->async) { 272 aead_request_set_callback(aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 tls_decrypt_done, aead_req); 275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); 276 atomic_inc(&ctx->decrypt_pending); 277 } else { 278 DECLARE_CRYPTO_WAIT(wait); 279 280 aead_request_set_callback(aead_req, 281 CRYPTO_TFM_REQ_MAY_BACKLOG, 282 crypto_req_done, &wait); 283 ret = crypto_aead_decrypt(aead_req); 284 if (ret == -EINPROGRESS || ret == -EBUSY) 285 ret = crypto_wait_req(ret, &wait); 286 return ret; 287 } 288 289 ret = crypto_aead_decrypt(aead_req); 290 if (ret == -EINPROGRESS) 291 return 0; 292 293 if (ret == -EBUSY) { 294 ret = tls_decrypt_async_wait(ctx); 295 darg->async_done = true; 296 /* all completions have run, we're not doing async anymore */ 297 darg->async = false; 298 return ret; 299 } 300 301 atomic_dec(&ctx->decrypt_pending); 302 darg->async = false; 303 304 return ret; 305 } 306 307 static void tls_trim_both_msgs(struct sock *sk, int target_size) 308 { 309 struct tls_context *tls_ctx = tls_get_ctx(sk); 310 struct tls_prot_info *prot = &tls_ctx->prot_info; 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 312 struct tls_rec *rec = ctx->open_rec; 313 314 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 315 if (target_size > 0) 316 target_size += prot->overhead_size; 317 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 318 } 319 320 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 324 struct tls_rec *rec = ctx->open_rec; 325 struct sk_msg *msg_en = &rec->msg_encrypted; 326 327 return sk_msg_alloc(sk, msg_en, len, 0); 328 } 329 330 static int tls_clone_plaintext_msg(struct sock *sk, int required) 331 { 332 struct tls_context *tls_ctx = tls_get_ctx(sk); 333 struct tls_prot_info *prot = &tls_ctx->prot_info; 334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 335 struct tls_rec *rec = ctx->open_rec; 336 struct sk_msg *msg_pl = &rec->msg_plaintext; 337 struct sk_msg *msg_en = &rec->msg_encrypted; 338 int skip, len; 339 340 /* We add page references worth len bytes from encrypted sg 341 * at the end of plaintext sg. It is guaranteed that msg_en 342 * has enough required room (ensured by caller). 343 */ 344 len = required - msg_pl->sg.size; 345 346 /* Skip initial bytes in msg_en's data to be able to use 347 * same offset of both plain and encrypted data. 348 */ 349 skip = prot->prepend_size + msg_pl->sg.size; 350 351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 352 } 353 354 static struct tls_rec *tls_get_rec(struct sock *sk) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_prot_info *prot = &tls_ctx->prot_info; 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct sk_msg *msg_pl, *msg_en; 360 struct tls_rec *rec; 361 int mem_size; 362 363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 364 365 rec = kzalloc(mem_size, sk->sk_allocation); 366 if (!rec) 367 return NULL; 368 369 msg_pl = &rec->msg_plaintext; 370 msg_en = &rec->msg_encrypted; 371 372 sk_msg_init(msg_pl); 373 sk_msg_init(msg_en); 374 375 sg_init_table(rec->sg_aead_in, 2); 376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 377 sg_unmark_end(&rec->sg_aead_in[1]); 378 379 sg_init_table(rec->sg_aead_out, 2); 380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 381 sg_unmark_end(&rec->sg_aead_out[1]); 382 383 rec->sk = sk; 384 385 return rec; 386 } 387 388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 389 { 390 sk_msg_free(sk, &rec->msg_encrypted); 391 sk_msg_free(sk, &rec->msg_plaintext); 392 kfree(rec); 393 } 394 395 static void tls_free_open_rec(struct sock *sk) 396 { 397 struct tls_context *tls_ctx = tls_get_ctx(sk); 398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 399 struct tls_rec *rec = ctx->open_rec; 400 401 if (rec) { 402 tls_free_rec(sk, rec); 403 ctx->open_rec = NULL; 404 } 405 } 406 407 int tls_tx_records(struct sock *sk, int flags) 408 { 409 struct tls_context *tls_ctx = tls_get_ctx(sk); 410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 411 struct tls_rec *rec, *tmp; 412 struct sk_msg *msg_en; 413 int tx_flags, rc = 0; 414 415 if (tls_is_partially_sent_record(tls_ctx)) { 416 rec = list_first_entry(&ctx->tx_list, 417 struct tls_rec, list); 418 419 if (flags == -1) 420 tx_flags = rec->tx_flags; 421 else 422 tx_flags = flags; 423 424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 425 if (rc) 426 goto tx_err; 427 428 /* Full record has been transmitted. 429 * Remove the head of tx_list 430 */ 431 list_del(&rec->list); 432 sk_msg_free(sk, &rec->msg_plaintext); 433 kfree(rec); 434 } 435 436 /* Tx all ready records */ 437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 438 if (READ_ONCE(rec->tx_ready)) { 439 if (flags == -1) 440 tx_flags = rec->tx_flags; 441 else 442 tx_flags = flags; 443 444 msg_en = &rec->msg_encrypted; 445 rc = tls_push_sg(sk, tls_ctx, 446 &msg_en->sg.data[msg_en->sg.curr], 447 0, tx_flags); 448 if (rc) 449 goto tx_err; 450 451 list_del(&rec->list); 452 sk_msg_free(sk, &rec->msg_plaintext); 453 kfree(rec); 454 } else { 455 break; 456 } 457 } 458 459 tx_err: 460 if (rc < 0 && rc != -EAGAIN) 461 tls_err_abort(sk, rc); 462 463 return rc; 464 } 465 466 static void tls_encrypt_done(void *data, int err) 467 { 468 struct tls_sw_context_tx *ctx; 469 struct tls_context *tls_ctx; 470 struct tls_prot_info *prot; 471 struct tls_rec *rec = data; 472 struct scatterlist *sge; 473 struct sk_msg *msg_en; 474 struct sock *sk; 475 476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ 477 return; 478 479 msg_en = &rec->msg_encrypted; 480 481 sk = rec->sk; 482 tls_ctx = tls_get_ctx(sk); 483 prot = &tls_ctx->prot_info; 484 ctx = tls_sw_ctx_tx(tls_ctx); 485 486 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 487 sge->offset -= prot->prepend_size; 488 sge->length += prot->prepend_size; 489 490 /* Check if error is previously set on socket */ 491 if (err || sk->sk_err) { 492 rec = NULL; 493 494 /* If err is already set on socket, return the same code */ 495 if (sk->sk_err) { 496 ctx->async_wait.err = -sk->sk_err; 497 } else { 498 ctx->async_wait.err = err; 499 tls_err_abort(sk, err); 500 } 501 } 502 503 if (rec) { 504 struct tls_rec *first_rec; 505 506 /* Mark the record as ready for transmission */ 507 smp_store_mb(rec->tx_ready, true); 508 509 /* If received record is at head of tx_list, schedule tx */ 510 first_rec = list_first_entry(&ctx->tx_list, 511 struct tls_rec, list); 512 if (rec == first_rec) { 513 /* Schedule the transmission */ 514 if (!test_and_set_bit(BIT_TX_SCHEDULED, 515 &ctx->tx_bitmask)) 516 schedule_delayed_work(&ctx->tx_work.work, 1); 517 } 518 } 519 520 if (atomic_dec_and_test(&ctx->encrypt_pending)) 521 complete(&ctx->async_wait.completion); 522 } 523 524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) 525 { 526 if (!atomic_dec_and_test(&ctx->encrypt_pending)) 527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 528 atomic_inc(&ctx->encrypt_pending); 529 530 return ctx->async_wait.err; 531 } 532 533 static int tls_do_encryption(struct sock *sk, 534 struct tls_context *tls_ctx, 535 struct tls_sw_context_tx *ctx, 536 struct aead_request *aead_req, 537 size_t data_len, u32 start) 538 { 539 struct tls_prot_info *prot = &tls_ctx->prot_info; 540 struct tls_rec *rec = ctx->open_rec; 541 struct sk_msg *msg_en = &rec->msg_encrypted; 542 struct scatterlist *sge = sk_msg_elem(msg_en, start); 543 int rc, iv_offset = 0; 544 545 /* For CCM based ciphers, first byte of IV is a constant */ 546 switch (prot->cipher_type) { 547 case TLS_CIPHER_AES_CCM_128: 548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 549 iv_offset = 1; 550 break; 551 case TLS_CIPHER_SM4_CCM: 552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 553 iv_offset = 1; 554 break; 555 } 556 557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 558 prot->iv_size + prot->salt_size); 559 560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 561 tls_ctx->tx.rec_seq); 562 563 sge->offset += prot->prepend_size; 564 sge->length -= prot->prepend_size; 565 566 msg_en->sg.curr = start; 567 568 aead_request_set_tfm(aead_req, ctx->aead_send); 569 aead_request_set_ad(aead_req, prot->aad_size); 570 aead_request_set_crypt(aead_req, rec->sg_aead_in, 571 rec->sg_aead_out, 572 data_len, rec->iv_data); 573 574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 575 tls_encrypt_done, rec); 576 577 /* Add the record in tx_list */ 578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); 580 atomic_inc(&ctx->encrypt_pending); 581 582 rc = crypto_aead_encrypt(aead_req); 583 if (rc == -EBUSY) { 584 rc = tls_encrypt_async_wait(ctx); 585 rc = rc ?: -EINPROGRESS; 586 } 587 if (!rc || rc != -EINPROGRESS) { 588 atomic_dec(&ctx->encrypt_pending); 589 sge->offset -= prot->prepend_size; 590 sge->length += prot->prepend_size; 591 } 592 593 if (!rc) { 594 WRITE_ONCE(rec->tx_ready, true); 595 } else if (rc != -EINPROGRESS) { 596 list_del(&rec->list); 597 return rc; 598 } 599 600 /* Unhook the record from context if encryption is not failure */ 601 ctx->open_rec = NULL; 602 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 603 return rc; 604 } 605 606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 607 struct tls_rec **to, struct sk_msg *msg_opl, 608 struct sk_msg *msg_oen, u32 split_point, 609 u32 tx_overhead_size, u32 *orig_end) 610 { 611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 612 struct scatterlist *sge, *osge, *nsge; 613 u32 orig_size = msg_opl->sg.size; 614 struct scatterlist tmp = { }; 615 struct sk_msg *msg_npl; 616 struct tls_rec *new; 617 int ret; 618 619 new = tls_get_rec(sk); 620 if (!new) 621 return -ENOMEM; 622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 623 tx_overhead_size, 0); 624 if (ret < 0) { 625 tls_free_rec(sk, new); 626 return ret; 627 } 628 629 *orig_end = msg_opl->sg.end; 630 i = msg_opl->sg.start; 631 sge = sk_msg_elem(msg_opl, i); 632 while (apply && sge->length) { 633 if (sge->length > apply) { 634 u32 len = sge->length - apply; 635 636 get_page(sg_page(sge)); 637 sg_set_page(&tmp, sg_page(sge), len, 638 sge->offset + apply); 639 sge->length = apply; 640 bytes += apply; 641 apply = 0; 642 } else { 643 apply -= sge->length; 644 bytes += sge->length; 645 } 646 647 sk_msg_iter_var_next(i); 648 if (i == msg_opl->sg.end) 649 break; 650 sge = sk_msg_elem(msg_opl, i); 651 } 652 653 msg_opl->sg.end = i; 654 msg_opl->sg.curr = i; 655 msg_opl->sg.copybreak = 0; 656 msg_opl->apply_bytes = 0; 657 msg_opl->sg.size = bytes; 658 659 msg_npl = &new->msg_plaintext; 660 msg_npl->apply_bytes = apply; 661 msg_npl->sg.size = orig_size - bytes; 662 663 j = msg_npl->sg.start; 664 nsge = sk_msg_elem(msg_npl, j); 665 if (tmp.length) { 666 memcpy(nsge, &tmp, sizeof(*nsge)); 667 sk_msg_iter_var_next(j); 668 nsge = sk_msg_elem(msg_npl, j); 669 } 670 671 osge = sk_msg_elem(msg_opl, i); 672 while (osge->length) { 673 memcpy(nsge, osge, sizeof(*nsge)); 674 sg_unmark_end(nsge); 675 sk_msg_iter_var_next(i); 676 sk_msg_iter_var_next(j); 677 if (i == *orig_end) 678 break; 679 osge = sk_msg_elem(msg_opl, i); 680 nsge = sk_msg_elem(msg_npl, j); 681 } 682 683 msg_npl->sg.end = j; 684 msg_npl->sg.curr = j; 685 msg_npl->sg.copybreak = 0; 686 687 *to = new; 688 return 0; 689 } 690 691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 692 struct tls_rec *from, u32 orig_end) 693 { 694 struct sk_msg *msg_npl = &from->msg_plaintext; 695 struct sk_msg *msg_opl = &to->msg_plaintext; 696 struct scatterlist *osge, *nsge; 697 u32 i, j; 698 699 i = msg_opl->sg.end; 700 sk_msg_iter_var_prev(i); 701 j = msg_npl->sg.start; 702 703 osge = sk_msg_elem(msg_opl, i); 704 nsge = sk_msg_elem(msg_npl, j); 705 706 if (sg_page(osge) == sg_page(nsge) && 707 osge->offset + osge->length == nsge->offset) { 708 osge->length += nsge->length; 709 put_page(sg_page(nsge)); 710 } 711 712 msg_opl->sg.end = orig_end; 713 msg_opl->sg.curr = orig_end; 714 msg_opl->sg.copybreak = 0; 715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 716 msg_opl->sg.size += msg_npl->sg.size; 717 718 sk_msg_free(sk, &to->msg_encrypted); 719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 720 721 kfree(from); 722 } 723 724 static int tls_push_record(struct sock *sk, int flags, 725 unsigned char record_type) 726 { 727 struct tls_context *tls_ctx = tls_get_ctx(sk); 728 struct tls_prot_info *prot = &tls_ctx->prot_info; 729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 731 u32 i, split_point, orig_end; 732 struct sk_msg *msg_pl, *msg_en; 733 struct aead_request *req; 734 bool split; 735 int rc; 736 737 if (!rec) 738 return 0; 739 740 msg_pl = &rec->msg_plaintext; 741 msg_en = &rec->msg_encrypted; 742 743 split_point = msg_pl->apply_bytes; 744 split = split_point && split_point < msg_pl->sg.size; 745 if (unlikely((!split && 746 msg_pl->sg.size + 747 prot->overhead_size > msg_en->sg.size) || 748 (split && 749 split_point + 750 prot->overhead_size > msg_en->sg.size))) { 751 split = true; 752 split_point = msg_en->sg.size; 753 } 754 if (split) { 755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 756 split_point, prot->overhead_size, 757 &orig_end); 758 if (rc < 0) 759 return rc; 760 /* This can happen if above tls_split_open_record allocates 761 * a single large encryption buffer instead of two smaller 762 * ones. In this case adjust pointers and continue without 763 * split. 764 */ 765 if (!msg_pl->sg.size) { 766 tls_merge_open_record(sk, rec, tmp, orig_end); 767 msg_pl = &rec->msg_plaintext; 768 msg_en = &rec->msg_encrypted; 769 split = false; 770 } 771 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 772 prot->overhead_size); 773 } 774 775 rec->tx_flags = flags; 776 req = &rec->aead_req; 777 778 i = msg_pl->sg.end; 779 sk_msg_iter_var_prev(i); 780 781 rec->content_type = record_type; 782 if (prot->version == TLS_1_3_VERSION) { 783 /* Add content type to end of message. No padding added */ 784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 785 sg_mark_end(&rec->sg_content_type); 786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 787 &rec->sg_content_type); 788 } else { 789 sg_mark_end(sk_msg_elem(msg_pl, i)); 790 } 791 792 if (msg_pl->sg.end < msg_pl->sg.start) { 793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 794 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 795 msg_pl->sg.data); 796 } 797 798 i = msg_pl->sg.start; 799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 800 801 i = msg_en->sg.end; 802 sk_msg_iter_var_prev(i); 803 sg_mark_end(sk_msg_elem(msg_en, i)); 804 805 i = msg_en->sg.start; 806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 807 808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 809 tls_ctx->tx.rec_seq, record_type, prot); 810 811 tls_fill_prepend(tls_ctx, 812 page_address(sg_page(&msg_en->sg.data[i])) + 813 msg_en->sg.data[i].offset, 814 msg_pl->sg.size + prot->tail_size, 815 record_type); 816 817 tls_ctx->pending_open_record_frags = false; 818 819 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 820 msg_pl->sg.size + prot->tail_size, i); 821 if (rc < 0) { 822 if (rc != -EINPROGRESS) { 823 tls_err_abort(sk, -EBADMSG); 824 if (split) { 825 tls_ctx->pending_open_record_frags = true; 826 tls_merge_open_record(sk, rec, tmp, orig_end); 827 } 828 } 829 ctx->async_capable = 1; 830 return rc; 831 } else if (split) { 832 msg_pl = &tmp->msg_plaintext; 833 msg_en = &tmp->msg_encrypted; 834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 835 tls_ctx->pending_open_record_frags = true; 836 ctx->open_rec = tmp; 837 } 838 839 return tls_tx_records(sk, flags); 840 } 841 842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 843 bool full_record, u8 record_type, 844 ssize_t *copied, int flags) 845 { 846 struct tls_context *tls_ctx = tls_get_ctx(sk); 847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 848 struct sk_msg msg_redir = { }; 849 struct sk_psock *psock; 850 struct sock *sk_redir; 851 struct tls_rec *rec; 852 bool enospc, policy, redir_ingress; 853 int err = 0, send; 854 u32 delta = 0; 855 856 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 857 psock = sk_psock_get(sk); 858 if (!psock || !policy) { 859 err = tls_push_record(sk, flags, record_type); 860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 861 *copied -= sk_msg_free(sk, msg); 862 tls_free_open_rec(sk); 863 err = -sk->sk_err; 864 } 865 if (psock) 866 sk_psock_put(sk, psock); 867 return err; 868 } 869 more_data: 870 enospc = sk_msg_full(msg); 871 if (psock->eval == __SK_NONE) { 872 delta = msg->sg.size; 873 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 874 delta -= msg->sg.size; 875 876 if ((s32)delta > 0) { 877 /* It indicates that we executed bpf_msg_pop_data(), 878 * causing the plaintext data size to decrease. 879 * Therefore the encrypted data size also needs to 880 * correspondingly decrease. We only need to subtract 881 * delta to calculate the new ciphertext length since 882 * ktls does not support block encryption. 883 */ 884 struct sk_msg *enc = &ctx->open_rec->msg_encrypted; 885 886 sk_msg_trim(sk, enc, enc->sg.size - delta); 887 } 888 } 889 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 890 !enospc && !full_record) { 891 err = -ENOSPC; 892 goto out_err; 893 } 894 msg->cork_bytes = 0; 895 send = msg->sg.size; 896 if (msg->apply_bytes && msg->apply_bytes < send) 897 send = msg->apply_bytes; 898 899 switch (psock->eval) { 900 case __SK_PASS: 901 err = tls_push_record(sk, flags, record_type); 902 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 903 *copied -= sk_msg_free(sk, msg); 904 tls_free_open_rec(sk); 905 err = -sk->sk_err; 906 goto out_err; 907 } 908 break; 909 case __SK_REDIRECT: 910 redir_ingress = psock->redir_ingress; 911 sk_redir = psock->sk_redir; 912 memcpy(&msg_redir, msg, sizeof(*msg)); 913 if (msg->apply_bytes < send) 914 msg->apply_bytes = 0; 915 else 916 msg->apply_bytes -= send; 917 sk_msg_return_zero(sk, msg, send); 918 msg->sg.size -= send; 919 release_sock(sk); 920 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 921 &msg_redir, send, flags); 922 lock_sock(sk); 923 if (err < 0) { 924 /* Regardless of whether the data represented by 925 * msg_redir is sent successfully, we have already 926 * uncharged it via sk_msg_return_zero(). The 927 * msg->sg.size represents the remaining unprocessed 928 * data, which needs to be uncharged here. 929 */ 930 sk_mem_uncharge(sk, msg->sg.size); 931 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 932 msg->sg.size = 0; 933 } 934 if (msg->sg.size == 0) 935 tls_free_open_rec(sk); 936 break; 937 case __SK_DROP: 938 default: 939 sk_msg_free_partial(sk, msg, send); 940 if (msg->apply_bytes < send) 941 msg->apply_bytes = 0; 942 else 943 msg->apply_bytes -= send; 944 if (msg->sg.size == 0) 945 tls_free_open_rec(sk); 946 *copied -= (send + delta); 947 err = -EACCES; 948 } 949 950 if (likely(!err)) { 951 bool reset_eval = !ctx->open_rec; 952 953 rec = ctx->open_rec; 954 if (rec) { 955 msg = &rec->msg_plaintext; 956 if (!msg->apply_bytes) 957 reset_eval = true; 958 } 959 if (reset_eval) { 960 psock->eval = __SK_NONE; 961 if (psock->sk_redir) { 962 sock_put(psock->sk_redir); 963 psock->sk_redir = NULL; 964 } 965 } 966 if (rec) 967 goto more_data; 968 } 969 out_err: 970 sk_psock_put(sk, psock); 971 return err; 972 } 973 974 static int tls_sw_push_pending_record(struct sock *sk, int flags) 975 { 976 struct tls_context *tls_ctx = tls_get_ctx(sk); 977 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 978 struct tls_rec *rec = ctx->open_rec; 979 struct sk_msg *msg_pl; 980 size_t copied; 981 982 if (!rec) 983 return 0; 984 985 msg_pl = &rec->msg_plaintext; 986 copied = msg_pl->sg.size; 987 if (!copied) 988 return 0; 989 990 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 991 &copied, flags); 992 } 993 994 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 995 struct sk_msg *msg_pl, size_t try_to_copy, 996 ssize_t *copied) 997 { 998 struct page *page = NULL, **pages = &page; 999 1000 do { 1001 ssize_t part; 1002 size_t off; 1003 1004 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 1005 try_to_copy, 1, 0, &off); 1006 if (part <= 0) 1007 return part ?: -EIO; 1008 1009 if (WARN_ON_ONCE(!sendpage_ok(page))) { 1010 iov_iter_revert(&msg->msg_iter, part); 1011 return -EIO; 1012 } 1013 1014 sk_msg_page_add(msg_pl, page, part, off); 1015 msg_pl->sg.copybreak = 0; 1016 msg_pl->sg.curr = msg_pl->sg.end; 1017 sk_mem_charge(sk, part); 1018 *copied += part; 1019 try_to_copy -= part; 1020 } while (try_to_copy && !sk_msg_full(msg_pl)); 1021 1022 return 0; 1023 } 1024 1025 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 1026 size_t size) 1027 { 1028 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1029 struct tls_context *tls_ctx = tls_get_ctx(sk); 1030 struct tls_prot_info *prot = &tls_ctx->prot_info; 1031 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1032 bool async_capable = ctx->async_capable; 1033 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1034 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1035 bool eor = !(msg->msg_flags & MSG_MORE); 1036 size_t try_to_copy; 1037 ssize_t copied = 0; 1038 struct sk_msg *msg_pl, *msg_en; 1039 struct tls_rec *rec; 1040 int required_size; 1041 int num_async = 0; 1042 bool full_record; 1043 int record_room; 1044 int num_zc = 0; 1045 int orig_size; 1046 int ret = 0; 1047 1048 if (!eor && (msg->msg_flags & MSG_EOR)) 1049 return -EINVAL; 1050 1051 if (unlikely(msg->msg_controllen)) { 1052 ret = tls_process_cmsg(sk, msg, &record_type); 1053 if (ret) { 1054 if (ret == -EINPROGRESS) 1055 num_async++; 1056 else if (ret != -EAGAIN) 1057 goto send_end; 1058 } 1059 } 1060 1061 while (msg_data_left(msg)) { 1062 if (sk->sk_err) { 1063 ret = -sk->sk_err; 1064 goto send_end; 1065 } 1066 1067 if (ctx->open_rec) 1068 rec = ctx->open_rec; 1069 else 1070 rec = ctx->open_rec = tls_get_rec(sk); 1071 if (!rec) { 1072 ret = -ENOMEM; 1073 goto send_end; 1074 } 1075 1076 msg_pl = &rec->msg_plaintext; 1077 msg_en = &rec->msg_encrypted; 1078 1079 orig_size = msg_pl->sg.size; 1080 full_record = false; 1081 try_to_copy = msg_data_left(msg); 1082 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1083 if (try_to_copy >= record_room) { 1084 try_to_copy = record_room; 1085 full_record = true; 1086 } 1087 1088 required_size = msg_pl->sg.size + try_to_copy + 1089 prot->overhead_size; 1090 1091 if (!sk_stream_memory_free(sk)) 1092 goto wait_for_sndbuf; 1093 1094 alloc_encrypted: 1095 ret = tls_alloc_encrypted_msg(sk, required_size); 1096 if (ret) { 1097 if (ret != -ENOSPC) 1098 goto wait_for_memory; 1099 1100 /* Adjust try_to_copy according to the amount that was 1101 * actually allocated. The difference is due 1102 * to max sg elements limit 1103 */ 1104 try_to_copy -= required_size - msg_en->sg.size; 1105 full_record = true; 1106 } 1107 1108 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1109 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1110 try_to_copy, &copied); 1111 if (ret < 0) 1112 goto send_end; 1113 tls_ctx->pending_open_record_frags = true; 1114 1115 if (sk_msg_full(msg_pl)) 1116 full_record = true; 1117 1118 if (full_record || eor) 1119 goto copied; 1120 continue; 1121 } 1122 1123 if (!is_kvec && (full_record || eor) && !async_capable) { 1124 u32 first = msg_pl->sg.end; 1125 1126 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1127 msg_pl, try_to_copy); 1128 if (ret) 1129 goto fallback_to_reg_send; 1130 1131 num_zc++; 1132 copied += try_to_copy; 1133 1134 sk_msg_sg_copy_set(msg_pl, first); 1135 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1136 record_type, &copied, 1137 msg->msg_flags); 1138 if (ret) { 1139 if (ret == -EINPROGRESS) 1140 num_async++; 1141 else if (ret == -ENOMEM) 1142 goto wait_for_memory; 1143 else if (ctx->open_rec && ret == -ENOSPC) { 1144 if (msg_pl->cork_bytes) { 1145 ret = 0; 1146 goto send_end; 1147 } 1148 goto rollback_iter; 1149 } else if (ret != -EAGAIN) 1150 goto send_end; 1151 } 1152 continue; 1153 rollback_iter: 1154 copied -= try_to_copy; 1155 sk_msg_sg_copy_clear(msg_pl, first); 1156 iov_iter_revert(&msg->msg_iter, 1157 msg_pl->sg.size - orig_size); 1158 fallback_to_reg_send: 1159 sk_msg_trim(sk, msg_pl, orig_size); 1160 } 1161 1162 required_size = msg_pl->sg.size + try_to_copy; 1163 1164 ret = tls_clone_plaintext_msg(sk, required_size); 1165 if (ret) { 1166 if (ret != -ENOSPC) 1167 goto send_end; 1168 1169 /* Adjust try_to_copy according to the amount that was 1170 * actually allocated. The difference is due 1171 * to max sg elements limit 1172 */ 1173 try_to_copy -= required_size - msg_pl->sg.size; 1174 full_record = true; 1175 sk_msg_trim(sk, msg_en, 1176 msg_pl->sg.size + prot->overhead_size); 1177 } 1178 1179 if (try_to_copy) { 1180 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1181 msg_pl, try_to_copy); 1182 if (ret < 0) 1183 goto trim_sgl; 1184 } 1185 1186 /* Open records defined only if successfully copied, otherwise 1187 * we would trim the sg but not reset the open record frags. 1188 */ 1189 tls_ctx->pending_open_record_frags = true; 1190 copied += try_to_copy; 1191 copied: 1192 if (full_record || eor) { 1193 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1194 record_type, &copied, 1195 msg->msg_flags); 1196 if (ret) { 1197 if (ret == -EINPROGRESS) 1198 num_async++; 1199 else if (ret == -ENOMEM) 1200 goto wait_for_memory; 1201 else if (ret != -EAGAIN) { 1202 if (ret == -ENOSPC) 1203 ret = 0; 1204 goto send_end; 1205 } 1206 } 1207 } 1208 1209 continue; 1210 1211 wait_for_sndbuf: 1212 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1213 wait_for_memory: 1214 ret = sk_stream_wait_memory(sk, &timeo); 1215 if (ret) { 1216 trim_sgl: 1217 if (ctx->open_rec) 1218 tls_trim_both_msgs(sk, orig_size); 1219 goto send_end; 1220 } 1221 1222 if (ctx->open_rec && msg_en->sg.size < required_size) 1223 goto alloc_encrypted; 1224 } 1225 1226 if (!num_async) { 1227 goto send_end; 1228 } else if (num_zc || eor) { 1229 int err; 1230 1231 /* Wait for pending encryptions to get completed */ 1232 err = tls_encrypt_async_wait(ctx); 1233 if (err) { 1234 ret = err; 1235 copied = 0; 1236 } 1237 } 1238 1239 /* Transmit if any encryptions have completed */ 1240 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1241 cancel_delayed_work(&ctx->tx_work.work); 1242 tls_tx_records(sk, msg->msg_flags); 1243 } 1244 1245 send_end: 1246 ret = sk_stream_error(sk, msg->msg_flags, ret); 1247 return copied > 0 ? copied : ret; 1248 } 1249 1250 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1251 { 1252 struct tls_context *tls_ctx = tls_get_ctx(sk); 1253 int ret; 1254 1255 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1256 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1257 MSG_SENDPAGE_NOPOLICY)) 1258 return -EOPNOTSUPP; 1259 1260 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1261 if (ret) 1262 return ret; 1263 lock_sock(sk); 1264 ret = tls_sw_sendmsg_locked(sk, msg, size); 1265 release_sock(sk); 1266 mutex_unlock(&tls_ctx->tx_lock); 1267 return ret; 1268 } 1269 1270 /* 1271 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1272 */ 1273 void tls_sw_splice_eof(struct socket *sock) 1274 { 1275 struct sock *sk = sock->sk; 1276 struct tls_context *tls_ctx = tls_get_ctx(sk); 1277 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1278 struct tls_rec *rec; 1279 struct sk_msg *msg_pl; 1280 ssize_t copied = 0; 1281 bool retrying = false; 1282 int ret = 0; 1283 1284 if (!ctx->open_rec) 1285 return; 1286 1287 mutex_lock(&tls_ctx->tx_lock); 1288 lock_sock(sk); 1289 1290 retry: 1291 /* same checks as in tls_sw_push_pending_record() */ 1292 rec = ctx->open_rec; 1293 if (!rec) 1294 goto unlock; 1295 1296 msg_pl = &rec->msg_plaintext; 1297 if (msg_pl->sg.size == 0) 1298 goto unlock; 1299 1300 /* Check the BPF advisor and perform transmission. */ 1301 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1302 &copied, 0); 1303 switch (ret) { 1304 case 0: 1305 case -EAGAIN: 1306 if (retrying) 1307 goto unlock; 1308 retrying = true; 1309 goto retry; 1310 case -EINPROGRESS: 1311 break; 1312 default: 1313 goto unlock; 1314 } 1315 1316 /* Wait for pending encryptions to get completed */ 1317 if (tls_encrypt_async_wait(ctx)) 1318 goto unlock; 1319 1320 /* Transmit if any encryptions have completed */ 1321 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1322 cancel_delayed_work(&ctx->tx_work.work); 1323 tls_tx_records(sk, 0); 1324 } 1325 1326 unlock: 1327 release_sock(sk); 1328 mutex_unlock(&tls_ctx->tx_lock); 1329 } 1330 1331 static int 1332 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1333 bool released) 1334 { 1335 struct tls_context *tls_ctx = tls_get_ctx(sk); 1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1337 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1338 int ret = 0; 1339 long timeo; 1340 1341 /* a rekey is pending, let userspace deal with it */ 1342 if (unlikely(ctx->key_update_pending)) 1343 return -EKEYEXPIRED; 1344 1345 timeo = sock_rcvtimeo(sk, nonblock); 1346 1347 while (!tls_strp_msg_ready(ctx)) { 1348 if (!sk_psock_queue_empty(psock)) 1349 return 0; 1350 1351 if (sk->sk_err) 1352 return sock_error(sk); 1353 1354 if (ret < 0) 1355 return ret; 1356 1357 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1358 tls_strp_check_rcv(&ctx->strp); 1359 if (tls_strp_msg_ready(ctx)) 1360 break; 1361 } 1362 1363 if (sk->sk_shutdown & RCV_SHUTDOWN) 1364 return 0; 1365 1366 if (sock_flag(sk, SOCK_DONE)) 1367 return 0; 1368 1369 if (!timeo) 1370 return -EAGAIN; 1371 1372 released = true; 1373 add_wait_queue(sk_sleep(sk), &wait); 1374 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1375 ret = sk_wait_event(sk, &timeo, 1376 tls_strp_msg_ready(ctx) || 1377 !sk_psock_queue_empty(psock), 1378 &wait); 1379 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1380 remove_wait_queue(sk_sleep(sk), &wait); 1381 1382 /* Handle signals */ 1383 if (signal_pending(current)) 1384 return sock_intr_errno(timeo); 1385 } 1386 1387 tls_strp_msg_load(&ctx->strp, released); 1388 1389 return 1; 1390 } 1391 1392 static int tls_setup_from_iter(struct iov_iter *from, 1393 int length, int *pages_used, 1394 struct scatterlist *to, 1395 int to_max_pages) 1396 { 1397 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1398 struct page *pages[MAX_SKB_FRAGS]; 1399 unsigned int size = 0; 1400 ssize_t copied, use; 1401 size_t offset; 1402 1403 while (length > 0) { 1404 i = 0; 1405 maxpages = to_max_pages - num_elem; 1406 if (maxpages == 0) { 1407 rc = -EFAULT; 1408 goto out; 1409 } 1410 copied = iov_iter_get_pages2(from, pages, 1411 length, 1412 maxpages, &offset); 1413 if (copied <= 0) { 1414 rc = -EFAULT; 1415 goto out; 1416 } 1417 1418 length -= copied; 1419 size += copied; 1420 while (copied) { 1421 use = min_t(int, copied, PAGE_SIZE - offset); 1422 1423 sg_set_page(&to[num_elem], 1424 pages[i], use, offset); 1425 sg_unmark_end(&to[num_elem]); 1426 /* We do not uncharge memory from this API */ 1427 1428 offset = 0; 1429 copied -= use; 1430 1431 i++; 1432 num_elem++; 1433 } 1434 } 1435 /* Mark the end in the last sg entry if newly added */ 1436 if (num_elem > *pages_used) 1437 sg_mark_end(&to[num_elem - 1]); 1438 out: 1439 if (rc) 1440 iov_iter_revert(from, size); 1441 *pages_used = num_elem; 1442 1443 return rc; 1444 } 1445 1446 static struct sk_buff * 1447 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1448 unsigned int full_len) 1449 { 1450 struct strp_msg *clr_rxm; 1451 struct sk_buff *clr_skb; 1452 int err; 1453 1454 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1455 &err, sk->sk_allocation); 1456 if (!clr_skb) 1457 return NULL; 1458 1459 skb_copy_header(clr_skb, skb); 1460 clr_skb->len = full_len; 1461 clr_skb->data_len = full_len; 1462 1463 clr_rxm = strp_msg(clr_skb); 1464 clr_rxm->offset = 0; 1465 1466 return clr_skb; 1467 } 1468 1469 /* Decrypt handlers 1470 * 1471 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1472 * They must transform the darg in/out argument are as follows: 1473 * | Input | Output 1474 * ------------------------------------------------------------------- 1475 * zc | Zero-copy decrypt allowed | Zero-copy performed 1476 * async | Async decrypt allowed | Async crypto used / in progress 1477 * skb | * | Output skb 1478 * 1479 * If ZC decryption was performed darg.skb will point to the input skb. 1480 */ 1481 1482 /* This function decrypts the input skb into either out_iov or in out_sg 1483 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1484 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1485 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1486 * NULL, then the decryption happens inside skb buffers itself, i.e. 1487 * zero-copy gets disabled and 'darg->zc' is updated. 1488 */ 1489 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1490 struct scatterlist *out_sg, 1491 struct tls_decrypt_arg *darg) 1492 { 1493 struct tls_context *tls_ctx = tls_get_ctx(sk); 1494 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1495 struct tls_prot_info *prot = &tls_ctx->prot_info; 1496 int n_sgin, n_sgout, aead_size, err, pages = 0; 1497 struct sk_buff *skb = tls_strp_msg(ctx); 1498 const struct strp_msg *rxm = strp_msg(skb); 1499 const struct tls_msg *tlm = tls_msg(skb); 1500 struct aead_request *aead_req; 1501 struct scatterlist *sgin = NULL; 1502 struct scatterlist *sgout = NULL; 1503 const int data_len = rxm->full_len - prot->overhead_size; 1504 int tail_pages = !!prot->tail_size; 1505 struct tls_decrypt_ctx *dctx; 1506 struct sk_buff *clear_skb; 1507 int iv_offset = 0; 1508 u8 *mem; 1509 1510 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1511 rxm->full_len - prot->prepend_size); 1512 if (n_sgin < 1) 1513 return n_sgin ?: -EBADMSG; 1514 1515 if (darg->zc && (out_iov || out_sg)) { 1516 clear_skb = NULL; 1517 1518 if (out_iov) 1519 n_sgout = 1 + tail_pages + 1520 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1521 else 1522 n_sgout = sg_nents(out_sg); 1523 } else { 1524 darg->zc = false; 1525 1526 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1527 if (!clear_skb) 1528 return -ENOMEM; 1529 1530 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1531 } 1532 1533 /* Increment to accommodate AAD */ 1534 n_sgin = n_sgin + 1; 1535 1536 /* Allocate a single block of memory which contains 1537 * aead_req || tls_decrypt_ctx. 1538 * Both structs are variable length. 1539 */ 1540 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1541 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1542 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1543 sk->sk_allocation); 1544 if (!mem) { 1545 err = -ENOMEM; 1546 goto exit_free_skb; 1547 } 1548 1549 /* Segment the allocated memory */ 1550 aead_req = (struct aead_request *)mem; 1551 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1552 dctx->sk = sk; 1553 sgin = &dctx->sg[0]; 1554 sgout = &dctx->sg[n_sgin]; 1555 1556 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1557 switch (prot->cipher_type) { 1558 case TLS_CIPHER_AES_CCM_128: 1559 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1560 iv_offset = 1; 1561 break; 1562 case TLS_CIPHER_SM4_CCM: 1563 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1564 iv_offset = 1; 1565 break; 1566 } 1567 1568 /* Prepare IV */ 1569 if (prot->version == TLS_1_3_VERSION || 1570 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1571 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1572 prot->iv_size + prot->salt_size); 1573 } else { 1574 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1575 &dctx->iv[iv_offset] + prot->salt_size, 1576 prot->iv_size); 1577 if (err < 0) 1578 goto exit_free; 1579 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1580 } 1581 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1582 1583 /* Prepare AAD */ 1584 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1585 prot->tail_size, 1586 tls_ctx->rx.rec_seq, tlm->control, prot); 1587 1588 /* Prepare sgin */ 1589 sg_init_table(sgin, n_sgin); 1590 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1591 err = skb_to_sgvec(skb, &sgin[1], 1592 rxm->offset + prot->prepend_size, 1593 rxm->full_len - prot->prepend_size); 1594 if (err < 0) 1595 goto exit_free; 1596 1597 if (clear_skb) { 1598 sg_init_table(sgout, n_sgout); 1599 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1600 1601 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1602 data_len + prot->tail_size); 1603 if (err < 0) 1604 goto exit_free; 1605 } else if (out_iov) { 1606 sg_init_table(sgout, n_sgout); 1607 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1608 1609 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1610 (n_sgout - 1 - tail_pages)); 1611 if (err < 0) 1612 goto exit_free_pages; 1613 1614 if (prot->tail_size) { 1615 sg_unmark_end(&sgout[pages]); 1616 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1617 prot->tail_size); 1618 sg_mark_end(&sgout[pages + 1]); 1619 } 1620 } else if (out_sg) { 1621 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1622 } 1623 dctx->free_sgout = !!pages; 1624 1625 /* Prepare and submit AEAD request */ 1626 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1627 data_len + prot->tail_size, aead_req, darg); 1628 if (err) { 1629 if (darg->async_done) 1630 goto exit_free_skb; 1631 goto exit_free_pages; 1632 } 1633 1634 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1635 clear_skb = NULL; 1636 1637 if (unlikely(darg->async)) { 1638 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1639 if (err) 1640 __skb_queue_tail(&ctx->async_hold, darg->skb); 1641 return err; 1642 } 1643 1644 if (unlikely(darg->async_done)) 1645 return 0; 1646 1647 if (prot->tail_size) 1648 darg->tail = dctx->tail; 1649 1650 exit_free_pages: 1651 /* Release the pages in case iov was mapped to pages */ 1652 for (; pages > 0; pages--) 1653 put_page(sg_page(&sgout[pages])); 1654 exit_free: 1655 kfree(mem); 1656 exit_free_skb: 1657 consume_skb(clear_skb); 1658 return err; 1659 } 1660 1661 static int 1662 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1663 struct msghdr *msg, struct tls_decrypt_arg *darg) 1664 { 1665 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1666 struct tls_prot_info *prot = &tls_ctx->prot_info; 1667 struct strp_msg *rxm; 1668 int pad, err; 1669 1670 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1671 if (err < 0) { 1672 if (err == -EBADMSG) 1673 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1674 return err; 1675 } 1676 /* keep going even for ->async, the code below is TLS 1.3 */ 1677 1678 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1679 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1680 darg->tail != TLS_RECORD_TYPE_DATA)) { 1681 darg->zc = false; 1682 if (!darg->tail) 1683 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1684 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1685 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1686 } 1687 1688 pad = tls_padding_length(prot, darg->skb, darg); 1689 if (pad < 0) { 1690 if (darg->skb != tls_strp_msg(ctx)) 1691 consume_skb(darg->skb); 1692 return pad; 1693 } 1694 1695 rxm = strp_msg(darg->skb); 1696 rxm->full_len -= pad; 1697 1698 return 0; 1699 } 1700 1701 static int 1702 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1703 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1704 { 1705 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1706 struct tls_prot_info *prot = &tls_ctx->prot_info; 1707 struct strp_msg *rxm; 1708 int pad, err; 1709 1710 if (tls_ctx->rx_conf != TLS_HW) 1711 return 0; 1712 1713 err = tls_device_decrypted(sk, tls_ctx); 1714 if (err <= 0) 1715 return err; 1716 1717 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1718 if (pad < 0) 1719 return pad; 1720 1721 darg->async = false; 1722 darg->skb = tls_strp_msg(ctx); 1723 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1724 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1725 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1726 1727 rxm = strp_msg(darg->skb); 1728 rxm->full_len -= pad; 1729 1730 if (!darg->zc) { 1731 /* Non-ZC case needs a real skb */ 1732 darg->skb = tls_strp_msg_detach(ctx); 1733 if (!darg->skb) 1734 return -ENOMEM; 1735 } else { 1736 unsigned int off, len; 1737 1738 /* In ZC case nobody cares about the output skb. 1739 * Just copy the data here. Note the skb is not fully trimmed. 1740 */ 1741 off = rxm->offset + prot->prepend_size; 1742 len = rxm->full_len - prot->overhead_size; 1743 1744 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1745 if (err) 1746 return err; 1747 } 1748 return 1; 1749 } 1750 1751 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx, 1752 struct sk_buff *skb) 1753 { 1754 const struct strp_msg *rxm = strp_msg(skb); 1755 const struct tls_msg *tlm = tls_msg(skb); 1756 char hs_type; 1757 int err; 1758 1759 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE)) 1760 return 0; 1761 1762 if (rxm->full_len < 1) 1763 return 0; 1764 1765 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1); 1766 if (err < 0) { 1767 DEBUG_NET_WARN_ON_ONCE(1); 1768 return err; 1769 } 1770 1771 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) { 1772 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx; 1773 1774 WRITE_ONCE(rx_ctx->key_update_pending, true); 1775 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED); 1776 } 1777 1778 return 0; 1779 } 1780 1781 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1782 struct tls_decrypt_arg *darg) 1783 { 1784 struct tls_context *tls_ctx = tls_get_ctx(sk); 1785 struct tls_prot_info *prot = &tls_ctx->prot_info; 1786 struct strp_msg *rxm; 1787 int err; 1788 1789 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1790 if (!err) 1791 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1792 if (err < 0) 1793 return err; 1794 1795 rxm = strp_msg(darg->skb); 1796 rxm->offset += prot->prepend_size; 1797 rxm->full_len -= prot->overhead_size; 1798 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1799 1800 return tls_check_pending_rekey(sk, tls_ctx, darg->skb); 1801 } 1802 1803 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1804 { 1805 struct tls_decrypt_arg darg = { .zc = true, }; 1806 1807 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1808 } 1809 1810 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1811 u8 *control) 1812 { 1813 int err; 1814 1815 if (!*control) { 1816 *control = tlm->control; 1817 if (!*control) 1818 return -EBADMSG; 1819 1820 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1821 sizeof(*control), control); 1822 if (*control != TLS_RECORD_TYPE_DATA) { 1823 if (err || msg->msg_flags & MSG_CTRUNC) 1824 return -EIO; 1825 } 1826 } else if (*control != tlm->control) { 1827 return 0; 1828 } 1829 1830 return 1; 1831 } 1832 1833 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1834 { 1835 tls_strp_msg_done(&ctx->strp); 1836 } 1837 1838 /* This function traverses the rx_list in tls receive context to copies the 1839 * decrypted records into the buffer provided by caller zero copy is not 1840 * true. Further, the records are removed from the rx_list if it is not a peek 1841 * case and the record has been consumed completely. 1842 */ 1843 static int process_rx_list(struct tls_sw_context_rx *ctx, 1844 struct msghdr *msg, 1845 u8 *control, 1846 size_t skip, 1847 size_t len, 1848 bool is_peek, 1849 bool *more) 1850 { 1851 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1852 struct tls_msg *tlm; 1853 ssize_t copied = 0; 1854 int err; 1855 1856 while (skip && skb) { 1857 struct strp_msg *rxm = strp_msg(skb); 1858 tlm = tls_msg(skb); 1859 1860 err = tls_record_content_type(msg, tlm, control); 1861 if (err <= 0) 1862 goto more; 1863 1864 if (skip < rxm->full_len) 1865 break; 1866 1867 skip = skip - rxm->full_len; 1868 skb = skb_peek_next(skb, &ctx->rx_list); 1869 } 1870 1871 while (len && skb) { 1872 struct sk_buff *next_skb; 1873 struct strp_msg *rxm = strp_msg(skb); 1874 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1875 1876 tlm = tls_msg(skb); 1877 1878 err = tls_record_content_type(msg, tlm, control); 1879 if (err <= 0) 1880 goto more; 1881 1882 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1883 msg, chunk); 1884 if (err < 0) 1885 goto more; 1886 1887 len = len - chunk; 1888 copied = copied + chunk; 1889 1890 /* Consume the data from record if it is non-peek case*/ 1891 if (!is_peek) { 1892 rxm->offset = rxm->offset + chunk; 1893 rxm->full_len = rxm->full_len - chunk; 1894 1895 /* Return if there is unconsumed data in the record */ 1896 if (rxm->full_len - skip) 1897 break; 1898 } 1899 1900 /* The remaining skip-bytes must lie in 1st record in rx_list. 1901 * So from the 2nd record, 'skip' should be 0. 1902 */ 1903 skip = 0; 1904 1905 if (msg) 1906 msg->msg_flags |= MSG_EOR; 1907 1908 next_skb = skb_peek_next(skb, &ctx->rx_list); 1909 1910 if (!is_peek) { 1911 __skb_unlink(skb, &ctx->rx_list); 1912 consume_skb(skb); 1913 } 1914 1915 skb = next_skb; 1916 } 1917 err = 0; 1918 1919 out: 1920 return copied ? : err; 1921 more: 1922 if (more) 1923 *more = true; 1924 goto out; 1925 } 1926 1927 static bool 1928 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1929 size_t len_left, size_t decrypted, ssize_t done, 1930 size_t *flushed_at) 1931 { 1932 size_t max_rec; 1933 1934 if (len_left <= decrypted) 1935 return false; 1936 1937 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1938 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1939 return false; 1940 1941 *flushed_at = done; 1942 return sk_flush_backlog(sk); 1943 } 1944 1945 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1946 bool nonblock) 1947 { 1948 long timeo; 1949 int ret; 1950 1951 timeo = sock_rcvtimeo(sk, nonblock); 1952 1953 while (unlikely(ctx->reader_present)) { 1954 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1955 1956 ctx->reader_contended = 1; 1957 1958 add_wait_queue(&ctx->wq, &wait); 1959 ret = sk_wait_event(sk, &timeo, 1960 !READ_ONCE(ctx->reader_present), &wait); 1961 remove_wait_queue(&ctx->wq, &wait); 1962 1963 if (timeo <= 0) 1964 return -EAGAIN; 1965 if (signal_pending(current)) 1966 return sock_intr_errno(timeo); 1967 if (ret < 0) 1968 return ret; 1969 } 1970 1971 WRITE_ONCE(ctx->reader_present, 1); 1972 1973 return 0; 1974 } 1975 1976 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1977 bool nonblock) 1978 { 1979 int err; 1980 1981 lock_sock(sk); 1982 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1983 if (err) 1984 release_sock(sk); 1985 return err; 1986 } 1987 1988 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1989 { 1990 if (unlikely(ctx->reader_contended)) { 1991 if (wq_has_sleeper(&ctx->wq)) 1992 wake_up(&ctx->wq); 1993 else 1994 ctx->reader_contended = 0; 1995 1996 WARN_ON_ONCE(!ctx->reader_present); 1997 } 1998 1999 WRITE_ONCE(ctx->reader_present, 0); 2000 } 2001 2002 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 2003 { 2004 tls_rx_reader_release(sk, ctx); 2005 release_sock(sk); 2006 } 2007 2008 int tls_sw_recvmsg(struct sock *sk, 2009 struct msghdr *msg, 2010 size_t len, 2011 int flags, 2012 int *addr_len) 2013 { 2014 struct tls_context *tls_ctx = tls_get_ctx(sk); 2015 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2016 struct tls_prot_info *prot = &tls_ctx->prot_info; 2017 ssize_t decrypted = 0, async_copy_bytes = 0; 2018 struct sk_psock *psock; 2019 unsigned char control = 0; 2020 size_t flushed_at = 0; 2021 struct strp_msg *rxm; 2022 struct tls_msg *tlm; 2023 ssize_t copied = 0; 2024 ssize_t peeked = 0; 2025 bool async = false; 2026 int target, err; 2027 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 2028 bool is_peek = flags & MSG_PEEK; 2029 bool rx_more = false; 2030 bool released = true; 2031 bool bpf_strp_enabled; 2032 bool zc_capable; 2033 2034 if (unlikely(flags & MSG_ERRQUEUE)) 2035 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 2036 2037 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 2038 if (err < 0) 2039 return err; 2040 psock = sk_psock_get(sk); 2041 bpf_strp_enabled = sk_psock_strp_enabled(psock); 2042 2043 /* If crypto failed the connection is broken */ 2044 err = ctx->async_wait.err; 2045 if (err) 2046 goto end; 2047 2048 /* Process pending decrypted records. It must be non-zero-copy */ 2049 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); 2050 if (err < 0) 2051 goto end; 2052 2053 copied = err; 2054 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more) 2055 goto end; 2056 2057 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2058 len = len - copied; 2059 2060 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 2061 ctx->zc_capable; 2062 decrypted = 0; 2063 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 2064 struct tls_decrypt_arg darg; 2065 int to_decrypt, chunk; 2066 2067 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 2068 released); 2069 if (err <= 0) { 2070 if (psock) { 2071 chunk = sk_msg_recvmsg(sk, psock, msg, len, 2072 flags); 2073 if (chunk > 0) { 2074 decrypted += chunk; 2075 len -= chunk; 2076 continue; 2077 } 2078 } 2079 goto recv_end; 2080 } 2081 2082 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2083 2084 rxm = strp_msg(tls_strp_msg(ctx)); 2085 tlm = tls_msg(tls_strp_msg(ctx)); 2086 2087 to_decrypt = rxm->full_len - prot->overhead_size; 2088 2089 if (zc_capable && to_decrypt <= len && 2090 tlm->control == TLS_RECORD_TYPE_DATA) 2091 darg.zc = true; 2092 2093 /* Do not use async mode if record is non-data */ 2094 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2095 darg.async = ctx->async_capable; 2096 else 2097 darg.async = false; 2098 2099 err = tls_rx_one_record(sk, msg, &darg); 2100 if (err < 0) { 2101 tls_err_abort(sk, -EBADMSG); 2102 goto recv_end; 2103 } 2104 2105 async |= darg.async; 2106 2107 /* If the type of records being processed is not known yet, 2108 * set it to record type just dequeued. If it is already known, 2109 * but does not match the record type just dequeued, go to end. 2110 * We always get record type here since for tls1.2, record type 2111 * is known just after record is dequeued from stream parser. 2112 * For tls1.3, we disable async. 2113 */ 2114 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2115 if (err <= 0) { 2116 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2117 tls_rx_rec_done(ctx); 2118 put_on_rx_list_err: 2119 __skb_queue_tail(&ctx->rx_list, darg.skb); 2120 goto recv_end; 2121 } 2122 2123 /* periodically flush backlog, and feed strparser */ 2124 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2125 decrypted + copied, 2126 &flushed_at); 2127 2128 /* TLS 1.3 may have updated the length by more than overhead */ 2129 rxm = strp_msg(darg.skb); 2130 chunk = rxm->full_len; 2131 tls_rx_rec_done(ctx); 2132 2133 if (!darg.zc) { 2134 bool partially_consumed = chunk > len; 2135 struct sk_buff *skb = darg.skb; 2136 2137 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2138 2139 if (async) { 2140 /* TLS 1.2-only, to_decrypt must be text len */ 2141 chunk = min_t(int, to_decrypt, len); 2142 async_copy_bytes += chunk; 2143 put_on_rx_list: 2144 decrypted += chunk; 2145 len -= chunk; 2146 __skb_queue_tail(&ctx->rx_list, skb); 2147 if (unlikely(control != TLS_RECORD_TYPE_DATA)) 2148 break; 2149 continue; 2150 } 2151 2152 if (bpf_strp_enabled) { 2153 released = true; 2154 err = sk_psock_tls_strp_read(psock, skb); 2155 if (err != __SK_PASS) { 2156 rxm->offset = rxm->offset + rxm->full_len; 2157 rxm->full_len = 0; 2158 if (err == __SK_DROP) 2159 consume_skb(skb); 2160 continue; 2161 } 2162 } 2163 2164 if (partially_consumed) 2165 chunk = len; 2166 2167 err = skb_copy_datagram_msg(skb, rxm->offset, 2168 msg, chunk); 2169 if (err < 0) 2170 goto put_on_rx_list_err; 2171 2172 if (is_peek) { 2173 peeked += chunk; 2174 goto put_on_rx_list; 2175 } 2176 2177 if (partially_consumed) { 2178 rxm->offset += chunk; 2179 rxm->full_len -= chunk; 2180 goto put_on_rx_list; 2181 } 2182 2183 consume_skb(skb); 2184 } 2185 2186 decrypted += chunk; 2187 len -= chunk; 2188 2189 /* Return full control message to userspace before trying 2190 * to parse another message type 2191 */ 2192 msg->msg_flags |= MSG_EOR; 2193 if (control != TLS_RECORD_TYPE_DATA) 2194 break; 2195 } 2196 2197 recv_end: 2198 if (async) { 2199 int ret; 2200 2201 /* Wait for all previously submitted records to be decrypted */ 2202 ret = tls_decrypt_async_wait(ctx); 2203 __skb_queue_purge(&ctx->async_hold); 2204 2205 if (ret) { 2206 if (err >= 0 || err == -EINPROGRESS) 2207 err = ret; 2208 goto end; 2209 } 2210 2211 /* Drain records from the rx_list & copy if required */ 2212 if (is_peek) 2213 err = process_rx_list(ctx, msg, &control, copied + peeked, 2214 decrypted - peeked, is_peek, NULL); 2215 else 2216 err = process_rx_list(ctx, msg, &control, 0, 2217 async_copy_bytes, is_peek, NULL); 2218 2219 /* we could have copied less than we wanted, and possibly nothing */ 2220 decrypted += max(err, 0) - async_copy_bytes; 2221 } 2222 2223 copied += decrypted; 2224 2225 end: 2226 tls_rx_reader_unlock(sk, ctx); 2227 if (psock) 2228 sk_psock_put(sk, psock); 2229 return copied ? : err; 2230 } 2231 2232 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2233 struct pipe_inode_info *pipe, 2234 size_t len, unsigned int flags) 2235 { 2236 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2237 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2238 struct strp_msg *rxm = NULL; 2239 struct sock *sk = sock->sk; 2240 struct tls_msg *tlm; 2241 struct sk_buff *skb; 2242 ssize_t copied = 0; 2243 int chunk; 2244 int err; 2245 2246 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2247 if (err < 0) 2248 return err; 2249 2250 if (!skb_queue_empty(&ctx->rx_list)) { 2251 skb = __skb_dequeue(&ctx->rx_list); 2252 } else { 2253 struct tls_decrypt_arg darg; 2254 2255 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2256 true); 2257 if (err <= 0) 2258 goto splice_read_end; 2259 2260 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2261 2262 err = tls_rx_one_record(sk, NULL, &darg); 2263 if (err < 0) { 2264 tls_err_abort(sk, -EBADMSG); 2265 goto splice_read_end; 2266 } 2267 2268 tls_rx_rec_done(ctx); 2269 skb = darg.skb; 2270 } 2271 2272 rxm = strp_msg(skb); 2273 tlm = tls_msg(skb); 2274 2275 /* splice does not support reading control messages */ 2276 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2277 err = -EINVAL; 2278 goto splice_requeue; 2279 } 2280 2281 chunk = min_t(unsigned int, rxm->full_len, len); 2282 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2283 if (copied < 0) 2284 goto splice_requeue; 2285 2286 if (chunk < rxm->full_len) { 2287 rxm->offset += len; 2288 rxm->full_len -= len; 2289 goto splice_requeue; 2290 } 2291 2292 consume_skb(skb); 2293 2294 splice_read_end: 2295 tls_rx_reader_unlock(sk, ctx); 2296 return copied ? : err; 2297 2298 splice_requeue: 2299 __skb_queue_head(&ctx->rx_list, skb); 2300 goto splice_read_end; 2301 } 2302 2303 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2304 sk_read_actor_t read_actor) 2305 { 2306 struct tls_context *tls_ctx = tls_get_ctx(sk); 2307 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2308 struct tls_prot_info *prot = &tls_ctx->prot_info; 2309 struct strp_msg *rxm = NULL; 2310 struct sk_buff *skb = NULL; 2311 struct sk_psock *psock; 2312 size_t flushed_at = 0; 2313 bool released = true; 2314 struct tls_msg *tlm; 2315 ssize_t copied = 0; 2316 ssize_t decrypted; 2317 int err, used; 2318 2319 psock = sk_psock_get(sk); 2320 if (psock) { 2321 sk_psock_put(sk, psock); 2322 return -EINVAL; 2323 } 2324 err = tls_rx_reader_acquire(sk, ctx, true); 2325 if (err < 0) 2326 return err; 2327 2328 /* If crypto failed the connection is broken */ 2329 err = ctx->async_wait.err; 2330 if (err) 2331 goto read_sock_end; 2332 2333 decrypted = 0; 2334 do { 2335 if (!skb_queue_empty(&ctx->rx_list)) { 2336 skb = __skb_dequeue(&ctx->rx_list); 2337 rxm = strp_msg(skb); 2338 tlm = tls_msg(skb); 2339 } else { 2340 struct tls_decrypt_arg darg; 2341 2342 err = tls_rx_rec_wait(sk, NULL, true, released); 2343 if (err <= 0) 2344 goto read_sock_end; 2345 2346 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2347 2348 err = tls_rx_one_record(sk, NULL, &darg); 2349 if (err < 0) { 2350 tls_err_abort(sk, -EBADMSG); 2351 goto read_sock_end; 2352 } 2353 2354 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2355 0, decrypted, 2356 &flushed_at); 2357 skb = darg.skb; 2358 rxm = strp_msg(skb); 2359 tlm = tls_msg(skb); 2360 decrypted += rxm->full_len; 2361 2362 tls_rx_rec_done(ctx); 2363 } 2364 2365 /* read_sock does not support reading control messages */ 2366 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2367 err = -EINVAL; 2368 goto read_sock_requeue; 2369 } 2370 2371 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2372 if (used <= 0) { 2373 if (!copied) 2374 err = used; 2375 goto read_sock_requeue; 2376 } 2377 copied += used; 2378 if (used < rxm->full_len) { 2379 rxm->offset += used; 2380 rxm->full_len -= used; 2381 if (!desc->count) 2382 goto read_sock_requeue; 2383 } else { 2384 consume_skb(skb); 2385 if (!desc->count) 2386 skb = NULL; 2387 } 2388 } while (skb); 2389 2390 read_sock_end: 2391 tls_rx_reader_release(sk, ctx); 2392 return copied ? : err; 2393 2394 read_sock_requeue: 2395 __skb_queue_head(&ctx->rx_list, skb); 2396 goto read_sock_end; 2397 } 2398 2399 bool tls_sw_sock_is_readable(struct sock *sk) 2400 { 2401 struct tls_context *tls_ctx = tls_get_ctx(sk); 2402 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2403 bool ingress_empty = true; 2404 struct sk_psock *psock; 2405 2406 rcu_read_lock(); 2407 psock = sk_psock(sk); 2408 if (psock) 2409 ingress_empty = list_empty(&psock->ingress_msg); 2410 rcu_read_unlock(); 2411 2412 return !ingress_empty || tls_strp_msg_ready(ctx) || 2413 !skb_queue_empty(&ctx->rx_list); 2414 } 2415 2416 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2417 { 2418 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2419 struct tls_prot_info *prot = &tls_ctx->prot_info; 2420 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2421 size_t cipher_overhead; 2422 size_t data_len = 0; 2423 int ret; 2424 2425 /* Verify that we have a full TLS header, or wait for more data */ 2426 if (strp->stm.offset + prot->prepend_size > skb->len) 2427 return 0; 2428 2429 /* Sanity-check size of on-stack buffer. */ 2430 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2431 ret = -EINVAL; 2432 goto read_failure; 2433 } 2434 2435 /* Linearize header to local buffer */ 2436 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2437 if (ret < 0) 2438 goto read_failure; 2439 2440 strp->mark = header[0]; 2441 2442 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2443 2444 cipher_overhead = prot->tag_size; 2445 if (prot->version != TLS_1_3_VERSION && 2446 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2447 cipher_overhead += prot->iv_size; 2448 2449 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2450 prot->tail_size) { 2451 ret = -EMSGSIZE; 2452 goto read_failure; 2453 } 2454 if (data_len < cipher_overhead) { 2455 ret = -EBADMSG; 2456 goto read_failure; 2457 } 2458 2459 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2460 if (header[1] != TLS_1_2_VERSION_MINOR || 2461 header[2] != TLS_1_2_VERSION_MAJOR) { 2462 ret = -EINVAL; 2463 goto read_failure; 2464 } 2465 2466 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2467 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2468 return data_len + TLS_HEADER_SIZE; 2469 2470 read_failure: 2471 tls_err_abort(strp->sk, ret); 2472 2473 return ret; 2474 } 2475 2476 void tls_rx_msg_ready(struct tls_strparser *strp) 2477 { 2478 struct tls_sw_context_rx *ctx; 2479 2480 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2481 ctx->saved_data_ready(strp->sk); 2482 } 2483 2484 static void tls_data_ready(struct sock *sk) 2485 { 2486 struct tls_context *tls_ctx = tls_get_ctx(sk); 2487 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2488 struct sk_psock *psock; 2489 gfp_t alloc_save; 2490 2491 trace_sk_data_ready(sk); 2492 2493 alloc_save = sk->sk_allocation; 2494 sk->sk_allocation = GFP_ATOMIC; 2495 tls_strp_data_ready(&ctx->strp); 2496 sk->sk_allocation = alloc_save; 2497 2498 psock = sk_psock_get(sk); 2499 if (psock) { 2500 if (!list_empty(&psock->ingress_msg)) 2501 ctx->saved_data_ready(sk); 2502 sk_psock_put(sk, psock); 2503 } 2504 } 2505 2506 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2507 { 2508 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2509 2510 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2511 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2512 cancel_delayed_work_sync(&ctx->tx_work.work); 2513 } 2514 2515 void tls_sw_release_resources_tx(struct sock *sk) 2516 { 2517 struct tls_context *tls_ctx = tls_get_ctx(sk); 2518 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2519 struct tls_rec *rec, *tmp; 2520 2521 /* Wait for any pending async encryptions to complete */ 2522 tls_encrypt_async_wait(ctx); 2523 2524 tls_tx_records(sk, -1); 2525 2526 /* Free up un-sent records in tx_list. First, free 2527 * the partially sent record if any at head of tx_list. 2528 */ 2529 if (tls_ctx->partially_sent_record) { 2530 tls_free_partial_record(sk, tls_ctx); 2531 rec = list_first_entry(&ctx->tx_list, 2532 struct tls_rec, list); 2533 list_del(&rec->list); 2534 sk_msg_free(sk, &rec->msg_plaintext); 2535 kfree(rec); 2536 } 2537 2538 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2539 list_del(&rec->list); 2540 sk_msg_free(sk, &rec->msg_encrypted); 2541 sk_msg_free(sk, &rec->msg_plaintext); 2542 kfree(rec); 2543 } 2544 2545 crypto_free_aead(ctx->aead_send); 2546 tls_free_open_rec(sk); 2547 } 2548 2549 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2550 { 2551 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2552 2553 kfree(ctx); 2554 } 2555 2556 void tls_sw_release_resources_rx(struct sock *sk) 2557 { 2558 struct tls_context *tls_ctx = tls_get_ctx(sk); 2559 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2560 2561 if (ctx->aead_recv) { 2562 __skb_queue_purge(&ctx->rx_list); 2563 crypto_free_aead(ctx->aead_recv); 2564 tls_strp_stop(&ctx->strp); 2565 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2566 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2567 * never swapped. 2568 */ 2569 if (ctx->saved_data_ready) { 2570 write_lock_bh(&sk->sk_callback_lock); 2571 sk->sk_data_ready = ctx->saved_data_ready; 2572 write_unlock_bh(&sk->sk_callback_lock); 2573 } 2574 } 2575 } 2576 2577 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2578 { 2579 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2580 2581 tls_strp_done(&ctx->strp); 2582 } 2583 2584 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2585 { 2586 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2587 2588 kfree(ctx); 2589 } 2590 2591 void tls_sw_free_resources_rx(struct sock *sk) 2592 { 2593 struct tls_context *tls_ctx = tls_get_ctx(sk); 2594 2595 tls_sw_release_resources_rx(sk); 2596 tls_sw_free_ctx_rx(tls_ctx); 2597 } 2598 2599 /* The work handler to transmitt the encrypted records in tx_list */ 2600 static void tx_work_handler(struct work_struct *work) 2601 { 2602 struct delayed_work *delayed_work = to_delayed_work(work); 2603 struct tx_work *tx_work = container_of(delayed_work, 2604 struct tx_work, work); 2605 struct sock *sk = tx_work->sk; 2606 struct tls_context *tls_ctx = tls_get_ctx(sk); 2607 struct tls_sw_context_tx *ctx; 2608 2609 if (unlikely(!tls_ctx)) 2610 return; 2611 2612 ctx = tls_sw_ctx_tx(tls_ctx); 2613 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2614 return; 2615 2616 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2617 return; 2618 2619 if (mutex_trylock(&tls_ctx->tx_lock)) { 2620 lock_sock(sk); 2621 tls_tx_records(sk, -1); 2622 release_sock(sk); 2623 mutex_unlock(&tls_ctx->tx_lock); 2624 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2625 /* Someone is holding the tx_lock, they will likely run Tx 2626 * and cancel the work on their way out of the lock section. 2627 * Schedule a long delay just in case. 2628 */ 2629 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2630 } 2631 } 2632 2633 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2634 { 2635 struct tls_rec *rec; 2636 2637 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2638 if (!rec) 2639 return false; 2640 2641 return READ_ONCE(rec->tx_ready); 2642 } 2643 2644 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2645 { 2646 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2647 2648 /* Schedule the transmission if tx list is ready */ 2649 if (tls_is_tx_ready(tx_ctx) && 2650 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2651 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2652 } 2653 2654 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2655 { 2656 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2657 2658 write_lock_bh(&sk->sk_callback_lock); 2659 rx_ctx->saved_data_ready = sk->sk_data_ready; 2660 sk->sk_data_ready = tls_data_ready; 2661 write_unlock_bh(&sk->sk_callback_lock); 2662 } 2663 2664 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2665 { 2666 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2667 2668 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2669 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2670 } 2671 2672 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2673 { 2674 struct tls_sw_context_tx *sw_ctx_tx; 2675 2676 if (!ctx->priv_ctx_tx) { 2677 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2678 if (!sw_ctx_tx) 2679 return NULL; 2680 } else { 2681 sw_ctx_tx = ctx->priv_ctx_tx; 2682 } 2683 2684 crypto_init_wait(&sw_ctx_tx->async_wait); 2685 atomic_set(&sw_ctx_tx->encrypt_pending, 1); 2686 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2687 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2688 sw_ctx_tx->tx_work.sk = sk; 2689 2690 return sw_ctx_tx; 2691 } 2692 2693 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2694 { 2695 struct tls_sw_context_rx *sw_ctx_rx; 2696 2697 if (!ctx->priv_ctx_rx) { 2698 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2699 if (!sw_ctx_rx) 2700 return NULL; 2701 } else { 2702 sw_ctx_rx = ctx->priv_ctx_rx; 2703 } 2704 2705 crypto_init_wait(&sw_ctx_rx->async_wait); 2706 atomic_set(&sw_ctx_rx->decrypt_pending, 1); 2707 init_waitqueue_head(&sw_ctx_rx->wq); 2708 skb_queue_head_init(&sw_ctx_rx->rx_list); 2709 skb_queue_head_init(&sw_ctx_rx->async_hold); 2710 2711 return sw_ctx_rx; 2712 } 2713 2714 int init_prot_info(struct tls_prot_info *prot, 2715 const struct tls_crypto_info *crypto_info, 2716 const struct tls_cipher_desc *cipher_desc) 2717 { 2718 u16 nonce_size = cipher_desc->nonce; 2719 2720 if (crypto_info->version == TLS_1_3_VERSION) { 2721 nonce_size = 0; 2722 prot->aad_size = TLS_HEADER_SIZE; 2723 prot->tail_size = 1; 2724 } else { 2725 prot->aad_size = TLS_AAD_SPACE_SIZE; 2726 prot->tail_size = 0; 2727 } 2728 2729 /* Sanity-check the sizes for stack allocations. */ 2730 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2731 return -EINVAL; 2732 2733 prot->version = crypto_info->version; 2734 prot->cipher_type = crypto_info->cipher_type; 2735 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2736 prot->tag_size = cipher_desc->tag; 2737 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2738 prot->iv_size = cipher_desc->iv; 2739 prot->salt_size = cipher_desc->salt; 2740 prot->rec_seq_size = cipher_desc->rec_seq; 2741 2742 return 0; 2743 } 2744 2745 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx) 2746 { 2747 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx; 2748 2749 WRITE_ONCE(ctx->key_update_pending, false); 2750 /* wake-up pre-existing poll() */ 2751 ctx->saved_data_ready(sk); 2752 } 2753 2754 int tls_set_sw_offload(struct sock *sk, int tx, 2755 struct tls_crypto_info *new_crypto_info) 2756 { 2757 struct tls_crypto_info *crypto_info, *src_crypto_info; 2758 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2759 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2760 const struct tls_cipher_desc *cipher_desc; 2761 char *iv, *rec_seq, *key, *salt; 2762 struct cipher_context *cctx; 2763 struct tls_prot_info *prot; 2764 struct crypto_aead **aead; 2765 struct tls_context *ctx; 2766 struct crypto_tfm *tfm; 2767 int rc = 0; 2768 2769 ctx = tls_get_ctx(sk); 2770 prot = &ctx->prot_info; 2771 2772 /* new_crypto_info != NULL means rekey */ 2773 if (!new_crypto_info) { 2774 if (tx) { 2775 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2776 if (!ctx->priv_ctx_tx) 2777 return -ENOMEM; 2778 } else { 2779 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2780 if (!ctx->priv_ctx_rx) 2781 return -ENOMEM; 2782 } 2783 } 2784 2785 if (tx) { 2786 sw_ctx_tx = ctx->priv_ctx_tx; 2787 crypto_info = &ctx->crypto_send.info; 2788 cctx = &ctx->tx; 2789 aead = &sw_ctx_tx->aead_send; 2790 } else { 2791 sw_ctx_rx = ctx->priv_ctx_rx; 2792 crypto_info = &ctx->crypto_recv.info; 2793 cctx = &ctx->rx; 2794 aead = &sw_ctx_rx->aead_recv; 2795 } 2796 2797 src_crypto_info = new_crypto_info ?: crypto_info; 2798 2799 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type); 2800 if (!cipher_desc) { 2801 rc = -EINVAL; 2802 goto free_priv; 2803 } 2804 2805 rc = init_prot_info(prot, src_crypto_info, cipher_desc); 2806 if (rc) 2807 goto free_priv; 2808 2809 iv = crypto_info_iv(src_crypto_info, cipher_desc); 2810 key = crypto_info_key(src_crypto_info, cipher_desc); 2811 salt = crypto_info_salt(src_crypto_info, cipher_desc); 2812 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc); 2813 2814 if (!*aead) { 2815 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2816 if (IS_ERR(*aead)) { 2817 rc = PTR_ERR(*aead); 2818 *aead = NULL; 2819 goto free_priv; 2820 } 2821 } 2822 2823 ctx->push_pending_record = tls_sw_push_pending_record; 2824 2825 /* setkey is the last operation that could fail during a 2826 * rekey. if it succeeds, we can start modifying the 2827 * context. 2828 */ 2829 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2830 if (rc) { 2831 if (new_crypto_info) 2832 goto out; 2833 else 2834 goto free_aead; 2835 } 2836 2837 if (!new_crypto_info) { 2838 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2839 if (rc) 2840 goto free_aead; 2841 } 2842 2843 if (!tx && !new_crypto_info) { 2844 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2845 2846 tls_update_rx_zc_capable(ctx); 2847 sw_ctx_rx->async_capable = 2848 src_crypto_info->version != TLS_1_3_VERSION && 2849 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2850 2851 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2852 if (rc) 2853 goto free_aead; 2854 } 2855 2856 memcpy(cctx->iv, salt, cipher_desc->salt); 2857 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2858 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2859 2860 if (new_crypto_info) { 2861 unsafe_memcpy(crypto_info, new_crypto_info, 2862 cipher_desc->crypto_info, 2863 /* size was checked in do_tls_setsockopt_conf */); 2864 memzero_explicit(new_crypto_info, cipher_desc->crypto_info); 2865 if (!tx) 2866 tls_finish_key_update(sk, ctx); 2867 } 2868 2869 goto out; 2870 2871 free_aead: 2872 crypto_free_aead(*aead); 2873 *aead = NULL; 2874 free_priv: 2875 if (!new_crypto_info) { 2876 if (tx) { 2877 kfree(ctx->priv_ctx_tx); 2878 ctx->priv_ctx_tx = NULL; 2879 } else { 2880 kfree(ctx->priv_ctx_rx); 2881 ctx->priv_ctx_rx = NULL; 2882 } 2883 } 2884 out: 2885 return rc; 2886 } 2887