1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 bool async_done; 56 u8 tail; 57 ); 58 59 struct sk_buff *skb; 60 }; 61 62 struct tls_decrypt_ctx { 63 struct sock *sk; 64 u8 iv[TLS_MAX_IV_SIZE]; 65 u8 aad[TLS_MAX_AAD_SIZE]; 66 u8 tail; 67 bool free_sgout; 68 struct scatterlist sg[]; 69 }; 70 71 noinline void tls_err_abort(struct sock *sk, int err) 72 { 73 WARN_ON_ONCE(err >= 0); 74 /* sk->sk_err should contain a positive error code. */ 75 WRITE_ONCE(sk->sk_err, -err); 76 /* Paired with smp_rmb() in tcp_poll() */ 77 smp_wmb(); 78 sk_error_report(sk); 79 } 80 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 82 unsigned int recursion_level) 83 { 84 int start = skb_headlen(skb); 85 int i, chunk = start - offset; 86 struct sk_buff *frag_iter; 87 int elt = 0; 88 89 if (unlikely(recursion_level >= 24)) 90 return -EMSGSIZE; 91 92 if (chunk > 0) { 93 if (chunk > len) 94 chunk = len; 95 elt++; 96 len -= chunk; 97 if (len == 0) 98 return elt; 99 offset += chunk; 100 } 101 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 103 int end; 104 105 WARN_ON(start > offset + len); 106 107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 108 chunk = end - offset; 109 if (chunk > 0) { 110 if (chunk > len) 111 chunk = len; 112 elt++; 113 len -= chunk; 114 if (len == 0) 115 return elt; 116 offset += chunk; 117 } 118 start = end; 119 } 120 121 if (unlikely(skb_has_frag_list(skb))) { 122 skb_walk_frags(skb, frag_iter) { 123 int end, ret; 124 125 WARN_ON(start > offset + len); 126 127 end = start + frag_iter->len; 128 chunk = end - offset; 129 if (chunk > 0) { 130 if (chunk > len) 131 chunk = len; 132 ret = __skb_nsg(frag_iter, offset - start, chunk, 133 recursion_level + 1); 134 if (unlikely(ret < 0)) 135 return ret; 136 elt += ret; 137 len -= chunk; 138 if (len == 0) 139 return elt; 140 offset += chunk; 141 } 142 start = end; 143 } 144 } 145 BUG_ON(len); 146 return elt; 147 } 148 149 /* Return the number of scatterlist elements required to completely map the 150 * skb, or -EMSGSIZE if the recursion depth is exceeded. 151 */ 152 static int skb_nsg(struct sk_buff *skb, int offset, int len) 153 { 154 return __skb_nsg(skb, offset, len, 0); 155 } 156 157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 158 struct tls_decrypt_arg *darg) 159 { 160 struct strp_msg *rxm = strp_msg(skb); 161 struct tls_msg *tlm = tls_msg(skb); 162 int sub = 0; 163 164 /* Determine zero-padding length */ 165 if (prot->version == TLS_1_3_VERSION) { 166 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 167 char content_type = darg->zc ? darg->tail : 0; 168 int err; 169 170 while (content_type == 0) { 171 if (offset < prot->prepend_size) 172 return -EBADMSG; 173 err = skb_copy_bits(skb, rxm->offset + offset, 174 &content_type, 1); 175 if (err) 176 return err; 177 if (content_type) 178 break; 179 sub++; 180 offset--; 181 } 182 tlm->control = content_type; 183 } 184 return sub; 185 } 186 187 static void tls_decrypt_done(void *data, int err) 188 { 189 struct aead_request *aead_req = data; 190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 191 struct scatterlist *sgout = aead_req->dst; 192 struct tls_sw_context_rx *ctx; 193 struct tls_decrypt_ctx *dctx; 194 struct tls_context *tls_ctx; 195 struct scatterlist *sg; 196 unsigned int pages; 197 struct sock *sk; 198 int aead_size; 199 200 /* If requests get too backlogged crypto API returns -EBUSY and calls 201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) 202 * to make waiting for backlog to flush with crypto_wait_req() easier. 203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one 204 * -EINPROGRESS -> 0. 205 * We have a single struct crypto_async_request per direction, this 206 * scheme doesn't help us, so just ignore the first ->complete(). 207 */ 208 if (err == -EINPROGRESS) 209 return; 210 211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 212 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 213 dctx = (void *)((u8 *)aead_req + aead_size); 214 215 sk = dctx->sk; 216 tls_ctx = tls_get_ctx(sk); 217 ctx = tls_sw_ctx_rx(tls_ctx); 218 219 /* Propagate if there was an err */ 220 if (err) { 221 if (err == -EBADMSG) 222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 223 ctx->async_wait.err = err; 224 tls_err_abort(sk, err); 225 } 226 227 /* Free the destination pages if skb was not decrypted inplace */ 228 if (dctx->free_sgout) { 229 /* Skip the first S/G entry as it points to AAD */ 230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 231 if (!sg) 232 break; 233 put_page(sg_page(sg)); 234 } 235 } 236 237 kfree(aead_req); 238 239 if (atomic_dec_and_test(&ctx->decrypt_pending)) 240 complete(&ctx->async_wait.completion); 241 } 242 243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) 244 { 245 if (!atomic_dec_and_test(&ctx->decrypt_pending)) 246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 247 atomic_inc(&ctx->decrypt_pending); 248 249 return ctx->async_wait.err; 250 } 251 252 static int tls_do_decryption(struct sock *sk, 253 struct scatterlist *sgin, 254 struct scatterlist *sgout, 255 char *iv_recv, 256 size_t data_len, 257 struct aead_request *aead_req, 258 struct tls_decrypt_arg *darg) 259 { 260 struct tls_context *tls_ctx = tls_get_ctx(sk); 261 struct tls_prot_info *prot = &tls_ctx->prot_info; 262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 263 int ret; 264 265 aead_request_set_tfm(aead_req, ctx->aead_recv); 266 aead_request_set_ad(aead_req, prot->aad_size); 267 aead_request_set_crypt(aead_req, sgin, sgout, 268 data_len + prot->tag_size, 269 (u8 *)iv_recv); 270 271 if (darg->async) { 272 aead_request_set_callback(aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 tls_decrypt_done, aead_req); 275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); 276 atomic_inc(&ctx->decrypt_pending); 277 } else { 278 DECLARE_CRYPTO_WAIT(wait); 279 280 aead_request_set_callback(aead_req, 281 CRYPTO_TFM_REQ_MAY_BACKLOG, 282 crypto_req_done, &wait); 283 ret = crypto_aead_decrypt(aead_req); 284 if (ret == -EINPROGRESS || ret == -EBUSY) 285 ret = crypto_wait_req(ret, &wait); 286 return ret; 287 } 288 289 ret = crypto_aead_decrypt(aead_req); 290 if (ret == -EINPROGRESS) 291 return 0; 292 293 if (ret == -EBUSY) { 294 ret = tls_decrypt_async_wait(ctx); 295 darg->async_done = true; 296 /* all completions have run, we're not doing async anymore */ 297 darg->async = false; 298 return ret; 299 } 300 301 atomic_dec(&ctx->decrypt_pending); 302 darg->async = false; 303 304 return ret; 305 } 306 307 static void tls_trim_both_msgs(struct sock *sk, int target_size) 308 { 309 struct tls_context *tls_ctx = tls_get_ctx(sk); 310 struct tls_prot_info *prot = &tls_ctx->prot_info; 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 312 struct tls_rec *rec = ctx->open_rec; 313 314 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 315 if (target_size > 0) 316 target_size += prot->overhead_size; 317 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 318 } 319 320 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 324 struct tls_rec *rec = ctx->open_rec; 325 struct sk_msg *msg_en = &rec->msg_encrypted; 326 327 return sk_msg_alloc(sk, msg_en, len, 0); 328 } 329 330 static int tls_clone_plaintext_msg(struct sock *sk, int required) 331 { 332 struct tls_context *tls_ctx = tls_get_ctx(sk); 333 struct tls_prot_info *prot = &tls_ctx->prot_info; 334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 335 struct tls_rec *rec = ctx->open_rec; 336 struct sk_msg *msg_pl = &rec->msg_plaintext; 337 struct sk_msg *msg_en = &rec->msg_encrypted; 338 int skip, len; 339 340 /* We add page references worth len bytes from encrypted sg 341 * at the end of plaintext sg. It is guaranteed that msg_en 342 * has enough required room (ensured by caller). 343 */ 344 len = required - msg_pl->sg.size; 345 346 /* Skip initial bytes in msg_en's data to be able to use 347 * same offset of both plain and encrypted data. 348 */ 349 skip = prot->prepend_size + msg_pl->sg.size; 350 351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 352 } 353 354 static struct tls_rec *tls_get_rec(struct sock *sk) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_prot_info *prot = &tls_ctx->prot_info; 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct sk_msg *msg_pl, *msg_en; 360 struct tls_rec *rec; 361 int mem_size; 362 363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 364 365 rec = kzalloc(mem_size, sk->sk_allocation); 366 if (!rec) 367 return NULL; 368 369 msg_pl = &rec->msg_plaintext; 370 msg_en = &rec->msg_encrypted; 371 372 sk_msg_init(msg_pl); 373 sk_msg_init(msg_en); 374 375 sg_init_table(rec->sg_aead_in, 2); 376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 377 sg_unmark_end(&rec->sg_aead_in[1]); 378 379 sg_init_table(rec->sg_aead_out, 2); 380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 381 sg_unmark_end(&rec->sg_aead_out[1]); 382 383 rec->sk = sk; 384 385 return rec; 386 } 387 388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 389 { 390 sk_msg_free(sk, &rec->msg_encrypted); 391 sk_msg_free(sk, &rec->msg_plaintext); 392 kfree(rec); 393 } 394 395 static void tls_free_open_rec(struct sock *sk) 396 { 397 struct tls_context *tls_ctx = tls_get_ctx(sk); 398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 399 struct tls_rec *rec = ctx->open_rec; 400 401 if (rec) { 402 tls_free_rec(sk, rec); 403 ctx->open_rec = NULL; 404 } 405 } 406 407 int tls_tx_records(struct sock *sk, int flags) 408 { 409 struct tls_context *tls_ctx = tls_get_ctx(sk); 410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 411 struct tls_rec *rec, *tmp; 412 struct sk_msg *msg_en; 413 int tx_flags, rc = 0; 414 415 if (tls_is_partially_sent_record(tls_ctx)) { 416 rec = list_first_entry(&ctx->tx_list, 417 struct tls_rec, list); 418 419 if (flags == -1) 420 tx_flags = rec->tx_flags; 421 else 422 tx_flags = flags; 423 424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 425 if (rc) 426 goto tx_err; 427 428 /* Full record has been transmitted. 429 * Remove the head of tx_list 430 */ 431 list_del(&rec->list); 432 sk_msg_free(sk, &rec->msg_plaintext); 433 kfree(rec); 434 } 435 436 /* Tx all ready records */ 437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 438 if (READ_ONCE(rec->tx_ready)) { 439 if (flags == -1) 440 tx_flags = rec->tx_flags; 441 else 442 tx_flags = flags; 443 444 msg_en = &rec->msg_encrypted; 445 rc = tls_push_sg(sk, tls_ctx, 446 &msg_en->sg.data[msg_en->sg.curr], 447 0, tx_flags); 448 if (rc) 449 goto tx_err; 450 451 list_del(&rec->list); 452 sk_msg_free(sk, &rec->msg_plaintext); 453 kfree(rec); 454 } else { 455 break; 456 } 457 } 458 459 tx_err: 460 if (rc < 0 && rc != -EAGAIN) 461 tls_err_abort(sk, rc); 462 463 return rc; 464 } 465 466 static void tls_encrypt_done(void *data, int err) 467 { 468 struct tls_sw_context_tx *ctx; 469 struct tls_context *tls_ctx; 470 struct tls_prot_info *prot; 471 struct tls_rec *rec = data; 472 struct scatterlist *sge; 473 struct sk_msg *msg_en; 474 struct sock *sk; 475 476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ 477 return; 478 479 msg_en = &rec->msg_encrypted; 480 481 sk = rec->sk; 482 tls_ctx = tls_get_ctx(sk); 483 prot = &tls_ctx->prot_info; 484 ctx = tls_sw_ctx_tx(tls_ctx); 485 486 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 487 sge->offset -= prot->prepend_size; 488 sge->length += prot->prepend_size; 489 490 /* Check if error is previously set on socket */ 491 if (err || sk->sk_err) { 492 rec = NULL; 493 494 /* If err is already set on socket, return the same code */ 495 if (sk->sk_err) { 496 ctx->async_wait.err = -sk->sk_err; 497 } else { 498 ctx->async_wait.err = err; 499 tls_err_abort(sk, err); 500 } 501 } 502 503 if (rec) { 504 struct tls_rec *first_rec; 505 506 /* Mark the record as ready for transmission */ 507 smp_store_mb(rec->tx_ready, true); 508 509 /* If received record is at head of tx_list, schedule tx */ 510 first_rec = list_first_entry(&ctx->tx_list, 511 struct tls_rec, list); 512 if (rec == first_rec) { 513 /* Schedule the transmission */ 514 if (!test_and_set_bit(BIT_TX_SCHEDULED, 515 &ctx->tx_bitmask)) 516 schedule_delayed_work(&ctx->tx_work.work, 1); 517 } 518 } 519 520 if (atomic_dec_and_test(&ctx->encrypt_pending)) 521 complete(&ctx->async_wait.completion); 522 } 523 524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) 525 { 526 if (!atomic_dec_and_test(&ctx->encrypt_pending)) 527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 528 atomic_inc(&ctx->encrypt_pending); 529 530 return ctx->async_wait.err; 531 } 532 533 static int tls_do_encryption(struct sock *sk, 534 struct tls_context *tls_ctx, 535 struct tls_sw_context_tx *ctx, 536 struct aead_request *aead_req, 537 size_t data_len, u32 start) 538 { 539 struct tls_prot_info *prot = &tls_ctx->prot_info; 540 struct tls_rec *rec = ctx->open_rec; 541 struct sk_msg *msg_en = &rec->msg_encrypted; 542 struct scatterlist *sge = sk_msg_elem(msg_en, start); 543 int rc, iv_offset = 0; 544 545 /* For CCM based ciphers, first byte of IV is a constant */ 546 switch (prot->cipher_type) { 547 case TLS_CIPHER_AES_CCM_128: 548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 549 iv_offset = 1; 550 break; 551 case TLS_CIPHER_SM4_CCM: 552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 553 iv_offset = 1; 554 break; 555 } 556 557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 558 prot->iv_size + prot->salt_size); 559 560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 561 tls_ctx->tx.rec_seq); 562 563 sge->offset += prot->prepend_size; 564 sge->length -= prot->prepend_size; 565 566 msg_en->sg.curr = start; 567 568 aead_request_set_tfm(aead_req, ctx->aead_send); 569 aead_request_set_ad(aead_req, prot->aad_size); 570 aead_request_set_crypt(aead_req, rec->sg_aead_in, 571 rec->sg_aead_out, 572 data_len, rec->iv_data); 573 574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 575 tls_encrypt_done, rec); 576 577 /* Add the record in tx_list */ 578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); 580 atomic_inc(&ctx->encrypt_pending); 581 582 rc = crypto_aead_encrypt(aead_req); 583 if (rc == -EBUSY) { 584 rc = tls_encrypt_async_wait(ctx); 585 rc = rc ?: -EINPROGRESS; 586 } 587 if (!rc || rc != -EINPROGRESS) { 588 atomic_dec(&ctx->encrypt_pending); 589 sge->offset -= prot->prepend_size; 590 sge->length += prot->prepend_size; 591 } 592 593 if (!rc) { 594 WRITE_ONCE(rec->tx_ready, true); 595 } else if (rc != -EINPROGRESS) { 596 list_del(&rec->list); 597 return rc; 598 } 599 600 /* Unhook the record from context if encryption is not failure */ 601 ctx->open_rec = NULL; 602 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 603 return rc; 604 } 605 606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 607 struct tls_rec **to, struct sk_msg *msg_opl, 608 struct sk_msg *msg_oen, u32 split_point, 609 u32 tx_overhead_size, u32 *orig_end) 610 { 611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 612 struct scatterlist *sge, *osge, *nsge; 613 u32 orig_size = msg_opl->sg.size; 614 struct scatterlist tmp = { }; 615 struct sk_msg *msg_npl; 616 struct tls_rec *new; 617 int ret; 618 619 new = tls_get_rec(sk); 620 if (!new) 621 return -ENOMEM; 622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 623 tx_overhead_size, 0); 624 if (ret < 0) { 625 tls_free_rec(sk, new); 626 return ret; 627 } 628 629 *orig_end = msg_opl->sg.end; 630 i = msg_opl->sg.start; 631 sge = sk_msg_elem(msg_opl, i); 632 while (apply && sge->length) { 633 if (sge->length > apply) { 634 u32 len = sge->length - apply; 635 636 get_page(sg_page(sge)); 637 sg_set_page(&tmp, sg_page(sge), len, 638 sge->offset + apply); 639 sge->length = apply; 640 bytes += apply; 641 apply = 0; 642 } else { 643 apply -= sge->length; 644 bytes += sge->length; 645 } 646 647 sk_msg_iter_var_next(i); 648 if (i == msg_opl->sg.end) 649 break; 650 sge = sk_msg_elem(msg_opl, i); 651 } 652 653 msg_opl->sg.end = i; 654 msg_opl->sg.curr = i; 655 msg_opl->sg.copybreak = 0; 656 msg_opl->apply_bytes = 0; 657 msg_opl->sg.size = bytes; 658 659 msg_npl = &new->msg_plaintext; 660 msg_npl->apply_bytes = apply; 661 msg_npl->sg.size = orig_size - bytes; 662 663 j = msg_npl->sg.start; 664 nsge = sk_msg_elem(msg_npl, j); 665 if (tmp.length) { 666 memcpy(nsge, &tmp, sizeof(*nsge)); 667 sk_msg_iter_var_next(j); 668 nsge = sk_msg_elem(msg_npl, j); 669 } 670 671 osge = sk_msg_elem(msg_opl, i); 672 while (osge->length) { 673 memcpy(nsge, osge, sizeof(*nsge)); 674 sg_unmark_end(nsge); 675 sk_msg_iter_var_next(i); 676 sk_msg_iter_var_next(j); 677 if (i == *orig_end) 678 break; 679 osge = sk_msg_elem(msg_opl, i); 680 nsge = sk_msg_elem(msg_npl, j); 681 } 682 683 msg_npl->sg.end = j; 684 msg_npl->sg.curr = j; 685 msg_npl->sg.copybreak = 0; 686 687 *to = new; 688 return 0; 689 } 690 691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 692 struct tls_rec *from, u32 orig_end) 693 { 694 struct sk_msg *msg_npl = &from->msg_plaintext; 695 struct sk_msg *msg_opl = &to->msg_plaintext; 696 struct scatterlist *osge, *nsge; 697 u32 i, j; 698 699 i = msg_opl->sg.end; 700 sk_msg_iter_var_prev(i); 701 j = msg_npl->sg.start; 702 703 osge = sk_msg_elem(msg_opl, i); 704 nsge = sk_msg_elem(msg_npl, j); 705 706 if (sg_page(osge) == sg_page(nsge) && 707 osge->offset + osge->length == nsge->offset) { 708 osge->length += nsge->length; 709 put_page(sg_page(nsge)); 710 } 711 712 msg_opl->sg.end = orig_end; 713 msg_opl->sg.curr = orig_end; 714 msg_opl->sg.copybreak = 0; 715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 716 msg_opl->sg.size += msg_npl->sg.size; 717 718 sk_msg_free(sk, &to->msg_encrypted); 719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 720 721 kfree(from); 722 } 723 724 static int tls_push_record(struct sock *sk, int flags, 725 unsigned char record_type) 726 { 727 struct tls_context *tls_ctx = tls_get_ctx(sk); 728 struct tls_prot_info *prot = &tls_ctx->prot_info; 729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 731 u32 i, split_point, orig_end; 732 struct sk_msg *msg_pl, *msg_en; 733 struct aead_request *req; 734 bool split; 735 int rc; 736 737 if (!rec) 738 return 0; 739 740 msg_pl = &rec->msg_plaintext; 741 msg_en = &rec->msg_encrypted; 742 743 split_point = msg_pl->apply_bytes; 744 split = split_point && split_point < msg_pl->sg.size; 745 if (unlikely((!split && 746 msg_pl->sg.size + 747 prot->overhead_size > msg_en->sg.size) || 748 (split && 749 split_point + 750 prot->overhead_size > msg_en->sg.size))) { 751 split = true; 752 split_point = msg_en->sg.size; 753 } 754 if (split) { 755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 756 split_point, prot->overhead_size, 757 &orig_end); 758 if (rc < 0) 759 return rc; 760 /* This can happen if above tls_split_open_record allocates 761 * a single large encryption buffer instead of two smaller 762 * ones. In this case adjust pointers and continue without 763 * split. 764 */ 765 if (!msg_pl->sg.size) { 766 tls_merge_open_record(sk, rec, tmp, orig_end); 767 msg_pl = &rec->msg_plaintext; 768 msg_en = &rec->msg_encrypted; 769 split = false; 770 } 771 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 772 prot->overhead_size); 773 } 774 775 rec->tx_flags = flags; 776 req = &rec->aead_req; 777 778 i = msg_pl->sg.end; 779 sk_msg_iter_var_prev(i); 780 781 rec->content_type = record_type; 782 if (prot->version == TLS_1_3_VERSION) { 783 /* Add content type to end of message. No padding added */ 784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 785 sg_mark_end(&rec->sg_content_type); 786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 787 &rec->sg_content_type); 788 } else { 789 sg_mark_end(sk_msg_elem(msg_pl, i)); 790 } 791 792 if (msg_pl->sg.end < msg_pl->sg.start) { 793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 794 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 795 msg_pl->sg.data); 796 } 797 798 i = msg_pl->sg.start; 799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 800 801 i = msg_en->sg.end; 802 sk_msg_iter_var_prev(i); 803 sg_mark_end(sk_msg_elem(msg_en, i)); 804 805 i = msg_en->sg.start; 806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 807 808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 809 tls_ctx->tx.rec_seq, record_type, prot); 810 811 tls_fill_prepend(tls_ctx, 812 page_address(sg_page(&msg_en->sg.data[i])) + 813 msg_en->sg.data[i].offset, 814 msg_pl->sg.size + prot->tail_size, 815 record_type); 816 817 tls_ctx->pending_open_record_frags = false; 818 819 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 820 msg_pl->sg.size + prot->tail_size, i); 821 if (rc < 0) { 822 if (rc != -EINPROGRESS) { 823 tls_err_abort(sk, -EBADMSG); 824 if (split) { 825 tls_ctx->pending_open_record_frags = true; 826 tls_merge_open_record(sk, rec, tmp, orig_end); 827 } 828 } 829 ctx->async_capable = 1; 830 return rc; 831 } else if (split) { 832 msg_pl = &tmp->msg_plaintext; 833 msg_en = &tmp->msg_encrypted; 834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 835 tls_ctx->pending_open_record_frags = true; 836 ctx->open_rec = tmp; 837 } 838 839 return tls_tx_records(sk, flags); 840 } 841 842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 843 bool full_record, u8 record_type, 844 ssize_t *copied, int flags) 845 { 846 struct tls_context *tls_ctx = tls_get_ctx(sk); 847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 848 struct sk_msg msg_redir = { }; 849 struct sk_psock *psock; 850 struct sock *sk_redir; 851 struct tls_rec *rec; 852 bool enospc, policy, redir_ingress; 853 int err = 0, send; 854 u32 delta = 0; 855 856 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 857 psock = sk_psock_get(sk); 858 if (!psock || !policy) { 859 err = tls_push_record(sk, flags, record_type); 860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 861 *copied -= sk_msg_free(sk, msg); 862 tls_free_open_rec(sk); 863 err = -sk->sk_err; 864 } 865 if (psock) 866 sk_psock_put(sk, psock); 867 return err; 868 } 869 more_data: 870 enospc = sk_msg_full(msg); 871 if (psock->eval == __SK_NONE) { 872 delta = msg->sg.size; 873 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 874 delta -= msg->sg.size; 875 876 if ((s32)delta > 0) { 877 /* It indicates that we executed bpf_msg_pop_data(), 878 * causing the plaintext data size to decrease. 879 * Therefore the encrypted data size also needs to 880 * correspondingly decrease. We only need to subtract 881 * delta to calculate the new ciphertext length since 882 * ktls does not support block encryption. 883 */ 884 struct sk_msg *enc = &ctx->open_rec->msg_encrypted; 885 886 sk_msg_trim(sk, enc, enc->sg.size - delta); 887 } 888 } 889 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 890 !enospc && !full_record) { 891 err = -ENOSPC; 892 goto out_err; 893 } 894 msg->cork_bytes = 0; 895 send = msg->sg.size; 896 if (msg->apply_bytes && msg->apply_bytes < send) 897 send = msg->apply_bytes; 898 899 switch (psock->eval) { 900 case __SK_PASS: 901 err = tls_push_record(sk, flags, record_type); 902 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 903 *copied -= sk_msg_free(sk, msg); 904 tls_free_open_rec(sk); 905 err = -sk->sk_err; 906 goto out_err; 907 } 908 break; 909 case __SK_REDIRECT: 910 redir_ingress = psock->redir_ingress; 911 sk_redir = psock->sk_redir; 912 memcpy(&msg_redir, msg, sizeof(*msg)); 913 if (msg->apply_bytes < send) 914 msg->apply_bytes = 0; 915 else 916 msg->apply_bytes -= send; 917 sk_msg_return_zero(sk, msg, send); 918 msg->sg.size -= send; 919 release_sock(sk); 920 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 921 &msg_redir, send, flags); 922 lock_sock(sk); 923 if (err < 0) { 924 /* Regardless of whether the data represented by 925 * msg_redir is sent successfully, we have already 926 * uncharged it via sk_msg_return_zero(). The 927 * msg->sg.size represents the remaining unprocessed 928 * data, which needs to be uncharged here. 929 */ 930 sk_mem_uncharge(sk, msg->sg.size); 931 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 932 msg->sg.size = 0; 933 } 934 if (msg->sg.size == 0) 935 tls_free_open_rec(sk); 936 break; 937 case __SK_DROP: 938 default: 939 sk_msg_free_partial(sk, msg, send); 940 if (msg->apply_bytes < send) 941 msg->apply_bytes = 0; 942 else 943 msg->apply_bytes -= send; 944 if (msg->sg.size == 0) 945 tls_free_open_rec(sk); 946 *copied -= (send + delta); 947 err = -EACCES; 948 } 949 950 if (likely(!err)) { 951 bool reset_eval = !ctx->open_rec; 952 953 rec = ctx->open_rec; 954 if (rec) { 955 msg = &rec->msg_plaintext; 956 if (!msg->apply_bytes) 957 reset_eval = true; 958 } 959 if (reset_eval) { 960 psock->eval = __SK_NONE; 961 if (psock->sk_redir) { 962 sock_put(psock->sk_redir); 963 psock->sk_redir = NULL; 964 } 965 } 966 if (rec) 967 goto more_data; 968 } 969 out_err: 970 sk_psock_put(sk, psock); 971 return err; 972 } 973 974 static int tls_sw_push_pending_record(struct sock *sk, int flags) 975 { 976 struct tls_context *tls_ctx = tls_get_ctx(sk); 977 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 978 struct tls_rec *rec = ctx->open_rec; 979 struct sk_msg *msg_pl; 980 size_t copied; 981 982 if (!rec) 983 return 0; 984 985 msg_pl = &rec->msg_plaintext; 986 copied = msg_pl->sg.size; 987 if (!copied) 988 return 0; 989 990 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 991 &copied, flags); 992 } 993 994 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 995 struct sk_msg *msg_pl, size_t try_to_copy, 996 ssize_t *copied) 997 { 998 struct page *page = NULL, **pages = &page; 999 1000 do { 1001 ssize_t part; 1002 size_t off; 1003 1004 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 1005 try_to_copy, 1, 0, &off); 1006 if (part <= 0) 1007 return part ?: -EIO; 1008 1009 if (WARN_ON_ONCE(!sendpage_ok(page))) { 1010 iov_iter_revert(&msg->msg_iter, part); 1011 return -EIO; 1012 } 1013 1014 sk_msg_page_add(msg_pl, page, part, off); 1015 msg_pl->sg.copybreak = 0; 1016 msg_pl->sg.curr = msg_pl->sg.end; 1017 sk_mem_charge(sk, part); 1018 *copied += part; 1019 try_to_copy -= part; 1020 } while (try_to_copy && !sk_msg_full(msg_pl)); 1021 1022 return 0; 1023 } 1024 1025 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 1026 size_t size) 1027 { 1028 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1029 struct tls_context *tls_ctx = tls_get_ctx(sk); 1030 struct tls_prot_info *prot = &tls_ctx->prot_info; 1031 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1032 bool async_capable = ctx->async_capable; 1033 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1034 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1035 bool eor = !(msg->msg_flags & MSG_MORE); 1036 size_t try_to_copy; 1037 ssize_t copied = 0; 1038 struct sk_msg *msg_pl, *msg_en; 1039 struct tls_rec *rec; 1040 int required_size; 1041 int num_async = 0; 1042 bool full_record; 1043 int record_room; 1044 int num_zc = 0; 1045 int orig_size; 1046 int ret = 0; 1047 1048 if (!eor && (msg->msg_flags & MSG_EOR)) 1049 return -EINVAL; 1050 1051 if (unlikely(msg->msg_controllen)) { 1052 ret = tls_process_cmsg(sk, msg, &record_type); 1053 if (ret) { 1054 if (ret == -EINPROGRESS) 1055 num_async++; 1056 else if (ret != -EAGAIN) 1057 goto send_end; 1058 } 1059 } 1060 1061 while (msg_data_left(msg)) { 1062 if (sk->sk_err) { 1063 ret = -sk->sk_err; 1064 goto send_end; 1065 } 1066 1067 if (ctx->open_rec) 1068 rec = ctx->open_rec; 1069 else 1070 rec = ctx->open_rec = tls_get_rec(sk); 1071 if (!rec) { 1072 ret = -ENOMEM; 1073 goto send_end; 1074 } 1075 1076 msg_pl = &rec->msg_plaintext; 1077 msg_en = &rec->msg_encrypted; 1078 1079 orig_size = msg_pl->sg.size; 1080 full_record = false; 1081 try_to_copy = msg_data_left(msg); 1082 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1083 if (try_to_copy >= record_room) { 1084 try_to_copy = record_room; 1085 full_record = true; 1086 } 1087 1088 required_size = msg_pl->sg.size + try_to_copy + 1089 prot->overhead_size; 1090 1091 if (!sk_stream_memory_free(sk)) 1092 goto wait_for_sndbuf; 1093 1094 alloc_encrypted: 1095 ret = tls_alloc_encrypted_msg(sk, required_size); 1096 if (ret) { 1097 if (ret != -ENOSPC) 1098 goto wait_for_memory; 1099 1100 /* Adjust try_to_copy according to the amount that was 1101 * actually allocated. The difference is due 1102 * to max sg elements limit 1103 */ 1104 try_to_copy -= required_size - msg_en->sg.size; 1105 full_record = true; 1106 } 1107 1108 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1109 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1110 try_to_copy, &copied); 1111 if (ret < 0) 1112 goto send_end; 1113 tls_ctx->pending_open_record_frags = true; 1114 1115 if (sk_msg_full(msg_pl)) 1116 full_record = true; 1117 1118 if (full_record || eor) 1119 goto copied; 1120 continue; 1121 } 1122 1123 if (!is_kvec && (full_record || eor) && !async_capable) { 1124 u32 first = msg_pl->sg.end; 1125 1126 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1127 msg_pl, try_to_copy); 1128 if (ret) 1129 goto fallback_to_reg_send; 1130 1131 num_zc++; 1132 copied += try_to_copy; 1133 1134 sk_msg_sg_copy_set(msg_pl, first); 1135 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1136 record_type, &copied, 1137 msg->msg_flags); 1138 if (ret) { 1139 if (ret == -EINPROGRESS) 1140 num_async++; 1141 else if (ret == -ENOMEM) 1142 goto wait_for_memory; 1143 else if (ctx->open_rec && ret == -ENOSPC) { 1144 if (msg_pl->cork_bytes) { 1145 ret = 0; 1146 goto send_end; 1147 } 1148 goto rollback_iter; 1149 } else if (ret != -EAGAIN) 1150 goto send_end; 1151 } 1152 continue; 1153 rollback_iter: 1154 copied -= try_to_copy; 1155 sk_msg_sg_copy_clear(msg_pl, first); 1156 iov_iter_revert(&msg->msg_iter, 1157 msg_pl->sg.size - orig_size); 1158 fallback_to_reg_send: 1159 sk_msg_trim(sk, msg_pl, orig_size); 1160 } 1161 1162 required_size = msg_pl->sg.size + try_to_copy; 1163 1164 ret = tls_clone_plaintext_msg(sk, required_size); 1165 if (ret) { 1166 if (ret != -ENOSPC) 1167 goto send_end; 1168 1169 /* Adjust try_to_copy according to the amount that was 1170 * actually allocated. The difference is due 1171 * to max sg elements limit 1172 */ 1173 try_to_copy -= required_size - msg_pl->sg.size; 1174 full_record = true; 1175 sk_msg_trim(sk, msg_en, 1176 msg_pl->sg.size + prot->overhead_size); 1177 } 1178 1179 if (try_to_copy) { 1180 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1181 msg_pl, try_to_copy); 1182 if (ret < 0) 1183 goto trim_sgl; 1184 } 1185 1186 /* Open records defined only if successfully copied, otherwise 1187 * we would trim the sg but not reset the open record frags. 1188 */ 1189 tls_ctx->pending_open_record_frags = true; 1190 copied += try_to_copy; 1191 copied: 1192 if (full_record || eor) { 1193 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1194 record_type, &copied, 1195 msg->msg_flags); 1196 if (ret) { 1197 if (ret == -EINPROGRESS) 1198 num_async++; 1199 else if (ret == -ENOMEM) 1200 goto wait_for_memory; 1201 else if (ret != -EAGAIN) { 1202 if (ret == -ENOSPC) 1203 ret = 0; 1204 goto send_end; 1205 } 1206 } 1207 } 1208 1209 continue; 1210 1211 wait_for_sndbuf: 1212 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1213 wait_for_memory: 1214 ret = sk_stream_wait_memory(sk, &timeo); 1215 if (ret) { 1216 trim_sgl: 1217 if (ctx->open_rec) 1218 tls_trim_both_msgs(sk, orig_size); 1219 goto send_end; 1220 } 1221 1222 if (ctx->open_rec && msg_en->sg.size < required_size) 1223 goto alloc_encrypted; 1224 } 1225 1226 if (!num_async) { 1227 goto send_end; 1228 } else if (num_zc || eor) { 1229 int err; 1230 1231 /* Wait for pending encryptions to get completed */ 1232 err = tls_encrypt_async_wait(ctx); 1233 if (err) { 1234 ret = err; 1235 copied = 0; 1236 } 1237 } 1238 1239 /* Transmit if any encryptions have completed */ 1240 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1241 cancel_delayed_work(&ctx->tx_work.work); 1242 tls_tx_records(sk, msg->msg_flags); 1243 } 1244 1245 send_end: 1246 ret = sk_stream_error(sk, msg->msg_flags, ret); 1247 return copied > 0 ? copied : ret; 1248 } 1249 1250 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1251 { 1252 struct tls_context *tls_ctx = tls_get_ctx(sk); 1253 int ret; 1254 1255 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1256 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1257 MSG_SENDPAGE_NOPOLICY)) 1258 return -EOPNOTSUPP; 1259 1260 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1261 if (ret) 1262 return ret; 1263 lock_sock(sk); 1264 ret = tls_sw_sendmsg_locked(sk, msg, size); 1265 release_sock(sk); 1266 mutex_unlock(&tls_ctx->tx_lock); 1267 return ret; 1268 } 1269 1270 /* 1271 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1272 */ 1273 void tls_sw_splice_eof(struct socket *sock) 1274 { 1275 struct sock *sk = sock->sk; 1276 struct tls_context *tls_ctx = tls_get_ctx(sk); 1277 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1278 struct tls_rec *rec; 1279 struct sk_msg *msg_pl; 1280 ssize_t copied = 0; 1281 bool retrying = false; 1282 int ret = 0; 1283 1284 if (!ctx->open_rec) 1285 return; 1286 1287 mutex_lock(&tls_ctx->tx_lock); 1288 lock_sock(sk); 1289 1290 retry: 1291 /* same checks as in tls_sw_push_pending_record() */ 1292 rec = ctx->open_rec; 1293 if (!rec) 1294 goto unlock; 1295 1296 msg_pl = &rec->msg_plaintext; 1297 if (msg_pl->sg.size == 0) 1298 goto unlock; 1299 1300 /* Check the BPF advisor and perform transmission. */ 1301 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1302 &copied, 0); 1303 switch (ret) { 1304 case 0: 1305 case -EAGAIN: 1306 if (retrying) 1307 goto unlock; 1308 retrying = true; 1309 goto retry; 1310 case -EINPROGRESS: 1311 break; 1312 default: 1313 goto unlock; 1314 } 1315 1316 /* Wait for pending encryptions to get completed */ 1317 if (tls_encrypt_async_wait(ctx)) 1318 goto unlock; 1319 1320 /* Transmit if any encryptions have completed */ 1321 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1322 cancel_delayed_work(&ctx->tx_work.work); 1323 tls_tx_records(sk, 0); 1324 } 1325 1326 unlock: 1327 release_sock(sk); 1328 mutex_unlock(&tls_ctx->tx_lock); 1329 } 1330 1331 static int 1332 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1333 bool released) 1334 { 1335 struct tls_context *tls_ctx = tls_get_ctx(sk); 1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1337 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1338 int ret = 0; 1339 long timeo; 1340 1341 /* a rekey is pending, let userspace deal with it */ 1342 if (unlikely(ctx->key_update_pending)) 1343 return -EKEYEXPIRED; 1344 1345 timeo = sock_rcvtimeo(sk, nonblock); 1346 1347 while (!tls_strp_msg_ready(ctx)) { 1348 if (!sk_psock_queue_empty(psock)) 1349 return 0; 1350 1351 if (sk->sk_err) 1352 return sock_error(sk); 1353 1354 if (ret < 0) 1355 return ret; 1356 1357 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1358 tls_strp_check_rcv(&ctx->strp); 1359 if (tls_strp_msg_ready(ctx)) 1360 break; 1361 } 1362 1363 if (sk->sk_shutdown & RCV_SHUTDOWN) 1364 return 0; 1365 1366 if (sock_flag(sk, SOCK_DONE)) 1367 return 0; 1368 1369 if (!timeo) 1370 return -EAGAIN; 1371 1372 released = true; 1373 add_wait_queue(sk_sleep(sk), &wait); 1374 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1375 ret = sk_wait_event(sk, &timeo, 1376 tls_strp_msg_ready(ctx) || 1377 !sk_psock_queue_empty(psock), 1378 &wait); 1379 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1380 remove_wait_queue(sk_sleep(sk), &wait); 1381 1382 /* Handle signals */ 1383 if (signal_pending(current)) 1384 return sock_intr_errno(timeo); 1385 } 1386 1387 if (unlikely(!tls_strp_msg_load(&ctx->strp, released))) 1388 return tls_rx_rec_wait(sk, psock, nonblock, false); 1389 1390 return 1; 1391 } 1392 1393 static int tls_setup_from_iter(struct iov_iter *from, 1394 int length, int *pages_used, 1395 struct scatterlist *to, 1396 int to_max_pages) 1397 { 1398 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1399 struct page *pages[MAX_SKB_FRAGS]; 1400 unsigned int size = 0; 1401 ssize_t copied, use; 1402 size_t offset; 1403 1404 while (length > 0) { 1405 i = 0; 1406 maxpages = to_max_pages - num_elem; 1407 if (maxpages == 0) { 1408 rc = -EFAULT; 1409 goto out; 1410 } 1411 copied = iov_iter_get_pages2(from, pages, 1412 length, 1413 maxpages, &offset); 1414 if (copied <= 0) { 1415 rc = -EFAULT; 1416 goto out; 1417 } 1418 1419 length -= copied; 1420 size += copied; 1421 while (copied) { 1422 use = min_t(int, copied, PAGE_SIZE - offset); 1423 1424 sg_set_page(&to[num_elem], 1425 pages[i], use, offset); 1426 sg_unmark_end(&to[num_elem]); 1427 /* We do not uncharge memory from this API */ 1428 1429 offset = 0; 1430 copied -= use; 1431 1432 i++; 1433 num_elem++; 1434 } 1435 } 1436 /* Mark the end in the last sg entry if newly added */ 1437 if (num_elem > *pages_used) 1438 sg_mark_end(&to[num_elem - 1]); 1439 out: 1440 if (rc) 1441 iov_iter_revert(from, size); 1442 *pages_used = num_elem; 1443 1444 return rc; 1445 } 1446 1447 static struct sk_buff * 1448 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1449 unsigned int full_len) 1450 { 1451 struct strp_msg *clr_rxm; 1452 struct sk_buff *clr_skb; 1453 int err; 1454 1455 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1456 &err, sk->sk_allocation); 1457 if (!clr_skb) 1458 return NULL; 1459 1460 skb_copy_header(clr_skb, skb); 1461 clr_skb->len = full_len; 1462 clr_skb->data_len = full_len; 1463 1464 clr_rxm = strp_msg(clr_skb); 1465 clr_rxm->offset = 0; 1466 1467 return clr_skb; 1468 } 1469 1470 /* Decrypt handlers 1471 * 1472 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1473 * They must transform the darg in/out argument are as follows: 1474 * | Input | Output 1475 * ------------------------------------------------------------------- 1476 * zc | Zero-copy decrypt allowed | Zero-copy performed 1477 * async | Async decrypt allowed | Async crypto used / in progress 1478 * skb | * | Output skb 1479 * 1480 * If ZC decryption was performed darg.skb will point to the input skb. 1481 */ 1482 1483 /* This function decrypts the input skb into either out_iov or in out_sg 1484 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1485 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1486 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1487 * NULL, then the decryption happens inside skb buffers itself, i.e. 1488 * zero-copy gets disabled and 'darg->zc' is updated. 1489 */ 1490 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1491 struct scatterlist *out_sg, 1492 struct tls_decrypt_arg *darg) 1493 { 1494 struct tls_context *tls_ctx = tls_get_ctx(sk); 1495 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1496 struct tls_prot_info *prot = &tls_ctx->prot_info; 1497 int n_sgin, n_sgout, aead_size, err, pages = 0; 1498 struct sk_buff *skb = tls_strp_msg(ctx); 1499 const struct strp_msg *rxm = strp_msg(skb); 1500 const struct tls_msg *tlm = tls_msg(skb); 1501 struct aead_request *aead_req; 1502 struct scatterlist *sgin = NULL; 1503 struct scatterlist *sgout = NULL; 1504 const int data_len = rxm->full_len - prot->overhead_size; 1505 int tail_pages = !!prot->tail_size; 1506 struct tls_decrypt_ctx *dctx; 1507 struct sk_buff *clear_skb; 1508 int iv_offset = 0; 1509 u8 *mem; 1510 1511 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1512 rxm->full_len - prot->prepend_size); 1513 if (n_sgin < 1) 1514 return n_sgin ?: -EBADMSG; 1515 1516 if (darg->zc && (out_iov || out_sg)) { 1517 clear_skb = NULL; 1518 1519 if (out_iov) 1520 n_sgout = 1 + tail_pages + 1521 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1522 else 1523 n_sgout = sg_nents(out_sg); 1524 } else { 1525 darg->zc = false; 1526 1527 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1528 if (!clear_skb) 1529 return -ENOMEM; 1530 1531 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1532 } 1533 1534 /* Increment to accommodate AAD */ 1535 n_sgin = n_sgin + 1; 1536 1537 /* Allocate a single block of memory which contains 1538 * aead_req || tls_decrypt_ctx. 1539 * Both structs are variable length. 1540 */ 1541 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1542 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1543 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1544 sk->sk_allocation); 1545 if (!mem) { 1546 err = -ENOMEM; 1547 goto exit_free_skb; 1548 } 1549 1550 /* Segment the allocated memory */ 1551 aead_req = (struct aead_request *)mem; 1552 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1553 dctx->sk = sk; 1554 sgin = &dctx->sg[0]; 1555 sgout = &dctx->sg[n_sgin]; 1556 1557 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1558 switch (prot->cipher_type) { 1559 case TLS_CIPHER_AES_CCM_128: 1560 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1561 iv_offset = 1; 1562 break; 1563 case TLS_CIPHER_SM4_CCM: 1564 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1565 iv_offset = 1; 1566 break; 1567 } 1568 1569 /* Prepare IV */ 1570 if (prot->version == TLS_1_3_VERSION || 1571 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1572 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1573 prot->iv_size + prot->salt_size); 1574 } else { 1575 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1576 &dctx->iv[iv_offset] + prot->salt_size, 1577 prot->iv_size); 1578 if (err < 0) 1579 goto exit_free; 1580 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1581 } 1582 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1583 1584 /* Prepare AAD */ 1585 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1586 prot->tail_size, 1587 tls_ctx->rx.rec_seq, tlm->control, prot); 1588 1589 /* Prepare sgin */ 1590 sg_init_table(sgin, n_sgin); 1591 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1592 err = skb_to_sgvec(skb, &sgin[1], 1593 rxm->offset + prot->prepend_size, 1594 rxm->full_len - prot->prepend_size); 1595 if (err < 0) 1596 goto exit_free; 1597 1598 if (clear_skb) { 1599 sg_init_table(sgout, n_sgout); 1600 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1601 1602 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1603 data_len + prot->tail_size); 1604 if (err < 0) 1605 goto exit_free; 1606 } else if (out_iov) { 1607 sg_init_table(sgout, n_sgout); 1608 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1609 1610 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1611 (n_sgout - 1 - tail_pages)); 1612 if (err < 0) 1613 goto exit_free_pages; 1614 1615 if (prot->tail_size) { 1616 sg_unmark_end(&sgout[pages]); 1617 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1618 prot->tail_size); 1619 sg_mark_end(&sgout[pages + 1]); 1620 } 1621 } else if (out_sg) { 1622 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1623 } 1624 dctx->free_sgout = !!pages; 1625 1626 /* Prepare and submit AEAD request */ 1627 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1628 data_len + prot->tail_size, aead_req, darg); 1629 if (err) { 1630 if (darg->async_done) 1631 goto exit_free_skb; 1632 goto exit_free_pages; 1633 } 1634 1635 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1636 clear_skb = NULL; 1637 1638 if (unlikely(darg->async)) { 1639 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1640 if (err) 1641 __skb_queue_tail(&ctx->async_hold, darg->skb); 1642 return err; 1643 } 1644 1645 if (unlikely(darg->async_done)) 1646 return 0; 1647 1648 if (prot->tail_size) 1649 darg->tail = dctx->tail; 1650 1651 exit_free_pages: 1652 /* Release the pages in case iov was mapped to pages */ 1653 for (; pages > 0; pages--) 1654 put_page(sg_page(&sgout[pages])); 1655 exit_free: 1656 kfree(mem); 1657 exit_free_skb: 1658 consume_skb(clear_skb); 1659 return err; 1660 } 1661 1662 static int 1663 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1664 struct msghdr *msg, struct tls_decrypt_arg *darg) 1665 { 1666 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1667 struct tls_prot_info *prot = &tls_ctx->prot_info; 1668 struct strp_msg *rxm; 1669 int pad, err; 1670 1671 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1672 if (err < 0) { 1673 if (err == -EBADMSG) 1674 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1675 return err; 1676 } 1677 /* keep going even for ->async, the code below is TLS 1.3 */ 1678 1679 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1680 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1681 darg->tail != TLS_RECORD_TYPE_DATA)) { 1682 darg->zc = false; 1683 if (!darg->tail) 1684 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1685 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1686 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1687 } 1688 1689 pad = tls_padding_length(prot, darg->skb, darg); 1690 if (pad < 0) { 1691 if (darg->skb != tls_strp_msg(ctx)) 1692 consume_skb(darg->skb); 1693 return pad; 1694 } 1695 1696 rxm = strp_msg(darg->skb); 1697 rxm->full_len -= pad; 1698 1699 return 0; 1700 } 1701 1702 static int 1703 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1704 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1705 { 1706 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1707 struct tls_prot_info *prot = &tls_ctx->prot_info; 1708 struct strp_msg *rxm; 1709 int pad, err; 1710 1711 if (tls_ctx->rx_conf != TLS_HW) 1712 return 0; 1713 1714 err = tls_device_decrypted(sk, tls_ctx); 1715 if (err <= 0) 1716 return err; 1717 1718 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1719 if (pad < 0) 1720 return pad; 1721 1722 darg->async = false; 1723 darg->skb = tls_strp_msg(ctx); 1724 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1725 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1726 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1727 1728 rxm = strp_msg(darg->skb); 1729 rxm->full_len -= pad; 1730 1731 if (!darg->zc) { 1732 /* Non-ZC case needs a real skb */ 1733 darg->skb = tls_strp_msg_detach(ctx); 1734 if (!darg->skb) 1735 return -ENOMEM; 1736 } else { 1737 unsigned int off, len; 1738 1739 /* In ZC case nobody cares about the output skb. 1740 * Just copy the data here. Note the skb is not fully trimmed. 1741 */ 1742 off = rxm->offset + prot->prepend_size; 1743 len = rxm->full_len - prot->overhead_size; 1744 1745 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1746 if (err) 1747 return err; 1748 } 1749 return 1; 1750 } 1751 1752 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx, 1753 struct sk_buff *skb) 1754 { 1755 const struct strp_msg *rxm = strp_msg(skb); 1756 const struct tls_msg *tlm = tls_msg(skb); 1757 char hs_type; 1758 int err; 1759 1760 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE)) 1761 return 0; 1762 1763 if (rxm->full_len < 1) 1764 return 0; 1765 1766 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1); 1767 if (err < 0) { 1768 DEBUG_NET_WARN_ON_ONCE(1); 1769 return err; 1770 } 1771 1772 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) { 1773 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx; 1774 1775 WRITE_ONCE(rx_ctx->key_update_pending, true); 1776 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED); 1777 } 1778 1779 return 0; 1780 } 1781 1782 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1783 struct tls_decrypt_arg *darg) 1784 { 1785 struct tls_context *tls_ctx = tls_get_ctx(sk); 1786 struct tls_prot_info *prot = &tls_ctx->prot_info; 1787 struct strp_msg *rxm; 1788 int err; 1789 1790 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1791 if (!err) 1792 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1793 if (err < 0) 1794 return err; 1795 1796 rxm = strp_msg(darg->skb); 1797 rxm->offset += prot->prepend_size; 1798 rxm->full_len -= prot->overhead_size; 1799 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1800 1801 return tls_check_pending_rekey(sk, tls_ctx, darg->skb); 1802 } 1803 1804 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1805 { 1806 struct tls_decrypt_arg darg = { .zc = true, }; 1807 1808 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1809 } 1810 1811 /* All records returned from a recvmsg() call must have the same type. 1812 * 0 is not a valid content type. Use it as "no type reported, yet". 1813 */ 1814 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1815 u8 *control) 1816 { 1817 int err; 1818 1819 if (!*control) { 1820 *control = tlm->control; 1821 if (!*control) 1822 return -EBADMSG; 1823 1824 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1825 sizeof(*control), control); 1826 if (*control != TLS_RECORD_TYPE_DATA) { 1827 if (err || msg->msg_flags & MSG_CTRUNC) 1828 return -EIO; 1829 } 1830 } else if (*control != tlm->control) { 1831 return 0; 1832 } 1833 1834 return 1; 1835 } 1836 1837 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1838 { 1839 tls_strp_msg_done(&ctx->strp); 1840 } 1841 1842 /* This function traverses the rx_list in tls receive context to copies the 1843 * decrypted records into the buffer provided by caller zero copy is not 1844 * true. Further, the records are removed from the rx_list if it is not a peek 1845 * case and the record has been consumed completely. 1846 */ 1847 static int process_rx_list(struct tls_sw_context_rx *ctx, 1848 struct msghdr *msg, 1849 u8 *control, 1850 size_t skip, 1851 size_t len, 1852 bool is_peek, 1853 bool *more) 1854 { 1855 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1856 struct tls_msg *tlm; 1857 ssize_t copied = 0; 1858 int err; 1859 1860 while (skip && skb) { 1861 struct strp_msg *rxm = strp_msg(skb); 1862 tlm = tls_msg(skb); 1863 1864 err = tls_record_content_type(msg, tlm, control); 1865 if (err <= 0) 1866 goto more; 1867 1868 if (skip < rxm->full_len) 1869 break; 1870 1871 skip = skip - rxm->full_len; 1872 skb = skb_peek_next(skb, &ctx->rx_list); 1873 } 1874 1875 while (len && skb) { 1876 struct sk_buff *next_skb; 1877 struct strp_msg *rxm = strp_msg(skb); 1878 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1879 1880 tlm = tls_msg(skb); 1881 1882 err = tls_record_content_type(msg, tlm, control); 1883 if (err <= 0) 1884 goto more; 1885 1886 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1887 msg, chunk); 1888 if (err < 0) 1889 goto more; 1890 1891 len = len - chunk; 1892 copied = copied + chunk; 1893 1894 /* Consume the data from record if it is non-peek case*/ 1895 if (!is_peek) { 1896 rxm->offset = rxm->offset + chunk; 1897 rxm->full_len = rxm->full_len - chunk; 1898 1899 /* Return if there is unconsumed data in the record */ 1900 if (rxm->full_len - skip) 1901 break; 1902 } 1903 1904 /* The remaining skip-bytes must lie in 1st record in rx_list. 1905 * So from the 2nd record, 'skip' should be 0. 1906 */ 1907 skip = 0; 1908 1909 if (msg) 1910 msg->msg_flags |= MSG_EOR; 1911 1912 next_skb = skb_peek_next(skb, &ctx->rx_list); 1913 1914 if (!is_peek) { 1915 __skb_unlink(skb, &ctx->rx_list); 1916 consume_skb(skb); 1917 } 1918 1919 skb = next_skb; 1920 } 1921 err = 0; 1922 1923 out: 1924 return copied ? : err; 1925 more: 1926 if (more) 1927 *more = true; 1928 goto out; 1929 } 1930 1931 static bool 1932 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1933 size_t len_left, size_t decrypted, ssize_t done, 1934 size_t *flushed_at) 1935 { 1936 size_t max_rec; 1937 1938 if (len_left <= decrypted) 1939 return false; 1940 1941 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1942 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1943 return false; 1944 1945 *flushed_at = done; 1946 return sk_flush_backlog(sk); 1947 } 1948 1949 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1950 bool nonblock) 1951 { 1952 long timeo; 1953 int ret; 1954 1955 timeo = sock_rcvtimeo(sk, nonblock); 1956 1957 while (unlikely(ctx->reader_present)) { 1958 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1959 1960 ctx->reader_contended = 1; 1961 1962 add_wait_queue(&ctx->wq, &wait); 1963 ret = sk_wait_event(sk, &timeo, 1964 !READ_ONCE(ctx->reader_present), &wait); 1965 remove_wait_queue(&ctx->wq, &wait); 1966 1967 if (timeo <= 0) 1968 return -EAGAIN; 1969 if (signal_pending(current)) 1970 return sock_intr_errno(timeo); 1971 if (ret < 0) 1972 return ret; 1973 } 1974 1975 WRITE_ONCE(ctx->reader_present, 1); 1976 1977 return 0; 1978 } 1979 1980 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1981 bool nonblock) 1982 { 1983 int err; 1984 1985 lock_sock(sk); 1986 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1987 if (err) 1988 release_sock(sk); 1989 return err; 1990 } 1991 1992 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1993 { 1994 if (unlikely(ctx->reader_contended)) { 1995 if (wq_has_sleeper(&ctx->wq)) 1996 wake_up(&ctx->wq); 1997 else 1998 ctx->reader_contended = 0; 1999 2000 WARN_ON_ONCE(!ctx->reader_present); 2001 } 2002 2003 WRITE_ONCE(ctx->reader_present, 0); 2004 } 2005 2006 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 2007 { 2008 tls_rx_reader_release(sk, ctx); 2009 release_sock(sk); 2010 } 2011 2012 int tls_sw_recvmsg(struct sock *sk, 2013 struct msghdr *msg, 2014 size_t len, 2015 int flags, 2016 int *addr_len) 2017 { 2018 struct tls_context *tls_ctx = tls_get_ctx(sk); 2019 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2020 struct tls_prot_info *prot = &tls_ctx->prot_info; 2021 ssize_t decrypted = 0, async_copy_bytes = 0; 2022 struct sk_psock *psock; 2023 unsigned char control = 0; 2024 size_t flushed_at = 0; 2025 struct strp_msg *rxm; 2026 struct tls_msg *tlm; 2027 ssize_t copied = 0; 2028 ssize_t peeked = 0; 2029 bool async = false; 2030 int target, err; 2031 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 2032 bool is_peek = flags & MSG_PEEK; 2033 bool rx_more = false; 2034 bool released = true; 2035 bool bpf_strp_enabled; 2036 bool zc_capable; 2037 2038 if (unlikely(flags & MSG_ERRQUEUE)) 2039 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 2040 2041 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 2042 if (err < 0) 2043 return err; 2044 psock = sk_psock_get(sk); 2045 bpf_strp_enabled = sk_psock_strp_enabled(psock); 2046 2047 /* If crypto failed the connection is broken */ 2048 err = ctx->async_wait.err; 2049 if (err) 2050 goto end; 2051 2052 /* Process pending decrypted records. It must be non-zero-copy */ 2053 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); 2054 if (err < 0) 2055 goto end; 2056 2057 /* process_rx_list() will set @control if it processed any records */ 2058 copied = err; 2059 if (len <= copied || rx_more || 2060 (control && control != TLS_RECORD_TYPE_DATA)) 2061 goto end; 2062 2063 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2064 len = len - copied; 2065 2066 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 2067 ctx->zc_capable; 2068 decrypted = 0; 2069 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 2070 struct tls_decrypt_arg darg; 2071 int to_decrypt, chunk; 2072 2073 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 2074 released); 2075 if (err <= 0) { 2076 if (psock) { 2077 chunk = sk_msg_recvmsg(sk, psock, msg, len, 2078 flags); 2079 if (chunk > 0) { 2080 decrypted += chunk; 2081 len -= chunk; 2082 continue; 2083 } 2084 } 2085 goto recv_end; 2086 } 2087 2088 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2089 2090 rxm = strp_msg(tls_strp_msg(ctx)); 2091 tlm = tls_msg(tls_strp_msg(ctx)); 2092 2093 to_decrypt = rxm->full_len - prot->overhead_size; 2094 2095 if (zc_capable && to_decrypt <= len && 2096 tlm->control == TLS_RECORD_TYPE_DATA) 2097 darg.zc = true; 2098 2099 /* Do not use async mode if record is non-data */ 2100 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2101 darg.async = ctx->async_capable; 2102 else 2103 darg.async = false; 2104 2105 err = tls_rx_one_record(sk, msg, &darg); 2106 if (err < 0) { 2107 tls_err_abort(sk, -EBADMSG); 2108 goto recv_end; 2109 } 2110 2111 async |= darg.async; 2112 2113 /* If the type of records being processed is not known yet, 2114 * set it to record type just dequeued. If it is already known, 2115 * but does not match the record type just dequeued, go to end. 2116 * We always get record type here since for tls1.2, record type 2117 * is known just after record is dequeued from stream parser. 2118 * For tls1.3, we disable async. 2119 */ 2120 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2121 if (err <= 0) { 2122 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2123 tls_rx_rec_done(ctx); 2124 put_on_rx_list_err: 2125 __skb_queue_tail(&ctx->rx_list, darg.skb); 2126 goto recv_end; 2127 } 2128 2129 /* periodically flush backlog, and feed strparser */ 2130 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2131 decrypted + copied, 2132 &flushed_at); 2133 2134 /* TLS 1.3 may have updated the length by more than overhead */ 2135 rxm = strp_msg(darg.skb); 2136 chunk = rxm->full_len; 2137 tls_rx_rec_done(ctx); 2138 2139 if (!darg.zc) { 2140 bool partially_consumed = chunk > len; 2141 struct sk_buff *skb = darg.skb; 2142 2143 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2144 2145 if (async) { 2146 /* TLS 1.2-only, to_decrypt must be text len */ 2147 chunk = min_t(int, to_decrypt, len); 2148 async_copy_bytes += chunk; 2149 put_on_rx_list: 2150 decrypted += chunk; 2151 len -= chunk; 2152 __skb_queue_tail(&ctx->rx_list, skb); 2153 if (unlikely(control != TLS_RECORD_TYPE_DATA)) 2154 break; 2155 continue; 2156 } 2157 2158 if (bpf_strp_enabled) { 2159 released = true; 2160 err = sk_psock_tls_strp_read(psock, skb); 2161 if (err != __SK_PASS) { 2162 rxm->offset = rxm->offset + rxm->full_len; 2163 rxm->full_len = 0; 2164 if (err == __SK_DROP) 2165 consume_skb(skb); 2166 continue; 2167 } 2168 } 2169 2170 if (partially_consumed) 2171 chunk = len; 2172 2173 err = skb_copy_datagram_msg(skb, rxm->offset, 2174 msg, chunk); 2175 if (err < 0) 2176 goto put_on_rx_list_err; 2177 2178 if (is_peek) { 2179 peeked += chunk; 2180 goto put_on_rx_list; 2181 } 2182 2183 if (partially_consumed) { 2184 rxm->offset += chunk; 2185 rxm->full_len -= chunk; 2186 goto put_on_rx_list; 2187 } 2188 2189 consume_skb(skb); 2190 } 2191 2192 decrypted += chunk; 2193 len -= chunk; 2194 2195 /* Return full control message to userspace before trying 2196 * to parse another message type 2197 */ 2198 msg->msg_flags |= MSG_EOR; 2199 if (control != TLS_RECORD_TYPE_DATA) 2200 break; 2201 } 2202 2203 recv_end: 2204 if (async) { 2205 int ret; 2206 2207 /* Wait for all previously submitted records to be decrypted */ 2208 ret = tls_decrypt_async_wait(ctx); 2209 __skb_queue_purge(&ctx->async_hold); 2210 2211 if (ret) { 2212 if (err >= 0 || err == -EINPROGRESS) 2213 err = ret; 2214 goto end; 2215 } 2216 2217 /* Drain records from the rx_list & copy if required */ 2218 if (is_peek) 2219 err = process_rx_list(ctx, msg, &control, copied + peeked, 2220 decrypted - peeked, is_peek, NULL); 2221 else 2222 err = process_rx_list(ctx, msg, &control, 0, 2223 async_copy_bytes, is_peek, NULL); 2224 2225 /* we could have copied less than we wanted, and possibly nothing */ 2226 decrypted += max(err, 0) - async_copy_bytes; 2227 } 2228 2229 copied += decrypted; 2230 2231 end: 2232 tls_rx_reader_unlock(sk, ctx); 2233 if (psock) 2234 sk_psock_put(sk, psock); 2235 return copied ? : err; 2236 } 2237 2238 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2239 struct pipe_inode_info *pipe, 2240 size_t len, unsigned int flags) 2241 { 2242 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2244 struct strp_msg *rxm = NULL; 2245 struct sock *sk = sock->sk; 2246 struct tls_msg *tlm; 2247 struct sk_buff *skb; 2248 ssize_t copied = 0; 2249 int chunk; 2250 int err; 2251 2252 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2253 if (err < 0) 2254 return err; 2255 2256 if (!skb_queue_empty(&ctx->rx_list)) { 2257 skb = __skb_dequeue(&ctx->rx_list); 2258 } else { 2259 struct tls_decrypt_arg darg; 2260 2261 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2262 true); 2263 if (err <= 0) 2264 goto splice_read_end; 2265 2266 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2267 2268 err = tls_rx_one_record(sk, NULL, &darg); 2269 if (err < 0) { 2270 tls_err_abort(sk, -EBADMSG); 2271 goto splice_read_end; 2272 } 2273 2274 tls_rx_rec_done(ctx); 2275 skb = darg.skb; 2276 } 2277 2278 rxm = strp_msg(skb); 2279 tlm = tls_msg(skb); 2280 2281 /* splice does not support reading control messages */ 2282 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2283 err = -EINVAL; 2284 goto splice_requeue; 2285 } 2286 2287 chunk = min_t(unsigned int, rxm->full_len, len); 2288 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2289 if (copied < 0) 2290 goto splice_requeue; 2291 2292 if (chunk < rxm->full_len) { 2293 rxm->offset += len; 2294 rxm->full_len -= len; 2295 goto splice_requeue; 2296 } 2297 2298 consume_skb(skb); 2299 2300 splice_read_end: 2301 tls_rx_reader_unlock(sk, ctx); 2302 return copied ? : err; 2303 2304 splice_requeue: 2305 __skb_queue_head(&ctx->rx_list, skb); 2306 goto splice_read_end; 2307 } 2308 2309 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2310 sk_read_actor_t read_actor) 2311 { 2312 struct tls_context *tls_ctx = tls_get_ctx(sk); 2313 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2314 struct tls_prot_info *prot = &tls_ctx->prot_info; 2315 struct strp_msg *rxm = NULL; 2316 struct sk_buff *skb = NULL; 2317 struct sk_psock *psock; 2318 size_t flushed_at = 0; 2319 bool released = true; 2320 struct tls_msg *tlm; 2321 ssize_t copied = 0; 2322 ssize_t decrypted; 2323 int err, used; 2324 2325 psock = sk_psock_get(sk); 2326 if (psock) { 2327 sk_psock_put(sk, psock); 2328 return -EINVAL; 2329 } 2330 err = tls_rx_reader_acquire(sk, ctx, true); 2331 if (err < 0) 2332 return err; 2333 2334 /* If crypto failed the connection is broken */ 2335 err = ctx->async_wait.err; 2336 if (err) 2337 goto read_sock_end; 2338 2339 decrypted = 0; 2340 do { 2341 if (!skb_queue_empty(&ctx->rx_list)) { 2342 skb = __skb_dequeue(&ctx->rx_list); 2343 rxm = strp_msg(skb); 2344 tlm = tls_msg(skb); 2345 } else { 2346 struct tls_decrypt_arg darg; 2347 2348 err = tls_rx_rec_wait(sk, NULL, true, released); 2349 if (err <= 0) 2350 goto read_sock_end; 2351 2352 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2353 2354 err = tls_rx_one_record(sk, NULL, &darg); 2355 if (err < 0) { 2356 tls_err_abort(sk, -EBADMSG); 2357 goto read_sock_end; 2358 } 2359 2360 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2361 0, decrypted, 2362 &flushed_at); 2363 skb = darg.skb; 2364 rxm = strp_msg(skb); 2365 tlm = tls_msg(skb); 2366 decrypted += rxm->full_len; 2367 2368 tls_rx_rec_done(ctx); 2369 } 2370 2371 /* read_sock does not support reading control messages */ 2372 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2373 err = -EINVAL; 2374 goto read_sock_requeue; 2375 } 2376 2377 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2378 if (used <= 0) { 2379 if (!copied) 2380 err = used; 2381 goto read_sock_requeue; 2382 } 2383 copied += used; 2384 if (used < rxm->full_len) { 2385 rxm->offset += used; 2386 rxm->full_len -= used; 2387 if (!desc->count) 2388 goto read_sock_requeue; 2389 } else { 2390 consume_skb(skb); 2391 if (!desc->count) 2392 skb = NULL; 2393 } 2394 } while (skb); 2395 2396 read_sock_end: 2397 tls_rx_reader_release(sk, ctx); 2398 return copied ? : err; 2399 2400 read_sock_requeue: 2401 __skb_queue_head(&ctx->rx_list, skb); 2402 goto read_sock_end; 2403 } 2404 2405 bool tls_sw_sock_is_readable(struct sock *sk) 2406 { 2407 struct tls_context *tls_ctx = tls_get_ctx(sk); 2408 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2409 bool ingress_empty = true; 2410 struct sk_psock *psock; 2411 2412 rcu_read_lock(); 2413 psock = sk_psock(sk); 2414 if (psock) 2415 ingress_empty = list_empty(&psock->ingress_msg); 2416 rcu_read_unlock(); 2417 2418 return !ingress_empty || tls_strp_msg_ready(ctx) || 2419 !skb_queue_empty(&ctx->rx_list); 2420 } 2421 2422 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2423 { 2424 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2425 struct tls_prot_info *prot = &tls_ctx->prot_info; 2426 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2427 size_t cipher_overhead; 2428 size_t data_len = 0; 2429 int ret; 2430 2431 /* Verify that we have a full TLS header, or wait for more data */ 2432 if (strp->stm.offset + prot->prepend_size > skb->len) 2433 return 0; 2434 2435 /* Sanity-check size of on-stack buffer. */ 2436 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2437 ret = -EINVAL; 2438 goto read_failure; 2439 } 2440 2441 /* Linearize header to local buffer */ 2442 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2443 if (ret < 0) 2444 goto read_failure; 2445 2446 strp->mark = header[0]; 2447 2448 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2449 2450 cipher_overhead = prot->tag_size; 2451 if (prot->version != TLS_1_3_VERSION && 2452 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2453 cipher_overhead += prot->iv_size; 2454 2455 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2456 prot->tail_size) { 2457 ret = -EMSGSIZE; 2458 goto read_failure; 2459 } 2460 if (data_len < cipher_overhead) { 2461 ret = -EBADMSG; 2462 goto read_failure; 2463 } 2464 2465 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2466 if (header[1] != TLS_1_2_VERSION_MINOR || 2467 header[2] != TLS_1_2_VERSION_MAJOR) { 2468 ret = -EINVAL; 2469 goto read_failure; 2470 } 2471 2472 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2473 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2474 return data_len + TLS_HEADER_SIZE; 2475 2476 read_failure: 2477 tls_err_abort(strp->sk, ret); 2478 2479 return ret; 2480 } 2481 2482 void tls_rx_msg_ready(struct tls_strparser *strp) 2483 { 2484 struct tls_sw_context_rx *ctx; 2485 2486 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2487 ctx->saved_data_ready(strp->sk); 2488 } 2489 2490 static void tls_data_ready(struct sock *sk) 2491 { 2492 struct tls_context *tls_ctx = tls_get_ctx(sk); 2493 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2494 struct sk_psock *psock; 2495 gfp_t alloc_save; 2496 2497 trace_sk_data_ready(sk); 2498 2499 alloc_save = sk->sk_allocation; 2500 sk->sk_allocation = GFP_ATOMIC; 2501 tls_strp_data_ready(&ctx->strp); 2502 sk->sk_allocation = alloc_save; 2503 2504 psock = sk_psock_get(sk); 2505 if (psock) { 2506 if (!list_empty(&psock->ingress_msg)) 2507 ctx->saved_data_ready(sk); 2508 sk_psock_put(sk, psock); 2509 } 2510 } 2511 2512 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2513 { 2514 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2515 2516 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2517 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2518 cancel_delayed_work_sync(&ctx->tx_work.work); 2519 } 2520 2521 void tls_sw_release_resources_tx(struct sock *sk) 2522 { 2523 struct tls_context *tls_ctx = tls_get_ctx(sk); 2524 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2525 struct tls_rec *rec, *tmp; 2526 2527 /* Wait for any pending async encryptions to complete */ 2528 tls_encrypt_async_wait(ctx); 2529 2530 tls_tx_records(sk, -1); 2531 2532 /* Free up un-sent records in tx_list. First, free 2533 * the partially sent record if any at head of tx_list. 2534 */ 2535 if (tls_ctx->partially_sent_record) { 2536 tls_free_partial_record(sk, tls_ctx); 2537 rec = list_first_entry(&ctx->tx_list, 2538 struct tls_rec, list); 2539 list_del(&rec->list); 2540 sk_msg_free(sk, &rec->msg_plaintext); 2541 kfree(rec); 2542 } 2543 2544 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2545 list_del(&rec->list); 2546 sk_msg_free(sk, &rec->msg_encrypted); 2547 sk_msg_free(sk, &rec->msg_plaintext); 2548 kfree(rec); 2549 } 2550 2551 crypto_free_aead(ctx->aead_send); 2552 tls_free_open_rec(sk); 2553 } 2554 2555 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2556 { 2557 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2558 2559 kfree(ctx); 2560 } 2561 2562 void tls_sw_release_resources_rx(struct sock *sk) 2563 { 2564 struct tls_context *tls_ctx = tls_get_ctx(sk); 2565 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2566 2567 if (ctx->aead_recv) { 2568 __skb_queue_purge(&ctx->rx_list); 2569 crypto_free_aead(ctx->aead_recv); 2570 tls_strp_stop(&ctx->strp); 2571 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2572 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2573 * never swapped. 2574 */ 2575 if (ctx->saved_data_ready) { 2576 write_lock_bh(&sk->sk_callback_lock); 2577 sk->sk_data_ready = ctx->saved_data_ready; 2578 write_unlock_bh(&sk->sk_callback_lock); 2579 } 2580 } 2581 } 2582 2583 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2584 { 2585 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2586 2587 tls_strp_done(&ctx->strp); 2588 } 2589 2590 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2591 { 2592 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2593 2594 kfree(ctx); 2595 } 2596 2597 void tls_sw_free_resources_rx(struct sock *sk) 2598 { 2599 struct tls_context *tls_ctx = tls_get_ctx(sk); 2600 2601 tls_sw_release_resources_rx(sk); 2602 tls_sw_free_ctx_rx(tls_ctx); 2603 } 2604 2605 /* The work handler to transmitt the encrypted records in tx_list */ 2606 static void tx_work_handler(struct work_struct *work) 2607 { 2608 struct delayed_work *delayed_work = to_delayed_work(work); 2609 struct tx_work *tx_work = container_of(delayed_work, 2610 struct tx_work, work); 2611 struct sock *sk = tx_work->sk; 2612 struct tls_context *tls_ctx = tls_get_ctx(sk); 2613 struct tls_sw_context_tx *ctx; 2614 2615 if (unlikely(!tls_ctx)) 2616 return; 2617 2618 ctx = tls_sw_ctx_tx(tls_ctx); 2619 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2620 return; 2621 2622 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2623 return; 2624 2625 if (mutex_trylock(&tls_ctx->tx_lock)) { 2626 lock_sock(sk); 2627 tls_tx_records(sk, -1); 2628 release_sock(sk); 2629 mutex_unlock(&tls_ctx->tx_lock); 2630 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2631 /* Someone is holding the tx_lock, they will likely run Tx 2632 * and cancel the work on their way out of the lock section. 2633 * Schedule a long delay just in case. 2634 */ 2635 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2636 } 2637 } 2638 2639 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2640 { 2641 struct tls_rec *rec; 2642 2643 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2644 if (!rec) 2645 return false; 2646 2647 return READ_ONCE(rec->tx_ready); 2648 } 2649 2650 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2651 { 2652 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2653 2654 /* Schedule the transmission if tx list is ready */ 2655 if (tls_is_tx_ready(tx_ctx) && 2656 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2657 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2658 } 2659 2660 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2661 { 2662 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2663 2664 write_lock_bh(&sk->sk_callback_lock); 2665 rx_ctx->saved_data_ready = sk->sk_data_ready; 2666 sk->sk_data_ready = tls_data_ready; 2667 write_unlock_bh(&sk->sk_callback_lock); 2668 } 2669 2670 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2671 { 2672 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2673 2674 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2675 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2676 } 2677 2678 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2679 { 2680 struct tls_sw_context_tx *sw_ctx_tx; 2681 2682 if (!ctx->priv_ctx_tx) { 2683 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2684 if (!sw_ctx_tx) 2685 return NULL; 2686 } else { 2687 sw_ctx_tx = ctx->priv_ctx_tx; 2688 } 2689 2690 crypto_init_wait(&sw_ctx_tx->async_wait); 2691 atomic_set(&sw_ctx_tx->encrypt_pending, 1); 2692 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2693 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2694 sw_ctx_tx->tx_work.sk = sk; 2695 2696 return sw_ctx_tx; 2697 } 2698 2699 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2700 { 2701 struct tls_sw_context_rx *sw_ctx_rx; 2702 2703 if (!ctx->priv_ctx_rx) { 2704 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2705 if (!sw_ctx_rx) 2706 return NULL; 2707 } else { 2708 sw_ctx_rx = ctx->priv_ctx_rx; 2709 } 2710 2711 crypto_init_wait(&sw_ctx_rx->async_wait); 2712 atomic_set(&sw_ctx_rx->decrypt_pending, 1); 2713 init_waitqueue_head(&sw_ctx_rx->wq); 2714 skb_queue_head_init(&sw_ctx_rx->rx_list); 2715 skb_queue_head_init(&sw_ctx_rx->async_hold); 2716 2717 return sw_ctx_rx; 2718 } 2719 2720 int init_prot_info(struct tls_prot_info *prot, 2721 const struct tls_crypto_info *crypto_info, 2722 const struct tls_cipher_desc *cipher_desc) 2723 { 2724 u16 nonce_size = cipher_desc->nonce; 2725 2726 if (crypto_info->version == TLS_1_3_VERSION) { 2727 nonce_size = 0; 2728 prot->aad_size = TLS_HEADER_SIZE; 2729 prot->tail_size = 1; 2730 } else { 2731 prot->aad_size = TLS_AAD_SPACE_SIZE; 2732 prot->tail_size = 0; 2733 } 2734 2735 /* Sanity-check the sizes for stack allocations. */ 2736 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2737 return -EINVAL; 2738 2739 prot->version = crypto_info->version; 2740 prot->cipher_type = crypto_info->cipher_type; 2741 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2742 prot->tag_size = cipher_desc->tag; 2743 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2744 prot->iv_size = cipher_desc->iv; 2745 prot->salt_size = cipher_desc->salt; 2746 prot->rec_seq_size = cipher_desc->rec_seq; 2747 2748 return 0; 2749 } 2750 2751 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx) 2752 { 2753 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx; 2754 2755 WRITE_ONCE(ctx->key_update_pending, false); 2756 /* wake-up pre-existing poll() */ 2757 ctx->saved_data_ready(sk); 2758 } 2759 2760 int tls_set_sw_offload(struct sock *sk, int tx, 2761 struct tls_crypto_info *new_crypto_info) 2762 { 2763 struct tls_crypto_info *crypto_info, *src_crypto_info; 2764 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2765 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2766 const struct tls_cipher_desc *cipher_desc; 2767 char *iv, *rec_seq, *key, *salt; 2768 struct cipher_context *cctx; 2769 struct tls_prot_info *prot; 2770 struct crypto_aead **aead; 2771 struct tls_context *ctx; 2772 struct crypto_tfm *tfm; 2773 int rc = 0; 2774 2775 ctx = tls_get_ctx(sk); 2776 prot = &ctx->prot_info; 2777 2778 /* new_crypto_info != NULL means rekey */ 2779 if (!new_crypto_info) { 2780 if (tx) { 2781 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2782 if (!ctx->priv_ctx_tx) 2783 return -ENOMEM; 2784 } else { 2785 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2786 if (!ctx->priv_ctx_rx) 2787 return -ENOMEM; 2788 } 2789 } 2790 2791 if (tx) { 2792 sw_ctx_tx = ctx->priv_ctx_tx; 2793 crypto_info = &ctx->crypto_send.info; 2794 cctx = &ctx->tx; 2795 aead = &sw_ctx_tx->aead_send; 2796 } else { 2797 sw_ctx_rx = ctx->priv_ctx_rx; 2798 crypto_info = &ctx->crypto_recv.info; 2799 cctx = &ctx->rx; 2800 aead = &sw_ctx_rx->aead_recv; 2801 } 2802 2803 src_crypto_info = new_crypto_info ?: crypto_info; 2804 2805 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type); 2806 if (!cipher_desc) { 2807 rc = -EINVAL; 2808 goto free_priv; 2809 } 2810 2811 rc = init_prot_info(prot, src_crypto_info, cipher_desc); 2812 if (rc) 2813 goto free_priv; 2814 2815 iv = crypto_info_iv(src_crypto_info, cipher_desc); 2816 key = crypto_info_key(src_crypto_info, cipher_desc); 2817 salt = crypto_info_salt(src_crypto_info, cipher_desc); 2818 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc); 2819 2820 if (!*aead) { 2821 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2822 if (IS_ERR(*aead)) { 2823 rc = PTR_ERR(*aead); 2824 *aead = NULL; 2825 goto free_priv; 2826 } 2827 } 2828 2829 ctx->push_pending_record = tls_sw_push_pending_record; 2830 2831 /* setkey is the last operation that could fail during a 2832 * rekey. if it succeeds, we can start modifying the 2833 * context. 2834 */ 2835 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2836 if (rc) { 2837 if (new_crypto_info) 2838 goto out; 2839 else 2840 goto free_aead; 2841 } 2842 2843 if (!new_crypto_info) { 2844 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2845 if (rc) 2846 goto free_aead; 2847 } 2848 2849 if (!tx && !new_crypto_info) { 2850 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2851 2852 tls_update_rx_zc_capable(ctx); 2853 sw_ctx_rx->async_capable = 2854 src_crypto_info->version != TLS_1_3_VERSION && 2855 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2856 2857 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2858 if (rc) 2859 goto free_aead; 2860 } 2861 2862 memcpy(cctx->iv, salt, cipher_desc->salt); 2863 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2864 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2865 2866 if (new_crypto_info) { 2867 unsafe_memcpy(crypto_info, new_crypto_info, 2868 cipher_desc->crypto_info, 2869 /* size was checked in do_tls_setsockopt_conf */); 2870 memzero_explicit(new_crypto_info, cipher_desc->crypto_info); 2871 if (!tx) 2872 tls_finish_key_update(sk, ctx); 2873 } 2874 2875 goto out; 2876 2877 free_aead: 2878 crypto_free_aead(*aead); 2879 *aead = NULL; 2880 free_priv: 2881 if (!new_crypto_info) { 2882 if (tx) { 2883 kfree(ctx->priv_ctx_tx); 2884 ctx->priv_ctx_tx = NULL; 2885 } else { 2886 kfree(ctx->priv_ctx_rx); 2887 ctx->priv_ctx_rx = NULL; 2888 } 2889 } 2890 out: 2891 return rc; 2892 } 2893