xref: /linux/net/tls/tls_sw.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
46 
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54 
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57 
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67 
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70 
71                 WARN_ON(start > offset + len);
72 
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86 
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90 
91                         WARN_ON(start > offset + len);
92 
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114 
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122 
123 static int padding_length(struct tls_sw_context_rx *ctx,
124 			  struct tls_context *tls_ctx, struct sk_buff *skb)
125 {
126 	struct strp_msg *rxm = strp_msg(skb);
127 	int sub = 0;
128 
129 	/* Determine zero-padding length */
130 	if (tls_ctx->prot_info.version == TLS_1_3_VERSION) {
131 		char content_type = 0;
132 		int err;
133 		int back = 17;
134 
135 		while (content_type == 0) {
136 			if (back > rxm->full_len)
137 				return -EBADMSG;
138 			err = skb_copy_bits(skb,
139 					    rxm->offset + rxm->full_len - back,
140 					    &content_type, 1);
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct tls_prot_info *prot;
159 	struct scatterlist *sg;
160 	struct sk_buff *skb;
161 	unsigned int pages;
162 	int pending;
163 
164 	skb = (struct sk_buff *)req->data;
165 	tls_ctx = tls_get_ctx(skb->sk);
166 	ctx = tls_sw_ctx_rx(tls_ctx);
167 	prot = &tls_ctx->prot_info;
168 
169 	/* Propagate if there was an err */
170 	if (err) {
171 		ctx->async_wait.err = err;
172 		tls_err_abort(skb->sk, err);
173 	} else {
174 		struct strp_msg *rxm = strp_msg(skb);
175 		rxm->full_len -= padding_length(ctx, tls_ctx, skb);
176 		rxm->offset += prot->prepend_size;
177 		rxm->full_len -= prot->overhead_size;
178 	}
179 
180 	/* After using skb->sk to propagate sk through crypto async callback
181 	 * we need to NULL it again.
182 	 */
183 	skb->sk = NULL;
184 
185 
186 	/* Free the destination pages if skb was not decrypted inplace */
187 	if (sgout != sgin) {
188 		/* Skip the first S/G entry as it points to AAD */
189 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
190 			if (!sg)
191 				break;
192 			put_page(sg_page(sg));
193 		}
194 	}
195 
196 	kfree(aead_req);
197 
198 	pending = atomic_dec_return(&ctx->decrypt_pending);
199 
200 	if (!pending && READ_ONCE(ctx->async_notify))
201 		complete(&ctx->async_wait.completion);
202 }
203 
204 static int tls_do_decryption(struct sock *sk,
205 			     struct sk_buff *skb,
206 			     struct scatterlist *sgin,
207 			     struct scatterlist *sgout,
208 			     char *iv_recv,
209 			     size_t data_len,
210 			     struct aead_request *aead_req,
211 			     bool async)
212 {
213 	struct tls_context *tls_ctx = tls_get_ctx(sk);
214 	struct tls_prot_info *prot = &tls_ctx->prot_info;
215 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
216 	int ret;
217 
218 	aead_request_set_tfm(aead_req, ctx->aead_recv);
219 	aead_request_set_ad(aead_req, prot->aad_size);
220 	aead_request_set_crypt(aead_req, sgin, sgout,
221 			       data_len + prot->tag_size,
222 			       (u8 *)iv_recv);
223 
224 	if (async) {
225 		/* Using skb->sk to push sk through to crypto async callback
226 		 * handler. This allows propagating errors up to the socket
227 		 * if needed. It _must_ be cleared in the async handler
228 		 * before kfree_skb is called. We _know_ skb->sk is NULL
229 		 * because it is a clone from strparser.
230 		 */
231 		skb->sk = sk;
232 		aead_request_set_callback(aead_req,
233 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
234 					  tls_decrypt_done, skb);
235 		atomic_inc(&ctx->decrypt_pending);
236 	} else {
237 		aead_request_set_callback(aead_req,
238 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
239 					  crypto_req_done, &ctx->async_wait);
240 	}
241 
242 	ret = crypto_aead_decrypt(aead_req);
243 	if (ret == -EINPROGRESS) {
244 		if (async)
245 			return ret;
246 
247 		ret = crypto_wait_req(ret, &ctx->async_wait);
248 	}
249 
250 	if (async)
251 		atomic_dec(&ctx->decrypt_pending);
252 
253 	return ret;
254 }
255 
256 static void tls_trim_both_msgs(struct sock *sk, int target_size)
257 {
258 	struct tls_context *tls_ctx = tls_get_ctx(sk);
259 	struct tls_prot_info *prot = &tls_ctx->prot_info;
260 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
261 	struct tls_rec *rec = ctx->open_rec;
262 
263 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
264 	if (target_size > 0)
265 		target_size += prot->overhead_size;
266 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
267 }
268 
269 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
270 {
271 	struct tls_context *tls_ctx = tls_get_ctx(sk);
272 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
273 	struct tls_rec *rec = ctx->open_rec;
274 	struct sk_msg *msg_en = &rec->msg_encrypted;
275 
276 	return sk_msg_alloc(sk, msg_en, len, 0);
277 }
278 
279 static int tls_clone_plaintext_msg(struct sock *sk, int required)
280 {
281 	struct tls_context *tls_ctx = tls_get_ctx(sk);
282 	struct tls_prot_info *prot = &tls_ctx->prot_info;
283 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 	struct tls_rec *rec = ctx->open_rec;
285 	struct sk_msg *msg_pl = &rec->msg_plaintext;
286 	struct sk_msg *msg_en = &rec->msg_encrypted;
287 	int skip, len;
288 
289 	/* We add page references worth len bytes from encrypted sg
290 	 * at the end of plaintext sg. It is guaranteed that msg_en
291 	 * has enough required room (ensured by caller).
292 	 */
293 	len = required - msg_pl->sg.size;
294 
295 	/* Skip initial bytes in msg_en's data to be able to use
296 	 * same offset of both plain and encrypted data.
297 	 */
298 	skip = prot->prepend_size + msg_pl->sg.size;
299 
300 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
301 }
302 
303 static struct tls_rec *tls_get_rec(struct sock *sk)
304 {
305 	struct tls_context *tls_ctx = tls_get_ctx(sk);
306 	struct tls_prot_info *prot = &tls_ctx->prot_info;
307 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
308 	struct sk_msg *msg_pl, *msg_en;
309 	struct tls_rec *rec;
310 	int mem_size;
311 
312 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
313 
314 	rec = kzalloc(mem_size, sk->sk_allocation);
315 	if (!rec)
316 		return NULL;
317 
318 	msg_pl = &rec->msg_plaintext;
319 	msg_en = &rec->msg_encrypted;
320 
321 	sk_msg_init(msg_pl);
322 	sk_msg_init(msg_en);
323 
324 	sg_init_table(rec->sg_aead_in, 2);
325 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
326 	sg_unmark_end(&rec->sg_aead_in[1]);
327 
328 	sg_init_table(rec->sg_aead_out, 2);
329 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
330 	sg_unmark_end(&rec->sg_aead_out[1]);
331 
332 	return rec;
333 }
334 
335 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
336 {
337 	sk_msg_free(sk, &rec->msg_encrypted);
338 	sk_msg_free(sk, &rec->msg_plaintext);
339 	kfree(rec);
340 }
341 
342 static void tls_free_open_rec(struct sock *sk)
343 {
344 	struct tls_context *tls_ctx = tls_get_ctx(sk);
345 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
346 	struct tls_rec *rec = ctx->open_rec;
347 
348 	if (rec) {
349 		tls_free_rec(sk, rec);
350 		ctx->open_rec = NULL;
351 	}
352 }
353 
354 int tls_tx_records(struct sock *sk, int flags)
355 {
356 	struct tls_context *tls_ctx = tls_get_ctx(sk);
357 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
358 	struct tls_rec *rec, *tmp;
359 	struct sk_msg *msg_en;
360 	int tx_flags, rc = 0;
361 
362 	if (tls_is_partially_sent_record(tls_ctx)) {
363 		rec = list_first_entry(&ctx->tx_list,
364 				       struct tls_rec, list);
365 
366 		if (flags == -1)
367 			tx_flags = rec->tx_flags;
368 		else
369 			tx_flags = flags;
370 
371 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
372 		if (rc)
373 			goto tx_err;
374 
375 		/* Full record has been transmitted.
376 		 * Remove the head of tx_list
377 		 */
378 		list_del(&rec->list);
379 		sk_msg_free(sk, &rec->msg_plaintext);
380 		kfree(rec);
381 	}
382 
383 	/* Tx all ready records */
384 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
385 		if (READ_ONCE(rec->tx_ready)) {
386 			if (flags == -1)
387 				tx_flags = rec->tx_flags;
388 			else
389 				tx_flags = flags;
390 
391 			msg_en = &rec->msg_encrypted;
392 			rc = tls_push_sg(sk, tls_ctx,
393 					 &msg_en->sg.data[msg_en->sg.curr],
394 					 0, tx_flags);
395 			if (rc)
396 				goto tx_err;
397 
398 			list_del(&rec->list);
399 			sk_msg_free(sk, &rec->msg_plaintext);
400 			kfree(rec);
401 		} else {
402 			break;
403 		}
404 	}
405 
406 tx_err:
407 	if (rc < 0 && rc != -EAGAIN)
408 		tls_err_abort(sk, EBADMSG);
409 
410 	return rc;
411 }
412 
413 static void tls_encrypt_done(struct crypto_async_request *req, int err)
414 {
415 	struct aead_request *aead_req = (struct aead_request *)req;
416 	struct sock *sk = req->data;
417 	struct tls_context *tls_ctx = tls_get_ctx(sk);
418 	struct tls_prot_info *prot = &tls_ctx->prot_info;
419 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
420 	struct scatterlist *sge;
421 	struct sk_msg *msg_en;
422 	struct tls_rec *rec;
423 	bool ready = false;
424 	int pending;
425 
426 	rec = container_of(aead_req, struct tls_rec, aead_req);
427 	msg_en = &rec->msg_encrypted;
428 
429 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
430 	sge->offset -= prot->prepend_size;
431 	sge->length += prot->prepend_size;
432 
433 	/* Check if error is previously set on socket */
434 	if (err || sk->sk_err) {
435 		rec = NULL;
436 
437 		/* If err is already set on socket, return the same code */
438 		if (sk->sk_err) {
439 			ctx->async_wait.err = sk->sk_err;
440 		} else {
441 			ctx->async_wait.err = err;
442 			tls_err_abort(sk, err);
443 		}
444 	}
445 
446 	if (rec) {
447 		struct tls_rec *first_rec;
448 
449 		/* Mark the record as ready for transmission */
450 		smp_store_mb(rec->tx_ready, true);
451 
452 		/* If received record is at head of tx_list, schedule tx */
453 		first_rec = list_first_entry(&ctx->tx_list,
454 					     struct tls_rec, list);
455 		if (rec == first_rec)
456 			ready = true;
457 	}
458 
459 	pending = atomic_dec_return(&ctx->encrypt_pending);
460 
461 	if (!pending && READ_ONCE(ctx->async_notify))
462 		complete(&ctx->async_wait.completion);
463 
464 	if (!ready)
465 		return;
466 
467 	/* Schedule the transmission */
468 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
469 		schedule_delayed_work(&ctx->tx_work.work, 1);
470 }
471 
472 static int tls_do_encryption(struct sock *sk,
473 			     struct tls_context *tls_ctx,
474 			     struct tls_sw_context_tx *ctx,
475 			     struct aead_request *aead_req,
476 			     size_t data_len, u32 start)
477 {
478 	struct tls_prot_info *prot = &tls_ctx->prot_info;
479 	struct tls_rec *rec = ctx->open_rec;
480 	struct sk_msg *msg_en = &rec->msg_encrypted;
481 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
482 	int rc;
483 
484 	memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
485 	xor_iv_with_seq(prot->version, rec->iv_data,
486 			tls_ctx->tx.rec_seq);
487 
488 	sge->offset += prot->prepend_size;
489 	sge->length -= prot->prepend_size;
490 
491 	msg_en->sg.curr = start;
492 
493 	aead_request_set_tfm(aead_req, ctx->aead_send);
494 	aead_request_set_ad(aead_req, prot->aad_size);
495 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
496 			       rec->sg_aead_out,
497 			       data_len, rec->iv_data);
498 
499 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
500 				  tls_encrypt_done, sk);
501 
502 	/* Add the record in tx_list */
503 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
504 	atomic_inc(&ctx->encrypt_pending);
505 
506 	rc = crypto_aead_encrypt(aead_req);
507 	if (!rc || rc != -EINPROGRESS) {
508 		atomic_dec(&ctx->encrypt_pending);
509 		sge->offset -= prot->prepend_size;
510 		sge->length += prot->prepend_size;
511 	}
512 
513 	if (!rc) {
514 		WRITE_ONCE(rec->tx_ready, true);
515 	} else if (rc != -EINPROGRESS) {
516 		list_del(&rec->list);
517 		return rc;
518 	}
519 
520 	/* Unhook the record from context if encryption is not failure */
521 	ctx->open_rec = NULL;
522 	tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
523 	return rc;
524 }
525 
526 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
527 				 struct tls_rec **to, struct sk_msg *msg_opl,
528 				 struct sk_msg *msg_oen, u32 split_point,
529 				 u32 tx_overhead_size, u32 *orig_end)
530 {
531 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
532 	struct scatterlist *sge, *osge, *nsge;
533 	u32 orig_size = msg_opl->sg.size;
534 	struct scatterlist tmp = { };
535 	struct sk_msg *msg_npl;
536 	struct tls_rec *new;
537 	int ret;
538 
539 	new = tls_get_rec(sk);
540 	if (!new)
541 		return -ENOMEM;
542 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
543 			   tx_overhead_size, 0);
544 	if (ret < 0) {
545 		tls_free_rec(sk, new);
546 		return ret;
547 	}
548 
549 	*orig_end = msg_opl->sg.end;
550 	i = msg_opl->sg.start;
551 	sge = sk_msg_elem(msg_opl, i);
552 	while (apply && sge->length) {
553 		if (sge->length > apply) {
554 			u32 len = sge->length - apply;
555 
556 			get_page(sg_page(sge));
557 			sg_set_page(&tmp, sg_page(sge), len,
558 				    sge->offset + apply);
559 			sge->length = apply;
560 			bytes += apply;
561 			apply = 0;
562 		} else {
563 			apply -= sge->length;
564 			bytes += sge->length;
565 		}
566 
567 		sk_msg_iter_var_next(i);
568 		if (i == msg_opl->sg.end)
569 			break;
570 		sge = sk_msg_elem(msg_opl, i);
571 	}
572 
573 	msg_opl->sg.end = i;
574 	msg_opl->sg.curr = i;
575 	msg_opl->sg.copybreak = 0;
576 	msg_opl->apply_bytes = 0;
577 	msg_opl->sg.size = bytes;
578 
579 	msg_npl = &new->msg_plaintext;
580 	msg_npl->apply_bytes = apply;
581 	msg_npl->sg.size = orig_size - bytes;
582 
583 	j = msg_npl->sg.start;
584 	nsge = sk_msg_elem(msg_npl, j);
585 	if (tmp.length) {
586 		memcpy(nsge, &tmp, sizeof(*nsge));
587 		sk_msg_iter_var_next(j);
588 		nsge = sk_msg_elem(msg_npl, j);
589 	}
590 
591 	osge = sk_msg_elem(msg_opl, i);
592 	while (osge->length) {
593 		memcpy(nsge, osge, sizeof(*nsge));
594 		sg_unmark_end(nsge);
595 		sk_msg_iter_var_next(i);
596 		sk_msg_iter_var_next(j);
597 		if (i == *orig_end)
598 			break;
599 		osge = sk_msg_elem(msg_opl, i);
600 		nsge = sk_msg_elem(msg_npl, j);
601 	}
602 
603 	msg_npl->sg.end = j;
604 	msg_npl->sg.curr = j;
605 	msg_npl->sg.copybreak = 0;
606 
607 	*to = new;
608 	return 0;
609 }
610 
611 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
612 				  struct tls_rec *from, u32 orig_end)
613 {
614 	struct sk_msg *msg_npl = &from->msg_plaintext;
615 	struct sk_msg *msg_opl = &to->msg_plaintext;
616 	struct scatterlist *osge, *nsge;
617 	u32 i, j;
618 
619 	i = msg_opl->sg.end;
620 	sk_msg_iter_var_prev(i);
621 	j = msg_npl->sg.start;
622 
623 	osge = sk_msg_elem(msg_opl, i);
624 	nsge = sk_msg_elem(msg_npl, j);
625 
626 	if (sg_page(osge) == sg_page(nsge) &&
627 	    osge->offset + osge->length == nsge->offset) {
628 		osge->length += nsge->length;
629 		put_page(sg_page(nsge));
630 	}
631 
632 	msg_opl->sg.end = orig_end;
633 	msg_opl->sg.curr = orig_end;
634 	msg_opl->sg.copybreak = 0;
635 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
636 	msg_opl->sg.size += msg_npl->sg.size;
637 
638 	sk_msg_free(sk, &to->msg_encrypted);
639 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
640 
641 	kfree(from);
642 }
643 
644 static int tls_push_record(struct sock *sk, int flags,
645 			   unsigned char record_type)
646 {
647 	struct tls_context *tls_ctx = tls_get_ctx(sk);
648 	struct tls_prot_info *prot = &tls_ctx->prot_info;
649 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
650 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
651 	u32 i, split_point, uninitialized_var(orig_end);
652 	struct sk_msg *msg_pl, *msg_en;
653 	struct aead_request *req;
654 	bool split;
655 	int rc;
656 
657 	if (!rec)
658 		return 0;
659 
660 	msg_pl = &rec->msg_plaintext;
661 	msg_en = &rec->msg_encrypted;
662 
663 	split_point = msg_pl->apply_bytes;
664 	split = split_point && split_point < msg_pl->sg.size;
665 	if (split) {
666 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
667 					   split_point, prot->overhead_size,
668 					   &orig_end);
669 		if (rc < 0)
670 			return rc;
671 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
672 			    prot->overhead_size);
673 	}
674 
675 	rec->tx_flags = flags;
676 	req = &rec->aead_req;
677 
678 	i = msg_pl->sg.end;
679 	sk_msg_iter_var_prev(i);
680 
681 	rec->content_type = record_type;
682 	if (prot->version == TLS_1_3_VERSION) {
683 		/* Add content type to end of message.  No padding added */
684 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
685 		sg_mark_end(&rec->sg_content_type);
686 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
687 			 &rec->sg_content_type);
688 	} else {
689 		sg_mark_end(sk_msg_elem(msg_pl, i));
690 	}
691 
692 	i = msg_pl->sg.start;
693 	sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
694 		 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
695 
696 	i = msg_en->sg.end;
697 	sk_msg_iter_var_prev(i);
698 	sg_mark_end(sk_msg_elem(msg_en, i));
699 
700 	i = msg_en->sg.start;
701 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
702 
703 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
704 		     tls_ctx->tx.rec_seq, prot->rec_seq_size,
705 		     record_type, prot->version);
706 
707 	tls_fill_prepend(tls_ctx,
708 			 page_address(sg_page(&msg_en->sg.data[i])) +
709 			 msg_en->sg.data[i].offset,
710 			 msg_pl->sg.size + prot->tail_size,
711 			 record_type, prot->version);
712 
713 	tls_ctx->pending_open_record_frags = false;
714 
715 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
716 			       msg_pl->sg.size + prot->tail_size, i);
717 	if (rc < 0) {
718 		if (rc != -EINPROGRESS) {
719 			tls_err_abort(sk, EBADMSG);
720 			if (split) {
721 				tls_ctx->pending_open_record_frags = true;
722 				tls_merge_open_record(sk, rec, tmp, orig_end);
723 			}
724 		}
725 		ctx->async_capable = 1;
726 		return rc;
727 	} else if (split) {
728 		msg_pl = &tmp->msg_plaintext;
729 		msg_en = &tmp->msg_encrypted;
730 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
731 		tls_ctx->pending_open_record_frags = true;
732 		ctx->open_rec = tmp;
733 	}
734 
735 	return tls_tx_records(sk, flags);
736 }
737 
738 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
739 			       bool full_record, u8 record_type,
740 			       size_t *copied, int flags)
741 {
742 	struct tls_context *tls_ctx = tls_get_ctx(sk);
743 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
744 	struct sk_msg msg_redir = { };
745 	struct sk_psock *psock;
746 	struct sock *sk_redir;
747 	struct tls_rec *rec;
748 	bool enospc, policy;
749 	int err = 0, send;
750 	u32 delta = 0;
751 
752 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
753 	psock = sk_psock_get(sk);
754 	if (!psock || !policy)
755 		return tls_push_record(sk, flags, record_type);
756 more_data:
757 	enospc = sk_msg_full(msg);
758 	if (psock->eval == __SK_NONE) {
759 		delta = msg->sg.size;
760 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
761 		if (delta < msg->sg.size)
762 			delta -= msg->sg.size;
763 		else
764 			delta = 0;
765 	}
766 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
767 	    !enospc && !full_record) {
768 		err = -ENOSPC;
769 		goto out_err;
770 	}
771 	msg->cork_bytes = 0;
772 	send = msg->sg.size;
773 	if (msg->apply_bytes && msg->apply_bytes < send)
774 		send = msg->apply_bytes;
775 
776 	switch (psock->eval) {
777 	case __SK_PASS:
778 		err = tls_push_record(sk, flags, record_type);
779 		if (err < 0) {
780 			*copied -= sk_msg_free(sk, msg);
781 			tls_free_open_rec(sk);
782 			goto out_err;
783 		}
784 		break;
785 	case __SK_REDIRECT:
786 		sk_redir = psock->sk_redir;
787 		memcpy(&msg_redir, msg, sizeof(*msg));
788 		if (msg->apply_bytes < send)
789 			msg->apply_bytes = 0;
790 		else
791 			msg->apply_bytes -= send;
792 		sk_msg_return_zero(sk, msg, send);
793 		msg->sg.size -= send;
794 		release_sock(sk);
795 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
796 		lock_sock(sk);
797 		if (err < 0) {
798 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
799 			msg->sg.size = 0;
800 		}
801 		if (msg->sg.size == 0)
802 			tls_free_open_rec(sk);
803 		break;
804 	case __SK_DROP:
805 	default:
806 		sk_msg_free_partial(sk, msg, send);
807 		if (msg->apply_bytes < send)
808 			msg->apply_bytes = 0;
809 		else
810 			msg->apply_bytes -= send;
811 		if (msg->sg.size == 0)
812 			tls_free_open_rec(sk);
813 		*copied -= (send + delta);
814 		err = -EACCES;
815 	}
816 
817 	if (likely(!err)) {
818 		bool reset_eval = !ctx->open_rec;
819 
820 		rec = ctx->open_rec;
821 		if (rec) {
822 			msg = &rec->msg_plaintext;
823 			if (!msg->apply_bytes)
824 				reset_eval = true;
825 		}
826 		if (reset_eval) {
827 			psock->eval = __SK_NONE;
828 			if (psock->sk_redir) {
829 				sock_put(psock->sk_redir);
830 				psock->sk_redir = NULL;
831 			}
832 		}
833 		if (rec)
834 			goto more_data;
835 	}
836  out_err:
837 	sk_psock_put(sk, psock);
838 	return err;
839 }
840 
841 static int tls_sw_push_pending_record(struct sock *sk, int flags)
842 {
843 	struct tls_context *tls_ctx = tls_get_ctx(sk);
844 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
845 	struct tls_rec *rec = ctx->open_rec;
846 	struct sk_msg *msg_pl;
847 	size_t copied;
848 
849 	if (!rec)
850 		return 0;
851 
852 	msg_pl = &rec->msg_plaintext;
853 	copied = msg_pl->sg.size;
854 	if (!copied)
855 		return 0;
856 
857 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
858 				   &copied, flags);
859 }
860 
861 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
862 {
863 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
864 	struct tls_context *tls_ctx = tls_get_ctx(sk);
865 	struct tls_prot_info *prot = &tls_ctx->prot_info;
866 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
867 	bool async_capable = ctx->async_capable;
868 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
869 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
870 	bool eor = !(msg->msg_flags & MSG_MORE);
871 	size_t try_to_copy, copied = 0;
872 	struct sk_msg *msg_pl, *msg_en;
873 	struct tls_rec *rec;
874 	int required_size;
875 	int num_async = 0;
876 	bool full_record;
877 	int record_room;
878 	int num_zc = 0;
879 	int orig_size;
880 	int ret = 0;
881 
882 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
883 		return -ENOTSUPP;
884 
885 	lock_sock(sk);
886 
887 	/* Wait till there is any pending write on socket */
888 	if (unlikely(sk->sk_write_pending)) {
889 		ret = wait_on_pending_writer(sk, &timeo);
890 		if (unlikely(ret))
891 			goto send_end;
892 	}
893 
894 	if (unlikely(msg->msg_controllen)) {
895 		ret = tls_proccess_cmsg(sk, msg, &record_type);
896 		if (ret) {
897 			if (ret == -EINPROGRESS)
898 				num_async++;
899 			else if (ret != -EAGAIN)
900 				goto send_end;
901 		}
902 	}
903 
904 	while (msg_data_left(msg)) {
905 		if (sk->sk_err) {
906 			ret = -sk->sk_err;
907 			goto send_end;
908 		}
909 
910 		if (ctx->open_rec)
911 			rec = ctx->open_rec;
912 		else
913 			rec = ctx->open_rec = tls_get_rec(sk);
914 		if (!rec) {
915 			ret = -ENOMEM;
916 			goto send_end;
917 		}
918 
919 		msg_pl = &rec->msg_plaintext;
920 		msg_en = &rec->msg_encrypted;
921 
922 		orig_size = msg_pl->sg.size;
923 		full_record = false;
924 		try_to_copy = msg_data_left(msg);
925 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
926 		if (try_to_copy >= record_room) {
927 			try_to_copy = record_room;
928 			full_record = true;
929 		}
930 
931 		required_size = msg_pl->sg.size + try_to_copy +
932 				prot->overhead_size;
933 
934 		if (!sk_stream_memory_free(sk))
935 			goto wait_for_sndbuf;
936 
937 alloc_encrypted:
938 		ret = tls_alloc_encrypted_msg(sk, required_size);
939 		if (ret) {
940 			if (ret != -ENOSPC)
941 				goto wait_for_memory;
942 
943 			/* Adjust try_to_copy according to the amount that was
944 			 * actually allocated. The difference is due
945 			 * to max sg elements limit
946 			 */
947 			try_to_copy -= required_size - msg_en->sg.size;
948 			full_record = true;
949 		}
950 
951 		if (!is_kvec && (full_record || eor) && !async_capable) {
952 			u32 first = msg_pl->sg.end;
953 
954 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
955 							msg_pl, try_to_copy);
956 			if (ret)
957 				goto fallback_to_reg_send;
958 
959 			rec->inplace_crypto = 0;
960 
961 			num_zc++;
962 			copied += try_to_copy;
963 
964 			sk_msg_sg_copy_set(msg_pl, first);
965 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
966 						  record_type, &copied,
967 						  msg->msg_flags);
968 			if (ret) {
969 				if (ret == -EINPROGRESS)
970 					num_async++;
971 				else if (ret == -ENOMEM)
972 					goto wait_for_memory;
973 				else if (ret == -ENOSPC)
974 					goto rollback_iter;
975 				else if (ret != -EAGAIN)
976 					goto send_end;
977 			}
978 			continue;
979 rollback_iter:
980 			copied -= try_to_copy;
981 			sk_msg_sg_copy_clear(msg_pl, first);
982 			iov_iter_revert(&msg->msg_iter,
983 					msg_pl->sg.size - orig_size);
984 fallback_to_reg_send:
985 			sk_msg_trim(sk, msg_pl, orig_size);
986 		}
987 
988 		required_size = msg_pl->sg.size + try_to_copy;
989 
990 		ret = tls_clone_plaintext_msg(sk, required_size);
991 		if (ret) {
992 			if (ret != -ENOSPC)
993 				goto send_end;
994 
995 			/* Adjust try_to_copy according to the amount that was
996 			 * actually allocated. The difference is due
997 			 * to max sg elements limit
998 			 */
999 			try_to_copy -= required_size - msg_pl->sg.size;
1000 			full_record = true;
1001 			sk_msg_trim(sk, msg_en,
1002 				    msg_pl->sg.size + prot->overhead_size);
1003 		}
1004 
1005 		if (try_to_copy) {
1006 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1007 						       msg_pl, try_to_copy);
1008 			if (ret < 0)
1009 				goto trim_sgl;
1010 		}
1011 
1012 		/* Open records defined only if successfully copied, otherwise
1013 		 * we would trim the sg but not reset the open record frags.
1014 		 */
1015 		tls_ctx->pending_open_record_frags = true;
1016 		copied += try_to_copy;
1017 		if (full_record || eor) {
1018 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1019 						  record_type, &copied,
1020 						  msg->msg_flags);
1021 			if (ret) {
1022 				if (ret == -EINPROGRESS)
1023 					num_async++;
1024 				else if (ret == -ENOMEM)
1025 					goto wait_for_memory;
1026 				else if (ret != -EAGAIN) {
1027 					if (ret == -ENOSPC)
1028 						ret = 0;
1029 					goto send_end;
1030 				}
1031 			}
1032 		}
1033 
1034 		continue;
1035 
1036 wait_for_sndbuf:
1037 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1038 wait_for_memory:
1039 		ret = sk_stream_wait_memory(sk, &timeo);
1040 		if (ret) {
1041 trim_sgl:
1042 			tls_trim_both_msgs(sk, orig_size);
1043 			goto send_end;
1044 		}
1045 
1046 		if (msg_en->sg.size < required_size)
1047 			goto alloc_encrypted;
1048 	}
1049 
1050 	if (!num_async) {
1051 		goto send_end;
1052 	} else if (num_zc) {
1053 		/* Wait for pending encryptions to get completed */
1054 		smp_store_mb(ctx->async_notify, true);
1055 
1056 		if (atomic_read(&ctx->encrypt_pending))
1057 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1058 		else
1059 			reinit_completion(&ctx->async_wait.completion);
1060 
1061 		WRITE_ONCE(ctx->async_notify, false);
1062 
1063 		if (ctx->async_wait.err) {
1064 			ret = ctx->async_wait.err;
1065 			copied = 0;
1066 		}
1067 	}
1068 
1069 	/* Transmit if any encryptions have completed */
1070 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1071 		cancel_delayed_work(&ctx->tx_work.work);
1072 		tls_tx_records(sk, msg->msg_flags);
1073 	}
1074 
1075 send_end:
1076 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1077 
1078 	release_sock(sk);
1079 	return copied ? copied : ret;
1080 }
1081 
1082 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1083 			      int offset, size_t size, int flags)
1084 {
1085 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1087 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1088 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1089 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1090 	struct sk_msg *msg_pl;
1091 	struct tls_rec *rec;
1092 	int num_async = 0;
1093 	size_t copied = 0;
1094 	bool full_record;
1095 	int record_room;
1096 	int ret = 0;
1097 	bool eor;
1098 
1099 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1100 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1101 
1102 	/* Wait till there is any pending write on socket */
1103 	if (unlikely(sk->sk_write_pending)) {
1104 		ret = wait_on_pending_writer(sk, &timeo);
1105 		if (unlikely(ret))
1106 			goto sendpage_end;
1107 	}
1108 
1109 	/* Call the sk_stream functions to manage the sndbuf mem. */
1110 	while (size > 0) {
1111 		size_t copy, required_size;
1112 
1113 		if (sk->sk_err) {
1114 			ret = -sk->sk_err;
1115 			goto sendpage_end;
1116 		}
1117 
1118 		if (ctx->open_rec)
1119 			rec = ctx->open_rec;
1120 		else
1121 			rec = ctx->open_rec = tls_get_rec(sk);
1122 		if (!rec) {
1123 			ret = -ENOMEM;
1124 			goto sendpage_end;
1125 		}
1126 
1127 		msg_pl = &rec->msg_plaintext;
1128 
1129 		full_record = false;
1130 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1131 		copied = 0;
1132 		copy = size;
1133 		if (copy >= record_room) {
1134 			copy = record_room;
1135 			full_record = true;
1136 		}
1137 
1138 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1139 
1140 		if (!sk_stream_memory_free(sk))
1141 			goto wait_for_sndbuf;
1142 alloc_payload:
1143 		ret = tls_alloc_encrypted_msg(sk, required_size);
1144 		if (ret) {
1145 			if (ret != -ENOSPC)
1146 				goto wait_for_memory;
1147 
1148 			/* Adjust copy according to the amount that was
1149 			 * actually allocated. The difference is due
1150 			 * to max sg elements limit
1151 			 */
1152 			copy -= required_size - msg_pl->sg.size;
1153 			full_record = true;
1154 		}
1155 
1156 		sk_msg_page_add(msg_pl, page, copy, offset);
1157 		sk_mem_charge(sk, copy);
1158 
1159 		offset += copy;
1160 		size -= copy;
1161 		copied += copy;
1162 
1163 		tls_ctx->pending_open_record_frags = true;
1164 		if (full_record || eor || sk_msg_full(msg_pl)) {
1165 			rec->inplace_crypto = 0;
1166 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1167 						  record_type, &copied, flags);
1168 			if (ret) {
1169 				if (ret == -EINPROGRESS)
1170 					num_async++;
1171 				else if (ret == -ENOMEM)
1172 					goto wait_for_memory;
1173 				else if (ret != -EAGAIN) {
1174 					if (ret == -ENOSPC)
1175 						ret = 0;
1176 					goto sendpage_end;
1177 				}
1178 			}
1179 		}
1180 		continue;
1181 wait_for_sndbuf:
1182 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1183 wait_for_memory:
1184 		ret = sk_stream_wait_memory(sk, &timeo);
1185 		if (ret) {
1186 			tls_trim_both_msgs(sk, msg_pl->sg.size);
1187 			goto sendpage_end;
1188 		}
1189 
1190 		goto alloc_payload;
1191 	}
1192 
1193 	if (num_async) {
1194 		/* Transmit if any encryptions have completed */
1195 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1196 			cancel_delayed_work(&ctx->tx_work.work);
1197 			tls_tx_records(sk, flags);
1198 		}
1199 	}
1200 sendpage_end:
1201 	ret = sk_stream_error(sk, flags, ret);
1202 	return copied ? copied : ret;
1203 }
1204 
1205 int tls_sw_sendpage(struct sock *sk, struct page *page,
1206 		    int offset, size_t size, int flags)
1207 {
1208 	int ret;
1209 
1210 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1211 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1212 		return -ENOTSUPP;
1213 
1214 	lock_sock(sk);
1215 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1216 	release_sock(sk);
1217 	return ret;
1218 }
1219 
1220 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1221 				     int flags, long timeo, int *err)
1222 {
1223 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1224 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1225 	struct sk_buff *skb;
1226 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1227 
1228 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1229 		if (sk->sk_err) {
1230 			*err = sock_error(sk);
1231 			return NULL;
1232 		}
1233 
1234 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1235 			return NULL;
1236 
1237 		if (sock_flag(sk, SOCK_DONE))
1238 			return NULL;
1239 
1240 		if ((flags & MSG_DONTWAIT) || !timeo) {
1241 			*err = -EAGAIN;
1242 			return NULL;
1243 		}
1244 
1245 		add_wait_queue(sk_sleep(sk), &wait);
1246 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1247 		sk_wait_event(sk, &timeo,
1248 			      ctx->recv_pkt != skb ||
1249 			      !sk_psock_queue_empty(psock),
1250 			      &wait);
1251 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1252 		remove_wait_queue(sk_sleep(sk), &wait);
1253 
1254 		/* Handle signals */
1255 		if (signal_pending(current)) {
1256 			*err = sock_intr_errno(timeo);
1257 			return NULL;
1258 		}
1259 	}
1260 
1261 	return skb;
1262 }
1263 
1264 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1265 			       int length, int *pages_used,
1266 			       unsigned int *size_used,
1267 			       struct scatterlist *to,
1268 			       int to_max_pages)
1269 {
1270 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1271 	struct page *pages[MAX_SKB_FRAGS];
1272 	unsigned int size = *size_used;
1273 	ssize_t copied, use;
1274 	size_t offset;
1275 
1276 	while (length > 0) {
1277 		i = 0;
1278 		maxpages = to_max_pages - num_elem;
1279 		if (maxpages == 0) {
1280 			rc = -EFAULT;
1281 			goto out;
1282 		}
1283 		copied = iov_iter_get_pages(from, pages,
1284 					    length,
1285 					    maxpages, &offset);
1286 		if (copied <= 0) {
1287 			rc = -EFAULT;
1288 			goto out;
1289 		}
1290 
1291 		iov_iter_advance(from, copied);
1292 
1293 		length -= copied;
1294 		size += copied;
1295 		while (copied) {
1296 			use = min_t(int, copied, PAGE_SIZE - offset);
1297 
1298 			sg_set_page(&to[num_elem],
1299 				    pages[i], use, offset);
1300 			sg_unmark_end(&to[num_elem]);
1301 			/* We do not uncharge memory from this API */
1302 
1303 			offset = 0;
1304 			copied -= use;
1305 
1306 			i++;
1307 			num_elem++;
1308 		}
1309 	}
1310 	/* Mark the end in the last sg entry if newly added */
1311 	if (num_elem > *pages_used)
1312 		sg_mark_end(&to[num_elem - 1]);
1313 out:
1314 	if (rc)
1315 		iov_iter_revert(from, size - *size_used);
1316 	*size_used = size;
1317 	*pages_used = num_elem;
1318 
1319 	return rc;
1320 }
1321 
1322 /* This function decrypts the input skb into either out_iov or in out_sg
1323  * or in skb buffers itself. The input parameter 'zc' indicates if
1324  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1325  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1326  * NULL, then the decryption happens inside skb buffers itself, i.e.
1327  * zero-copy gets disabled and 'zc' is updated.
1328  */
1329 
1330 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1331 			    struct iov_iter *out_iov,
1332 			    struct scatterlist *out_sg,
1333 			    int *chunk, bool *zc, bool async)
1334 {
1335 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1336 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1337 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1338 	struct strp_msg *rxm = strp_msg(skb);
1339 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1340 	struct aead_request *aead_req;
1341 	struct sk_buff *unused;
1342 	u8 *aad, *iv, *mem = NULL;
1343 	struct scatterlist *sgin = NULL;
1344 	struct scatterlist *sgout = NULL;
1345 	const int data_len = rxm->full_len - prot->overhead_size +
1346 			     prot->tail_size;
1347 
1348 	if (*zc && (out_iov || out_sg)) {
1349 		if (out_iov)
1350 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1351 		else
1352 			n_sgout = sg_nents(out_sg);
1353 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1354 				 rxm->full_len - prot->prepend_size);
1355 	} else {
1356 		n_sgout = 0;
1357 		*zc = false;
1358 		n_sgin = skb_cow_data(skb, 0, &unused);
1359 	}
1360 
1361 	if (n_sgin < 1)
1362 		return -EBADMSG;
1363 
1364 	/* Increment to accommodate AAD */
1365 	n_sgin = n_sgin + 1;
1366 
1367 	nsg = n_sgin + n_sgout;
1368 
1369 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1370 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1371 	mem_size = mem_size + prot->aad_size;
1372 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1373 
1374 	/* Allocate a single block of memory which contains
1375 	 * aead_req || sgin[] || sgout[] || aad || iv.
1376 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1377 	 */
1378 	mem = kmalloc(mem_size, sk->sk_allocation);
1379 	if (!mem)
1380 		return -ENOMEM;
1381 
1382 	/* Segment the allocated memory */
1383 	aead_req = (struct aead_request *)mem;
1384 	sgin = (struct scatterlist *)(mem + aead_size);
1385 	sgout = sgin + n_sgin;
1386 	aad = (u8 *)(sgout + n_sgout);
1387 	iv = aad + prot->aad_size;
1388 
1389 	/* Prepare IV */
1390 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1391 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1392 			    prot->iv_size);
1393 	if (err < 0) {
1394 		kfree(mem);
1395 		return err;
1396 	}
1397 	if (prot->version == TLS_1_3_VERSION)
1398 		memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv));
1399 	else
1400 		memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1401 
1402 	xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1403 
1404 	/* Prepare AAD */
1405 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1406 		     prot->tail_size,
1407 		     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1408 		     ctx->control, prot->version);
1409 
1410 	/* Prepare sgin */
1411 	sg_init_table(sgin, n_sgin);
1412 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1413 	err = skb_to_sgvec(skb, &sgin[1],
1414 			   rxm->offset + prot->prepend_size,
1415 			   rxm->full_len - prot->prepend_size);
1416 	if (err < 0) {
1417 		kfree(mem);
1418 		return err;
1419 	}
1420 
1421 	if (n_sgout) {
1422 		if (out_iov) {
1423 			sg_init_table(sgout, n_sgout);
1424 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1425 
1426 			*chunk = 0;
1427 			err = tls_setup_from_iter(sk, out_iov, data_len,
1428 						  &pages, chunk, &sgout[1],
1429 						  (n_sgout - 1));
1430 			if (err < 0)
1431 				goto fallback_to_reg_recv;
1432 		} else if (out_sg) {
1433 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1434 		} else {
1435 			goto fallback_to_reg_recv;
1436 		}
1437 	} else {
1438 fallback_to_reg_recv:
1439 		sgout = sgin;
1440 		pages = 0;
1441 		*chunk = data_len;
1442 		*zc = false;
1443 	}
1444 
1445 	/* Prepare and submit AEAD request */
1446 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1447 				data_len, aead_req, async);
1448 	if (err == -EINPROGRESS)
1449 		return err;
1450 
1451 	/* Release the pages in case iov was mapped to pages */
1452 	for (; pages > 0; pages--)
1453 		put_page(sg_page(&sgout[pages]));
1454 
1455 	kfree(mem);
1456 	return err;
1457 }
1458 
1459 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1460 			      struct iov_iter *dest, int *chunk, bool *zc,
1461 			      bool async)
1462 {
1463 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1464 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1465 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1466 	int version = prot->version;
1467 	struct strp_msg *rxm = strp_msg(skb);
1468 	int err = 0;
1469 
1470 	if (!ctx->decrypted) {
1471 #ifdef CONFIG_TLS_DEVICE
1472 		err = tls_device_decrypted(sk, skb);
1473 		if (err < 0)
1474 			return err;
1475 #endif
1476 		/* Still not decrypted after tls_device */
1477 		if (!ctx->decrypted) {
1478 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1479 					       async);
1480 			if (err < 0) {
1481 				if (err == -EINPROGRESS)
1482 					tls_advance_record_sn(sk, &tls_ctx->rx,
1483 							      version);
1484 
1485 				return err;
1486 			}
1487 		}
1488 
1489 		rxm->full_len -= padding_length(ctx, tls_ctx, skb);
1490 		rxm->offset += prot->prepend_size;
1491 		rxm->full_len -= prot->overhead_size;
1492 		tls_advance_record_sn(sk, &tls_ctx->rx, version);
1493 		ctx->decrypted = true;
1494 		ctx->saved_data_ready(sk);
1495 	} else {
1496 		*zc = false;
1497 	}
1498 
1499 	return err;
1500 }
1501 
1502 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1503 		struct scatterlist *sgout)
1504 {
1505 	bool zc = true;
1506 	int chunk;
1507 
1508 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1509 }
1510 
1511 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1512 			       unsigned int len)
1513 {
1514 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1515 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1516 
1517 	if (skb) {
1518 		struct strp_msg *rxm = strp_msg(skb);
1519 
1520 		if (len < rxm->full_len) {
1521 			rxm->offset += len;
1522 			rxm->full_len -= len;
1523 			return false;
1524 		}
1525 		kfree_skb(skb);
1526 	}
1527 
1528 	/* Finished with message */
1529 	ctx->recv_pkt = NULL;
1530 	__strp_unpause(&ctx->strp);
1531 
1532 	return true;
1533 }
1534 
1535 /* This function traverses the rx_list in tls receive context to copies the
1536  * decrypted records into the buffer provided by caller zero copy is not
1537  * true. Further, the records are removed from the rx_list if it is not a peek
1538  * case and the record has been consumed completely.
1539  */
1540 static int process_rx_list(struct tls_sw_context_rx *ctx,
1541 			   struct msghdr *msg,
1542 			   u8 *control,
1543 			   bool *cmsg,
1544 			   size_t skip,
1545 			   size_t len,
1546 			   bool zc,
1547 			   bool is_peek)
1548 {
1549 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1550 	u8 ctrl = *control;
1551 	u8 msgc = *cmsg;
1552 	struct tls_msg *tlm;
1553 	ssize_t copied = 0;
1554 
1555 	/* Set the record type in 'control' if caller didn't pass it */
1556 	if (!ctrl && skb) {
1557 		tlm = tls_msg(skb);
1558 		ctrl = tlm->control;
1559 	}
1560 
1561 	while (skip && skb) {
1562 		struct strp_msg *rxm = strp_msg(skb);
1563 		tlm = tls_msg(skb);
1564 
1565 		/* Cannot process a record of different type */
1566 		if (ctrl != tlm->control)
1567 			return 0;
1568 
1569 		if (skip < rxm->full_len)
1570 			break;
1571 
1572 		skip = skip - rxm->full_len;
1573 		skb = skb_peek_next(skb, &ctx->rx_list);
1574 	}
1575 
1576 	while (len && skb) {
1577 		struct sk_buff *next_skb;
1578 		struct strp_msg *rxm = strp_msg(skb);
1579 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1580 
1581 		tlm = tls_msg(skb);
1582 
1583 		/* Cannot process a record of different type */
1584 		if (ctrl != tlm->control)
1585 			return 0;
1586 
1587 		/* Set record type if not already done. For a non-data record,
1588 		 * do not proceed if record type could not be copied.
1589 		 */
1590 		if (!msgc) {
1591 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1592 					    sizeof(ctrl), &ctrl);
1593 			msgc = true;
1594 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1595 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1596 					return -EIO;
1597 
1598 				*cmsg = msgc;
1599 			}
1600 		}
1601 
1602 		if (!zc || (rxm->full_len - skip) > len) {
1603 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1604 						    msg, chunk);
1605 			if (err < 0)
1606 				return err;
1607 		}
1608 
1609 		len = len - chunk;
1610 		copied = copied + chunk;
1611 
1612 		/* Consume the data from record if it is non-peek case*/
1613 		if (!is_peek) {
1614 			rxm->offset = rxm->offset + chunk;
1615 			rxm->full_len = rxm->full_len - chunk;
1616 
1617 			/* Return if there is unconsumed data in the record */
1618 			if (rxm->full_len - skip)
1619 				break;
1620 		}
1621 
1622 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1623 		 * So from the 2nd record, 'skip' should be 0.
1624 		 */
1625 		skip = 0;
1626 
1627 		if (msg)
1628 			msg->msg_flags |= MSG_EOR;
1629 
1630 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1631 
1632 		if (!is_peek) {
1633 			skb_unlink(skb, &ctx->rx_list);
1634 			kfree_skb(skb);
1635 		}
1636 
1637 		skb = next_skb;
1638 	}
1639 
1640 	*control = ctrl;
1641 	return copied;
1642 }
1643 
1644 int tls_sw_recvmsg(struct sock *sk,
1645 		   struct msghdr *msg,
1646 		   size_t len,
1647 		   int nonblock,
1648 		   int flags,
1649 		   int *addr_len)
1650 {
1651 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1652 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1653 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1654 	struct sk_psock *psock;
1655 	unsigned char control = 0;
1656 	ssize_t decrypted = 0;
1657 	struct strp_msg *rxm;
1658 	struct tls_msg *tlm;
1659 	struct sk_buff *skb;
1660 	ssize_t copied = 0;
1661 	bool cmsg = false;
1662 	int target, err = 0;
1663 	long timeo;
1664 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1665 	bool is_peek = flags & MSG_PEEK;
1666 	int num_async = 0;
1667 
1668 	flags |= nonblock;
1669 
1670 	if (unlikely(flags & MSG_ERRQUEUE))
1671 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1672 
1673 	psock = sk_psock_get(sk);
1674 	lock_sock(sk);
1675 
1676 	/* Process pending decrypted records. It must be non-zero-copy */
1677 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1678 			      is_peek);
1679 	if (err < 0) {
1680 		tls_err_abort(sk, err);
1681 		goto end;
1682 	} else {
1683 		copied = err;
1684 	}
1685 
1686 	len = len - copied;
1687 	if (len) {
1688 		target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1689 		timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1690 	} else {
1691 		goto recv_end;
1692 	}
1693 
1694 	do {
1695 		bool retain_skb = false;
1696 		bool zc = false;
1697 		int to_decrypt;
1698 		int chunk = 0;
1699 		bool async_capable;
1700 		bool async = false;
1701 
1702 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1703 		if (!skb) {
1704 			if (psock) {
1705 				int ret = __tcp_bpf_recvmsg(sk, psock,
1706 							    msg, len, flags);
1707 
1708 				if (ret > 0) {
1709 					decrypted += ret;
1710 					len -= ret;
1711 					continue;
1712 				}
1713 			}
1714 			goto recv_end;
1715 		} else {
1716 			tlm = tls_msg(skb);
1717 			if (prot->version == TLS_1_3_VERSION)
1718 				tlm->control = 0;
1719 			else
1720 				tlm->control = ctx->control;
1721 		}
1722 
1723 		rxm = strp_msg(skb);
1724 
1725 		to_decrypt = rxm->full_len - prot->overhead_size;
1726 
1727 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1728 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1729 		    prot->version != TLS_1_3_VERSION)
1730 			zc = true;
1731 
1732 		/* Do not use async mode if record is non-data */
1733 		if (ctx->control == TLS_RECORD_TYPE_DATA)
1734 			async_capable = ctx->async_capable;
1735 		else
1736 			async_capable = false;
1737 
1738 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1739 					 &chunk, &zc, async_capable);
1740 		if (err < 0 && err != -EINPROGRESS) {
1741 			tls_err_abort(sk, EBADMSG);
1742 			goto recv_end;
1743 		}
1744 
1745 		if (err == -EINPROGRESS) {
1746 			async = true;
1747 			num_async++;
1748 		} else if (prot->version == TLS_1_3_VERSION) {
1749 			tlm->control = ctx->control;
1750 		}
1751 
1752 		/* If the type of records being processed is not known yet,
1753 		 * set it to record type just dequeued. If it is already known,
1754 		 * but does not match the record type just dequeued, go to end.
1755 		 * We always get record type here since for tls1.2, record type
1756 		 * is known just after record is dequeued from stream parser.
1757 		 * For tls1.3, we disable async.
1758 		 */
1759 
1760 		if (!control)
1761 			control = tlm->control;
1762 		else if (control != tlm->control)
1763 			goto recv_end;
1764 
1765 		if (!cmsg) {
1766 			int cerr;
1767 
1768 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1769 					sizeof(control), &control);
1770 			cmsg = true;
1771 			if (control != TLS_RECORD_TYPE_DATA) {
1772 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1773 					err = -EIO;
1774 					goto recv_end;
1775 				}
1776 			}
1777 		}
1778 
1779 		if (async)
1780 			goto pick_next_record;
1781 
1782 		if (!zc) {
1783 			if (rxm->full_len > len) {
1784 				retain_skb = true;
1785 				chunk = len;
1786 			} else {
1787 				chunk = rxm->full_len;
1788 			}
1789 
1790 			err = skb_copy_datagram_msg(skb, rxm->offset,
1791 						    msg, chunk);
1792 			if (err < 0)
1793 				goto recv_end;
1794 
1795 			if (!is_peek) {
1796 				rxm->offset = rxm->offset + chunk;
1797 				rxm->full_len = rxm->full_len - chunk;
1798 			}
1799 		}
1800 
1801 pick_next_record:
1802 		if (chunk > len)
1803 			chunk = len;
1804 
1805 		decrypted += chunk;
1806 		len -= chunk;
1807 
1808 		/* For async or peek case, queue the current skb */
1809 		if (async || is_peek || retain_skb) {
1810 			skb_queue_tail(&ctx->rx_list, skb);
1811 			skb = NULL;
1812 		}
1813 
1814 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1815 			/* Return full control message to
1816 			 * userspace before trying to parse
1817 			 * another message type
1818 			 */
1819 			msg->msg_flags |= MSG_EOR;
1820 			if (ctx->control != TLS_RECORD_TYPE_DATA)
1821 				goto recv_end;
1822 		} else {
1823 			break;
1824 		}
1825 
1826 		/* If we have a new message from strparser, continue now. */
1827 		if (decrypted >= target && !ctx->recv_pkt)
1828 			break;
1829 	} while (len);
1830 
1831 recv_end:
1832 	if (num_async) {
1833 		/* Wait for all previously submitted records to be decrypted */
1834 		smp_store_mb(ctx->async_notify, true);
1835 		if (atomic_read(&ctx->decrypt_pending)) {
1836 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1837 			if (err) {
1838 				/* one of async decrypt failed */
1839 				tls_err_abort(sk, err);
1840 				copied = 0;
1841 				decrypted = 0;
1842 				goto end;
1843 			}
1844 		} else {
1845 			reinit_completion(&ctx->async_wait.completion);
1846 		}
1847 		WRITE_ONCE(ctx->async_notify, false);
1848 
1849 		/* Drain records from the rx_list & copy if required */
1850 		if (is_peek || is_kvec)
1851 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1852 					      decrypted, false, is_peek);
1853 		else
1854 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1855 					      decrypted, true, is_peek);
1856 		if (err < 0) {
1857 			tls_err_abort(sk, err);
1858 			copied = 0;
1859 			goto end;
1860 		}
1861 	}
1862 
1863 	copied += decrypted;
1864 
1865 end:
1866 	release_sock(sk);
1867 	if (psock)
1868 		sk_psock_put(sk, psock);
1869 	return copied ? : err;
1870 }
1871 
1872 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1873 			   struct pipe_inode_info *pipe,
1874 			   size_t len, unsigned int flags)
1875 {
1876 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1877 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1878 	struct strp_msg *rxm = NULL;
1879 	struct sock *sk = sock->sk;
1880 	struct sk_buff *skb;
1881 	ssize_t copied = 0;
1882 	int err = 0;
1883 	long timeo;
1884 	int chunk;
1885 	bool zc = false;
1886 
1887 	lock_sock(sk);
1888 
1889 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1890 
1891 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1892 	if (!skb)
1893 		goto splice_read_end;
1894 
1895 	if (!ctx->decrypted) {
1896 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1897 
1898 		/* splice does not support reading control messages */
1899 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1900 			err = -ENOTSUPP;
1901 			goto splice_read_end;
1902 		}
1903 
1904 		if (err < 0) {
1905 			tls_err_abort(sk, EBADMSG);
1906 			goto splice_read_end;
1907 		}
1908 		ctx->decrypted = true;
1909 	}
1910 	rxm = strp_msg(skb);
1911 
1912 	chunk = min_t(unsigned int, rxm->full_len, len);
1913 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1914 	if (copied < 0)
1915 		goto splice_read_end;
1916 
1917 	if (likely(!(flags & MSG_PEEK)))
1918 		tls_sw_advance_skb(sk, skb, copied);
1919 
1920 splice_read_end:
1921 	release_sock(sk);
1922 	return copied ? : err;
1923 }
1924 
1925 bool tls_sw_stream_read(const struct sock *sk)
1926 {
1927 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1928 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1929 	bool ingress_empty = true;
1930 	struct sk_psock *psock;
1931 
1932 	rcu_read_lock();
1933 	psock = sk_psock(sk);
1934 	if (psock)
1935 		ingress_empty = list_empty(&psock->ingress_msg);
1936 	rcu_read_unlock();
1937 
1938 	return !ingress_empty || ctx->recv_pkt;
1939 }
1940 
1941 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1942 {
1943 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1944 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1945 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1946 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1947 	struct strp_msg *rxm = strp_msg(skb);
1948 	size_t cipher_overhead;
1949 	size_t data_len = 0;
1950 	int ret;
1951 
1952 	/* Verify that we have a full TLS header, or wait for more data */
1953 	if (rxm->offset + prot->prepend_size > skb->len)
1954 		return 0;
1955 
1956 	/* Sanity-check size of on-stack buffer. */
1957 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
1958 		ret = -EINVAL;
1959 		goto read_failure;
1960 	}
1961 
1962 	/* Linearize header to local buffer */
1963 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1964 
1965 	if (ret < 0)
1966 		goto read_failure;
1967 
1968 	ctx->control = header[0];
1969 
1970 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1971 
1972 	cipher_overhead = prot->tag_size;
1973 	if (prot->version != TLS_1_3_VERSION)
1974 		cipher_overhead += prot->iv_size;
1975 
1976 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1977 	    prot->tail_size) {
1978 		ret = -EMSGSIZE;
1979 		goto read_failure;
1980 	}
1981 	if (data_len < cipher_overhead) {
1982 		ret = -EBADMSG;
1983 		goto read_failure;
1984 	}
1985 
1986 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
1987 	if (header[1] != TLS_1_2_VERSION_MINOR ||
1988 	    header[2] != TLS_1_2_VERSION_MAJOR) {
1989 		ret = -EINVAL;
1990 		goto read_failure;
1991 	}
1992 #ifdef CONFIG_TLS_DEVICE
1993 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1994 			     *(u64*)tls_ctx->rx.rec_seq);
1995 #endif
1996 	return data_len + TLS_HEADER_SIZE;
1997 
1998 read_failure:
1999 	tls_err_abort(strp->sk, ret);
2000 
2001 	return ret;
2002 }
2003 
2004 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2005 {
2006 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2007 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2008 
2009 	ctx->decrypted = false;
2010 
2011 	ctx->recv_pkt = skb;
2012 	strp_pause(strp);
2013 
2014 	ctx->saved_data_ready(strp->sk);
2015 }
2016 
2017 static void tls_data_ready(struct sock *sk)
2018 {
2019 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2020 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2021 	struct sk_psock *psock;
2022 
2023 	strp_data_ready(&ctx->strp);
2024 
2025 	psock = sk_psock_get(sk);
2026 	if (psock && !list_empty(&psock->ingress_msg)) {
2027 		ctx->saved_data_ready(sk);
2028 		sk_psock_put(sk, psock);
2029 	}
2030 }
2031 
2032 void tls_sw_free_resources_tx(struct sock *sk)
2033 {
2034 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2035 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2036 	struct tls_rec *rec, *tmp;
2037 
2038 	/* Wait for any pending async encryptions to complete */
2039 	smp_store_mb(ctx->async_notify, true);
2040 	if (atomic_read(&ctx->encrypt_pending))
2041 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2042 
2043 	release_sock(sk);
2044 	cancel_delayed_work_sync(&ctx->tx_work.work);
2045 	lock_sock(sk);
2046 
2047 	/* Tx whatever records we can transmit and abandon the rest */
2048 	tls_tx_records(sk, -1);
2049 
2050 	/* Free up un-sent records in tx_list. First, free
2051 	 * the partially sent record if any at head of tx_list.
2052 	 */
2053 	if (tls_ctx->partially_sent_record) {
2054 		struct scatterlist *sg = tls_ctx->partially_sent_record;
2055 
2056 		while (1) {
2057 			put_page(sg_page(sg));
2058 			sk_mem_uncharge(sk, sg->length);
2059 
2060 			if (sg_is_last(sg))
2061 				break;
2062 			sg++;
2063 		}
2064 
2065 		tls_ctx->partially_sent_record = NULL;
2066 
2067 		rec = list_first_entry(&ctx->tx_list,
2068 				       struct tls_rec, list);
2069 		list_del(&rec->list);
2070 		sk_msg_free(sk, &rec->msg_plaintext);
2071 		kfree(rec);
2072 	}
2073 
2074 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2075 		list_del(&rec->list);
2076 		sk_msg_free(sk, &rec->msg_encrypted);
2077 		sk_msg_free(sk, &rec->msg_plaintext);
2078 		kfree(rec);
2079 	}
2080 
2081 	crypto_free_aead(ctx->aead_send);
2082 	tls_free_open_rec(sk);
2083 
2084 	kfree(ctx);
2085 }
2086 
2087 void tls_sw_release_resources_rx(struct sock *sk)
2088 {
2089 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2090 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2091 
2092 	if (ctx->aead_recv) {
2093 		kfree_skb(ctx->recv_pkt);
2094 		ctx->recv_pkt = NULL;
2095 		skb_queue_purge(&ctx->rx_list);
2096 		crypto_free_aead(ctx->aead_recv);
2097 		strp_stop(&ctx->strp);
2098 		write_lock_bh(&sk->sk_callback_lock);
2099 		sk->sk_data_ready = ctx->saved_data_ready;
2100 		write_unlock_bh(&sk->sk_callback_lock);
2101 		release_sock(sk);
2102 		strp_done(&ctx->strp);
2103 		lock_sock(sk);
2104 	}
2105 }
2106 
2107 void tls_sw_free_resources_rx(struct sock *sk)
2108 {
2109 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2110 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2111 
2112 	tls_sw_release_resources_rx(sk);
2113 
2114 	kfree(ctx);
2115 }
2116 
2117 /* The work handler to transmitt the encrypted records in tx_list */
2118 static void tx_work_handler(struct work_struct *work)
2119 {
2120 	struct delayed_work *delayed_work = to_delayed_work(work);
2121 	struct tx_work *tx_work = container_of(delayed_work,
2122 					       struct tx_work, work);
2123 	struct sock *sk = tx_work->sk;
2124 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2125 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2126 
2127 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2128 		return;
2129 
2130 	lock_sock(sk);
2131 	tls_tx_records(sk, -1);
2132 	release_sock(sk);
2133 }
2134 
2135 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2136 {
2137 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2138 
2139 	/* Schedule the transmission if tx list is ready */
2140 	if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2141 		/* Schedule the transmission */
2142 		if (!test_and_set_bit(BIT_TX_SCHEDULED,
2143 				      &tx_ctx->tx_bitmask))
2144 			schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2145 	}
2146 }
2147 
2148 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2149 {
2150 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2151 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2152 	struct tls_crypto_info *crypto_info;
2153 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2154 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2155 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2156 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2157 	struct cipher_context *cctx;
2158 	struct crypto_aead **aead;
2159 	struct strp_callbacks cb;
2160 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
2161 	struct crypto_tfm *tfm;
2162 	char *iv, *rec_seq, *key, *salt;
2163 	size_t keysize;
2164 	int rc = 0;
2165 
2166 	if (!ctx) {
2167 		rc = -EINVAL;
2168 		goto out;
2169 	}
2170 
2171 	if (tx) {
2172 		if (!ctx->priv_ctx_tx) {
2173 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2174 			if (!sw_ctx_tx) {
2175 				rc = -ENOMEM;
2176 				goto out;
2177 			}
2178 			ctx->priv_ctx_tx = sw_ctx_tx;
2179 		} else {
2180 			sw_ctx_tx =
2181 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2182 		}
2183 	} else {
2184 		if (!ctx->priv_ctx_rx) {
2185 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2186 			if (!sw_ctx_rx) {
2187 				rc = -ENOMEM;
2188 				goto out;
2189 			}
2190 			ctx->priv_ctx_rx = sw_ctx_rx;
2191 		} else {
2192 			sw_ctx_rx =
2193 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2194 		}
2195 	}
2196 
2197 	if (tx) {
2198 		crypto_init_wait(&sw_ctx_tx->async_wait);
2199 		crypto_info = &ctx->crypto_send.info;
2200 		cctx = &ctx->tx;
2201 		aead = &sw_ctx_tx->aead_send;
2202 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2203 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2204 		sw_ctx_tx->tx_work.sk = sk;
2205 	} else {
2206 		crypto_init_wait(&sw_ctx_rx->async_wait);
2207 		crypto_info = &ctx->crypto_recv.info;
2208 		cctx = &ctx->rx;
2209 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2210 		aead = &sw_ctx_rx->aead_recv;
2211 	}
2212 
2213 	switch (crypto_info->cipher_type) {
2214 	case TLS_CIPHER_AES_GCM_128: {
2215 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2216 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2217 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2218 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2219 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2220 		rec_seq =
2221 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2222 		gcm_128_info =
2223 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2224 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2225 		key = gcm_128_info->key;
2226 		salt = gcm_128_info->salt;
2227 		break;
2228 	}
2229 	case TLS_CIPHER_AES_GCM_256: {
2230 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2231 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2232 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2233 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2234 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2235 		rec_seq =
2236 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2237 		gcm_256_info =
2238 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2239 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2240 		key = gcm_256_info->key;
2241 		salt = gcm_256_info->salt;
2242 		break;
2243 	}
2244 	default:
2245 		rc = -EINVAL;
2246 		goto free_priv;
2247 	}
2248 
2249 	/* Sanity-check the IV size for stack allocations. */
2250 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2251 		rc = -EINVAL;
2252 		goto free_priv;
2253 	}
2254 
2255 	if (crypto_info->version == TLS_1_3_VERSION) {
2256 		nonce_size = 0;
2257 		prot->aad_size = TLS_HEADER_SIZE;
2258 		prot->tail_size = 1;
2259 	} else {
2260 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2261 		prot->tail_size = 0;
2262 	}
2263 
2264 	prot->version = crypto_info->version;
2265 	prot->cipher_type = crypto_info->cipher_type;
2266 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2267 	prot->tag_size = tag_size;
2268 	prot->overhead_size = prot->prepend_size +
2269 			      prot->tag_size + prot->tail_size;
2270 	prot->iv_size = iv_size;
2271 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2272 			   GFP_KERNEL);
2273 	if (!cctx->iv) {
2274 		rc = -ENOMEM;
2275 		goto free_priv;
2276 	}
2277 	/* Note: 128 & 256 bit salt are the same size */
2278 	memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
2279 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
2280 	prot->rec_seq_size = rec_seq_size;
2281 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2282 	if (!cctx->rec_seq) {
2283 		rc = -ENOMEM;
2284 		goto free_iv;
2285 	}
2286 
2287 	if (!*aead) {
2288 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2289 		if (IS_ERR(*aead)) {
2290 			rc = PTR_ERR(*aead);
2291 			*aead = NULL;
2292 			goto free_rec_seq;
2293 		}
2294 	}
2295 
2296 	ctx->push_pending_record = tls_sw_push_pending_record;
2297 
2298 	rc = crypto_aead_setkey(*aead, key, keysize);
2299 
2300 	if (rc)
2301 		goto free_aead;
2302 
2303 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2304 	if (rc)
2305 		goto free_aead;
2306 
2307 	if (sw_ctx_rx) {
2308 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2309 
2310 		if (crypto_info->version == TLS_1_3_VERSION)
2311 			sw_ctx_rx->async_capable = false;
2312 		else
2313 			sw_ctx_rx->async_capable =
2314 				tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2315 
2316 		/* Set up strparser */
2317 		memset(&cb, 0, sizeof(cb));
2318 		cb.rcv_msg = tls_queue;
2319 		cb.parse_msg = tls_read_size;
2320 
2321 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2322 
2323 		write_lock_bh(&sk->sk_callback_lock);
2324 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2325 		sk->sk_data_ready = tls_data_ready;
2326 		write_unlock_bh(&sk->sk_callback_lock);
2327 
2328 		strp_check_rcv(&sw_ctx_rx->strp);
2329 	}
2330 
2331 	goto out;
2332 
2333 free_aead:
2334 	crypto_free_aead(*aead);
2335 	*aead = NULL;
2336 free_rec_seq:
2337 	kfree(cctx->rec_seq);
2338 	cctx->rec_seq = NULL;
2339 free_iv:
2340 	kfree(cctx->iv);
2341 	cctx->iv = NULL;
2342 free_priv:
2343 	if (tx) {
2344 		kfree(ctx->priv_ctx_tx);
2345 		ctx->priv_ctx_tx = NULL;
2346 	} else {
2347 		kfree(ctx->priv_ctx_rx);
2348 		ctx->priv_ctx_rx = NULL;
2349 	}
2350 out:
2351 	return rc;
2352 }
2353