1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 46 47 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 48 unsigned int recursion_level) 49 { 50 int start = skb_headlen(skb); 51 int i, chunk = start - offset; 52 struct sk_buff *frag_iter; 53 int elt = 0; 54 55 if (unlikely(recursion_level >= 24)) 56 return -EMSGSIZE; 57 58 if (chunk > 0) { 59 if (chunk > len) 60 chunk = len; 61 elt++; 62 len -= chunk; 63 if (len == 0) 64 return elt; 65 offset += chunk; 66 } 67 68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 69 int end; 70 71 WARN_ON(start > offset + len); 72 73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 74 chunk = end - offset; 75 if (chunk > 0) { 76 if (chunk > len) 77 chunk = len; 78 elt++; 79 len -= chunk; 80 if (len == 0) 81 return elt; 82 offset += chunk; 83 } 84 start = end; 85 } 86 87 if (unlikely(skb_has_frag_list(skb))) { 88 skb_walk_frags(skb, frag_iter) { 89 int end, ret; 90 91 WARN_ON(start > offset + len); 92 93 end = start + frag_iter->len; 94 chunk = end - offset; 95 if (chunk > 0) { 96 if (chunk > len) 97 chunk = len; 98 ret = __skb_nsg(frag_iter, offset - start, chunk, 99 recursion_level + 1); 100 if (unlikely(ret < 0)) 101 return ret; 102 elt += ret; 103 len -= chunk; 104 if (len == 0) 105 return elt; 106 offset += chunk; 107 } 108 start = end; 109 } 110 } 111 BUG_ON(len); 112 return elt; 113 } 114 115 /* Return the number of scatterlist elements required to completely map the 116 * skb, or -EMSGSIZE if the recursion depth is exceeded. 117 */ 118 static int skb_nsg(struct sk_buff *skb, int offset, int len) 119 { 120 return __skb_nsg(skb, offset, len, 0); 121 } 122 123 static int padding_length(struct tls_sw_context_rx *ctx, 124 struct tls_context *tls_ctx, struct sk_buff *skb) 125 { 126 struct strp_msg *rxm = strp_msg(skb); 127 int sub = 0; 128 129 /* Determine zero-padding length */ 130 if (tls_ctx->prot_info.version == TLS_1_3_VERSION) { 131 char content_type = 0; 132 int err; 133 int back = 17; 134 135 while (content_type == 0) { 136 if (back > rxm->full_len) 137 return -EBADMSG; 138 err = skb_copy_bits(skb, 139 rxm->offset + rxm->full_len - back, 140 &content_type, 1); 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 ctx->async_wait.err = err; 172 tls_err_abort(skb->sk, err); 173 } else { 174 struct strp_msg *rxm = strp_msg(skb); 175 rxm->full_len -= padding_length(ctx, tls_ctx, skb); 176 rxm->offset += prot->prepend_size; 177 rxm->full_len -= prot->overhead_size; 178 } 179 180 /* After using skb->sk to propagate sk through crypto async callback 181 * we need to NULL it again. 182 */ 183 skb->sk = NULL; 184 185 186 /* Free the destination pages if skb was not decrypted inplace */ 187 if (sgout != sgin) { 188 /* Skip the first S/G entry as it points to AAD */ 189 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 190 if (!sg) 191 break; 192 put_page(sg_page(sg)); 193 } 194 } 195 196 kfree(aead_req); 197 198 pending = atomic_dec_return(&ctx->decrypt_pending); 199 200 if (!pending && READ_ONCE(ctx->async_notify)) 201 complete(&ctx->async_wait.completion); 202 } 203 204 static int tls_do_decryption(struct sock *sk, 205 struct sk_buff *skb, 206 struct scatterlist *sgin, 207 struct scatterlist *sgout, 208 char *iv_recv, 209 size_t data_len, 210 struct aead_request *aead_req, 211 bool async) 212 { 213 struct tls_context *tls_ctx = tls_get_ctx(sk); 214 struct tls_prot_info *prot = &tls_ctx->prot_info; 215 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 216 int ret; 217 218 aead_request_set_tfm(aead_req, ctx->aead_recv); 219 aead_request_set_ad(aead_req, prot->aad_size); 220 aead_request_set_crypt(aead_req, sgin, sgout, 221 data_len + prot->tag_size, 222 (u8 *)iv_recv); 223 224 if (async) { 225 /* Using skb->sk to push sk through to crypto async callback 226 * handler. This allows propagating errors up to the socket 227 * if needed. It _must_ be cleared in the async handler 228 * before kfree_skb is called. We _know_ skb->sk is NULL 229 * because it is a clone from strparser. 230 */ 231 skb->sk = sk; 232 aead_request_set_callback(aead_req, 233 CRYPTO_TFM_REQ_MAY_BACKLOG, 234 tls_decrypt_done, skb); 235 atomic_inc(&ctx->decrypt_pending); 236 } else { 237 aead_request_set_callback(aead_req, 238 CRYPTO_TFM_REQ_MAY_BACKLOG, 239 crypto_req_done, &ctx->async_wait); 240 } 241 242 ret = crypto_aead_decrypt(aead_req); 243 if (ret == -EINPROGRESS) { 244 if (async) 245 return ret; 246 247 ret = crypto_wait_req(ret, &ctx->async_wait); 248 } 249 250 if (async) 251 atomic_dec(&ctx->decrypt_pending); 252 253 return ret; 254 } 255 256 static void tls_trim_both_msgs(struct sock *sk, int target_size) 257 { 258 struct tls_context *tls_ctx = tls_get_ctx(sk); 259 struct tls_prot_info *prot = &tls_ctx->prot_info; 260 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 261 struct tls_rec *rec = ctx->open_rec; 262 263 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 264 if (target_size > 0) 265 target_size += prot->overhead_size; 266 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 267 } 268 269 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 273 struct tls_rec *rec = ctx->open_rec; 274 struct sk_msg *msg_en = &rec->msg_encrypted; 275 276 return sk_msg_alloc(sk, msg_en, len, 0); 277 } 278 279 static int tls_clone_plaintext_msg(struct sock *sk, int required) 280 { 281 struct tls_context *tls_ctx = tls_get_ctx(sk); 282 struct tls_prot_info *prot = &tls_ctx->prot_info; 283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 284 struct tls_rec *rec = ctx->open_rec; 285 struct sk_msg *msg_pl = &rec->msg_plaintext; 286 struct sk_msg *msg_en = &rec->msg_encrypted; 287 int skip, len; 288 289 /* We add page references worth len bytes from encrypted sg 290 * at the end of plaintext sg. It is guaranteed that msg_en 291 * has enough required room (ensured by caller). 292 */ 293 len = required - msg_pl->sg.size; 294 295 /* Skip initial bytes in msg_en's data to be able to use 296 * same offset of both plain and encrypted data. 297 */ 298 skip = prot->prepend_size + msg_pl->sg.size; 299 300 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 301 } 302 303 static struct tls_rec *tls_get_rec(struct sock *sk) 304 { 305 struct tls_context *tls_ctx = tls_get_ctx(sk); 306 struct tls_prot_info *prot = &tls_ctx->prot_info; 307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 308 struct sk_msg *msg_pl, *msg_en; 309 struct tls_rec *rec; 310 int mem_size; 311 312 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 313 314 rec = kzalloc(mem_size, sk->sk_allocation); 315 if (!rec) 316 return NULL; 317 318 msg_pl = &rec->msg_plaintext; 319 msg_en = &rec->msg_encrypted; 320 321 sk_msg_init(msg_pl); 322 sk_msg_init(msg_en); 323 324 sg_init_table(rec->sg_aead_in, 2); 325 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 326 sg_unmark_end(&rec->sg_aead_in[1]); 327 328 sg_init_table(rec->sg_aead_out, 2); 329 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 330 sg_unmark_end(&rec->sg_aead_out[1]); 331 332 return rec; 333 } 334 335 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 336 { 337 sk_msg_free(sk, &rec->msg_encrypted); 338 sk_msg_free(sk, &rec->msg_plaintext); 339 kfree(rec); 340 } 341 342 static void tls_free_open_rec(struct sock *sk) 343 { 344 struct tls_context *tls_ctx = tls_get_ctx(sk); 345 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 346 struct tls_rec *rec = ctx->open_rec; 347 348 if (rec) { 349 tls_free_rec(sk, rec); 350 ctx->open_rec = NULL; 351 } 352 } 353 354 int tls_tx_records(struct sock *sk, int flags) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 358 struct tls_rec *rec, *tmp; 359 struct sk_msg *msg_en; 360 int tx_flags, rc = 0; 361 362 if (tls_is_partially_sent_record(tls_ctx)) { 363 rec = list_first_entry(&ctx->tx_list, 364 struct tls_rec, list); 365 366 if (flags == -1) 367 tx_flags = rec->tx_flags; 368 else 369 tx_flags = flags; 370 371 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 372 if (rc) 373 goto tx_err; 374 375 /* Full record has been transmitted. 376 * Remove the head of tx_list 377 */ 378 list_del(&rec->list); 379 sk_msg_free(sk, &rec->msg_plaintext); 380 kfree(rec); 381 } 382 383 /* Tx all ready records */ 384 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 385 if (READ_ONCE(rec->tx_ready)) { 386 if (flags == -1) 387 tx_flags = rec->tx_flags; 388 else 389 tx_flags = flags; 390 391 msg_en = &rec->msg_encrypted; 392 rc = tls_push_sg(sk, tls_ctx, 393 &msg_en->sg.data[msg_en->sg.curr], 394 0, tx_flags); 395 if (rc) 396 goto tx_err; 397 398 list_del(&rec->list); 399 sk_msg_free(sk, &rec->msg_plaintext); 400 kfree(rec); 401 } else { 402 break; 403 } 404 } 405 406 tx_err: 407 if (rc < 0 && rc != -EAGAIN) 408 tls_err_abort(sk, EBADMSG); 409 410 return rc; 411 } 412 413 static void tls_encrypt_done(struct crypto_async_request *req, int err) 414 { 415 struct aead_request *aead_req = (struct aead_request *)req; 416 struct sock *sk = req->data; 417 struct tls_context *tls_ctx = tls_get_ctx(sk); 418 struct tls_prot_info *prot = &tls_ctx->prot_info; 419 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 420 struct scatterlist *sge; 421 struct sk_msg *msg_en; 422 struct tls_rec *rec; 423 bool ready = false; 424 int pending; 425 426 rec = container_of(aead_req, struct tls_rec, aead_req); 427 msg_en = &rec->msg_encrypted; 428 429 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 430 sge->offset -= prot->prepend_size; 431 sge->length += prot->prepend_size; 432 433 /* Check if error is previously set on socket */ 434 if (err || sk->sk_err) { 435 rec = NULL; 436 437 /* If err is already set on socket, return the same code */ 438 if (sk->sk_err) { 439 ctx->async_wait.err = sk->sk_err; 440 } else { 441 ctx->async_wait.err = err; 442 tls_err_abort(sk, err); 443 } 444 } 445 446 if (rec) { 447 struct tls_rec *first_rec; 448 449 /* Mark the record as ready for transmission */ 450 smp_store_mb(rec->tx_ready, true); 451 452 /* If received record is at head of tx_list, schedule tx */ 453 first_rec = list_first_entry(&ctx->tx_list, 454 struct tls_rec, list); 455 if (rec == first_rec) 456 ready = true; 457 } 458 459 pending = atomic_dec_return(&ctx->encrypt_pending); 460 461 if (!pending && READ_ONCE(ctx->async_notify)) 462 complete(&ctx->async_wait.completion); 463 464 if (!ready) 465 return; 466 467 /* Schedule the transmission */ 468 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 469 schedule_delayed_work(&ctx->tx_work.work, 1); 470 } 471 472 static int tls_do_encryption(struct sock *sk, 473 struct tls_context *tls_ctx, 474 struct tls_sw_context_tx *ctx, 475 struct aead_request *aead_req, 476 size_t data_len, u32 start) 477 { 478 struct tls_prot_info *prot = &tls_ctx->prot_info; 479 struct tls_rec *rec = ctx->open_rec; 480 struct sk_msg *msg_en = &rec->msg_encrypted; 481 struct scatterlist *sge = sk_msg_elem(msg_en, start); 482 int rc; 483 484 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data)); 485 xor_iv_with_seq(prot->version, rec->iv_data, 486 tls_ctx->tx.rec_seq); 487 488 sge->offset += prot->prepend_size; 489 sge->length -= prot->prepend_size; 490 491 msg_en->sg.curr = start; 492 493 aead_request_set_tfm(aead_req, ctx->aead_send); 494 aead_request_set_ad(aead_req, prot->aad_size); 495 aead_request_set_crypt(aead_req, rec->sg_aead_in, 496 rec->sg_aead_out, 497 data_len, rec->iv_data); 498 499 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 500 tls_encrypt_done, sk); 501 502 /* Add the record in tx_list */ 503 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 504 atomic_inc(&ctx->encrypt_pending); 505 506 rc = crypto_aead_encrypt(aead_req); 507 if (!rc || rc != -EINPROGRESS) { 508 atomic_dec(&ctx->encrypt_pending); 509 sge->offset -= prot->prepend_size; 510 sge->length += prot->prepend_size; 511 } 512 513 if (!rc) { 514 WRITE_ONCE(rec->tx_ready, true); 515 } else if (rc != -EINPROGRESS) { 516 list_del(&rec->list); 517 return rc; 518 } 519 520 /* Unhook the record from context if encryption is not failure */ 521 ctx->open_rec = NULL; 522 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version); 523 return rc; 524 } 525 526 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 527 struct tls_rec **to, struct sk_msg *msg_opl, 528 struct sk_msg *msg_oen, u32 split_point, 529 u32 tx_overhead_size, u32 *orig_end) 530 { 531 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 532 struct scatterlist *sge, *osge, *nsge; 533 u32 orig_size = msg_opl->sg.size; 534 struct scatterlist tmp = { }; 535 struct sk_msg *msg_npl; 536 struct tls_rec *new; 537 int ret; 538 539 new = tls_get_rec(sk); 540 if (!new) 541 return -ENOMEM; 542 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 543 tx_overhead_size, 0); 544 if (ret < 0) { 545 tls_free_rec(sk, new); 546 return ret; 547 } 548 549 *orig_end = msg_opl->sg.end; 550 i = msg_opl->sg.start; 551 sge = sk_msg_elem(msg_opl, i); 552 while (apply && sge->length) { 553 if (sge->length > apply) { 554 u32 len = sge->length - apply; 555 556 get_page(sg_page(sge)); 557 sg_set_page(&tmp, sg_page(sge), len, 558 sge->offset + apply); 559 sge->length = apply; 560 bytes += apply; 561 apply = 0; 562 } else { 563 apply -= sge->length; 564 bytes += sge->length; 565 } 566 567 sk_msg_iter_var_next(i); 568 if (i == msg_opl->sg.end) 569 break; 570 sge = sk_msg_elem(msg_opl, i); 571 } 572 573 msg_opl->sg.end = i; 574 msg_opl->sg.curr = i; 575 msg_opl->sg.copybreak = 0; 576 msg_opl->apply_bytes = 0; 577 msg_opl->sg.size = bytes; 578 579 msg_npl = &new->msg_plaintext; 580 msg_npl->apply_bytes = apply; 581 msg_npl->sg.size = orig_size - bytes; 582 583 j = msg_npl->sg.start; 584 nsge = sk_msg_elem(msg_npl, j); 585 if (tmp.length) { 586 memcpy(nsge, &tmp, sizeof(*nsge)); 587 sk_msg_iter_var_next(j); 588 nsge = sk_msg_elem(msg_npl, j); 589 } 590 591 osge = sk_msg_elem(msg_opl, i); 592 while (osge->length) { 593 memcpy(nsge, osge, sizeof(*nsge)); 594 sg_unmark_end(nsge); 595 sk_msg_iter_var_next(i); 596 sk_msg_iter_var_next(j); 597 if (i == *orig_end) 598 break; 599 osge = sk_msg_elem(msg_opl, i); 600 nsge = sk_msg_elem(msg_npl, j); 601 } 602 603 msg_npl->sg.end = j; 604 msg_npl->sg.curr = j; 605 msg_npl->sg.copybreak = 0; 606 607 *to = new; 608 return 0; 609 } 610 611 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 612 struct tls_rec *from, u32 orig_end) 613 { 614 struct sk_msg *msg_npl = &from->msg_plaintext; 615 struct sk_msg *msg_opl = &to->msg_plaintext; 616 struct scatterlist *osge, *nsge; 617 u32 i, j; 618 619 i = msg_opl->sg.end; 620 sk_msg_iter_var_prev(i); 621 j = msg_npl->sg.start; 622 623 osge = sk_msg_elem(msg_opl, i); 624 nsge = sk_msg_elem(msg_npl, j); 625 626 if (sg_page(osge) == sg_page(nsge) && 627 osge->offset + osge->length == nsge->offset) { 628 osge->length += nsge->length; 629 put_page(sg_page(nsge)); 630 } 631 632 msg_opl->sg.end = orig_end; 633 msg_opl->sg.curr = orig_end; 634 msg_opl->sg.copybreak = 0; 635 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 636 msg_opl->sg.size += msg_npl->sg.size; 637 638 sk_msg_free(sk, &to->msg_encrypted); 639 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 640 641 kfree(from); 642 } 643 644 static int tls_push_record(struct sock *sk, int flags, 645 unsigned char record_type) 646 { 647 struct tls_context *tls_ctx = tls_get_ctx(sk); 648 struct tls_prot_info *prot = &tls_ctx->prot_info; 649 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 650 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 651 u32 i, split_point, uninitialized_var(orig_end); 652 struct sk_msg *msg_pl, *msg_en; 653 struct aead_request *req; 654 bool split; 655 int rc; 656 657 if (!rec) 658 return 0; 659 660 msg_pl = &rec->msg_plaintext; 661 msg_en = &rec->msg_encrypted; 662 663 split_point = msg_pl->apply_bytes; 664 split = split_point && split_point < msg_pl->sg.size; 665 if (split) { 666 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 667 split_point, prot->overhead_size, 668 &orig_end); 669 if (rc < 0) 670 return rc; 671 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 672 prot->overhead_size); 673 } 674 675 rec->tx_flags = flags; 676 req = &rec->aead_req; 677 678 i = msg_pl->sg.end; 679 sk_msg_iter_var_prev(i); 680 681 rec->content_type = record_type; 682 if (prot->version == TLS_1_3_VERSION) { 683 /* Add content type to end of message. No padding added */ 684 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 685 sg_mark_end(&rec->sg_content_type); 686 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 687 &rec->sg_content_type); 688 } else { 689 sg_mark_end(sk_msg_elem(msg_pl, i)); 690 } 691 692 i = msg_pl->sg.start; 693 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 694 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 695 696 i = msg_en->sg.end; 697 sk_msg_iter_var_prev(i); 698 sg_mark_end(sk_msg_elem(msg_en, i)); 699 700 i = msg_en->sg.start; 701 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 702 703 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 704 tls_ctx->tx.rec_seq, prot->rec_seq_size, 705 record_type, prot->version); 706 707 tls_fill_prepend(tls_ctx, 708 page_address(sg_page(&msg_en->sg.data[i])) + 709 msg_en->sg.data[i].offset, 710 msg_pl->sg.size + prot->tail_size, 711 record_type, prot->version); 712 713 tls_ctx->pending_open_record_frags = false; 714 715 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 716 msg_pl->sg.size + prot->tail_size, i); 717 if (rc < 0) { 718 if (rc != -EINPROGRESS) { 719 tls_err_abort(sk, EBADMSG); 720 if (split) { 721 tls_ctx->pending_open_record_frags = true; 722 tls_merge_open_record(sk, rec, tmp, orig_end); 723 } 724 } 725 ctx->async_capable = 1; 726 return rc; 727 } else if (split) { 728 msg_pl = &tmp->msg_plaintext; 729 msg_en = &tmp->msg_encrypted; 730 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 731 tls_ctx->pending_open_record_frags = true; 732 ctx->open_rec = tmp; 733 } 734 735 return tls_tx_records(sk, flags); 736 } 737 738 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 739 bool full_record, u8 record_type, 740 size_t *copied, int flags) 741 { 742 struct tls_context *tls_ctx = tls_get_ctx(sk); 743 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 744 struct sk_msg msg_redir = { }; 745 struct sk_psock *psock; 746 struct sock *sk_redir; 747 struct tls_rec *rec; 748 bool enospc, policy; 749 int err = 0, send; 750 u32 delta = 0; 751 752 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 753 psock = sk_psock_get(sk); 754 if (!psock || !policy) 755 return tls_push_record(sk, flags, record_type); 756 more_data: 757 enospc = sk_msg_full(msg); 758 if (psock->eval == __SK_NONE) { 759 delta = msg->sg.size; 760 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 761 if (delta < msg->sg.size) 762 delta -= msg->sg.size; 763 else 764 delta = 0; 765 } 766 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 767 !enospc && !full_record) { 768 err = -ENOSPC; 769 goto out_err; 770 } 771 msg->cork_bytes = 0; 772 send = msg->sg.size; 773 if (msg->apply_bytes && msg->apply_bytes < send) 774 send = msg->apply_bytes; 775 776 switch (psock->eval) { 777 case __SK_PASS: 778 err = tls_push_record(sk, flags, record_type); 779 if (err < 0) { 780 *copied -= sk_msg_free(sk, msg); 781 tls_free_open_rec(sk); 782 goto out_err; 783 } 784 break; 785 case __SK_REDIRECT: 786 sk_redir = psock->sk_redir; 787 memcpy(&msg_redir, msg, sizeof(*msg)); 788 if (msg->apply_bytes < send) 789 msg->apply_bytes = 0; 790 else 791 msg->apply_bytes -= send; 792 sk_msg_return_zero(sk, msg, send); 793 msg->sg.size -= send; 794 release_sock(sk); 795 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 796 lock_sock(sk); 797 if (err < 0) { 798 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 799 msg->sg.size = 0; 800 } 801 if (msg->sg.size == 0) 802 tls_free_open_rec(sk); 803 break; 804 case __SK_DROP: 805 default: 806 sk_msg_free_partial(sk, msg, send); 807 if (msg->apply_bytes < send) 808 msg->apply_bytes = 0; 809 else 810 msg->apply_bytes -= send; 811 if (msg->sg.size == 0) 812 tls_free_open_rec(sk); 813 *copied -= (send + delta); 814 err = -EACCES; 815 } 816 817 if (likely(!err)) { 818 bool reset_eval = !ctx->open_rec; 819 820 rec = ctx->open_rec; 821 if (rec) { 822 msg = &rec->msg_plaintext; 823 if (!msg->apply_bytes) 824 reset_eval = true; 825 } 826 if (reset_eval) { 827 psock->eval = __SK_NONE; 828 if (psock->sk_redir) { 829 sock_put(psock->sk_redir); 830 psock->sk_redir = NULL; 831 } 832 } 833 if (rec) 834 goto more_data; 835 } 836 out_err: 837 sk_psock_put(sk, psock); 838 return err; 839 } 840 841 static int tls_sw_push_pending_record(struct sock *sk, int flags) 842 { 843 struct tls_context *tls_ctx = tls_get_ctx(sk); 844 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 845 struct tls_rec *rec = ctx->open_rec; 846 struct sk_msg *msg_pl; 847 size_t copied; 848 849 if (!rec) 850 return 0; 851 852 msg_pl = &rec->msg_plaintext; 853 copied = msg_pl->sg.size; 854 if (!copied) 855 return 0; 856 857 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 858 &copied, flags); 859 } 860 861 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 862 { 863 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 864 struct tls_context *tls_ctx = tls_get_ctx(sk); 865 struct tls_prot_info *prot = &tls_ctx->prot_info; 866 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 867 bool async_capable = ctx->async_capable; 868 unsigned char record_type = TLS_RECORD_TYPE_DATA; 869 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 870 bool eor = !(msg->msg_flags & MSG_MORE); 871 size_t try_to_copy, copied = 0; 872 struct sk_msg *msg_pl, *msg_en; 873 struct tls_rec *rec; 874 int required_size; 875 int num_async = 0; 876 bool full_record; 877 int record_room; 878 int num_zc = 0; 879 int orig_size; 880 int ret = 0; 881 882 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 883 return -ENOTSUPP; 884 885 lock_sock(sk); 886 887 /* Wait till there is any pending write on socket */ 888 if (unlikely(sk->sk_write_pending)) { 889 ret = wait_on_pending_writer(sk, &timeo); 890 if (unlikely(ret)) 891 goto send_end; 892 } 893 894 if (unlikely(msg->msg_controllen)) { 895 ret = tls_proccess_cmsg(sk, msg, &record_type); 896 if (ret) { 897 if (ret == -EINPROGRESS) 898 num_async++; 899 else if (ret != -EAGAIN) 900 goto send_end; 901 } 902 } 903 904 while (msg_data_left(msg)) { 905 if (sk->sk_err) { 906 ret = -sk->sk_err; 907 goto send_end; 908 } 909 910 if (ctx->open_rec) 911 rec = ctx->open_rec; 912 else 913 rec = ctx->open_rec = tls_get_rec(sk); 914 if (!rec) { 915 ret = -ENOMEM; 916 goto send_end; 917 } 918 919 msg_pl = &rec->msg_plaintext; 920 msg_en = &rec->msg_encrypted; 921 922 orig_size = msg_pl->sg.size; 923 full_record = false; 924 try_to_copy = msg_data_left(msg); 925 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 926 if (try_to_copy >= record_room) { 927 try_to_copy = record_room; 928 full_record = true; 929 } 930 931 required_size = msg_pl->sg.size + try_to_copy + 932 prot->overhead_size; 933 934 if (!sk_stream_memory_free(sk)) 935 goto wait_for_sndbuf; 936 937 alloc_encrypted: 938 ret = tls_alloc_encrypted_msg(sk, required_size); 939 if (ret) { 940 if (ret != -ENOSPC) 941 goto wait_for_memory; 942 943 /* Adjust try_to_copy according to the amount that was 944 * actually allocated. The difference is due 945 * to max sg elements limit 946 */ 947 try_to_copy -= required_size - msg_en->sg.size; 948 full_record = true; 949 } 950 951 if (!is_kvec && (full_record || eor) && !async_capable) { 952 u32 first = msg_pl->sg.end; 953 954 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 955 msg_pl, try_to_copy); 956 if (ret) 957 goto fallback_to_reg_send; 958 959 rec->inplace_crypto = 0; 960 961 num_zc++; 962 copied += try_to_copy; 963 964 sk_msg_sg_copy_set(msg_pl, first); 965 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 966 record_type, &copied, 967 msg->msg_flags); 968 if (ret) { 969 if (ret == -EINPROGRESS) 970 num_async++; 971 else if (ret == -ENOMEM) 972 goto wait_for_memory; 973 else if (ret == -ENOSPC) 974 goto rollback_iter; 975 else if (ret != -EAGAIN) 976 goto send_end; 977 } 978 continue; 979 rollback_iter: 980 copied -= try_to_copy; 981 sk_msg_sg_copy_clear(msg_pl, first); 982 iov_iter_revert(&msg->msg_iter, 983 msg_pl->sg.size - orig_size); 984 fallback_to_reg_send: 985 sk_msg_trim(sk, msg_pl, orig_size); 986 } 987 988 required_size = msg_pl->sg.size + try_to_copy; 989 990 ret = tls_clone_plaintext_msg(sk, required_size); 991 if (ret) { 992 if (ret != -ENOSPC) 993 goto send_end; 994 995 /* Adjust try_to_copy according to the amount that was 996 * actually allocated. The difference is due 997 * to max sg elements limit 998 */ 999 try_to_copy -= required_size - msg_pl->sg.size; 1000 full_record = true; 1001 sk_msg_trim(sk, msg_en, 1002 msg_pl->sg.size + prot->overhead_size); 1003 } 1004 1005 if (try_to_copy) { 1006 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1007 msg_pl, try_to_copy); 1008 if (ret < 0) 1009 goto trim_sgl; 1010 } 1011 1012 /* Open records defined only if successfully copied, otherwise 1013 * we would trim the sg but not reset the open record frags. 1014 */ 1015 tls_ctx->pending_open_record_frags = true; 1016 copied += try_to_copy; 1017 if (full_record || eor) { 1018 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1019 record_type, &copied, 1020 msg->msg_flags); 1021 if (ret) { 1022 if (ret == -EINPROGRESS) 1023 num_async++; 1024 else if (ret == -ENOMEM) 1025 goto wait_for_memory; 1026 else if (ret != -EAGAIN) { 1027 if (ret == -ENOSPC) 1028 ret = 0; 1029 goto send_end; 1030 } 1031 } 1032 } 1033 1034 continue; 1035 1036 wait_for_sndbuf: 1037 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1038 wait_for_memory: 1039 ret = sk_stream_wait_memory(sk, &timeo); 1040 if (ret) { 1041 trim_sgl: 1042 tls_trim_both_msgs(sk, orig_size); 1043 goto send_end; 1044 } 1045 1046 if (msg_en->sg.size < required_size) 1047 goto alloc_encrypted; 1048 } 1049 1050 if (!num_async) { 1051 goto send_end; 1052 } else if (num_zc) { 1053 /* Wait for pending encryptions to get completed */ 1054 smp_store_mb(ctx->async_notify, true); 1055 1056 if (atomic_read(&ctx->encrypt_pending)) 1057 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1058 else 1059 reinit_completion(&ctx->async_wait.completion); 1060 1061 WRITE_ONCE(ctx->async_notify, false); 1062 1063 if (ctx->async_wait.err) { 1064 ret = ctx->async_wait.err; 1065 copied = 0; 1066 } 1067 } 1068 1069 /* Transmit if any encryptions have completed */ 1070 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1071 cancel_delayed_work(&ctx->tx_work.work); 1072 tls_tx_records(sk, msg->msg_flags); 1073 } 1074 1075 send_end: 1076 ret = sk_stream_error(sk, msg->msg_flags, ret); 1077 1078 release_sock(sk); 1079 return copied ? copied : ret; 1080 } 1081 1082 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1083 int offset, size_t size, int flags) 1084 { 1085 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1086 struct tls_context *tls_ctx = tls_get_ctx(sk); 1087 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1088 struct tls_prot_info *prot = &tls_ctx->prot_info; 1089 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1090 struct sk_msg *msg_pl; 1091 struct tls_rec *rec; 1092 int num_async = 0; 1093 size_t copied = 0; 1094 bool full_record; 1095 int record_room; 1096 int ret = 0; 1097 bool eor; 1098 1099 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1100 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1101 1102 /* Wait till there is any pending write on socket */ 1103 if (unlikely(sk->sk_write_pending)) { 1104 ret = wait_on_pending_writer(sk, &timeo); 1105 if (unlikely(ret)) 1106 goto sendpage_end; 1107 } 1108 1109 /* Call the sk_stream functions to manage the sndbuf mem. */ 1110 while (size > 0) { 1111 size_t copy, required_size; 1112 1113 if (sk->sk_err) { 1114 ret = -sk->sk_err; 1115 goto sendpage_end; 1116 } 1117 1118 if (ctx->open_rec) 1119 rec = ctx->open_rec; 1120 else 1121 rec = ctx->open_rec = tls_get_rec(sk); 1122 if (!rec) { 1123 ret = -ENOMEM; 1124 goto sendpage_end; 1125 } 1126 1127 msg_pl = &rec->msg_plaintext; 1128 1129 full_record = false; 1130 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1131 copied = 0; 1132 copy = size; 1133 if (copy >= record_room) { 1134 copy = record_room; 1135 full_record = true; 1136 } 1137 1138 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1139 1140 if (!sk_stream_memory_free(sk)) 1141 goto wait_for_sndbuf; 1142 alloc_payload: 1143 ret = tls_alloc_encrypted_msg(sk, required_size); 1144 if (ret) { 1145 if (ret != -ENOSPC) 1146 goto wait_for_memory; 1147 1148 /* Adjust copy according to the amount that was 1149 * actually allocated. The difference is due 1150 * to max sg elements limit 1151 */ 1152 copy -= required_size - msg_pl->sg.size; 1153 full_record = true; 1154 } 1155 1156 sk_msg_page_add(msg_pl, page, copy, offset); 1157 sk_mem_charge(sk, copy); 1158 1159 offset += copy; 1160 size -= copy; 1161 copied += copy; 1162 1163 tls_ctx->pending_open_record_frags = true; 1164 if (full_record || eor || sk_msg_full(msg_pl)) { 1165 rec->inplace_crypto = 0; 1166 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1167 record_type, &copied, flags); 1168 if (ret) { 1169 if (ret == -EINPROGRESS) 1170 num_async++; 1171 else if (ret == -ENOMEM) 1172 goto wait_for_memory; 1173 else if (ret != -EAGAIN) { 1174 if (ret == -ENOSPC) 1175 ret = 0; 1176 goto sendpage_end; 1177 } 1178 } 1179 } 1180 continue; 1181 wait_for_sndbuf: 1182 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1183 wait_for_memory: 1184 ret = sk_stream_wait_memory(sk, &timeo); 1185 if (ret) { 1186 tls_trim_both_msgs(sk, msg_pl->sg.size); 1187 goto sendpage_end; 1188 } 1189 1190 goto alloc_payload; 1191 } 1192 1193 if (num_async) { 1194 /* Transmit if any encryptions have completed */ 1195 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1196 cancel_delayed_work(&ctx->tx_work.work); 1197 tls_tx_records(sk, flags); 1198 } 1199 } 1200 sendpage_end: 1201 ret = sk_stream_error(sk, flags, ret); 1202 return copied ? copied : ret; 1203 } 1204 1205 int tls_sw_sendpage(struct sock *sk, struct page *page, 1206 int offset, size_t size, int flags) 1207 { 1208 int ret; 1209 1210 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1211 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1212 return -ENOTSUPP; 1213 1214 lock_sock(sk); 1215 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1216 release_sock(sk); 1217 return ret; 1218 } 1219 1220 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1221 int flags, long timeo, int *err) 1222 { 1223 struct tls_context *tls_ctx = tls_get_ctx(sk); 1224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1225 struct sk_buff *skb; 1226 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1227 1228 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1229 if (sk->sk_err) { 1230 *err = sock_error(sk); 1231 return NULL; 1232 } 1233 1234 if (sk->sk_shutdown & RCV_SHUTDOWN) 1235 return NULL; 1236 1237 if (sock_flag(sk, SOCK_DONE)) 1238 return NULL; 1239 1240 if ((flags & MSG_DONTWAIT) || !timeo) { 1241 *err = -EAGAIN; 1242 return NULL; 1243 } 1244 1245 add_wait_queue(sk_sleep(sk), &wait); 1246 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1247 sk_wait_event(sk, &timeo, 1248 ctx->recv_pkt != skb || 1249 !sk_psock_queue_empty(psock), 1250 &wait); 1251 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1252 remove_wait_queue(sk_sleep(sk), &wait); 1253 1254 /* Handle signals */ 1255 if (signal_pending(current)) { 1256 *err = sock_intr_errno(timeo); 1257 return NULL; 1258 } 1259 } 1260 1261 return skb; 1262 } 1263 1264 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1265 int length, int *pages_used, 1266 unsigned int *size_used, 1267 struct scatterlist *to, 1268 int to_max_pages) 1269 { 1270 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1271 struct page *pages[MAX_SKB_FRAGS]; 1272 unsigned int size = *size_used; 1273 ssize_t copied, use; 1274 size_t offset; 1275 1276 while (length > 0) { 1277 i = 0; 1278 maxpages = to_max_pages - num_elem; 1279 if (maxpages == 0) { 1280 rc = -EFAULT; 1281 goto out; 1282 } 1283 copied = iov_iter_get_pages(from, pages, 1284 length, 1285 maxpages, &offset); 1286 if (copied <= 0) { 1287 rc = -EFAULT; 1288 goto out; 1289 } 1290 1291 iov_iter_advance(from, copied); 1292 1293 length -= copied; 1294 size += copied; 1295 while (copied) { 1296 use = min_t(int, copied, PAGE_SIZE - offset); 1297 1298 sg_set_page(&to[num_elem], 1299 pages[i], use, offset); 1300 sg_unmark_end(&to[num_elem]); 1301 /* We do not uncharge memory from this API */ 1302 1303 offset = 0; 1304 copied -= use; 1305 1306 i++; 1307 num_elem++; 1308 } 1309 } 1310 /* Mark the end in the last sg entry if newly added */ 1311 if (num_elem > *pages_used) 1312 sg_mark_end(&to[num_elem - 1]); 1313 out: 1314 if (rc) 1315 iov_iter_revert(from, size - *size_used); 1316 *size_used = size; 1317 *pages_used = num_elem; 1318 1319 return rc; 1320 } 1321 1322 /* This function decrypts the input skb into either out_iov or in out_sg 1323 * or in skb buffers itself. The input parameter 'zc' indicates if 1324 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1325 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1326 * NULL, then the decryption happens inside skb buffers itself, i.e. 1327 * zero-copy gets disabled and 'zc' is updated. 1328 */ 1329 1330 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1331 struct iov_iter *out_iov, 1332 struct scatterlist *out_sg, 1333 int *chunk, bool *zc, bool async) 1334 { 1335 struct tls_context *tls_ctx = tls_get_ctx(sk); 1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1337 struct tls_prot_info *prot = &tls_ctx->prot_info; 1338 struct strp_msg *rxm = strp_msg(skb); 1339 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1340 struct aead_request *aead_req; 1341 struct sk_buff *unused; 1342 u8 *aad, *iv, *mem = NULL; 1343 struct scatterlist *sgin = NULL; 1344 struct scatterlist *sgout = NULL; 1345 const int data_len = rxm->full_len - prot->overhead_size + 1346 prot->tail_size; 1347 1348 if (*zc && (out_iov || out_sg)) { 1349 if (out_iov) 1350 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1351 else 1352 n_sgout = sg_nents(out_sg); 1353 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1354 rxm->full_len - prot->prepend_size); 1355 } else { 1356 n_sgout = 0; 1357 *zc = false; 1358 n_sgin = skb_cow_data(skb, 0, &unused); 1359 } 1360 1361 if (n_sgin < 1) 1362 return -EBADMSG; 1363 1364 /* Increment to accommodate AAD */ 1365 n_sgin = n_sgin + 1; 1366 1367 nsg = n_sgin + n_sgout; 1368 1369 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1370 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1371 mem_size = mem_size + prot->aad_size; 1372 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1373 1374 /* Allocate a single block of memory which contains 1375 * aead_req || sgin[] || sgout[] || aad || iv. 1376 * This order achieves correct alignment for aead_req, sgin, sgout. 1377 */ 1378 mem = kmalloc(mem_size, sk->sk_allocation); 1379 if (!mem) 1380 return -ENOMEM; 1381 1382 /* Segment the allocated memory */ 1383 aead_req = (struct aead_request *)mem; 1384 sgin = (struct scatterlist *)(mem + aead_size); 1385 sgout = sgin + n_sgin; 1386 aad = (u8 *)(sgout + n_sgout); 1387 iv = aad + prot->aad_size; 1388 1389 /* Prepare IV */ 1390 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1391 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1392 prot->iv_size); 1393 if (err < 0) { 1394 kfree(mem); 1395 return err; 1396 } 1397 if (prot->version == TLS_1_3_VERSION) 1398 memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv)); 1399 else 1400 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1401 1402 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1403 1404 /* Prepare AAD */ 1405 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1406 prot->tail_size, 1407 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1408 ctx->control, prot->version); 1409 1410 /* Prepare sgin */ 1411 sg_init_table(sgin, n_sgin); 1412 sg_set_buf(&sgin[0], aad, prot->aad_size); 1413 err = skb_to_sgvec(skb, &sgin[1], 1414 rxm->offset + prot->prepend_size, 1415 rxm->full_len - prot->prepend_size); 1416 if (err < 0) { 1417 kfree(mem); 1418 return err; 1419 } 1420 1421 if (n_sgout) { 1422 if (out_iov) { 1423 sg_init_table(sgout, n_sgout); 1424 sg_set_buf(&sgout[0], aad, prot->aad_size); 1425 1426 *chunk = 0; 1427 err = tls_setup_from_iter(sk, out_iov, data_len, 1428 &pages, chunk, &sgout[1], 1429 (n_sgout - 1)); 1430 if (err < 0) 1431 goto fallback_to_reg_recv; 1432 } else if (out_sg) { 1433 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1434 } else { 1435 goto fallback_to_reg_recv; 1436 } 1437 } else { 1438 fallback_to_reg_recv: 1439 sgout = sgin; 1440 pages = 0; 1441 *chunk = data_len; 1442 *zc = false; 1443 } 1444 1445 /* Prepare and submit AEAD request */ 1446 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1447 data_len, aead_req, async); 1448 if (err == -EINPROGRESS) 1449 return err; 1450 1451 /* Release the pages in case iov was mapped to pages */ 1452 for (; pages > 0; pages--) 1453 put_page(sg_page(&sgout[pages])); 1454 1455 kfree(mem); 1456 return err; 1457 } 1458 1459 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1460 struct iov_iter *dest, int *chunk, bool *zc, 1461 bool async) 1462 { 1463 struct tls_context *tls_ctx = tls_get_ctx(sk); 1464 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1465 struct tls_prot_info *prot = &tls_ctx->prot_info; 1466 int version = prot->version; 1467 struct strp_msg *rxm = strp_msg(skb); 1468 int err = 0; 1469 1470 if (!ctx->decrypted) { 1471 #ifdef CONFIG_TLS_DEVICE 1472 err = tls_device_decrypted(sk, skb); 1473 if (err < 0) 1474 return err; 1475 #endif 1476 /* Still not decrypted after tls_device */ 1477 if (!ctx->decrypted) { 1478 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1479 async); 1480 if (err < 0) { 1481 if (err == -EINPROGRESS) 1482 tls_advance_record_sn(sk, &tls_ctx->rx, 1483 version); 1484 1485 return err; 1486 } 1487 } 1488 1489 rxm->full_len -= padding_length(ctx, tls_ctx, skb); 1490 rxm->offset += prot->prepend_size; 1491 rxm->full_len -= prot->overhead_size; 1492 tls_advance_record_sn(sk, &tls_ctx->rx, version); 1493 ctx->decrypted = true; 1494 ctx->saved_data_ready(sk); 1495 } else { 1496 *zc = false; 1497 } 1498 1499 return err; 1500 } 1501 1502 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1503 struct scatterlist *sgout) 1504 { 1505 bool zc = true; 1506 int chunk; 1507 1508 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1509 } 1510 1511 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1512 unsigned int len) 1513 { 1514 struct tls_context *tls_ctx = tls_get_ctx(sk); 1515 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1516 1517 if (skb) { 1518 struct strp_msg *rxm = strp_msg(skb); 1519 1520 if (len < rxm->full_len) { 1521 rxm->offset += len; 1522 rxm->full_len -= len; 1523 return false; 1524 } 1525 kfree_skb(skb); 1526 } 1527 1528 /* Finished with message */ 1529 ctx->recv_pkt = NULL; 1530 __strp_unpause(&ctx->strp); 1531 1532 return true; 1533 } 1534 1535 /* This function traverses the rx_list in tls receive context to copies the 1536 * decrypted records into the buffer provided by caller zero copy is not 1537 * true. Further, the records are removed from the rx_list if it is not a peek 1538 * case and the record has been consumed completely. 1539 */ 1540 static int process_rx_list(struct tls_sw_context_rx *ctx, 1541 struct msghdr *msg, 1542 u8 *control, 1543 bool *cmsg, 1544 size_t skip, 1545 size_t len, 1546 bool zc, 1547 bool is_peek) 1548 { 1549 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1550 u8 ctrl = *control; 1551 u8 msgc = *cmsg; 1552 struct tls_msg *tlm; 1553 ssize_t copied = 0; 1554 1555 /* Set the record type in 'control' if caller didn't pass it */ 1556 if (!ctrl && skb) { 1557 tlm = tls_msg(skb); 1558 ctrl = tlm->control; 1559 } 1560 1561 while (skip && skb) { 1562 struct strp_msg *rxm = strp_msg(skb); 1563 tlm = tls_msg(skb); 1564 1565 /* Cannot process a record of different type */ 1566 if (ctrl != tlm->control) 1567 return 0; 1568 1569 if (skip < rxm->full_len) 1570 break; 1571 1572 skip = skip - rxm->full_len; 1573 skb = skb_peek_next(skb, &ctx->rx_list); 1574 } 1575 1576 while (len && skb) { 1577 struct sk_buff *next_skb; 1578 struct strp_msg *rxm = strp_msg(skb); 1579 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1580 1581 tlm = tls_msg(skb); 1582 1583 /* Cannot process a record of different type */ 1584 if (ctrl != tlm->control) 1585 return 0; 1586 1587 /* Set record type if not already done. For a non-data record, 1588 * do not proceed if record type could not be copied. 1589 */ 1590 if (!msgc) { 1591 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1592 sizeof(ctrl), &ctrl); 1593 msgc = true; 1594 if (ctrl != TLS_RECORD_TYPE_DATA) { 1595 if (cerr || msg->msg_flags & MSG_CTRUNC) 1596 return -EIO; 1597 1598 *cmsg = msgc; 1599 } 1600 } 1601 1602 if (!zc || (rxm->full_len - skip) > len) { 1603 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1604 msg, chunk); 1605 if (err < 0) 1606 return err; 1607 } 1608 1609 len = len - chunk; 1610 copied = copied + chunk; 1611 1612 /* Consume the data from record if it is non-peek case*/ 1613 if (!is_peek) { 1614 rxm->offset = rxm->offset + chunk; 1615 rxm->full_len = rxm->full_len - chunk; 1616 1617 /* Return if there is unconsumed data in the record */ 1618 if (rxm->full_len - skip) 1619 break; 1620 } 1621 1622 /* The remaining skip-bytes must lie in 1st record in rx_list. 1623 * So from the 2nd record, 'skip' should be 0. 1624 */ 1625 skip = 0; 1626 1627 if (msg) 1628 msg->msg_flags |= MSG_EOR; 1629 1630 next_skb = skb_peek_next(skb, &ctx->rx_list); 1631 1632 if (!is_peek) { 1633 skb_unlink(skb, &ctx->rx_list); 1634 kfree_skb(skb); 1635 } 1636 1637 skb = next_skb; 1638 } 1639 1640 *control = ctrl; 1641 return copied; 1642 } 1643 1644 int tls_sw_recvmsg(struct sock *sk, 1645 struct msghdr *msg, 1646 size_t len, 1647 int nonblock, 1648 int flags, 1649 int *addr_len) 1650 { 1651 struct tls_context *tls_ctx = tls_get_ctx(sk); 1652 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1653 struct tls_prot_info *prot = &tls_ctx->prot_info; 1654 struct sk_psock *psock; 1655 unsigned char control = 0; 1656 ssize_t decrypted = 0; 1657 struct strp_msg *rxm; 1658 struct tls_msg *tlm; 1659 struct sk_buff *skb; 1660 ssize_t copied = 0; 1661 bool cmsg = false; 1662 int target, err = 0; 1663 long timeo; 1664 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1665 bool is_peek = flags & MSG_PEEK; 1666 int num_async = 0; 1667 1668 flags |= nonblock; 1669 1670 if (unlikely(flags & MSG_ERRQUEUE)) 1671 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1672 1673 psock = sk_psock_get(sk); 1674 lock_sock(sk); 1675 1676 /* Process pending decrypted records. It must be non-zero-copy */ 1677 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1678 is_peek); 1679 if (err < 0) { 1680 tls_err_abort(sk, err); 1681 goto end; 1682 } else { 1683 copied = err; 1684 } 1685 1686 len = len - copied; 1687 if (len) { 1688 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1689 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1690 } else { 1691 goto recv_end; 1692 } 1693 1694 do { 1695 bool retain_skb = false; 1696 bool zc = false; 1697 int to_decrypt; 1698 int chunk = 0; 1699 bool async_capable; 1700 bool async = false; 1701 1702 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1703 if (!skb) { 1704 if (psock) { 1705 int ret = __tcp_bpf_recvmsg(sk, psock, 1706 msg, len, flags); 1707 1708 if (ret > 0) { 1709 decrypted += ret; 1710 len -= ret; 1711 continue; 1712 } 1713 } 1714 goto recv_end; 1715 } else { 1716 tlm = tls_msg(skb); 1717 if (prot->version == TLS_1_3_VERSION) 1718 tlm->control = 0; 1719 else 1720 tlm->control = ctx->control; 1721 } 1722 1723 rxm = strp_msg(skb); 1724 1725 to_decrypt = rxm->full_len - prot->overhead_size; 1726 1727 if (to_decrypt <= len && !is_kvec && !is_peek && 1728 ctx->control == TLS_RECORD_TYPE_DATA && 1729 prot->version != TLS_1_3_VERSION) 1730 zc = true; 1731 1732 /* Do not use async mode if record is non-data */ 1733 if (ctx->control == TLS_RECORD_TYPE_DATA) 1734 async_capable = ctx->async_capable; 1735 else 1736 async_capable = false; 1737 1738 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1739 &chunk, &zc, async_capable); 1740 if (err < 0 && err != -EINPROGRESS) { 1741 tls_err_abort(sk, EBADMSG); 1742 goto recv_end; 1743 } 1744 1745 if (err == -EINPROGRESS) { 1746 async = true; 1747 num_async++; 1748 } else if (prot->version == TLS_1_3_VERSION) { 1749 tlm->control = ctx->control; 1750 } 1751 1752 /* If the type of records being processed is not known yet, 1753 * set it to record type just dequeued. If it is already known, 1754 * but does not match the record type just dequeued, go to end. 1755 * We always get record type here since for tls1.2, record type 1756 * is known just after record is dequeued from stream parser. 1757 * For tls1.3, we disable async. 1758 */ 1759 1760 if (!control) 1761 control = tlm->control; 1762 else if (control != tlm->control) 1763 goto recv_end; 1764 1765 if (!cmsg) { 1766 int cerr; 1767 1768 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1769 sizeof(control), &control); 1770 cmsg = true; 1771 if (control != TLS_RECORD_TYPE_DATA) { 1772 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1773 err = -EIO; 1774 goto recv_end; 1775 } 1776 } 1777 } 1778 1779 if (async) 1780 goto pick_next_record; 1781 1782 if (!zc) { 1783 if (rxm->full_len > len) { 1784 retain_skb = true; 1785 chunk = len; 1786 } else { 1787 chunk = rxm->full_len; 1788 } 1789 1790 err = skb_copy_datagram_msg(skb, rxm->offset, 1791 msg, chunk); 1792 if (err < 0) 1793 goto recv_end; 1794 1795 if (!is_peek) { 1796 rxm->offset = rxm->offset + chunk; 1797 rxm->full_len = rxm->full_len - chunk; 1798 } 1799 } 1800 1801 pick_next_record: 1802 if (chunk > len) 1803 chunk = len; 1804 1805 decrypted += chunk; 1806 len -= chunk; 1807 1808 /* For async or peek case, queue the current skb */ 1809 if (async || is_peek || retain_skb) { 1810 skb_queue_tail(&ctx->rx_list, skb); 1811 skb = NULL; 1812 } 1813 1814 if (tls_sw_advance_skb(sk, skb, chunk)) { 1815 /* Return full control message to 1816 * userspace before trying to parse 1817 * another message type 1818 */ 1819 msg->msg_flags |= MSG_EOR; 1820 if (ctx->control != TLS_RECORD_TYPE_DATA) 1821 goto recv_end; 1822 } else { 1823 break; 1824 } 1825 1826 /* If we have a new message from strparser, continue now. */ 1827 if (decrypted >= target && !ctx->recv_pkt) 1828 break; 1829 } while (len); 1830 1831 recv_end: 1832 if (num_async) { 1833 /* Wait for all previously submitted records to be decrypted */ 1834 smp_store_mb(ctx->async_notify, true); 1835 if (atomic_read(&ctx->decrypt_pending)) { 1836 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1837 if (err) { 1838 /* one of async decrypt failed */ 1839 tls_err_abort(sk, err); 1840 copied = 0; 1841 decrypted = 0; 1842 goto end; 1843 } 1844 } else { 1845 reinit_completion(&ctx->async_wait.completion); 1846 } 1847 WRITE_ONCE(ctx->async_notify, false); 1848 1849 /* Drain records from the rx_list & copy if required */ 1850 if (is_peek || is_kvec) 1851 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1852 decrypted, false, is_peek); 1853 else 1854 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1855 decrypted, true, is_peek); 1856 if (err < 0) { 1857 tls_err_abort(sk, err); 1858 copied = 0; 1859 goto end; 1860 } 1861 } 1862 1863 copied += decrypted; 1864 1865 end: 1866 release_sock(sk); 1867 if (psock) 1868 sk_psock_put(sk, psock); 1869 return copied ? : err; 1870 } 1871 1872 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1873 struct pipe_inode_info *pipe, 1874 size_t len, unsigned int flags) 1875 { 1876 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1877 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1878 struct strp_msg *rxm = NULL; 1879 struct sock *sk = sock->sk; 1880 struct sk_buff *skb; 1881 ssize_t copied = 0; 1882 int err = 0; 1883 long timeo; 1884 int chunk; 1885 bool zc = false; 1886 1887 lock_sock(sk); 1888 1889 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1890 1891 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1892 if (!skb) 1893 goto splice_read_end; 1894 1895 if (!ctx->decrypted) { 1896 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1897 1898 /* splice does not support reading control messages */ 1899 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1900 err = -ENOTSUPP; 1901 goto splice_read_end; 1902 } 1903 1904 if (err < 0) { 1905 tls_err_abort(sk, EBADMSG); 1906 goto splice_read_end; 1907 } 1908 ctx->decrypted = true; 1909 } 1910 rxm = strp_msg(skb); 1911 1912 chunk = min_t(unsigned int, rxm->full_len, len); 1913 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1914 if (copied < 0) 1915 goto splice_read_end; 1916 1917 if (likely(!(flags & MSG_PEEK))) 1918 tls_sw_advance_skb(sk, skb, copied); 1919 1920 splice_read_end: 1921 release_sock(sk); 1922 return copied ? : err; 1923 } 1924 1925 bool tls_sw_stream_read(const struct sock *sk) 1926 { 1927 struct tls_context *tls_ctx = tls_get_ctx(sk); 1928 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1929 bool ingress_empty = true; 1930 struct sk_psock *psock; 1931 1932 rcu_read_lock(); 1933 psock = sk_psock(sk); 1934 if (psock) 1935 ingress_empty = list_empty(&psock->ingress_msg); 1936 rcu_read_unlock(); 1937 1938 return !ingress_empty || ctx->recv_pkt; 1939 } 1940 1941 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1942 { 1943 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1944 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1945 struct tls_prot_info *prot = &tls_ctx->prot_info; 1946 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1947 struct strp_msg *rxm = strp_msg(skb); 1948 size_t cipher_overhead; 1949 size_t data_len = 0; 1950 int ret; 1951 1952 /* Verify that we have a full TLS header, or wait for more data */ 1953 if (rxm->offset + prot->prepend_size > skb->len) 1954 return 0; 1955 1956 /* Sanity-check size of on-stack buffer. */ 1957 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1958 ret = -EINVAL; 1959 goto read_failure; 1960 } 1961 1962 /* Linearize header to local buffer */ 1963 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1964 1965 if (ret < 0) 1966 goto read_failure; 1967 1968 ctx->control = header[0]; 1969 1970 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1971 1972 cipher_overhead = prot->tag_size; 1973 if (prot->version != TLS_1_3_VERSION) 1974 cipher_overhead += prot->iv_size; 1975 1976 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 1977 prot->tail_size) { 1978 ret = -EMSGSIZE; 1979 goto read_failure; 1980 } 1981 if (data_len < cipher_overhead) { 1982 ret = -EBADMSG; 1983 goto read_failure; 1984 } 1985 1986 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 1987 if (header[1] != TLS_1_2_VERSION_MINOR || 1988 header[2] != TLS_1_2_VERSION_MAJOR) { 1989 ret = -EINVAL; 1990 goto read_failure; 1991 } 1992 #ifdef CONFIG_TLS_DEVICE 1993 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 1994 *(u64*)tls_ctx->rx.rec_seq); 1995 #endif 1996 return data_len + TLS_HEADER_SIZE; 1997 1998 read_failure: 1999 tls_err_abort(strp->sk, ret); 2000 2001 return ret; 2002 } 2003 2004 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2005 { 2006 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2007 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2008 2009 ctx->decrypted = false; 2010 2011 ctx->recv_pkt = skb; 2012 strp_pause(strp); 2013 2014 ctx->saved_data_ready(strp->sk); 2015 } 2016 2017 static void tls_data_ready(struct sock *sk) 2018 { 2019 struct tls_context *tls_ctx = tls_get_ctx(sk); 2020 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2021 struct sk_psock *psock; 2022 2023 strp_data_ready(&ctx->strp); 2024 2025 psock = sk_psock_get(sk); 2026 if (psock && !list_empty(&psock->ingress_msg)) { 2027 ctx->saved_data_ready(sk); 2028 sk_psock_put(sk, psock); 2029 } 2030 } 2031 2032 void tls_sw_free_resources_tx(struct sock *sk) 2033 { 2034 struct tls_context *tls_ctx = tls_get_ctx(sk); 2035 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2036 struct tls_rec *rec, *tmp; 2037 2038 /* Wait for any pending async encryptions to complete */ 2039 smp_store_mb(ctx->async_notify, true); 2040 if (atomic_read(&ctx->encrypt_pending)) 2041 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2042 2043 release_sock(sk); 2044 cancel_delayed_work_sync(&ctx->tx_work.work); 2045 lock_sock(sk); 2046 2047 /* Tx whatever records we can transmit and abandon the rest */ 2048 tls_tx_records(sk, -1); 2049 2050 /* Free up un-sent records in tx_list. First, free 2051 * the partially sent record if any at head of tx_list. 2052 */ 2053 if (tls_ctx->partially_sent_record) { 2054 struct scatterlist *sg = tls_ctx->partially_sent_record; 2055 2056 while (1) { 2057 put_page(sg_page(sg)); 2058 sk_mem_uncharge(sk, sg->length); 2059 2060 if (sg_is_last(sg)) 2061 break; 2062 sg++; 2063 } 2064 2065 tls_ctx->partially_sent_record = NULL; 2066 2067 rec = list_first_entry(&ctx->tx_list, 2068 struct tls_rec, list); 2069 list_del(&rec->list); 2070 sk_msg_free(sk, &rec->msg_plaintext); 2071 kfree(rec); 2072 } 2073 2074 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2075 list_del(&rec->list); 2076 sk_msg_free(sk, &rec->msg_encrypted); 2077 sk_msg_free(sk, &rec->msg_plaintext); 2078 kfree(rec); 2079 } 2080 2081 crypto_free_aead(ctx->aead_send); 2082 tls_free_open_rec(sk); 2083 2084 kfree(ctx); 2085 } 2086 2087 void tls_sw_release_resources_rx(struct sock *sk) 2088 { 2089 struct tls_context *tls_ctx = tls_get_ctx(sk); 2090 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2091 2092 if (ctx->aead_recv) { 2093 kfree_skb(ctx->recv_pkt); 2094 ctx->recv_pkt = NULL; 2095 skb_queue_purge(&ctx->rx_list); 2096 crypto_free_aead(ctx->aead_recv); 2097 strp_stop(&ctx->strp); 2098 write_lock_bh(&sk->sk_callback_lock); 2099 sk->sk_data_ready = ctx->saved_data_ready; 2100 write_unlock_bh(&sk->sk_callback_lock); 2101 release_sock(sk); 2102 strp_done(&ctx->strp); 2103 lock_sock(sk); 2104 } 2105 } 2106 2107 void tls_sw_free_resources_rx(struct sock *sk) 2108 { 2109 struct tls_context *tls_ctx = tls_get_ctx(sk); 2110 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2111 2112 tls_sw_release_resources_rx(sk); 2113 2114 kfree(ctx); 2115 } 2116 2117 /* The work handler to transmitt the encrypted records in tx_list */ 2118 static void tx_work_handler(struct work_struct *work) 2119 { 2120 struct delayed_work *delayed_work = to_delayed_work(work); 2121 struct tx_work *tx_work = container_of(delayed_work, 2122 struct tx_work, work); 2123 struct sock *sk = tx_work->sk; 2124 struct tls_context *tls_ctx = tls_get_ctx(sk); 2125 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2126 2127 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2128 return; 2129 2130 lock_sock(sk); 2131 tls_tx_records(sk, -1); 2132 release_sock(sk); 2133 } 2134 2135 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2136 { 2137 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2138 2139 /* Schedule the transmission if tx list is ready */ 2140 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) { 2141 /* Schedule the transmission */ 2142 if (!test_and_set_bit(BIT_TX_SCHEDULED, 2143 &tx_ctx->tx_bitmask)) 2144 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2145 } 2146 } 2147 2148 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2149 { 2150 struct tls_context *tls_ctx = tls_get_ctx(sk); 2151 struct tls_prot_info *prot = &tls_ctx->prot_info; 2152 struct tls_crypto_info *crypto_info; 2153 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2154 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2155 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2156 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2157 struct cipher_context *cctx; 2158 struct crypto_aead **aead; 2159 struct strp_callbacks cb; 2160 u16 nonce_size, tag_size, iv_size, rec_seq_size; 2161 struct crypto_tfm *tfm; 2162 char *iv, *rec_seq, *key, *salt; 2163 size_t keysize; 2164 int rc = 0; 2165 2166 if (!ctx) { 2167 rc = -EINVAL; 2168 goto out; 2169 } 2170 2171 if (tx) { 2172 if (!ctx->priv_ctx_tx) { 2173 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2174 if (!sw_ctx_tx) { 2175 rc = -ENOMEM; 2176 goto out; 2177 } 2178 ctx->priv_ctx_tx = sw_ctx_tx; 2179 } else { 2180 sw_ctx_tx = 2181 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2182 } 2183 } else { 2184 if (!ctx->priv_ctx_rx) { 2185 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2186 if (!sw_ctx_rx) { 2187 rc = -ENOMEM; 2188 goto out; 2189 } 2190 ctx->priv_ctx_rx = sw_ctx_rx; 2191 } else { 2192 sw_ctx_rx = 2193 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2194 } 2195 } 2196 2197 if (tx) { 2198 crypto_init_wait(&sw_ctx_tx->async_wait); 2199 crypto_info = &ctx->crypto_send.info; 2200 cctx = &ctx->tx; 2201 aead = &sw_ctx_tx->aead_send; 2202 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2203 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2204 sw_ctx_tx->tx_work.sk = sk; 2205 } else { 2206 crypto_init_wait(&sw_ctx_rx->async_wait); 2207 crypto_info = &ctx->crypto_recv.info; 2208 cctx = &ctx->rx; 2209 skb_queue_head_init(&sw_ctx_rx->rx_list); 2210 aead = &sw_ctx_rx->aead_recv; 2211 } 2212 2213 switch (crypto_info->cipher_type) { 2214 case TLS_CIPHER_AES_GCM_128: { 2215 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2216 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2217 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2218 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2219 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2220 rec_seq = 2221 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2222 gcm_128_info = 2223 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2224 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2225 key = gcm_128_info->key; 2226 salt = gcm_128_info->salt; 2227 break; 2228 } 2229 case TLS_CIPHER_AES_GCM_256: { 2230 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2231 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2232 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2233 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2234 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2235 rec_seq = 2236 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2237 gcm_256_info = 2238 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2239 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2240 key = gcm_256_info->key; 2241 salt = gcm_256_info->salt; 2242 break; 2243 } 2244 default: 2245 rc = -EINVAL; 2246 goto free_priv; 2247 } 2248 2249 /* Sanity-check the IV size for stack allocations. */ 2250 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 2251 rc = -EINVAL; 2252 goto free_priv; 2253 } 2254 2255 if (crypto_info->version == TLS_1_3_VERSION) { 2256 nonce_size = 0; 2257 prot->aad_size = TLS_HEADER_SIZE; 2258 prot->tail_size = 1; 2259 } else { 2260 prot->aad_size = TLS_AAD_SPACE_SIZE; 2261 prot->tail_size = 0; 2262 } 2263 2264 prot->version = crypto_info->version; 2265 prot->cipher_type = crypto_info->cipher_type; 2266 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2267 prot->tag_size = tag_size; 2268 prot->overhead_size = prot->prepend_size + 2269 prot->tag_size + prot->tail_size; 2270 prot->iv_size = iv_size; 2271 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 2272 GFP_KERNEL); 2273 if (!cctx->iv) { 2274 rc = -ENOMEM; 2275 goto free_priv; 2276 } 2277 /* Note: 128 & 256 bit salt are the same size */ 2278 memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 2279 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 2280 prot->rec_seq_size = rec_seq_size; 2281 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2282 if (!cctx->rec_seq) { 2283 rc = -ENOMEM; 2284 goto free_iv; 2285 } 2286 2287 if (!*aead) { 2288 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 2289 if (IS_ERR(*aead)) { 2290 rc = PTR_ERR(*aead); 2291 *aead = NULL; 2292 goto free_rec_seq; 2293 } 2294 } 2295 2296 ctx->push_pending_record = tls_sw_push_pending_record; 2297 2298 rc = crypto_aead_setkey(*aead, key, keysize); 2299 2300 if (rc) 2301 goto free_aead; 2302 2303 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2304 if (rc) 2305 goto free_aead; 2306 2307 if (sw_ctx_rx) { 2308 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2309 2310 if (crypto_info->version == TLS_1_3_VERSION) 2311 sw_ctx_rx->async_capable = false; 2312 else 2313 sw_ctx_rx->async_capable = 2314 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 2315 2316 /* Set up strparser */ 2317 memset(&cb, 0, sizeof(cb)); 2318 cb.rcv_msg = tls_queue; 2319 cb.parse_msg = tls_read_size; 2320 2321 strp_init(&sw_ctx_rx->strp, sk, &cb); 2322 2323 write_lock_bh(&sk->sk_callback_lock); 2324 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 2325 sk->sk_data_ready = tls_data_ready; 2326 write_unlock_bh(&sk->sk_callback_lock); 2327 2328 strp_check_rcv(&sw_ctx_rx->strp); 2329 } 2330 2331 goto out; 2332 2333 free_aead: 2334 crypto_free_aead(*aead); 2335 *aead = NULL; 2336 free_rec_seq: 2337 kfree(cctx->rec_seq); 2338 cctx->rec_seq = NULL; 2339 free_iv: 2340 kfree(cctx->iv); 2341 cctx->iv = NULL; 2342 free_priv: 2343 if (tx) { 2344 kfree(ctx->priv_ctx_tx); 2345 ctx->priv_ctx_tx = NULL; 2346 } else { 2347 kfree(ctx->priv_ctx_rx); 2348 ctx->priv_ctx_rx = NULL; 2349 } 2350 out: 2351 return rc; 2352 } 2353